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Abstract— Koopman operator theory and Willems’ fun-
damental lemma both can provide (approximated) data-
driven linear representation for nonlinear systems. How-
ever, choosing lifting functions for the Koopman operator is
challenging, and the quality of the data-driven model from
Willems’ fundamental lemma has no guarantee for gen-
eral nonlinear systems. In this paper, we extend Willems’
fundamental lemma for a class of nonlinear systems that
admit a Koopman linear embedding. We first characterize
the relationship between the trajectory space of a nonlinear
system and that of its Koopman linear embedding. We then
prove that the trajectory space of Koopman linear embed-
ding can be formed by a linear combination of rich-enough
trajectories from the nonlinear system. Combining these
two results leads to a data-driven representation of the
nonlinear system, which bypasses the need for the lifting
functions and thus eliminates the associated bias errors.
Our results illustrate that both the width (more trajectories)
and depth (longer trajectories) of the trajectory library are
important to ensure the accuracy of the data-driven model.

Index Terms— Data-driven control; Willems’ Fundamen-
tal Lemma; Nonlinear systems; Koopman Lifting

[. INTRODUCTION

Designing controllers for nonlinear systems with approx-
imated linear representations has gained increasing interest.
Linear approximations enable the utilization of linear system
tools and facilitate computationally efficient model predictive
control schemes. Both Koopman operator theory [1] and
Willems’ fundamental lemma [2] can be applied to construct
(approximated) linear representations of nonlinear systems
from input and output data, which have shown promising
performance in many practical applications [3]-[6].

Koopman operator theory is originally developed for au-
tonomous systems with no input [1]. There are different Koop-
man operator schemes to handle controlled nonlinear systems,
e.g., taking the control sequence as an extended state [7] or
considering the control sequence as extra parameters [8]. One
key step is to lift the state space into a higher-dimensional
space, in which the lifted state evolves (approximately) in a
linear way. This idea leads to a rigorous framework of Koop-
man operator theory for autonomous systems [9], and ex-
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tensions for controlled systems are under extensive develop-
ment [10]. With (approximated) linear representations using
the Koopman operator available, many control techniques have
been applied, such as linear optimal control and model pre-
dictive control [7], [10]. In all these methods, the accuracy of
the Koopman-based approximations depends critically on the
lifting functions, and choosing the right set is challenging [11].

Willems’ fundamental lemma for linear time-invariant (LTT)
systems shows that a rich-enough trajectory library is sufficient
to produce a direct data-driven representation of the system
evolution [2]. Its wide range of applicability has motivated
the search for extensions, including special classes of nonlinear
systems, such as Hamerstein and Wiener systems [12], bilinear
systems [13], [14], and certain polynomial systems [15]. This
data-driven representation can be utilized for linear controller
design [16] and also model predictive control [17]. When deal-
ing with non-deterministic or nonlinear systems, it becomes
necessary to include suitable regularization terms in predictive
control to ensure its performance and increase the size of the
trajectory library to construct a good data-driven representa-
tion [18]-[20]. Although the benefits of increasing the width
of the trajectory library (i.e., collecting more trajectories) are
well-recognized in the literature, the importance of enlarging
its depth (i.e., extending the trajectory length) is less discussed.

In this paper, we aim to develop an extended Willems’
fundamental lemma for nonlinear systems that admit a lifted
linear representation under the Koopman operator, which we
call Koopman linear embedding (see Definition 1). Unlike pre-
vious studies [7], [12]-[14], our direct data representation
requires no prior knowledge of the lifting functions in the
Koopman linear embedding or the nonlinearity of the system.
One key idea in our approach is to establish an exact relation-
ship between the trajectory spaces of the nonlinear system
and its associated Koopman linear embedding. In general,
the latter contains the former. We provide a necessary and
sufficient condition for a trajectory of the Koopman linear
embedding to be a trajectory of the original nonlinear system
(Theorem 1). Motivated by [21, Def. 1], we introduce a
new notion of lifted excitation for nonlinear systems which
accounts for the lifted state in Koopman linear embedding.
We show the behavior of Koopman linear embedding can
be fully captured by a linear combination of rich enough
trajectories from the nonlinear system (Theorem 2). We finally
establish a data-driven representation adapted from Willems’
fundamental lemma for nonlinear systems with a Koopman
linear embedding (Theorem 3). Thus, we can directly utilize
the simple-to-build data-driven representation and bypass the
need to choose lifting functions.



