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ABSTRACT

Plants exhibit extensive environment-dependent intraspecific metabolic variation, which likely plays a role

in determining variation in whole plant phenotypes. However, much of the work seeking to use natural

variation to link genes and transcript’s impacts on plant metabolism has employed data from controlled

environments. Here we generate and employ data on variation in the abundance of twenty-six metabolites

across 660 maize inbred lines under field conditions. We employ these data and previously published

transcript and whole plant phenotype data reported for the same field experiment to identify both genomic

intervals (through genome-wide association studies) and transcripts (through both transcriptome-wide

association studies and an explainable AI approach based on the random forest) associated with variation

in metabolite abundance. Both genome-wide association and random forest-based methods identified

substantial numbers of significant associations including genes with plausible links to the metabolites

they are associated with. In contrast, the transcriptome-wide association identified only six significant

associations. In three cases, genetic markers associated with metabolic variation in our study colocalized

with markers linked to variation in non-metabolic traits scored in the same experiment. We speculate

that the poor performance of transcriptome-wide association studies in identifying transcript-metabolite

associations may reflect a high prevalence of non-linear interactions between transcripts and metabolites

and/or a bias towards rare transcripts playing a large role in determining intraspecific metabolic variation.

Introduction

Plants can produce a wide array of metabolites with diverse structures that perform essential roles in

growth, cellular regeneration, resource allocation, development, and responses to biotic and abiotic

stresses. While the total number of metabolites produced by plants likely exceeds one million, each

plant species typically synthesizes between several thousand and several tens of thousands1, 2. In addition

to interspecies metabolic diversity, substantial metabolic diversity exists between members of the same

species (intraspecies diversity). Investigating the genetic determinants of intraspecies variation in plant

metabolism can provide insight into both the enzymes responsible for specific steps in metabolic pathways

and also the role variation in plant metabolism plays in determining whole plant phenotypes2, 3. Variation

in the abundance of lignin precursors is correlated with variation in biomass production in arabidopsis and

maize4, 5. Many metabolic and morphological trait pairs exhibited significant correlations in an analysis of
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64 metabolite traits and 35 morphological traits scored across a tomato mapping population6. QTL for

nine of twenty-six whole plant phenotypes evaluated in potato colocalized with QTL for variation in the

abundance of one or more of 85 metabolites profiled in the same population7.

Plant metabolic traits tend to be moderately heritable within species. More than half of metabolic

features profiled in a rice diversity panel exhibited heritability coefficients (H2) generally greater than

0.5 and for nearly one-quarter, H2 exceeded 0.78. Metabolic quantification of a population of 289 maize

genotypes identified 26 metabolites where one or more genetic markers were significantly associated

with variance in abundance in the leaves of maize seedlings grown in controlled environment conditions

including a locus on chromosome 9 associated with variation in lignin precursors5. More than 1,400

genetic loci were significantly associated with variation in the abundance of 983 metabolites measured

in mature (dry) maize kernels9. Comparative GWAS for the abundance of metabolites in dried seeds

conducted in rice and maize identified 420 and 292 loci associated with 123 metabolites in the two species,

respectively. These hits included 42 associated with homologous loci in both species10.

A combination of genome-wide association studies and transcriptome-wide association studies was

able to link thirteen genes to variation in the abundance of tocochromanol (vitamin E) including five genes

not previously linked to this metabolite11. Transcriptome-wide association studies can provide advantages

in interpretation as they appear to be less influenced by linkage disequilibrium and more frequently

identify a single candidate gene per genomic interval than genome-wide association studies12. Combined

genome-wide and transcriptome-wide association studies have also been used to identify loci associated

with variation in seed oil content in Brassica napus13. This frequent use of seeds for population-level

metabolic profiling9–11, 13 is likely due to the significant economic and food security importance of crop

seeds, as well as the practical challenges associated with collecting and sampling equivalent vegetative

tissues from large populations grown under field-relevant conditions

Here we seek to identify loci associated with variation in metabolite abundance under field conditions in

mature leaf tissue employing data generated from the Wisconsin Diversity panel, a large maize association

panel selected to capture the genetic and phenotypic diversity present among the set of maize genotypes

with the potential to complete their life cycle in temperate North America14. This panel has been previously

resequenced, providing an extremely high marker density for genome-wide association studies15, and

we leveraged a parallel RNA-seq experiment with profiled gene expression using leaf samples collected

from the same plants on the same day as those employed for quantification of metabolites16. We were

able to identify a total of 240 genes associated with metabolite variations and one gene that was identified

between TWAS and RF. This study not only highlighted genes directly linked to metabolite production,

such as N-acetyl-gamma-glutamyl-phosphate reductase with L-glutamic acid but also revealed other genes

crucial for various aspects of plant metabolism, especially resistance against biotic and abiotic stresses.

Additionally, we identified three loci associated with variation in both metabolic and non-metabolic traits.

The data and analyses presented here will allow future research to functionally validate links between

genes and metabolites as well as metabolites and whole plant phenotypes.

