
Graph Coarsening via Convolution Matching
for Scalable Graph Neural Network Training

Charles Dickens∗
cadicken@ucsc.edu

University of California Santa Cruz
Santa Cruz, CA, U.S.A

Eddie Huang
ewhuang@amazon.com

Amazon
U.S.A

Aishwarya Reganti
areganti@amazon.com

Amazon
U.S.A

Jiong Zhu∗
jiongzhu@umich.edu
University of Michigan
Ann Arbor, MI, U.S.A

Karthik Subbian
ksubbian@amazon.com

Amazon
U.S.A

Danai Koutra
dkoutra@amazon.com

Amazon
U.S.A

ABSTRACT
Graph summarization as a preprocessing step is an e�ective and
complementary technique for scalable graph neural network (GNN)
training. In this work, we propose the Coarsening Via Convolution
Matching (C���M����) algorithm and a highly scalable variant,
A-C���M����, for creating summarized graphs that preserve the
output of graph convolution. We evaluate C���M���� on six real-
world link prediction and node classi�cation graph datasets, and
show it is e�cient and preserves prediction performance while sig-
ni�cantly reducing the graph size. Notably, C���M���� achieves
up to 95% of the prediction performance of GNNs on node classi-
�cation while trained on graphs summarized down to 1% the size
of the original graph. Furthermore, on link prediction tasks, C���
�M���� consistently outperforms all baselines, achieving up to a
2⇥ improvement.
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1 INTRODUCTION
Graph neural networks (GNNs) have achieved state-of-the-art per-
formance on various tasks ranging from recommendation to pre-
dicting drug interactions [13]. However, a drawback of a GNN’s
modeling capacity is a computationally expensive inference process
with a complexity that scales with the size of the graph. Modern
techniques for scaling the training of deep models, such as lever-
aging the parallel structure of GPUs for processing large blocks of
data, have been successfully adopted by the GNN community [9, 36].
However, graph datasets encountered in real-world applications are
on the order of tens of billions of edges [44] and quickly exceed the
costly and limited memory capacity of today’s GPUs. Techniques
for partitioning and distributing the training graph across compu-
tational resources and integrating graph sampling into the training
pipeline have been proposed [16, 30, 43, 45]. Nonetheless, training
GNNs is still a highly expensive process, which limits applicabil-
ity and prohibits large-scale architecture searches. Furthermore,
distributed training and sampling techniques introduce their own
di�culties. For example, distributed training faces communication
overhead across machines [10], while sampling techniques bring
additional hyperparameters that a�ect model performance [30, 45].

A promising new direction of scalable GNN training is to per-
form summarization, i.e., create a smaller graph with fewer nodes
and edges, as a preprocessing step. These methods either sample
nodes and edges from the original training graph [11, 26, 32, 34, 38],
coarsen by clustering nodes into supernodes [15], or create syn-
thetic connections and node features [17, 42]. To be applicable for
scalable GNN training, the summarization process should be faster
than� tting a GNN on the original graph. Additionally, the summa-
rized graph should share properties with the original graph such
that a GNN can be� t for various downstream tasks with good per-
formance. Existing approaches to summarization typically do not
satisfy at least one of the mentioned desirable properties (Table 1).

In this work, we introduce Coarsening Via Convolution Match-
ing (C���M����), a scalable coarsening algorithm. C���M����
merges nodes that minimize a cost quantifying the change in the
output of graph convolution. Notably, C���M���� merges nodes
that are structurally similar, allowing the algorithm to identify and
summarize redundant nodes that are distant, or even disconnected,
in the original graph. Our primary contributions are:

• New Approach: We introduce C���M����, a coarsening
algorithm that preserves the output of graph convolutions.
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• Highly-scalable Variant: We propose a principled approx-
imation to computing costs in the C���M���� algorithm,
A-C���M����, which allows it to scale to large graphs.

• Extensive Empirical Analysis: We perform an extensive
empirical analysis demonstrating our method’s ability to
summarize large-scale graphs and preserve prediction per-
formance. On link prediction tasks, C���M���� achieves
up to a 2⇥ prediction performance improvement over the
best baseline. In node classi�cation, it achieves up to 95% of
the prediction performance of a GNN on a graph that is 1%
the size of the original.

