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Abstract— The recently developed DeeP—-LCC (Data-EnablEd
Predictive Leading Cruise Control) method has shown promis-
ing performance for data-driven predictive control of Con-
nected and Autonomous Vehicles (CAVs) in mixed traffic.
However, its simplistic zero assumption of the future velocity
errors for the head vehicle may pose safety concerns and limit
its performance of smoothing traffic flow. In this paper, we
propose a robust DeeP-LCC method to control CAVs in mixed
traffic with enhanced safety performance. In particular, we first
present a robust formulation that enforces a safety constraint
for a range of potential velocity error trajectories, and then
estimate all potential velocity errors based on the past data
from the head vehicle. We also provide efficient computational
approaches to solve the robust optimization for online predictive
control. Nonlinear traffic simulations show that our robust
DeeP-LCC can provide better traffic efficiency and stronger
safety performance while requiring less offline data.

I. INTRODUCTION

In traffic flow, small perturbations of vehicle motion may
propagate into large periodic speed fluctuations, leading to
so-called stop-and-go traffic waves [1]. This phenomenon
significantly reduces traffic efficiency and driving safety.
It has been widely demonstrated that connected and au-
tonomous vehicles (CAVs) equipped with advanced control
technologies, such as Cooperative Adaptive Cruise Control
(CACC), have great potential to mitigate traffic jams [2], [3].
Yet, these technologies require a fully CAV environment, and
the near future will meet with a transition phase of mixed
traffic where human-driven vehicles (HDVs) coexist with
CAVs [4], [5]. Thus, it is important to consider the behavior
of HDVs when designing control strategies for CAVs.

The existing methods for the control of mixed traffic
are generally categorized into model-based and model-free
techniques. Model-based approaches typically use classical
car-following models for HDVs, e.g., the Optimal Velocity
Model (OVM) [6], to derive a parametric representation for
mixed traffic. This parametric model is then utilized for CAV
controller design, using methods such as optimal control [7],
[8], Hoo control [9], model predictive control (MPC) [10],
[11], and barrier methods [12]. For these approaches, an
accurate identification of the car-following models is non-
trivial due to the complex and non-linear human driving
behaviors. In contrast, model-free methods bypass system
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identification and directly design controllers for CAVs from
data. For example, reinforcement learning [13] and adaptive
dynamic programming [14] have been employed to learn
wave-dampening CAV strategies. However, practical deploy-
ments of these methods are limited due to their computation
burden and lack of interpretability and safety guarantees.

Alternatively, data-driven predictive control methods that
combine learning techniques with MPC have shown promis-
ing results. In particular, the recent DeeP-LCC [15] exploits
the Data-EnablEd Predictive Control (DeePC) [16], [17]
technique for the Leading Cruise Control (LCC) [18] system
in mixed traffic. This method directly utilizes the measured
traffic data to design optimal control inputs for CAVs and
explicitly incorporates input/output constraints in terms of
limits on acceleration and car-following distance. Large-scale
numerical simulations [15] and real-world experiments [19]
have validated the capability of DeeP~LCC to smooth mixed
traffic flow. However, the standard DeeP-LCC has an impor-
tant zero velocity error assumption, i.e., the future velocity
of the head vehicle remains the same as the equilibrium
velocity of traffic flow. This assumption facilitates the online
computation of DeeP-LCC, but it will cause a mismatch
between the real traffic behavior and its online prediction,
which may compromise safety and control performance.

To address this issue, we develop a robust DeeP-LCC
method to control CAVs in mixed traffic. Our key idea is
to robustify DeeP-LCC by considering all potential veloc-
ity error trajectories and formulating a robust problem. In
particular, our main contributions include: 1) We propose
a robust DeeP-LCC to handle the unknown velocity er-
rors from the head vehicle. Our predictive controller will
predict a series of future outputs based on the disturbance
set and requires all of them to satisfy the safety constraint,
thus providing enhanced safety performance. 2) We introduce
two disturbance estimation methods, the constant velocity
model and the constant acceleration model, based on the past
disturbance data of the head vehicle. Our methods are able to
provide satisfactory estimations of the future velocity errors
and improve the control performance of robust DeeP-LCC.
3) We further provide efficient computational approaches for
solving the robust optimization problem. We analyze and
compare the complexity of two different solving methods
from the robust optimization literature [20], [21] and provide
a down-sampling method, adapted from [22], to further de-
crease the computational complexity. Numerical experiments
validate the enhanced performance of the robust DeeP-LCC
in reducing fuel consumption and improving driving safety
while requiring less pre-collected data. For example, our
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Fig. 1.  Schematic of CF-LCC system. Original DeeP-LCC assumes