Results

A set of 26 unique metabolites was successfully quantified via GC-MS across mature leaf tissue samples

collected from 660 maize inbred lines. A total of 660 unique sets of measurements were generated,

representing different genotypes. The dataset initially included 707 samples, of which 47 are biological

replicates from tissue samples collected from different plants of the same genotype within the same

experiment. Additionally, 88 of these samples are duplicates of the replicated check, B97, which were

not included in the count of unique genotypes, resulting in 660 unique sets of measurements. Several
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metabolites exhibited high biological repeatability across these replicates. Threonine showed the highest

repeatability (r =0.87), suggesting strong genetic control. Other metabolites such as raffinose (r=0.82),

chlorogenic acid (r=0.81), malic acid (r=0.80), and galactonic acid (r=0.77) also displayed repeatability

values indicative of reasonable heritability. The average biological repeatability was 0.57 (Figure 1A, S1).

These values were compared to average biological repeatability of 0.75 for 28 whole plant traits17, 0.42

for 10 hyperspectral traits18, and 0.25 for 3 photosynthetic traits scored for the same maize genotypes

within the same experiment (Figures S2, S3 and S4).

We did not observe strong evidence of clustering among different groups of samples (Figure S5),

However, a significant proportion of the non-genetic variance for some individual metabolites could be

explained by variation between different batches of samples, which refers to groups of samples processed

at different times or differences in data generated and analyzed earlier or later within a given batch

during the GC-MS run (Figure 1B). Several expected correlations were observed between different

metabolites profiled, such as the positive correlation between glucose and fructose, both of which are

sugars commonly involved in similar metabolic pathways, and between quinic acid and shikimic acid,

which are both intermediates in the same biosynthetic pathway (Figure S6). The abundance of a number

of metabolites was also significantly correlated with whole plant phenotypes scored in the same field

(Figure S7). Shikimic acid abundance measured in the field at the late vegetative/early flowering stage

showed a significant positive correlation with plant height (r = 0.23; p < 0.0001) and a significant negative

correlation with percent ear fill (r = -0.25; p < 0.0001) at harvest. Similarly, Beta-alanine abundance

showed a significant positive correlation with 100 kernel mass (r = 0.22; p < 0.0001) at harvest.

After controlling for batch effects and order of quantification effects, 150 genetic markers were

significantly associated with one or more of 26 metabolites at a resampling model inclusion probability

(RMIP) threshold ≥ 0.1 (Figure 2). Among these 150 genetic markers, five were found to be associated

with two different metabolites. The 17 most supported metabolite-genetic marker associations all exceeded

RMIP ≥ 0.3 (Table 1) and included two markers each associated with variation in the abundance of

phosphoric acid, chlorogenic acid, galactonic acid, and trans-aconitic acid, and one genetic mark each

associated with variation in the abundance of glyceric acid, shikimic acid, L-serine, quinic acid, raffinose,

sucrose, tyrosine, D-glucose, and fructose. In seven cases a gene known to play a specific role in plant

metabolism was located within 50 kilobases of a genetic marker linked to metabolic variation at RMIP

≥ 0.3 and markers within the gene appeared to be in significant linkage disequilibrium with the genetic

marker identified via GWAS (Figure S8;Table 1). However, in many cases, the windows around individual

metabolite abundance-associated genetic markers, defined by linkage disequilibrium, included multiple

gene models, with a median of 4 gene models and a mean of approximately 5 gene models per interval.

Unlike genome-wide association studies, transcriptome-wide studies can frequently provide single

gene resolution12, ameliorating the challenge of translating metabolite abundance associations to individual

candidate genes. A previously published gene expression dataset generated from leaf tissue collected

from the same plants at the same time as the leaf tissue samples employed for quantifying the abundance

of metabolites16 was utilized to conduct transcriptome-wide association studies (TWAS) for metabolite

abundance. The abundance of only three of the 26 metabolites was significantly associated with the

expression of individual genes in the same leaves at a Bonferroni-corrected significance threshold of 0.05

(Figure 3;Figure S9). These included four genes whose transcript abundance was significantly associated

with variation in the abundance of glycerol 1-phosphate, and one gene each associated with variation in

L-glutamic acid and quinic acid. Variation in the expression of the same gene Zm00001eb431150, which

encodes a Cu(2+)-exporting ATPase (CUEA), was linked to both variations in the abundance of glycerol

1-phosphate and L-glutamic acid. The sole gene whose transcript abundance was associated with quinic

acid was Zm00001eb147850, which is a multi-copper oxidase (MCO).

3/30

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2024.08.26.609532doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.26.609532
http://creativecommons.org/licenses/by/4.0/


We speculated that the limited number of transcripts associated with variation in the abundance of

metabolites could reflect nonlinear associations between transcript abundance and metabolite levels. As

a complement to conventional TWAS which assumes linear relationships we adopted an explainable

AI/random forest-based method19, combined with a permutation-based estimate of expected background

associations (Figure S10) to identify those transcripts with the most predictive power to explain the

abundance of the three metabolites for which at least one significant transcript association was identified

via TWAS. A total of 26, 29, and 24 transcripts were identified which exceeded (FDR ≤ 0.05) for L-

glutamic acid, quinic acid, and glycerol 1-phosphate respectively (Figure S11). None of the transcripts

identified via this method overlapped with genes located near trait-associated markers identified via GWAS,

however, One of the six genes identified via TWAS, CUEA, was also identified in the random forest-based

analysis. In addition, one of the genes associated with variation in the abundance of L-glutamic acid via

random forest N-acetyl-gamma-glutamyl-phosphate reductase (argC) is known to play a critical role in the

arginine biosynthesis pathway using glutamate as a precursor20–22.