2 RELATEDWORK
We give a qualitative comparison of methods for graph summariza-
tion for scalable GNN training in Table 1.
Coreset Selection. Coreset methods aim to� nd a subset of training
examples such that a model trained on the subset will perform sim-
ilarly to a model trained on the complete dataset [11, 26, 32, 34, 38].
Herding, proposed by Welling (2009) [38] is a coreset technique in
which training examples are� rst mapped to an embedding space
and then clustered by class. Examples closest to the cluster center
in the embedding space are selected. The KCenter algorithm [32]
similarly embeds training data and then incrementally selects ex-
amples with the largest minimum distance to the growing cluster
subset.
Graph Condensation. Distillation and condensation techniques
search for a small synthetic dataset such that model parameters�t
on the synthetic dataset are approximate minimizers of the training
objective on the original dataset [2, 17, 18, 28, 33, 37, 41, 42]. Re-
cently, Jin et al. (2022b) [18] extended the dataset condensation via
gradient matching scheme proposed by Zhao et al. (2021) [42] with
the GCond algorithm, which synthesizes graph data for training
GNNs, and later with DosCond, which performs one-step gradi-
ent matching to� nd the synthesized graph [17]. Alternatively, Liu
et al. (2022) [23] propose a condensation method for creating a
synthetic graph that aims to match statistics of the receptive�eld
of the original graph nodes.
Graph Coarsening. Coarsening is a graph summarization [24]
technique in which nodes and/or edges from an original graph are
merged to form a supergraph. Graph coarseningmethods are widely
applied and studied for problems ranging from in�uence analysis
[29], visualization [6, 12, 35], combinatorial optimization [7, 27],
and, recently, scaling graph embeddings [1, 5, 8, 15, 20, 22, 40]. More-
over, coarsening methods typically have the practically advanta-
geous property of producing multi-level summaries, i.e., producing
summaries at multiple level of granularity. Huang et al. (2021) [15]
speci�cally proposed coarsening to overcome scalability issues of
GNN training. The authors coarsen the graph used for training the
GNN, with algorithms by Loukas (2019) [25].

C���M���� is a graph coarsening algorithm that aims to pre-
serve the graph convolution operations that are fundamental to
spectral-based GNNs. C���M���� advances existing coarsening
approaches for scalable GNN training by merging structurally sim-
ilar nodes instead of neighbors.

3 BACKGROUND AND PRELIMINARIES
We start with key notations and the necessary background for
describing our proposed approach.

Graph Notations. Let ⌧ = (V, E) denote a graph with a node
attribute matrix X 2 R=⇥3 , where = = |V| and 3 > 0. Let A 2
{0, 1}=⇥= be the adjacency matrix corresponding to the graph ⌧ ,
and D be the diagonal degree matrix.

Graph Coarsening. A coarse graph is de�ned from a partition-
ing of the nodes into =0  = clusters: P = {C1, C2, · · · , C=0 }. Each
partition, C8 2 P, is referred to as a supernode. The partitioning is
represented by a partition matrix

P 2
8>><
>>:
P0 2 {0, 1}=⇥=0 ��� ’

9

P08,9 = 1, 88
9>>=
>>;
, P(=,= 0) (1)

, where entry P8,9 = 1 if and only if E8 2 C9 . Given the partition
matrix, the coarse graph ⌧ 0 = (V0, E0) is constructed with an
adjacency matrix A0 , P)AP and degree matrix D0 , P)DP.
We de�ne the supernode size matrix of the coarse graph as C ,
diag( [|C1 |, |C2 |, · · · , |C=0 |]). Then, the coarse node attribute matrix
is given as X0 , C�1P)X.