one single trajectory for future disturbance, while the proposed robust
DeeP-LCC explicitly addresses an estimated set of future disturbances.
The notion n and m denote the number of HDVs behind the CAV and that
ahead of the head vehicle, respectively.

robust DeeP-LCC only results in 4 and 0 emergencies out of
100 safety tests using small and large offline datasets, respec-
tively; however, these numbers for standard DeeP-LCC [15]
are 66 and 51 (which are unacceptably large).

The rest of the paper is organized as follows. Section II
reviews the background on mixed traffic and DeeP-LCC.
Section III presents our robust DeeP—LCC formulation. The
disturbance set estimation methods and efficient computa-
tions are discussed in Section IV. Section V demonstrates
our numerical results. We conclude the paper in Section VI.

II. DATA-DRIVEN PREDICTIVE CONTROL IN CF-LCC

In this section, we briefly review the DeeP-LCC [15] for
a Car-Following LCC (CF-LCC) system [18]. As shown in
Fig. 1, CF-LCC consists of one CAV, indexed as 1, and n—1
HDVs behind, indexed as 2,...,n from front to end. All
these vehicles follow a head vehicle, indexed as 0, which is
immediately ahead of the CAV. Such a CF-LCC system can
be considered the smallest unit for general cascading mixed
traffic systems [18], whose leading vehicle is indexed as —m.
Note that our robust DeeP-LCC can be extended to general
mixed traffic systems; see our extended report [23].

A. Input/Output of CF-LCC System

For the i¢-th vehicle at time ¢, we denote its position,
velocity and acceleration as p;(t), v;(t) and a;(t), i =
1,...,n, respectively. We define the spacing between vehicle
1 and its preceding vehicle as s;(t) = p;—1(t)—p;(t) and their
relative velocity as $;(t) = v;—1(t) —v;(t). In an equilibrium
state, each vehicle moves at the same velocity v* with an
equilibrium spacing s; that may vary from different vehicles.

In DeeP-LCC, we consider the error state of the traffic
system. In particular, the velocity error and spacing error
for each vehicle are defined as 0;(t) = v;(t) — v*, §;(t) =
si(t) — s;. Then, we form the state x € R*>" of the CF-LCC
system by lumping the error states of all the vehicles

z(t) = [51(t), 01(t), 52(t), Da(t), . . ., 8n(t), Du ()] .
The spacing errors of HDVs are not directly measurable,
since it is non-trivial to get the equilibrium spacing s; for
HDVs due to the unknown car-following behaviors. By con-
trast, the equilibrium velocity v* can be estimated from the
past velocity trajectory of the leading vehicle. Accordingly,
the system output is formed by the velocity errors of all
vehicles and the spacing error of the CAV, defined as

y(t) = [01(t), D2(t), ..., 0a(t),51(8)] € R

The input u(t) € R of the system is defined as the
acceleration of the CAV, as widely used in [4], [5]. Finally,
the velocity error of the head vehicle 0 is regarded as an
external disturbance signal € = ¥g(t) = vo(t) — v* € R, and
its past trajectory can be recorded, but its future trajectory is
in general unknown. Based on the definitions of the system
state, input, and output, after linearization and discretization,
a state-space model of the CF-LCC system is in the form of

{x(k +1) = Az(k) + Bu(k) + He(k),

y(k) = Cu(k), M

where k denotes the discrete time step. The details of the
matrices A, B, C, H can be found in [15, Section II-C].