In three cases the same region of the maize genome was linked to variation in metabolite abundance

and one of a set of 41 non-metabolic traits, including 28 whole plant phenotypes, 10 traits extracted from

hyperspectral leaf reflectance, and three traits related to photosynthetic parameters. Out of 223 genetic

markers associated with variation in these non-metabolite traits at a threshold of RMIP ≥ 0.1 (Figure S12),

three were located within 100 kilobases of genetic markers associated with variation in the abundance of

specific metabolites (RMIP ≥ 0.1). The first of these three cases was an interval of less than 32 kilobases

on chromosome 6 containing markers significantly associated with both variation in the abundance of

L-serine in mature leaves and variation in the percent grain fill of ears at harvest. This interval contained

a gene (Zm00001eb277100) encoding an aldehyde dehydrogenase (ALDH) an enzyme involved in the

detoxification of aldehydes by catalyzing their conversion to carboxylic acids, which plays a role in various

metabolic pathways, as well as the response to oxidative stress (Figure 4). The second case involved an

interval of approximately 64 kilobases on chromosome 1, where markers were significantly associated

with both the variation in the abundance of mucic acid and the variation in the LV9 – latent variable 9

– hyperspectral reflectance derive trait. This interval contained a gene (Zm00001eb009750) encoding a

transcriptional regulatory protein carrying a Myb/SANT-Like DNA-Binding Domain (Figure 4). The

third case was an interval of about 93 kilobases on chromosome 1 that contained markers significantly

associated with both variation in the abundance of chlorogenic acid and variation in the number of branches

per tassel. This interval included a gene (Zm00001eb035350) encoding a cyclin-dependent kinase (CDK),

which is involved in cell cycle regulation (Figure 4).

Discussion

Understanding the genetic determinants of intraspecies metabolic variation can help to understand causal

relationships in plant metabolism and how plant metabolism determines whole plant phenotypes. However,

plant metabolism, like transcript abundance, is dynamic and varies throughout the different times and

in response to a wide range of environmental signals and perturbations, making it challenging to profile

metabolite abundance in comparable conditions from large diversity panels under field-relevant conditions.

Here we sought to mitigate the issues of environmental variation and diurnal cycling by employing a

set of samples collected in a two-hour period from a large maize diversity panel grown in the field. The

patterns of estimated relative abundance for a number of metabolites were reasonably repeatable between

independently collected biological samples from the same genotypes (Figure 1A) even before correcting

for a number of experimental factors that influenced estimated abundance (Figure 1B). The repeatability

was less repeatable than typical whole plant phenotypes scored in the same population (Figure S2; Figure
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S3; Figure S4).

Some of the lower repeatability of metabolite abundance estimates may be explained by quantification

error, patterns of diurnal changes even within the two-hour window of collection, and the high plasticity

of plant primary metabolism. However, it should also be kept in mind that typical protocols for scoring

many whole plant traits represent averages or aggregate assessments across several (plant height) to

dozens (flowering time) of genetically identical plants and these aggregate assessments will tend to reduce

residual variance relative to measurements collected from only a single plant. While it remains cost and

labor-prohibitive to quantify metabolite abundance in multiple replicated samples from each genotype, as

the sampling procedure improves, it may become feasible to collect and pool samples from larger numbers

of plants within a single plot, increasing the repeatability of field-measured metabolite abundance.

In any case, genome-wide association studies conducted using dense resequencing-based marker data

and the metabolite abundance data generated in this study identified a substantial number of genetic

markers that were significantly associated with variation in a number of the metabolites profiled, including

17 marker-trait associations with the highest RMIP scores (all ≥ 0.3). These marker-trait associations were

each associated with variation in the abundance of 13 different metabolites (Table 1). In seven cases these

markers were located within 50 kilobases of a gene known to play a specific role in plant metabolism,

although not necessarily with a role in the expected metabolic pathway. Often windows defined by linkage

disequilibrium around individual trait-associated markers included multiple annotated genes including

genes of unknown function or possessing only extremely general functional annotations. The ability

to link trait-associated genetic markers with a single high-confidence candidate gene remains a major

challenge and limitation of genome-wide association studies, even in species such as maize where linkage

disequilibrium decays rapidly23.