Spectral GraphConvolutions. Spectral-based GNNs are a promi-
nent class ofmodels rooted in graph Fourier analysis [3, 4, 19, 21, 39].
These methods generally assume graphs to be undirected and rely
on the graph Laplacian: ∆ , D � A, and its eigendecomposition:
∆ = UΛU) , where U 2 R=⇥= is an orthonormal matrix comprising
the eigenvectors of ∆, and ⇤ = diag(_1, · · · , _=) is the diagonal ma-
trix of eigenvalues. The graph Fourier transform of a signal x 2 R=

over the graph⌧ is de�ned asF⌧ (x) , U) x. AsU is an orthonormal
matrix, the inverse graph Fourier transform is thus F �1

⌧ (x) , Ux.
The graph convolution of a signal x 2 R= and a signal, or� lter,
g 2 R= , is the inverse transform of the element-wise product (�) of
the signals in the transformed domain:

g¢⌧ x , F �1
⌧ (F⌧ (x) � F⌧ (g)) = U(U) x � U) g). (2)

Spectral-based GNNs use this de�nition to motivate architectures
that approximate graph convolutions and parameterize the� lter.
In this work, we use the principled approximation of graph con-
volution proposed by Kipf and Welling (2017)[19]. Speci�cally, let
x 2 R= and g\ be a signal and� lter parameterized by a scalar \ ,
respectively. The graph convolution of x and g\ is approximately:

g\ ¢⌧ x ⇡ \ (D̃� 1
2 ÃD̃� 1

2 )x, (3)

where Ã = A+I (graphwith self-loops) and D̃ is the degree matrix of
Ã. Graph convolutions are generalized to multi-dimensional signals
to de�ne graph convolutional networks (GCN). Speci�cally, let X
be an (=⇥ 5 ) matrix, then a -layer GCN parameterized by a matrix
Θ( ) is a recursive application of the convolution approximation
and an activation function, f (·):

H( ) ,

(
X  = 0
f ((D̃� 1

2 ÃD̃� 1
2 )H( �1)Θ( ) ) o.w.

(4)

Further, de�ning H̃( ) , (D̃� 1
2 ÃD̃� 1

2 )H(:�1) and H(0) , X,
we have the equivalent compact form: H( ) , f (H̃( )Θ( ) ). A
notable instantiation of the GCN architecture proposed by Wu
et al. (2019)[39] is the simpli�ed GCN (SGC), which uses the identity
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Table 1: Qualitative comparison of graph summarizationmethods. ‘Summary’: the type of summarized graph produced; ‘NC/LP’:
summarized graph can be used to train a model for node classi�cation or link prediction, resp.; ‘No GNN on full graph’: does not
require� tting a GNN on the full graph; ‘Multi-level’: multiple levels of summarization produced; ‘Merge Strategy’: if applicable,
the strategy for selecting nodes to merge.

Core Technique Summary Method NC LP
No GNN on
Full Graph Multi-Level Merge Strategy

Coreset
Sampled
graph

RS X X X X
-KCenter [32] X ⇥ ⇥ X

Herding [38] X ⇥ ⇥ X

Condensation
Synthetic
graph

GCond [18] X X ⇥ ⇥ -DosCond [17] X X ⇥ ⇥

Coarsening Supergraph
VN [25] X X X X Neighbors
C���M���� (ours) X X X X Structurally similar
A-C���M���� (ours) X X X X Structurally similar

operator as the activation.  recursive applications of SGC layers is
equivalent to a single linear operator acting on (D̃� 1

2 ÃD̃� 1
2 ) X:

H( )
(⌧⇠ , (D̃� 1

2 ÃD̃� 1
2 ) XΘ. (5)

This expression illustrates the primary bene�ts of the SGC architec-
ture; the result of (D̃� 1

2 ÃD̃� 1
2 ) X is cached so future inferences

do not require computation of the intermediate representations of
nodes. Moreover, the parameter space reduces to a single matrix Θ.

Coarse Graph Convolutions. Huang et al. (2021)[15] propose
coarse graph convolution layers. Setting Ã0 , A0+C and D̃0 , D0+C,
a coarse graph convolution is recursively de�ned as

H0( ) ,

(
X0  = 0
f ((D̃0� 1

2 Ã0D̃0� 1
2 )H0( �1)Θ( ) ) o.w.