Note that the parametric model (1) is non-trivial to accu-
rately obtain due to the unknown HDVs’ behavior. To address
this issue, the recently proposed DeeP-LCC method directly
uses the input/output trajectories for behavior prediction and
controller design, thus bypassing the system identification
process that is common in model-based methods.

B. Data-Driven Representation of System Behavior

DeeP-LCC is an adaption of the standard DeePC [16]
for mixed traffic control. It starts by forming a data-driven
representation of the system with rich enough pre-collected
offline data, which is further employed as a predictor to
predict the dynamical behavior of CF-LCC (1). We recall a
notion of persistent excitation [24] for offline data collection.

Definition 1 (Persistently Exciting): The sequence of sig-
nal w = col(w(1),w(2),...,w(T)) with length T (T € N)
is persistently exciting of order L (L < T) if its associated
Hankel matrix with depth L has full row rank:

w(1) w(2) wT—-L+1)

w(2 w(3 w(T—-L+2
< [0 O 7L+

wl) wlL+1) w(T)

We begin with collecting an input/output trajectory of
length T' for the CF-LCC system offline:
u = col(u?(1),u%(2),...,u%(T)) € R,
et = col(ed(1),€4(2),...,e4(T)) € RT,
yd = col(y?(1),44(2),...,y4(T)) e R+,
We then use the offline collected data to form a Hankel
matrix of order L, which is partitioned as follows:
], [, [0t @
where Up and Ur contains the first T;,; rows and the last N
rows of My (u), respectively (similarly for Ep and Ef, Yp
and Yr). The Hankel matrices (2) can be used to construct
the online behavior predictor for predictive control. We then
have the following result.
Proposition 1 ([15, Proposition 2]): At time step k, we
collect the most recent past input sequence ui,; with length
Tini, and let the future input sequence v with length N as

Uini = col(u(k — Tini), u(k — Tini + 1), ..., u(k — 1)),
u=col(u(k),u(k +1),...,u(k+ N —1)).



The notations €y, €, yini and y are denoted similarly. If the
input trajectory ud is persistently exciting of order L + 2n
(where L = Tj,; + N), then the sequence col(uini, €ini,
Yinis U, €,y) is a valid trajectory with length L of (1) if and
only if there exists a vector g € RT~E+1 such that

col(Up, Ep, Yp, U, Er, Yr)g=col(uini, €ni, Yini, &, €,Y). (3)
If Tipi > 2n, then y is unique for any (ini, Yini, U, €)-

This proposition provides a data-driven representation (3)
for the CF-LCC system: all valid trajectories can be con-
structed by a linear combination of rich enough pre-collected
trajectories. Thus, we can predict the future output y using
trajectories (ud, €4, y9), given the future input u, disturbance
e and initial condition (i, €ini, Yini)-

C. DeeP-LCC Formulation

Using the data-driven representation (3), the DeeP-LCC
in [15] solves an optimization problem at each time step:

Jmin - V(y)+AllglB 4+ Aoy @)
Up Uini 0
Ep €ini 0
. Yo| | Y oy
subject to Ur 9=1" + R (4b)
EF € 0
Yr Yy 0
gmin S Gly S gma)m (4C)
Umin S u S Umax» (4d)
€ = €est, (4e)

where G1 = Iy ® [@Mn, 1} selects the spacing error of the
CAV from the output, [Spmin, Smax| is the safe spacing error
range of CAV, [Umin, Umax] 18 the physical limitation of the
acceleration and e is the estimation of the future velocity
errors of the head vehicle 0.

For the cost function (4a), V(u,y) penalizes the output
deviation from equilibrium states and the energy of the input:

V(u,y) = [lullf + llyll3,

with R € SN and Q € Sf(nH)XN(nH). There are two
regularization terms ||g||3 and || |3 in the cost function with
weight coefficients Ay, A,,. Also, a slack variable o, is added
to the data-driven representation (4b). Note that the original
data-driven behavior representation (3) is only applicable to
linear systems with noise-free data. The regularization herein
is commonly used for nonlinear systems with stochastic
noises, and we refer interested readers to [15], [16] for
detailed discussions.