Transcriptome-wide association studies can frequently link specific candidate genes to roles in de-

termining plant phenotypes16, even in species with elevated linkage disequilibrium24. In our case, we

had access to gene expression data generated using paired leaf samples collected from the same plants at

the same time as the samples employed for metabolite profiling. In principle, this design should further

increase the power for linking transcripts and metabolites as even variation in transcripts induced by

non-genetic factors (e.g. diurnal changes, local environmental variation within the field, differences

in the leaves selected for sampling by different samples in different plants) could improve the degree

of correlation between transcript abundance and downstream metabolic consequences of those same

abundance changes. However, despite these advantages, we identified only six significant transcript-

metabolite associations via TWAS (Figure 2) and no associations at all for twenty-three of the twenty-six

metabolites evaluated. The successful results from GWAS suggest the relatively poor performance of

TWAS on the same dataset cannot simply be attributed to the quality/repeatability of the metabolite

abundance data. Current best practices for TWAS emphasize focusing on transcripts expressed in more

than 50% of the samples examined. This may bias against the discovery of transcripts that exhibit the

presence or absence of variation among maize genotypes25 and have the potential to play important roles

in plant metabolism26, 27. In addition, tests for transcript-metabolite associations via transcriptome-wide

association studies assume linear relationships between transcript abundance and metabolite abundance.

In many causal relationships between transcripts and metabolites, this assumption may not hold true.

We implemented an explainable AI approach based on the random forest algorithm to search for

transcripts that exhibit variation in the abundance of specific metabolites in either linear or non-linear

fashion19. A total of 79 transcripts were linked to the abundance of three metabolites at an FDR threshold

of ≤ 0.05, defined based on permutation. Notably, in this analysis, N-acetyl-gamma-glutamyl-phosphate

reductase (argC) was linked to variation in the abundance of L-glutamic acid. ArgC catalyzes the reduction

of N-acetylglutamate 5-phosphate to N-acetylglutamate 5-semialdehyde in the arginine biosynthesis
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pathway. This step is critical as it represents a committed stage in the production of arginine. Glutamic

acid serves as a precursor in this pathway, and thus its accumulation can be tightly linked to ArgC

activity. The proper functioning of ArgC is crucial not only for arginine synthesis but also for overall

nitrogen metabolism in plants, impacting growth and stress responses20–22.However, the results obtained

from this random forest method must be interpreted with some caution. While the method allows the

identification of transcripts with nonlinear relationships to metabolites, our current implementation does

not rigorously control for the confounding influences of population structure and kinship, which can

produce false positives in genome-wide association studies, although the potential for similar effects in

transcriptome-wide studies remains less clear.

Of the three methods we employed—GWAS, TWAS, and random forest—GWAS is by far the most

generally accepted and widely used. However, we were particularly interested in whether genetic variants

that altered plant metabolism would also exhibit impacts on whole plant phenotypes. When a set of 41

non-metabolic traits, including whole plant phenotypes, hyperspectral leaf reflectance, and photosynthetic

parameters were analyzed using the same GWAS approach employed for metabolite analysis, three GWAS

hits were identified in reasonable proximity to GWAS hits for variation in metabolite abundance. The

first case, on chromosome 6, involved a 32-kilobase interval associated with L-serine abundance and

percent grain fill, containing a gene encoding aldehyde dehydrogenase. The second case, on chromosome

1, involved a 64-kilobase interval linked to mucic acid abundance and the LV9 trait, containing a gene

encoding a Myb/SANT-like DNA-binding domain. The third case, also on chromosome 1, involved

a 93-kilobase interval associated with chlorogenic acid abundance and tassel branching, containing a

gene encoding cyclin-dependent kinase. The small total number of common genomic intervals identified

between metabolite and non-metabolite traits was somewhat unexpected. The use of expanded populations,

increased replication, improved protocols for collecting tissue samples, and improved methods for dealing

with non-linear interactions may be necessary, either individually or jointly to improve the detection of

genetic variants which impact both plant metabolism and non-metabolic traits.

Materials and Methods

Field experiments and trait scoring

The maize field experiment from which the plant phenotypes, gene expression data, and metabolite

abundance data employed in this study were collected was conducted in the summer of 2020 at the

Havelock farm of the University of Nebraska-Lincoln (40.852◦N, 96.616◦W). The field was laid out in

a randomized complete block design on May 6, 2020, consisting of two replications of each genotype.

A total of 1680 plots, with each block consisting of 840 plots including 660 entries from the Wisconsin

Diversity panel14, and the remaining plots consisting of a repeated check line (B97). The layout for each

plot consisted of two rows, each 7.5 (about 2.3 meters) feet long, with rows spaced 30 (roughly 0.76

meters) inches apart. Plants within the rows were placed 4.5 (approximately 11.5 centimeters) inches

apart from each other, and the plots were separated by 30-inch (around 0.76 meters) alleyways. The

experimental design and trait evaluation methodology conducted in the Lincoln, Nebraska field trial has

also been previously described16, 17, 28, 29.

Quantification of Metabolite Abundance

On July 8th, 2020, when the majority of plots were at the late vegetative or tasseling (VT) stage, duplicate

leaf tissue samples were collected from one representative plant per plot in block 1 which consisted of the

840 blocks on the western side of the overall field experiment. Each sample consisted of five leaf disks

sampled from the pre-ante-penultimate leaf (the fourth leaf down from the top) of the chosen plant. The
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leaf tissue was immediately subjected to flash freezing in liquid nitrogen and subsequently stored on dry

ice until it could be transferred to a freezer at -80°C. This collection was performed by seven researchers

in parallel with all samples collected in two hours of a single day, with collection ending before noon.