(6)

Similar to GCN convolutions, de�ning H0(0) , X0 and H̃0( ) ,
(D̃0� 1

2 Ã0D̃0� 1
2 )H0( �1) we have the compact expression: H0( ) ,

f (H̃0( )Θ( ) ). Note that the dimensions of the parameter matrix,
Θ( ) , of a coarse graph convolution layer is not dependent on
the partition P, but rather on the dimensions of the original node
attribute matrixX and can thus be applied to Eq. (4). In other words,
the parameters Θ( ) learned on a coarse graph can also be used
for inference on the original graph.

4 CONVMATCH: COARSENING VIA
CONVOLUTION MATCHING

A coarsening algorithm designed for scalable GNN training should:
(1) produce a small coarsened graph, and (2) a GNN� t on the coars-
ened graph should have a similar prediction performance to a GNN
�t on the original graph. We hypothesize, and empirically verify
in Section 5, that preserving the output of graph convolutions by
minimizing the di�erence in the intermediate node representations
computed for a GCN layer and a coarse graph convolution layer
produces good coarsenings for scalable training of spectral-based
GNNs. In this section, we formalize the notion of preserving the
output of graph convolutions with a combinatorial optimization
problem. We then introduce two coarsening methods: Coarsening
Via Convolution Matching (C���M����) and a highly scalable

variant, A-C���M����, both approximately solving the proposed
optimization problem.

4.1 Convolution Matching Objective
Preserving the output of GCN graph convolution for a given graph
signal x and parameterized�lter g\ is formalized by the following
problem:

argmin
P2P(=,=0 )

k\P(D̃0� 1
2 Ã0D̃0� 1

2 )x0 � \ (D̃� 1
2 ÃD̃� 1

2 )xk11 . (7)

We aim to� nd a partition matrix that minimizes the sum of the !1
distances between the node representations obtained via the output
of a single graph convolution on the original and coarsened graph.
The parameter \ acts as a positive scalar multiple in our objective,
thus, minimizing the di�erence to the unscaled GCN convolution
is equivalent.

We generalize the objective in Eq. (7) to multi-dimensional graph
signals by formulating a multi-objective problem. Speci�cally, we
equally weigh the di�erence in the GCN convolution operation for
each component of the graph signal to de�ne a linear scalarization
of the multi-objective problem:

argmin
P2P(=,=0 )

5’
8=1

kP(D̃0� 1
2 Ã0D̃0� 1

2 )x08 � (D̃� 1
2 ÃD̃� 1

2 )x8 k11, (8)

where x8 and x08 are the 8
0C⌘ components of the 5 -dimensional graph

signals X and X0. The resulting objective ensures that when�tting
GNN parameters using the coarsened graph, the parameters are
trained to operate on a matrix that is close to the original. It is
important to note that the coarsening problem formulated in Eq.
(8) does not restrict the partitioning to preserve connections in the
original graph, i.e., two nodes that are distant or even existing in
disconnected components of the original graph may be merged into
a single supernode.

4.2 C���M����
A brute-force approach solving Eq. (8) by computing the cost of
all partitionings of the nodes is an intractable procedure as the
number of partitionings grows combinatorially with the number
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of nodes. Therefore, we take a bottom-up hierarchical agglomera-
tive clustering approach with C���M���� to� nd an approximate
solution. C���M���� is outlined in Algorithm 1 (and Algs. 2-3
in the Appendix) and an illustration is provided in Figure 2 in the
Appendix.

Algorithm 1: C���M����
input :Graph ⌧ = (V, E,X), Ratio A , Merges per level k
output :Coarsened graph ⌧ 0 = (V0, E0,X0)

1 ⌧ 0 = (V0, E0,X0)  ⌧ = (V, E,X);
2 P  I; H̃0  (D̃� 1

2 ÃD̃� 1
2 )X;

3 candidates  CandidateSupernodes(⌧ 0);
4 supernode_costs  ComputeCosts(⌧ 0, H̃0, candidates);
5 while |V0 | > A · |V| do
6 ⌧ 0, P, H̃0, supernodes  

Merge(⌧ 0, TopKNonOverlap(supernode_costs, k));
7 supernode_costs  

ComputeCosts(⌧ 0, H̃0, Neighborhood(supernodes));