Our data-driven representation can be directly utilized in
predictive control. Our approach also illustrates the importance
of the width and depth of the trajectory library, which depends
on the “hidden” dimension of the Koopman linear embedding.
Both collecting more trajectories (increasing the width) and
utilizing longer initial trajectories (increasing the depth) are
critical for the data-driven representation of nonlinear systems.

The remainder of this paper is structured as follows. Sec-
tion II reviews Koopman linear embedding and Willems’
fundamental lemma. Section III shows that a Koopman linear
embedding of the nonlinear system leads to a direct data-driven
representation. Section IV validates our theoretical findings via
numerical simulations. We conclude the paper with Section V.
Auxiliary proofs/discussions are provided in our report [22].

Notation: Given a series of vectors aq, ..., a, and matrices

Ay, ..., A, with the same column dimension, we denote
T
col(ay,...,an) = [af,...,a}] and col(Ay,..., A,) =
T .
[A],...,A]] . We denote the quadratic form a" Xa as [lal[%

and diag(by, ...,b,) as a diagonal matrix with by, ..., b, at its
diagonal entries. We use |A||z to represent the Frobenius
norm of the matrix A. Collecting a length-7" data sequence

v = col(vp, ..., vr_1), we represent vp., := col(vp, ..., vq)
where p,ge Z and T > q > p > 0.
Il. PRELIMINARIES AND PROBLEM STATEMENT
A. Koopman linear models for nonlinear systems
Consider a discrete-time nonlinear system
Trr1 = f(Tr,urn),  ye = 9(Th, ur), 1)

where x; € R™, ur € R™ and y; € RP are the state, input,
and output of the system at time k, respectively. One key idea
of Koopman operator is to lift the state x; of the original
nonlinear system to a higher-dimensional space via a set of lift-
ing functions (often referred to as observables) [9], where the
evolution of these observables becomes (approximately) linear.

In this paper, we consider an important case of Koopman
linear embedding for nonlinear systems.

Definition 1 (Koopman Linear Embedding): The nonlinear
system (1) admits a Koopman linear embedding if there
exists a set of linearly independent lifting functions ¢q(-),

oy ®n, () : R™ — R such that the lifted state

®(xg) := col(d1(zg), ..., dn, (Tr)) € R™, ()

propagates linearly along all trajectories of (1) and the output
Y 18 a linear map of ®(xy) and wuy.

For a nonlinear system admitting a Koopman linear embed-
ding (2), the new lifted state z; = ®(x)) € R™ satisfies
yr = Czp, + Duy, 3
with matrices A, B, C and D of appropriated dimensions. Note
that we normally have n, > n and the matrix pair (A, B) and
(C,A) in (3) may not be controllable or observable. Even
when an exact Koopman linear embedding does not exist,
many existing studies (especially in predictive control) often
use the linear model (3) to approximate the dynamics of the
observables (2); see [7] for details.

After choosing the observables (2), we can compute the ma-
trices A, B,C and D for the linear model (3) using extended
dynamic model decomposition (EDMD) [10]. We organize the

21 = Az + Buy,

measured input-state-output data sequence of (1) as
X = [xo, .o ,and_g] s X+ = [.1‘1, NN ,l‘nd_l] s