One sample per plot was employed for quantification of metabolite abundance. Frozen leaf samples

were ground to a fine powder using TissueLyser II (Qiagen). Samples of approximately 25 mg of ground

tissue were extracted from each set of ground tissue, precisely weighed, and mixed with 700 µL of

methanol and 30 µL of 20 mg/mL ribitol in a 2 ml Eppendorf microfuge by vortexing and stored on ice.

Sample tubes were shaken for 15 minutes at 950 rpm on thermomixer at 70°C. Samples were then spun

at 17,000 g for 10 minutes and the resulting supernatant was transferred to a new tube and mixed with

325 µL chloroform and 750 µL water by vortexing for 30 seconds. Samples were spun at 1500 g for 15

minutes. Finally, an aliquot of 50 µL from the upper polar phase was transferred into a fresh 2 mL tube

and dried with a centrifugal vacuum concentrator. After vacuum drying, each tube was filled with argon

gas and tightly closed to prevent the oxidation of metabolites.

Dried metabolite extracts were derivatized by methoxyamination in 20 mg/mL methoxyamine hy-

drochloride in pyridine for two hours at 37°C. The samples were further trimethylsylilated for 30 minutes

at 37°C with 70 µL N-Methyl-N-(trimethylsilyl) trifluoroacetamide (Millipore Sigma). A fatty acid methyl

ester mixture was added to the trimethylsylilation solution for retention time calibration. One microliter of

each sample was injected into a GC-MS (7200 GC-QTOF system, Agilent) equipped with a HP5msUI

(30 m length, 0.25 mm diameter, 0.25 µm thickness) column. GC and MS parameters are exactly as

described30.

Chromatographic peaks were annotated using MassHunterUnknowns (Agilent) to match retention

time and mass spectrum with data in the Fiehn Metabolomics Library (Agilent). Manual curation was

used to subset peaks to those which could be confidently identified across all samples in all runs, resulting

in a final set of 26 metabolites matched to peaks: aspartic acid, β -alanine, caffeic acid, chlorogenic acid,

citric acid, glucose, glucose-6-phosphate, fructose, galactonic acid, glyceric acid, glycerol-1-phosphate,

glutamic acid, loganin, alanine, threonine, malic acid, mucic acid, myo-inositol, phosphoric acid, quinic

acid, raffinose, serine, shikimic acid, sucrose, trans-aconitic acid, and tyrosine. The analysis was conducted

over 12 unique batches, with the number of samples per batch varying from 26 to 147, across a total of

27 runs. After subtracting the background noise, the abundance of metabolite was estimated based on

the peak height of the representative ion for each metabolite, normalized against the internal standard

ribitol, and adjusted for the exact fresh weight of the samples used for extraction. These initial estimates

of relative metabolite content were log-transformed prior to downstream analysis.

Initial estimates of metabolite abundance were generated for 795 samples, including 88 observations of

B97, the repeated check, and duplicate biological samples collected from different plants in the same plot

for 47 additional genotypes. After applying quality control (QC) procedures, which involved removing

samples with incomplete data, outliers, or those with inconsistencies in metabolite measurements, data

for at least one sample of 660 unique maize genotypes were retained, including 47 genotypes where

metabolite abundance was quantified for two duplicate samples collected from separate plants. Although

B97 was used as a repeated check, it was not explicitly employed to correct for batch effects. Instead, its

inclusion allowed for the assessment of consistency in metabolite measurements across different batches

Non-metabolite datasets employed in this study

The 28 whole plant phenotypes employed in this study were collected from the same field experiment and

the procedure used to measure them, as well as the specific trait values employed are described previously17.

The ten latent variables employed in this study were also generated from the same field experiment, with

hyperspectral leaf reflectance data collected from one leaf per plot using a spectroradiometer31 and the
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resulting data summarized into ten variables through the use of an autoencoder18. Fv_P/Fm_P (maximum

efficiency of PSII in the light), relative chlorophyll, and leaf temperature were measured in the same field

experiment32 using MultiSpeq v2 instruments33. Gene expression was quantified via RNA-seq from the

second set of leaf tissue samples collected in parallel with those employed for metabolite quantification16.

Quantitative Genetic Analyses

Best Linear Unbiased Estimates (BLUES) for each metabolite were estimated using a mixed linear model,

generated using the lme4 package34 implemented in R v4.2.135 with the equation:

yi jk = µ +Genotypei +(1|Batch j)+(1|Run Orderk)+ errori jk

where yi jk is the mean value for the metabolite of interest in the ith genotype, run in the jth batch and kth

run order during the GC-MS pipeline. The variance explained by each factor included in the model was

extracted. Repeatability for the estimated abundance of each metabolite was determined using data from

47 genotypes where two independently collected samples were separately processed and quantified. The

repeatability was calculated using the following simplified model:

R =
σ2

G

σ2
G +

σ2
E

N

where:

• σ2
G is the genotypic variance, representing the variance explained by genotype.

• σ2
E is the residual variance, which includes environmental factors and measurement errors.

• N is the number of replicates per genotype (two in this case), adjusting the residual variance

accordingly.