Remark 1 (Robustification): In the standard DeeP-1CC
formulation [15], it is assumed that the future velocity error
for the head vehicle remains zero, i.e., e.x = 0. However, this
assumption hardly stands since in real-world traffic, strong
oscillations may happen, particularly during the occurrence
of traffic waves. An inaccurate estimation can cause a mis-
match between the prediction and the real traffic behavior,
which may not only degrade the control performance but also
pose safety concerns (e.g., rear-end collisions). ]

Algorithm 1 Robust DeeP-1.CC

Input: Pre-collected offline data (u¢, €4, 39), initial time step
ko, terminal time step ky;
1: Construct data Hankel matrices (2) for input, distur-
bance, and output as Up, Ug, Ep, EF, Yp, Yr;
2: Initialize the most recent past traffic data (wii, €ini, Yini)
before the initial time ko;
3: while ko < k < kf do
Estimate VW from e€;;;
Solve (5) for optimal future control input sequence
u* =col(u*(k),u*(k+1),...,u"(k+ N —1));
6: Apply the input u(k) + u*(k) to the CAV;
7: k+—k+1;
8:
9:

AN

: Update past traffic data (wini, €ini, Yini);
end while

III. TRACTABLE ROBUST DEEP—-LCC FORMULATION

In this section, we present a new framework of robust
DeeP-LCC to control the CAV in the CF-LCC system which
can properly address unknown future velocity errors, leading
to enhanced performance and safety.

A. Robust DeeP—-LCC Formulation

As shown in Fig. 1, instead of estimating one single
disturbance trajectory € = ¢y in DeeP—-LCC, we introduce
a disturbance set YV as the estimation, i.e., ¢ € VW, which,
by valid design (see details in Section IV), will contain the
real trajectory with a much higher possibility.

Our key idea is to plan over the worst trajectory in W for
predictive control, leading to a robust optimization problem

: 2 2
 in max V(u,y) + Agllgllz + Aylloyll

subject to  (4b), (4c), (4d).

Compared with the original formulation in (4), the robust
formulation (5) promises to provide better control perfor-
mance and higher safety guarantees since the gap between
online prediction and real implementation has been reduced.
As a trade-off, note that the complexity of the optimization
problem is increased, and we also need to estimate W
properly. Both issues will be discussed in the sections below.

For implementation, the optimization problem (5) is solved
in a receding horizon manner at each time step k£ and W is
re-estimated iteratively based on the updated velocity errors
of the head vehicle (see Section IV). Algorithm 1 lists the
overall procedure of robust DeeP-LCC.

B. Reformulations of Min-max Optimization

The min-max optimization problem (5) is solved at each
iteration of Algorithm 1, but standard solvers are not appli-
cable with respect to its current form. We proceed to present
a sequence of reformulation (and relaxations) for (5), which
further allows for efficient computations in Section IV.

We first eliminate the equality constraint by expressing g
and y in terms of u, o, and € to :

g= HJb—FHPLz,
y = Yrg = YeH]b+ Yy Hy z,

(6a)
(6b)
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Fig. 2. Schematic of two disturbance estimation methods. The purple

line represents the actual disturbance trajectory with known past part and
unknown future part. In the past region, the black line segment denotes the
information needed for estimation. In the future region, the black dashed
line represents the zero estimation while the red and blue regions denote
the time-varying bound and constant bound estimated sets, respectively.

where H, = col(Up, Ep, Yp, U, Er) with Hg denoting its
pseudo-inverse, H- = I — H]} H,, b = col(Uini, €ini, Yini +
oy, U,€), and z € RT—L+1, For simplicity, we set z = 0 in
the following derivation, which decreases the complexity of
the optimization problem but also reduces the feasible set.
From the simulations in Section V, we note that this sim-
plification already provides satisfactory control performance.
Then, the min-max robust problem (5) becomes:

min max z' Mz +d'z+ ¢ (7a)

u,0y €€EW

subject to  Spin < Piz + 1 < Spmax, (7b)
Umin S P2-r S Umax (7C)

where = col(u, 0y, €) denotes the decision variable and
M,d,cy, Py, Py, c; depend on problem data [23, Appx. A].