U= [Uo,...,undfg] s Y = [yo,...,yndfg] .
With the lifting functions (2), we compute the lifted state as
7= [‘I)(Jﬁo), ceey (I)(J,‘nd_g)] 5 Z+ = [(I)(le), ceey @(xnd_l)} .
Then, we obtain the matrices A, B, C and D via two least-
squares approximations:
(A, B) € argmin |2+ — AZ — BU||%,
A,B
. 2 “)
(C,D) € argmin |Y — CZ — DU||F.
C,D
It is not necessary to collect the data points in sequence
and we can also use data pairs (z;,7;,u;,y;) where ¥ =
fziyug),yi = g(mi,u;),4 = 0,...,nq—1 (see [7] for details).
The choice of observables affects (4) significantly. Even
if a Koopman linear embedding exists for (1), we may not
know the correct observables (2) for such a Koopman linear
embedding. An inexact choice can lead to significant mod-
eling errors [11]. In the literature, common choices for (2)
include Gaussian kernel, polyharmonic splines, and thin plate
splines [10]. However, none of them can guarantee an exact
linear model even when a Koopman linear embedding exists.

B. Willems’ Fundamental Lemma

Willems’ fundamental lemma is established for linear time-
invariant (LTI) system of the form
yr = Crzg + Diug, — (5)
where the state, input and output at time k are denoted as
z, € R?, u, € R™ and y), € RP, respectively. We consider
system (5) from the behavioral (i.e., trajectory) perspective.
The key idea is that a linear combination of rich enough offline
trajectories of (5) can represent its whole trajectory space.

Let us recall the notion of persistent excitation [2].

Definition 2 (Persistently exciting): The length-T' sequence

Tp+1 = A1z + Brug,

w = col(wy, . ..,wr_1) is persistently exciting (PE) of order
L if its Hankel matrix
Wwo Wit Wr—f
w1 W2 o Wr—rp41
HL(W) = .
Wr—1 wWr - Wr—1

has full row rank.

With the pre-collected input-state-output data in sequence,
ie, ug = col(ug,...,Un,—1),2qa = col(zg,...,Tn,—1) and
ya = col(yo, . .., Yn,—1), the following Willems’ fundamental
lemma is adapted from [23, Theorem 1].

Lemma 1 (Willems’ fundamental lemma): Consider the LTI
system (5). Assume that the Hankel matrix formed by its pre-
collected trajectory Hy := col(H1(%d,0:ne—1), Hr(ua)) has
full row rank. Then, a length-L input-output data sequence
col(u,y) € RUPP)L is a valid trajectory of (5) if and only if
there exists g € R™~L+1 such that

el)o= 1)

Lemma 1 does not require the controllability of (5) since it
directly imposes a full-rank condition on Hj that involves the
state sequence. If (5) is controllable, then persistent excitation
of order L + n for the input sequence uq4 is sufficient to



guarantee the full rank of Hy [2]. Utilizing Lemma 1, we
can build a data-driven representation for system (5). We use
Uini = col(uk_Tmi, AN ,uk_l) and UfF = COl(uk, ey U+ N—1

to represent the most recent past input trajectory of length-Tj,;
and the future input trajectory of length-N and L = T;,; + N
(similarly for yini, yr). Let us partition the Hankel matrix by its

first T;y; rows (i.e., Up, Yp) and the last N rows (i.e., Ug, Yg) as

{gﬂ =M (ua), [2} = Hr(ya)-

From Lemma 1, col(wii, Yini, ur, yr) is a valid trajectory
of (5) if and only if there exists g € R~ Tni=N+1 gych that
col(Up, Yp, U, Yr)g = col(Wini, Yini, UF; YF)- (6)
Furthermore, if (5) is observable and T;,; is no smaller than
its observability index, then yp in (6) is unique given an initial
trajectory (ini, ¥ini) and any future input ug [17]. Intuitively,
if (5) is observable, the initial trajectory (g, ¥ini) allows us to
uniquely determine the corresponding initial state. This data-
driven representation (6) has been widely used in predictive

control [17] with many successful applications [4]-[6].

C. Problem Statement

In this paper, we aim to extend the data-driven representa-
tion (6) from LTI systems to nonlinear systems (1) that admit a
Koopman linear embedding. One may be tempted to directly
apply Willems’ fundamental lemma to the Koopman linear
model (3) and get a similar data-driven representation as (6).
However, there are two unsolved challenges for this process:
1) the Koopman linear model (3) may be neither controllable
nor observable; 2) the behavior space of the Koopman linear
model (3) is much larger than the behavior space of the
original nonlinear system (1).