Principal component analysis of metabolic abundance data was performed using the FactoMineR

R package36. Prior to conducting GWAS and TWAS, the distribution of BLUEs calculated for each

metabolite was manually examined using histograms and scatter plots, and genotypes with extreme values

for each metabolites were identified and removed.

Resampling Model Inclusion Probability Genome-Wide Association

Genome-wide association studies were performed on both metabolite abundance and non-metabolite

traits using a set of 660 maize genotypes that had undergone metabolite abundance measurement and

passed quality control. A set of 9,794,508 segregating biallelic SNP markers was generated by filtering

a larger set of 46 million markers genotyped via resequencing of the Wisconsin Diversity panel15 to

retain only those with a minor allele frequency greater than 0.05 and heterozygosity less than 0.05 among

the 660 maize genotypes included in this study using plink2 (v2.0a1)37. The Fixed and Random model

Circulating Probability Unification (FarmCPU) algorithm38, implemented in the rMVP package39, was run

100 times for each phenotype with a different random subset of 10% of phenotypic records masked in each

iteration40. Four principal components (PCs) calculated from genetic marker data were included in the

analysis to control for the confounding effects of population structure. Genetic markers were considered

significantly associated with a trait of interest in a given iteration when they exceeded a p-value threshold

of 5×10-9 set using a Bonferroni correction, calculated as 0.05 divided by the total number of SNPs used

in the analysis. A given marker-trait association was considered significant if it was identified in at least

ten out of the one hundred total GWAS runs conducted, corresponding to a resample model inclusion

probability (RMIP) of 0.1.
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Transcriptome-Wide Association Study

TWAS analyses described in this study were conducted using the expression levels measured via RNA-

seq16 and the compressed mixed linear model41 as implemented in the Genomic Association and Prediction

Integrated Tool (GAPIT)42. For improved comparability, we utilized the same set of 24,585 genes used

in the study by Torres et al. (2024)16, which were selected based on the following criteria: each gene or

transcript that passed the quality filtering process (24,585 gene models with expression ≥ 0.1 TPM in at

least 347 of the remaining 693 genotypes) was converted to a range from 0 to 2 using the methodology

described by Li et al. (2021)43. Briefly, the 5% of samples with the lowest transcripts per million (TPM)

values for each gene were scored as 0, the 5% of samples with the highest TPM values for each gene were

scored as 2, and the remaining 90% of samples were re-scaled between 0 and 2 using the formula:

2× (sampleTPM−5th percentile TPM)

95th percentile TPM−5th percentile TPM

These data were generated using 693 maize genotypes constituting a superset of the 660 maize

genotypes employed in this study. The first three principal components of variation calculated by GAPIT

from the expression data were included as covariates. Additionally, a kinship matrix was calculated

using the VanRaden method44, which was used to control for the relatedness among genotypes. A gene

was considered significantly associated with the trait of interest when the associated p-value was less

than 2.03×10−6, corresponding to a Bonferroni corrected p-value of 0.05, considering the number of

expressed genes employed in the TWAS analysis.

Random forest-based explainable AI

The random forest algorithm45 was employed to predict the genes associated with the metabolites in

660 genotypes using the same gene expression data used for transcriptome-wide association studies.

The randomForest package in R46 was used to build the random forest models with five different tree

counts (100, 200, 300, 400, and 500). The caret package in R47 was then utilized to facilitate 5-fold

cross-validation, evaluate model performance using root mean square error (RMSE), and calculate feature

importance based on the increase in mean squared error (IncMSE) when a gene was excluded from the

model. Twenty control sets were created by shuffling the taxa order while keeping other variables constant.

Models were trained, and feature importance scores were calculated using both the original and shuffled

datasets. For each metabolite, a threshold corresponding to a false discovery rate of approximately 0.05

was selected based on a comparison of the feature importance scores reported for shuffled datasets.

Data Availability

The data utilized in this study, including metabolite data for 26 metabolites (Supplementary Table 1), mark-

ers associated with 26 metabolite traits and 41 non-metabolite traits identified by GWAS (Supplementary

Table 2), and genes associated with three specific metabolites identified by Random Forest (Supplementary

Table 3), is publicly available at https://doi.org/10.6084/m9.figshare.26543479. The

phenotypic data (Whole plant phenotypes) used in this study was obtained from Mural et al. (2022)17

specifically from Supplementary Tables S2 and S3.The hyperspectral used in this study were obtained

from Tross et al. (2024)18, available at https://doi.org/10.6084/m9.figshare.24808491.

v4.Photosynthetic trait data were described and are available from32. Estimates of gene expression used

in this study are available as part of the supplementary data from Torres et al. (2024)16, see associated

Figshare repository:https://doi.org/10.6084/m9.figshare.24470758.v1. The genetic
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marker data employed in this study was generated by filtering the file “WiDiv.vcf.gz” described in15

and available from Dryad https://doi.org/10.5061/dryad.bnzs7h4f1 using the criteria

described in the methods section.
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Figure 1. Factors explaining variation in metabolite abundance across a maize diversity panel. A)

Estimated repeatability of measured metabolite abundance for each metabolite quantified in this study.