Without loss of generality, we eliminate the constant cg.
We finally consider € as an uncertainty parameter, and trans-
form problem (7) into its epi-graph form

mitn t
subject to ' Mz +d'x <t, YeeW, (8a)
gmin < Plx +c1 < gma}m Ve € W7 (8b)
Umin < ngE < Umax- (80)

Compared with (7), the formulation (8) requires its feasible
solutions to satisfy the safety constraint for all disturbance
trajectories in YV which enhances the safety. On the other
hand, the stricter safety constraint further increases the
complexity, which will be addressed in Section IV-B.
Remark 2 (Uncertatinty Quantification): We require an
accurate and non-conservative estimation of W for velocity
error trajectories. The actual disturbance trajectory should
be inside or close to W; otherwise, a gap between online
prediction and real traffic behavior may still exist. A conser-
vative estimation is not preferred either, which will shrink the
feasible solution set and degrade the control performance. [

IV. DISTURBANCE ESTIMATION AND EFFICIENT
COMPUTATION

In this section, we first introduce two disturbance esti-
mation methods based on different assumptions of human
driving behaviors. We then present two solving methods
of (8) and compare their complexity. Also, we provide a

down-sampling method of low-dimensional approximation
for the disturbance set W for real-time computation.

A. Uncertatinty Quantification

In our problem, the estimated disturbance set is considered

an N-dimensional polytope that is

W = {e € RN|Ace < b}, 9)
where A. = [I; —1], b = [€max; —€min] a0d €max, Emin are
the upper and lower bound vectors of e. The key part of
estimating the disturbance set becomes estimating its (time-
varying) bounds from the past velocity errors €.

We propose two different estimation methods (see Fig. 2
for illustration) and analyze their performance:

1) Constant disturbance bounds: We assume that the
disturbance (velocity error) of the head vehicle will not have
a large deviation from its current value in a short time period
based on the constant velocity model, and the disturbance
variation for the future disturbance trajectory is close to its
past trajectory. From the historical disturbance values €j,;, we
can get the value of the current disturbance, ie., €pi(end),
and estimate the disturbance variation as A€oy, = min(€y;) —
mean(epyi) and Ae,, = max(ep) — mean(eni). Then, the
estimated bound of the future disturbance is given by

€min = €cur + A€low; €max = €cur + AEup~

2) Time-varying disturbance bounds: We can also as-
sume the acceleration of the head vehicle will not deviate
significantly from its current value based on the constant
acceleration model, and its variation in the future is close to
the variation in the past. We first get the past acceleration
information from €y as aini(k) = W where At
is the sampling time period. Then, using a similar procedure
as in the previous approach, the acceleration variation bound
is estimated as Adajow = min(aiy;) —mean(aiy) and Aay, =
max(aiy;) — mean(a, ). Thus, the future disturbance in an
arbitrary time step k is bounded by the following inequalities:
emi(end) + (aeyr + Aajow) - kAL < e(k)

< Gim(el‘ld) + (acur + Aaup) - kAL

Fig. 2 illustrates the two disturbance estimation methods. It
is clear that a large gap exists between the actual disturbance
trajectory and the zero line. For the constant disturbance
bounds, the actual disturbance trajectory stays in the esti-
mated set in the short term but will deviate from the set over
time. For the second method using time-varying disturbance
bounds, it includes the actual trajectory in the estimated set
in this case but with a relatively conservative bound at the
end of the time period. In most of our numerical simulations,
the time-varying disturbance bounds outperform the constant
disturbance bounds because traffic waves usually have high
amplitude with low frequency (see details in our report [23]).

B. Efficient Computations

Upon estimating VV, the robust optimization problem (8)
is well-defined. We here adapt standard robust optimization
techniques to solve (8) and compare their complexity.

M1: Vertex-based. Our first method utilizes constraints
evaluated at vertices of WV to replace the robust constraints.