We propose two innovations to resolve the challenges above.
1) We first characterize the relationship between the behavior
space of the Koopman linear model (3) and that of the original
nonlinear system (1). A key insight of this characterization is
to guarantee the uniqueness of the subsequent output given the
leading input-output trajectory and the subsequent input, and
observability is not needed for ensuring the uniqueness as long
as the length of the initial trajectory is large enough, i.e., the
Hankel matrix has a sufficient depth. 2) Motivated by lack of
controllability, we introduce a new notion of lifted excitation
for the offline data collection, which has a similar flavor to
[21, Def. 1] that focuses on a special case of affine systems.
With these two technical tools, we establish a direct data-
driven representation in the form of (6) for nonlinear systems
that admit a Koopman linear embedding. This representation
requires no knowledge of the lifting functions (2) (as long
as they exist). Our representation can be directly utilized in
Koopman model predictive control [7], without the need of
identifying the linear model (3). This bypasses the challenging
problem of selecting the lifting functions, with the added
remarkable benefit of eliminating the associated bias errors.

[1l. FROM KOOPMAN LINEAR EMBEDDINGS TO
DATA-DRIVEN REPRESENTATIONS

In this section, we develop the main technical result that
directly represents the nonlinear system with Koopman linear
embedding using its input and output data. We also discuss a
special case of affine systems considered in [21].

A. Two behavior spaces

Consider the space of length-L trajectories for the nonlinear
system (1) and the Koopman linear embedding (3):

BilL :{m eRM™HPL | 3 2(0)=zo €R™, (1) holds}, (7a)

Bolr :{ m eRMHPIL | 3 2(0) =20 €R™, (3) holds}. (7b)

Note that By |1 is a nonlinear set while By |1 is a linear
subspace in R(™*+P)L Intuitively, the behavior space of the
Koopman linear embedding is larger than that of the original
nonlinear system. Our first result characterizes the relationship
between these two behavior spaces.

Theorem 1: Consider the nonlinear system (1) and assume
it admits a Koopman linear embedding (3).

1) We have By|r, C Ba|r,VL > 1, ie., all trajectories of
system (1) are also trajectories of (3);

2) Let col(u,y) € Bs|r, where L > n,. Then, col(u,y) €
B1|r if and only if its leading sequence of length n,
(i.e., col(ug.n,—1, Yo:n,—1)) is a valid trajectory of (1).

Theorem 1 reveals that while the space By, is larger, we
can characterize its subset corresponding to Bj |z using the
initial leading sub-sequence col(ug.n,—1,Yo:n,—1)- We need a
technical lemma to prove the second statement in Theorem 1.

Lemma 2: Consider an LTI system (5). Fix an initial trajec-
tory col(ug.r, —1,Y0:0,—1) € RUPPI1 of length-L;, where
L > L; > n. Given any subsequent input ur,.—1 €
R™E=L1) (future input), the subsequent output yr,.; 1 €
RP(L=L1) (future output) is unique.

Note that Lemma 2 works for any LTI systems and requires
no observability or controllability. This result is not difficult to
establish and its proof is provided in our technical report [22].

Proof of Theorem 1: The first statement is obvious from
Definition 1. Let col(u,y) € Bi|r be arbitrary. By definition,
we can find zy € R™ such that col(u, y) satisfies the evolution
in (1). Then, with the lifted initial state zg = ®(z¢) € R™,
col(u, y) satisfies the evolution in (3). Thus, col(u,y) € Bs|L.