Repeatability is defined as the proportion of total variance in metabolite abundance which can be

explained by genotype in a dataset of 47 maize genotypes sampled and analyzed twice independently

from different plants in the same field. B) Proportion of total variance in each metabolite’s abundance

explained by the factors genotype, batch, run order, and the remaining residual variance. Genetic variance

in panel B is not equivalent to repeatability in panel A as a model with more factors was fit to explain

variance in panel B.
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Figure 2. Genetic markers associated with metabolite variation via resampling model inclusion

probability genome-wide association. Each circle’s position in the x-axis indicates the position of a

given genetic marker on the maize genome, and its position on the y-axis indicates the proportion of

resampling runs in which the marker was significantly associated with variation in the metabolite of

interest via FarmCPU GWAS. For metabolites where at least one marker was associated with RMIP ≥ 0.3,

color indicates the specific metabolite a given marker is associated with. Markers associated with all other

metabolites tested are shown in gray. The two horizontal dashed lines mark RMIP = 0.2 and RMIP = 0.1.

Text labels indicate genes discussed in the next near metabolite-associated markers. Alternating color

horizontal lines along the x-axis indicate the start and end of each maize chromosome.

15/30

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2024.08.26.609532doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.26.609532
http://creativecommons.org/licenses/by/4.0/


Figure 3. Transcripts associated with variation in metabolite abundance via transcriptome-wide

association. Each circle’s position on the x-axis indicates the annotated location of a gene model on the

maize genome and its position indicates the statistical significance of the link between variation in the

expression of the primary transcript of that gene model and variation in the abundance of a specific

metabolite indicated by the color of the dot. Results are shown only for the three metabolites where the

significance of at least one transcript exceeded − log10(2.03×10−6), corresponding to the

Bonferroni-corrected p-value of 0.05 after correcting for the 24,585 transcripts tested. This threshold

p-value is indicated via a horizontal dashed red line. The names of either the proteins encoded by genes

above the threshold, or gene model IDs are labeled. Two separate genes, both encoding Cu(2+)-exporting

ATPase (Cu(2+)-exporting ATPase) were associated with variation in the abundance glycerol 1-phosphate,

one of which was also associated with variation of L-glutamic acid. Alternating color horizontal lines

along the x-axis indicate the start and end of each maize chromosome.
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Figure 4. Genomic intervals in maize associated with variation in both metabolic and

non-metabolic traits. Genomic intervals that include at least one genetic marker associated with a

metabolic trait and at least one genetic marker associated with a nonmetabolic trait (RMIP ≥ 0.1). For

each panel, colored points indicate the positions and significance of GWAS hits as shown in Figure 1,

black lines indicate the positions of annotated genetic markers within the genomic interval shown,

coloration in the triangles at the bottom of the figure indicates the decrease of correlation between different

genetic markers in the region, black arrows indicate the positions and strands of annotated genes within

the genomic interval shown and green and blue boxes indicate the positions of protein-coding exons and

untranslated regions respectively. Candidate genes discussed in the main text or figure legend are labeled

in red. A) A region (Chromosome 1, 30.35 MB-30.90 MB) containing one marker (chr1:30,626,701)

significantly associated with mucic acid abundance and another (chr1:30,562,591) associated with

LV9–latent variable 9–a hyperspectral reflectance data derived non-metabolite trait. B) A region

(Chromosome 1, 193.32 MB-193.95 MB) containing one marker significantly associated with chlorogenic

acid abundance and another marker (chr1:193,546,683) associated with the number of branches per tassel.

C) A region (Chromosome 6, 113.50 MB-113.94 MB) containing one marker (chr6:113,734,505)

significantly associated with L-serine abundance and another marker (chr6:113,703,113) associated with

the proportion of the total length of maize ears which develop filled kernels (percent fill).
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Metabolites RMIP SNP Candidate Gene Distance

from

marker

Gene description

Galactonic

acid

0.64 chr6_81874806 Zm00001eb270570* 38,129 Theobromine synthase (TS)

Galactonic

acid

0.64 chr6_81874806 Zm00001eb270580* 39,003 Benzoate O-methyltransferase

(BMT)

Phosphoric

acid

0.61 chr8_133024421 Zm00001eb354560* 32,734 Ubiquitin carboxyl terminal hydro-

lase (UCH)

Phosphoric

acid

0.51 chr3_28733643 Zm00001eb126310 761 NA

Glyceric

acid

0.47 chr2_177080341 Zm00001eb097540 29,285 Endonuclease

Chlorogenic

acid

0.47 chr2_203757097 Zm00001eb104230* 9,983 Phosphoglycolate phosphatase

(PGP)

Shikimic

acid

0.43 chr4_212836690 Zm00001eb201130 32,290 NA

Trans-

Aconitic

acid

0.40 chr4_48138869 Zm00001eb175400 8,808 Uridylyltransferase

Quinic acid 0.39 chr3_116669684 Zm00001eb135350 53271 NA

Sucrose 0.38 chr8_26033461 Zm00001eb338670 14,868 PWWP domain

D-Glucose 0.38 chr3_216820299 Zm00001eb157570*19,238 Protein kinase domain (PK)