The compact polytope WV can be represented as the convex
hull of its extreme points as

W = conv(wy, . ..,wn,), (10)
where n, denotes the number of extreme points, and its value
is 2% if no low-dimensional approximation is applied. Using
this representation, we can rewrite problem (8) as

min ¢

x,t

T T o

ziMzj+dx; <t j=1,...,ny, (11a)
gmingplxj +e1<Smax, J = 1,...,ny, (11b)
(11¢)

where x; represents the decision variable when the uncer-
tainty parameter € is fixed to one of the extreme points w;
and the expression becomes col(u, oy, w;).

M2: Duality-based. The second method treats robust
constraint (8a) the same as the first method, but forms (8b)
as a sub-level optimization problem and then changes it into
its dual problem to combine both levels. For example, the
right hand inequality of (8b) can be reformulated as

subject to

Umin S PZ«T S Umax;

Smax > Max plTercU, l=1,...,N,
eeWwW

where plT and ¢y ; is the [-th row vector and element in P; and
c1,, respectively. Given the origin representation W in (9),
the right-hand side of (12) is a linear program (LP). Then, we
can change them to their dual problems and the strong duality
of LPs ensures the new formulation is equivalent to (12). The
bi-level optimization problem becomes a min-min problem
and we can combine both levels'. The original problem (8)
can then be equivalently reformulated as

(12)

in, f
subject to pzdxd + I+ e < Smaxs (13a)
AN —pre =0, (13b)
—plata + bl N2 — c10 < —Fmin,  (13¢)
ANz +pie=0, (13d)
MNi>0,02>01=1,2,...,N, (13e)

(11a), (11c),

where x4 is the decision variable col(u, o), and A\; 1, A2 €
R2N are dual variables with \; = col(A1,1,A21,. -, AN,1),
A2 = col(A12,A22,...,AN,2); parameters ci;,p; are the
same as (12) and p; 4 represents col(plvu,pl,gy) with p; sub-
divided into col(p; v, Dloys P1,e) corresponding to u, o, and €.
Theorem 1: Suppose (8) is feasible and its uncertainty set
W is a polytope. Problems (8), (11) and (13) are equivalent.
The equivalence between (8) and (11) is relatively straight-
forward. It requires standard duality arguments to establish
the equivalence between (8) and (13) (see details in [23]).
Both (11) and (13) are standard convex optimization
problems, which can be solved using standard solvers (e.g.,
Mosek [25]). We here discuss the complexity of the above
two methods; see Table I. The main difference lies in the
different formulations of (8b), i.e., (11b) and (13a) - (13e).

IThis operation is standard; we refer the interested reader to Section 2.1 of
https://zhengy09.github.i0/ECE285/lectures/L17.pdf.

TABLE I
COMPLEXITY COMPARISON BETWEEN (11) AND (13)

Decision Variables Number Constraints Number

M1 (TL + 1)Tini +N+1
M2 (n+ )T + N +1+4N?

M1 (L) (n+ )T + N +1
M2 (L) (n+1)Ti + N+ 14 4Nne

2N ¢ N . 2N+l L oN
2N L 2N(3N 4 2)

2ne + N .2netl L 2N
2" + 2N (3ne + 2)

1M1 and M2 represent the vertex-based and the duality-based method.
The last two rows denote their complexities after down-sampling.

In M1, (11b) represents N - 2VF1 inequality constraints
while (13a) - (13e) together represent 2N (3N + 1) inequality
constraints in M2. The value N - 2V*1 is much larger than
2N (3N + 2) when the prediction horizon N is large.

C. Down-sampling Strategy

We here discuss a down-sampling strategy that is adapted
from [22] to relieve the exponential growth of the number of
constraints. It approximates the N-dimensional disturbance
trajectory by choosing one point for every 7y steps along
it and performing linear interpolation. We denote the low-
dimensional representation of the future disturbance trajec-
tory as € € R™ where n. = (| =2 +2). An approximated
representation € of e can be derived as

_ ~(k+2) _ =(k+1)

e+ 4 ((k — 1) mod Ts)x%,
<k<k-

e = (2 _2>k _(lfj f
_ . f(k+2) _ z(k+

R ) L (k- k T, 1) x
N-—k-T,—1

kE-T,<k<N

where k = LkTilJ and k = LNTTQJ Then, we can use € € R«
to represent € € RV as
(14)

where é¢ € W and W can be estimated using the same
methods we introduced before. Also, substituting (14) into
our previous derivation will not affect its correctness.