For the second statement, the “only if” part is trivial as
col(wo:n,—1, Yo:n,—1) is part of col(u,y). We here prove “if”
part. Suppose col(wo.n,—1, Yo:n,—1) € Bi|n, and we let §p,,.,—1
be the corresponding outputs from the nonlinear system (1) for
the rest of inputs uy,.;,_1, i.e.,

COI(U, yO:nz—lagnz:L—l) € Bl|L .
Then, it is clear that col(u, Yo.n,—1,¥n,:.—1) € B2 |r utiliz-
ing the first statement. From Lemma 2, the outputs of the
linear system (3) are uniquely determined by w,,.;,—1 when
col(wo.n, —1, Yoin,—1) € Ba|n, are given. Thus, we must have
gnL:Lfl = Yn,:L—1,
indicating the whole trajectory satisfies col(u,y)€Bi|,. ™

We might be tempted to estimate an initial state xg or zg
from col(%o:n,—1, Yo:n,—1) € Bi|n,. However, since we do not
assume observability of the Koopman linear embedding (3),
the initial state zp cannot be uniquely determined from
col(wo:n,—1,Yo:n,—1)- As confirmed in Lemma 2, the unob-
servable part of the initial state does not affect the uniqueness
of the input-output trajectory. If the Koopman linear embed-
ding is observable with observability index [,, the required
length of the leading sequence can be decreased to [,. In this



case, the initial state zp can be estimated, and the uniqueness
of the input-output trajectory is also guaranteed. The initial
trajectory can thus be shorter as Ti,; > [, in Theorem 3.

B. Data-driven representation of nonlinear systems

While the trajectory space of the Koopman linear embed-
ding (3) is larger than that of the nonlinear system (1), we can
use the trajectories from (1) (i.e., col(ul,yi) € Bil|p,i =
1,...,10) that are rich enough to represent Bo|r. For this, we
propose the following definition of lifted excitation.

Definition 3: Consider a nonlinear system (1) with a Koop-
man linear embedding (3). We say [ trajectories of length-L
from (1), col(ul,yt) € Bilr,i =1,...,1 with I > mL +n,
provide lifted excitation of order L, if the following matrix

ug ud .l
Hi = d d d c [R(mL+n,)Xl (8)
KT o) o) .. oh)
has full row rank, where zj € R™ is the initial state for each
trajectory col(ul, y4),i =1,...,1.

This notion of lifted excitation generalizes [21, Def. 1], that
focuses only on affine systems. Our notion is suitable for any
nonlinear system with a Koopman linear embedding. If (3)
is controllable, we can design the inputs to ensure the lifted
excitation. Given a single trajectory ug, yq with length-ng, we
obtain [ trajectories with length-L using column vectors of
col(Hr(ua), Hr(ya)) where | = ng — L + 1. If uq is PE of
order L+n,, the [ trajectories above satisfy lifted excitation. If
we collect multiple trajectories ul,, y,i = 1,...,q (see [23]),
we require ul ... uf to be collectively PE of order L +
Ny, e, rank ( [Hrvn. (uy), o Hin. (uih)] ) = m(L+n2).
The column vectors of col(Hp(ul,), Hr(yh)), ¢ = 1,...,¢
satisfies the lifted excitation in Definition 3.

Theorem 2: Consider a nonlinear system (1) with Koopman
linear embedding (3). Suppose that [ trajectories of length-
L from (1), col(ul,yl) € Bilr,i = 1,...,1, satisfy lifted
excitation of order L. Then, a length-L col(u,y) is a valid
trajectory of the Koopman linear embedding (3) if and only if

there exists g € R! such that Hyg = col(u,y) where
2

1 l
Hd — [ud Uy - U(lj:| c [R(m-‘,-p)LXl. (9)

Vi Y3 -

Due to the page limit, we put the proof to our report [22].
Theorem 2 allows us to use the trajectories from the nonlinear
system (1) that provide lifted excitation of order L (always
exist; see [22, App. B.1]) to represent any length-L trajectory
of the Koopman linear embedding (3). Given trajectories of
the nonlinear system, it is still an open problem to determine
whether a Koopman linear embedding exists, which is possible
when infinite rich enough data is provided (see details in
[22, App. B.2]). Combining Theorems 1 and 2 leads to a
direct data-driven representation for a nonlinear system (1)
with Koopman linear embedding (3), as we describe in our
next result. Given a trajectory library Hyq=col(Uy, Y4) in (9),
where each column is a trajectory of length L="T;;;+ N from
the nonlinear system (1), we partition matrices Uy and Yj as

Upl _ Yol _
|:UF:| = Ud7 |:}/F:| = }/dv (10)

where Up and Ur consist of the first Tj,; rows and the last NV
rows of Uy, respectively (similarly for Yp and Yp).