Galactonic

acid

0.37 chr10_11900210 Zm00001eb408510 81,008 PPR repeat

Raffinose 0.36 chr7_142676377 Zm00001eb317720 10,013 Proteasome subunit beta type-1

Fructose 0.36 chr5_149005008 NA NA NA

Tyrosine 0.36 chr5_156613475 Zm00001eb239880 44,418 NA

Trans-

Aconitic

acid

0.36 chr6_161018577 Zm00001eb289030 34,988 A/G-specific adenine glycosylase

Chlorogenic

acid

0.31 chr7_1204204 Zm00001eb298230* 22,715 Peroxidase

L-serine 0.31 chr2_173821786 Zm00001eb096820* 53,115 Dimethylaniline monooxygenase

(DMAO)

Table 1. Location, support, and closest gene model for each RMIP GWAS hit ≥0.3 shown in Figure 2.

* In seven cases, a gene known to play a specific role in plant metabolism was located within 50 kilobases

of a genetic marker linked to metabolic variation.
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Figure S1. Correlation between 26 metabolite abundance in two replicates of 47 maize genotypes

grown in the same field 26 metabolites quantified in a maize diversity panel. REP1 and REP2

correspond to two replications. Metabolites were quantified in two replicates of 47 genotypes.
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Figure S2. Estimated repeatability of 28 whole plant phenotypes used in this study. Repeatability is

defined as the proportion of total variance in metabolite abundance which can be explained by genotype in

a dataset of 47 maize genotypes sampled and analyzed twice independently from different plants in the

same field.
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Figure S3. Estimated repeatability of ten hyperspectral leaf reflectance derived latent variables

used in this study. Repeatability is defined as the proportion of total variance in metabolite abundance

which can be explained by genotype in a dataset of 47 maize genotypes sampled and analyzed twice

independently from different plants in the same field.
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Figure S4. Estimated repeatability of three photosynthesis-related traits used in this study.

Repeatability is defined as the proportion of total variance in metabolite abundance which can be

explained by genotype in a dataset of 47 maize genotypes sampled and analyzed twice independently

from different plants in the same field.
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Figure S5. Distribution of scores for the first two principal components of variation in metabolite

abundance of a maize diversity panel (n = 795 samples). These blue arrows show the loadings of each

metabolite, illustrating their influence on the principal components.
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Figure S6. Correlation between the variation of 26 metabolite abundance quantified in a maize

diversity panel (n = 795 samples). Dark red squares indicate a strong positive correlation, while dark

blue squares indicate a strong negative correlation and lighter colors suggest weaker correlations.

24/30

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2024.08.26.609532doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.26.609532
http://creativecommons.org/licenses/by/4.0/


Figure S7. Correlation between the variation of 26 metabolite abundance and 41 non-metabolite

traits quantified in a maize diversity panel (n = 795 samples). Dark red squares indicate a strong

positive correlation, while dark blue squares indicate a strong negative correlation and lighter colors

suggest weaker correlations.
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Figure S8. Linkage Disequilibrium (LD) heatmap for seven significant trait-associated SNPs

highlighted with closest gene models in Figure 2. The green cross marks the genomic position of the

candidate gene model and the blue cross marks the genomic position of trait-associated SNP shown in

Figure 2.
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Figure S9. Correlation between three metabolite abundance and gene expression for significant

genes identified via transcriptome-wide association studies in Figure 3.
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Figure S10. Genes identified with higher feature importance in the random forest (RF) regressor

model to predict the abundance of three metabolites in a maize diversity panel. The RF model was

trained to predict the abundance of three metabolites out of 26 metabolites in the study based on the

significant gene expression-trait associations identified in Figure 3. The number of gene models was

selected with higher feature importance than a threshold that correspond to a false discovery rate of

approximately 0.05 based on a comparison of the features important scores reported for shuffled datasets

for each metabolite. The numbers inside the displayed bar charts represent the feature importance

assigned to the gene model for the prediction of corresponding metabolite abundance. The star and square

symbol beside gene models indicate that the gene model was found to be significantly associated with the

metabolite abundance variation in TWAS analysis.
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Figure S11. Feature importance scores from original and shuffled data from random forest

regressor model using gene expression to predict three metabolites abundance in a maize diversity

panel. The blue dashed vertical lines indicate the established threshold for significant feature importance.

Genes with feature importance higher than the blue threshold in the original data are considered

biologically significant to be associated with metabolite abundance.
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Figure S12. Genetic markers associated with 26 metabolites abundances, 28 whole plant

phenotypes, 10 latent variables, and 3 photosynthesis variations via resampling model inclusion

probability genome-wide association. Each circle’s position in the x-axis indicates the position of a

given genetic marker on the maize genome, and its position on the y-axis indicates the proportion of

resampling runs in which the marker was significantly associated with variation in the trait of interest via

FarmCPU GWAS. The plot includes two horizontal dashed lines marking RMIP significance thresholds:

the upper red dashed line at 0.20 (indicating SNPs significant in at least 20 out of 100 FarmCPU GWAS)

and the lower blue dashed line at 0.10 (indicating SNPs significant in at least 10 out of 100 FarmCPU

GWAS). Alternating color horizontal lines along the x-axis indicate the start and end of each maize

chromosome.
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