The complexities of both methods (11) and (13) after using
low-dimensional approximation are updated in the last two
rows of Table I. Theoretically, with the same computational
resource, the duality-based method allows us to choose a
larger n. because the coefficient of its exponential growth
term 2"¢ is 1 while it is 2N 41 for the vertex-based method.
In our implementation, n. is usually chosen as a small
number to ensure real-time computational performance and
these two methods might not have obvious differences.

e~ €= F.€,

V. TRAFFIC SIMULATIONS

In this section, we carry out two nonlinear and non-
deterministic traffic simulations to test the performance of
robust DeeP-LCC with the time-varying disturbance bound
in controlling the CF-LCC system in mixed traffic. We im-
plement an automatic routine to transform (13) into standard
conic programs?, which are solved by Mosek [25]. More
numerical results can be found in the extended version [23].

2Qur open-source implementation is available at https://github.
com/soc-ucsd/Decentralized-DeeP-LCC/.
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A. Experimental Setup

The car-following behaviors of HDVs are modeled by the
nonlinear OVM model in [8], and a noise signal following
the uniform distribution of U[—0.1,0.1] m/s? is added to the
acceleration for each HDV. For the CF-LCC system in mixed
traffic, we consider the case where the CAV 1 is followed
by 4 HDVs, and there are 3 vehicles in front of the head
vehicle 0, i.e., n = 5, m = 3 in Fig. 1. We use the following
parameters in both DeeP-LCC and robust DeeP-LCC:

(1) Offline data collection: lengths of pre-collected data
sets are 7' = 500 for a small data set and 7" = 1500 for a
large data set with At = 0.05s. They are collected around the
equilibrium state of the system with velocity 15m/s. Both
uY and ¢! are generated by a uniform distributed signal of
U[—1, 1] which satisfies the persistent excitation requirement
in Proposition 1.

(2) Online predictive control: the initial signal sequence
and the prediction horizon are set to Ti,; = 20 and N = 50.
For the objective function in (5), we have R = 0.11 and
Q = Iy ® diag(Q,,w,) where Q, = diag(1,...,1) € R”
and w, = 0.5. The regularized parameters are set to \; =
100 and A, = 10000. The spacing constraints for CAV are
set as Smax = 40m, Spin = 5m, and the bound of the
spacing error is updated in each iteration as Syax = Smax—S"
and Spin = Smin — S*. Note that s* is also updated in each
time step according to the current equilibrium state estimated
by the leading vehicle’s past trajectory [15]. The acceleration
limits are set as apmax = 2 M/s? and ayi, = —5 m/s?.

B. Numerical Results

Experiment A: We first validate the control performance
of robust DeeP-LCC in a comprehensive simulation sce-
nario which is motivated by New European Driving Cycle
(NEDC) [26]. We design the velocity trajectory of the leading
vehicle as the black profile in Fig. 3 and calculate the fuel
consumption of the 5 following vehicles in CF-LCC system
using the numerical model in [27] for evaluation.

The velocity profiles of robust DeeP-LCC and original
DeeP-LCC with different sizes of data sets are shown in
Fig. 3. Both methods allow for the CAV to track the desired
velocity when using a large data set (see red curves in
Fig. 3). However, in the case of using a small data set,
the degradation of control performance for DeeP-LCC is
apparent, and there are some undesired oscillations (see blue
curves in Fig. 3(a)), while robust DeeP-LCC remains a
smooth velocity profile (see blue curves in Fig. 3(b)). Such
performance degradation is highly related to the mismatch
between the online prediction and real system behavior,
caused by representation and estimation errors. The robust
DeeP-LCC allows for a relatively small estimation error,
and provides more margin for potential representation errors
which is the main reason that the robust DeeP—-LCC per-
forms better than DeeP-LCC for a relatively small data set.