Theorem 3: Consider a nonlinear system (1) with a Koop-
man linear embedding (3). We collect a data library Hy in (9)
with [ > mL + n, trajectories, whose length L is Tj,; + IV and
Tini > n,. Suppose these [ trajectories have lifted excitation
of order L. At time k, denote the most recent input-output
sequence col(ini, Yini) With length-T}y; from (1) as

Uini = COl(uk—Tini’ ) uk—l)a Yini = COl(yk—Tmn s 7yk—1)'
For any future input ug = col(uy, ..., ur+N—1), the sequence
col(Wini, Yini, UF, YF) is a valid length-L trajectory of (1) if and
only if there exists g € R! such that

1D

This result is a combination of Theorems 1 and 2. Due to
the page limit, we provide some details in our report [22].
Theorem 3 gives a direct data-driven representation of nonlin-
ear systems with a Koopman linear embedding from its input
and output data. This data-driven representation requires no
knowledge of the lifting functions (2) as long as they exist.
Also, we do not require the Koopman linear embedding (3) to
be controllable or observable. Two key enablers for Theorem 3
are 1) our notion of lifted excitation for nonlinear systems in
Definition 3 that enables Theorem 2, and 2) a sufficiently long
initial trajectory col(ujp, Yini) from the nonlinear system that
ensures Theorem 1. We remark that if n, is big, a large amount
of data is needed to satisfy the conditions in Theorem 3 (which
is expected since the linear behavior becomes richer).

We here remark that Theorem 3 illustrates the importance
of increasing the width and depth of the trajectory library (9)
and (10). While the benefits of increasing width are well-
recognized in the literature, the importance of enlarging the
depth has been overlooked. Collecting more trajectories to
increase the width of (9) contributes to the lifted excitation
condition (see Theorem 2). On the other hand, fixing the
prediction horizon N, a sufficient depth ensures the initial
trajectory is long enough in (10), which guarantees that the tra-
jectory in the space of the Koopman linear embedding is also
a valid trajectory for the nonlinear system (see Theorem 1).
Furthermore, Theorem 3 shows the required width and depth
of the trajectory library depend on the “hidden” dimension of
the Koopman linear embedding of the nonlinear system. Note
that estimating the Koopman order n, is non-trivial, even if
the Koopman linear embedding exists (see discussions in [22,
App. B.2 and B.3]).

According to Theorem 3, the data-driven representation (11)
is equivalent to the Koopman linear embedding. This can be
directly integrated with predictive control at each time %k as

- 2 2
L lurllz + llye — v:ll5

subject to (11)

where R > 0,Q > 0, y, denotes the reference output trajec-
tory, and up € U is the input constraint. For nonlinear systems
with Koopman linear embedding, there is no need to use any
lifting functions, which are instead required by most existing
Koopman-based model predictive control approaches [7], [10].

Remark 1: The literature on extending Willems’ fundamen-
tal lemma to nonlinear cases [12]-[14] requires system dy-
namics, with additional constraints for their nonlinear struc-
tures. When the nonlinearities exist in input or output (e.g.,
Hamerstein systems, Wiener systems), a change of variables

col(Up, Yp, Ug, Yr)g = col(Uini, Yini, UF, YF)-

12)



is needed [12]. Our data-driven representation (11) has no
additional constraints and requires no knowledge of lifting
functions. We only need a lifted excitation condition and a
sufficiently long initial trajectory. The work [24] integrates
Willems’ fundamental lemma with the learning of lifting func-
tions and [25] forms the trajectory library with lifted states,
which also requires learning lifting functions. In contrast, we
show that learning these lifting functions is redundant for
nonlinear systems with Koopman linear embedding.

C. A special case: Affine systems

Consider an affine system of the form
Tpr1 = Asxy + Boug + e,  yp = Coxy + Doug + 1, (13)
where z;, € R, up € R™,y, € RP are the state, input and
output at time k, respectively and e € R, r € RP are two
constant vectors. The result in [21, Theorem 1] presents a
data representation for (13), which we reproduce below.
Theorem 4 ([21, Theorem 1]): Given the pre-collected tra-
jectories ug, x4, yq of (13), suppose
HA = COI(HL(Ud),Hl(xd,o;nd_L),]l) (14)
has full row rank. Then, a length-L input-output data sequence
ol (Uini, Yini> Uk, Yr) € RUMHTPIL s a valid trajectory of (13) if
and only if there exists g € R™~£F1 such that
col(Up, Yo, Ur, Yi)g = col(tini, Yini> ur, y¢), Y g =1. (15)
A unique feature in Theorem 4 is that the coefficient
g should have an affine constraint, since (13) is affine.
Here, we show that any affine system (13) has an exact
Koopman linear embedding, and thus our main Theorem 3
naturally applies. Choose a vector of lifting functions z(z) =

[1(),...,¢n(x),1]T where ¢;(x) : R® — R is the i-th
element of the state, ie., ¢;(z) = x;. Then, we have a
Koopman linear embedding for the affine system (13) as

A2 (& BQ
Zk-&-l:{@ J Zk--f—[@]
Consequently, with the lifted excitation and an initial trajec-
tory of length 741 in Theorem 3, the data-representation (11)
is necessary and sufficient for the behavior of (13). In this
case, we need a slightly longer initial trajectory, but no affine
constraint on g is needed. We note that the data matrices
H,4 in (14) and Hg in (8) become the same, thus the lifted
excitation and the data requirement in Theorems 3 and 4 are
identical. Our data-representation in Theorem 3 works for any
nonlinear systems with Koopman linear embedding while it is
unclear how to design constraints on g to extend Theorem 4.
Remark 2: General nonlinear systems may not admit a
Koopman linear embedding, even in infinite dimensions [26].
However, Koopman linear models are widely used to approx-
imate nonlinear dynamics and have demonstrated good per-
formance in real applications when the approximation error is
small [3]-[5]. In [21], the affine data-driven representation (15)
is continuously updated using the most recent trajectory,
approximating the local linearization of the nonlinear system.
It is an interesting direction to integrate Theorem 3 with the
approach in [21] for a broader class of nonlinear systems.

IV. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments to com-
pare the prediction and control performance of four linear rep-

ug, yp=|[Ca r] zi+Doug. (16)

resentations: 1) our proposed Data-Driven Koopman represen-
tation (DD-K) (11), 2) the Data-Driven Affine representation
(DD-2) (15), 3) the standard Koopman linear approximation
(3) from EDMD (4) (EDMD-K) and 4) the Deep Neural
Network Koopman representation (DNN-K) in [27].

A. Experiment Setup

We consider the following nonlinear system
Tl k41| 0.99(E1JC
|:x27k+1:| - [O.ngyk +ad b, oty fus)”
with output yx = zj, and state z = col(x1,z2) € R? and
input u € U := [75,5]. We choose the lifted state as z :=
col(xy, wo, 22, 23, 21), and its Koopman linear embedding is

099 0 O 0 0 0
009 1 1 1 1
Zk4+1 = 0 0 0992 0 0 2k + 0 Uk,
0 0 0 099 0 0
0 0 0 0 0.99* 0

and y, = 2z (1 : 2). This linear embedding is not controllable
but has an observability index 4. In our experiments, the
prediction horizon is N = 20, and the lengths of the initial
trajectory col (i, Yini) are 4 and 2 for DD-K and DD-A (the
entire trajectory length L is 24 for DD-K and 22 for DD-A),
respectively. Then, we collect a single trajectory of length-52
and obtain 29 length-24 trajectories for DD—-K, which is the
minimum necessary data length to make Hy in (8) a square
matrix. For the EDMD method, we simulate 200 trajectories
with 200 time steps. The lifting functions are chosen to be
the state of (1) and 300 thin plate spline radial basis functions
whose center z is randomly selected with uniform distribution
from [—1, 1]2 and has the form ¢(z) = ||z — x¢|3log(||z —
Zol|2). To learn the lifting functions with DNN, we collect
10° trajectories with 100 steps, and we used 2 hidden layers
with 64 units to learn 32 lifting functions (i.e., the DNN’s
output is 32). The parameters in (12) are set as R = Iy
and Q = Iy ® diag(0,100), and the prediction model is
replaced by (3) and (15) for EDMD—-K and DD-A, respectively.
A regularization term reg = Ag||g||2 + Ay|loy||2 is added for
the DD-A with variables g,y and Ay = 400, Ay = 2 x 10° to
ensure feasibility and numerical stability.