Table II lists fuel consumption results when using the large
data set. Both robust DeeP-LCC and DeeP-LCC reduce fuel
consumption compared with the case with all HDVs, and the
improvement in the braking phase (Phases 1 and 4) is higher

i . I | I i
0 20 40 60 80 100 120 140
t[s]

(a) DeeP-LCC

| —T=1500 !
=B T =500 !
£ :
220 |
g \ i i
.—4@ 1 1 1
Sk i i
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0 20 40 60 80 100 120 140
t[s
(b) Robust DeeP-LCC
Fig. 3. Velocity profiles in Experiment A. The black profile denotes the

leading vehicle. The red profile and the blue profile represent DeeP-LCC
control with data sets of size 7" = 1500 and 1" = 500, respectively. (a)
The CAV utilizes DeeP-LCC. (b) The CAV utilizes robust DeeP—-LCC.

TABLE II
FUEL CONSUMPTION IN EXPERIMENT A (UNIT: mL)

All HDVs DeeP-LCC Robust DeeP-LCC

Phase 1 145.59 141.02 ({ 3.14%) 135.60 (| 6.86%)
Phase 2 314.77 312.95 (} 0.58%) 311.83 ({ 0.94%)
Phase 3 725.28 723.95 ({ 0.18%) 722.88 (| 0.33%)
Phase 4 259.05 246.16 (] 4.97%) 237.89 (| 8.17%)
Total Process 1530.15 1509.6 (. 1.54%) 1493.6(] 2.39%)

than the accelerating phases (Phases 2 and 3). Moreover, we
note that robust DeeP-LCC achieves better fuel economy
than DeeP-LCC in all phases.

Experiment B: We further validate the safety performance
of robust DeeP-LCC in the braking scenario. In this exper-
iment, the leading vehicle that moves at 15m/s will brake
with the maximum deceleration —5m/s?, stay at 5m/s for
a while, and then speed up back to 15 m/s. We conduct 100
experiments each with randomly generated small and large
datasets. We define “violation” and “emergency” as the case
where the CAV’s spacing deviates more than 1 m and 5m
from the safe range (set as 5m to 40 m). An “emergency”
occurs when a rear-end collision happens or the spacing of
the CAV becomes too large, reducing traffic capacity.

The results are presented in Table III, which clearly shows
that DeeP-LCC has a much higher violation and emergency
rate for both small and large data sets. On the other hand, the
robust DeeP-LCC can provide a remarkably low violation
and emergency rate using small data sets which are 5%
and 4%, and both of them are decreased to 0% when using
large data sets. Fig. 4 displays two typical examples. When
using a large data set, both methods exhibit smaller velocity
fluctuations compared with the case of all human drivers. It
can be clearly observed that the CAV controlled by robust
DeeP-LCC always stays inside the safety bound for both
large and small data sets, while DeeP-LCC is likely to lead
to a rear-end collision for the small data set, and still violate
the safe bound even with the large data set.
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Fig. 4. Simulation results in Experiment B. The black and the gray profiles
represent the leading vehicle and the head vehicle, respectively. The orange
and the green profiles correspond to DeeP-LCC and robust DeeP-LCC,
respectively, while the purple profile corresponds to the all HDV case. (a)
and (b) show the velocity and spacing profiles at different sizes of data sets.

TABLE III
COLLISION AND SAFETY CONSTRAINT VIOLATION RATE

DeeP-LCC Robust DeeP-LCC
T =500 T =1500 T =500 T = 1500
Violation Rate 74% 62% 5% 0%
Emergency Rate 66% 51% 4% 0%

VI. CONCLUSION

In this paper, we have proposed the robust DeeP-LCC
for CAV control in mixed traffic. The robust formulation
and disturbance set estimation methods together provide a
strong safety guarantee, improve the control performance,
and allow for the applicability of a smaller data set. Efficient
computational methods are also provided for the real-time
implementation. Extensive traffic simulations have validated
the performance of robust DeeP-LCC in comprehensive
and braking scenarios. Interesting future directions include
learning-based estimation for future disturbances, incorpora-
tion of communication-delayed traffic data, and extension to
large-scale mixed traffic scenarios.
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