B. Prediction and Control Performance

We first compare the prediction performance for the four
methods, and we also illustrate our DD—K with different initial
trajectory lengths. Given the future input up(k) = 5sin(wk/4),
Figure 1(a) displays results for the four methods. The predicted
output trajectories of DD-K with different initial trajectory
lengths are shown in Figure 1(b). As expected from Theo-
rem 3, the predicted trajectory from DD—-K with T;,; = 4 is the
same as the true trajectory (see red and black dashed curves
in Figure 1). However, trajectories from DD-A and EDMD-K
(see orange and blue curves in Figure 1(a)) and the DD-K
with initial trajectory length 2 and 3 (see purple and brown
curves in Figure 1(b)) deviate from the true trajectory. The
trajectory from DNN-K is relatively close to the true trajectory
(see the green curve in Figure 1(a)) but its performance
varies significantly for different pre-collected data sets. For
DD-A, the affine constraint is inaccurate for this non-affine
system. For EDMD-K and DNN-K, their lifting functions are
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(a) Comparison of linear models

Fig. 1. Prediction of &2 with a given input ug. In (a) and (b), the red
curve is the predicted trajectory of DD-K with T},; = 4. The orange, blue
and green curves in (a) are DD-A, EDMD-K and DNN-K, and the brown
and purple curves in (b) are DD-K with initial trajectory of T},; = 2 and 3.

(b) Comparison of different Tiy;

not guaranteed to form an invariant space (cf. [11]), and both
EDMD and DNN have approximation errors.

We next compare control performance of predictive con-
trollers utilizing different linear representations. Our goal is
to make zo track two types of reference trajectories: 1)
Sinusoidal wave y; ;. = col(0, 5sin(7k/30)) and 2) Step signal
yr = col(0,5). We consider the realized control cost that is
computed as [[u*||% + [ly* — y.[|, where u* is the computed
control input and y* is the actual trajectory after applying u*.
The results are shown in Figure 2, and the realized control
cost is averaged over 100 data sets since the performance
of these models is related to the pre-collected data. From
Figure 2(a), we can observe the controller with DD-K can track
the reference trajectory perfectly (see red and black dashed
curves). EDMD-K and DNN-K can also track the reference
trajectory closely and DNN-K converges faster to the reference
trajectory (see green and blue curves) while applying DD-A
has a longer transition phase. The realized control cost in
Figure 2(b) further demonstrates DD-A > EDMD-K > DNN-K
> DD-K for both sinusoidal and step signals. We remark that
models obtained from DNN have large variances and we
eliminated the problematic models whose realized control cost
is larger than 10°. The inaccurate prediction of EDMD-K,
DNN-K and DD-A (see Figure 1(a)) leads to the tracking error.
Finally, we note that both DNN-K and EDMD-K require an
order of magnitude more data while failing to achieve the same
performance as our method DD-K, and that the performance
of DNN-K is highly dependent on the pre-collected data set.

V. CONCLUSIONS

We have developed an extended Willems’ fundamental
lemma for nonlinear systems that admit a Koopman linear
embedding. Our results eliminate the non-trivial process of
selecting lifting functions and illustrate that the required size of
the trajectory library is related to the dimension of the Koop-
man linear embedding. Future directions include developing
data-driven models for nonlinear systems with approximated
Koopman linear embeddings, analyzing the effect of adaptively
updating the trajectory library as in [21] and considering
coupling nonlinearities between state and input [8], [28].
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