In short, C���M���� proceeds by� rst, in Step 1, computing
the intermediate node representation obtained via a coarse graph
convolution (Eq. (3)) and creating an initial set of candidate node
pairs, or supernodes. Then, Step 2 computes a cost for each pair
measuring the change in the objective value of Eq. (8) caused by
creating the supernode, i.e., the change in the GCN convolution out-
put. Finally, Step 3 of C���M���� �nds a number of lowest-cost
node pairs, merges them, and� nds new node pair candidates and
costs. This process is repeated until the desired coarsening ratio is
reached. As a hierarchical approach, ConvMatch produces multiple
levels of coarsening, i.e., we refer to a the graph after ✓ passes of the
ConvMatch algorithms a level-✓ coarsened graph. In the following
subsections, we describe the processes for generating candidate
supernodes, computing supernode costs, and� nally merging nodes.

4.2.1 Step 1: Candidate Supernodes. Considering all ⇠ =2 node
pairs as candidate supernodes is infeasible for large-scale graphs
withmillions of nodes and edges. Therefore, we only look at a subset
of all possible pairs that capture attribute and structural similarities
between nodes. Speci�cally, to generate the initial set of candidate
supernodes C���M���� pairs nearest neighbors in the embedding
space of a trivially parameterized (Θ = I)  -layer SGC network
(Eq. (5)). This embedding is the output of  recursive applications
of a GCN convolution Eq. (3), the very operation we are aiming
to preserve. The supernode candidate set de�nes the merge-graph:
⌧<4A64 = (V0, E<4A64 ), where, initially,V0 = V and E<4A64 is the
set of edges connecting the generated node pairs. The embedding
step has a computational time complexity of $ ( · 30E6 · |V|),
where  is the depth of the SGC network being used and 30E6 is
the average degree of nodes in the graph. Note that computing the
embedding is embarrassingly parallelizable. See Appendix B.1 for a
more detailed description and algorithm.

4.2.2 Step 2: Supernode Cost Computation. Each edge connecting
two supernodes, D,E 2 V0, in the merge-graph is associated with a
cost quantifying the objective value in Eq. (8) for a partitioning that
merges the incident supernodes. Let P(D,E) be the partition matrix

merging supernodes D and E . Moreover, let H̃(1)
(; ) and H̃(1)

(;,P(D,E) ) rep-
resent the coarse graph convolution node representations obtained
before and after applying the partitioning P at level ; , respectively.
Then, the cost of merging two supernodes is:

2>BC (D,E ) , kP(D,E) H̃(1)
(;,P(D,E) ) � H̃(1)

(; ) k
1
1 . (9)

A scalable algorithm and an illustration of an instance of the su-
pernode cost computation is provided in Appendix B.2. Computing
the cost of merging two nodes, D and E , exactly as it is de�ned
in Eq. (9) has a time complexity of $ (3D + 3E), where 3D and 3E
are the degrees of D and E , respectively. This is because merging
nodes D and E a�ects the representation of each neighbor of D and
E . Caching techniques for scaling the evaluation of Eq. (9) are in
Appendix B.4.

A-C���M����. Motivated by the following result, we propose
A-C���M����, an approximation of the supernode cost computa-
tion that yields signi�cant improvements in graph summarization
time.

T������1. The following is a tight upper bound on Eq. (9)

2>BC (D,E ) kH̃(1)
(; ) [D] � P(D,E) H̃

(1)
(;,P(D,E) ) [(D,E )]k

1
1 (10)

+ kH̃(1)
(; ) [E] � P(D,E) H̃

(1)
(;,P(D,E) ) [(D,E )]k

1
1

+ kx̃(D,E) � x̃D k11
’

82N({D})

0D8p
(38 + |⇠8 |)

+ kx̃(D,E) � x̃E k11
’

82N({E})

0E8p
(38 + |⇠8 |)

,

where x̃8 , x8p
(38+|⇠8 | )

are the normalized features for supernode 8 .

The bound is satis�ed with equality if N(D) \N(E) = ;.

The proof of Theorem 1 is provided in Appendix B.5. We use this
bound as an approximation of the cost of merging two nodes in
A-C���M����. This approximation allows the cost of merging two
nodes to be a function of properties local to the two nodes being
considered, making the cost computation fast and highly scalable.
More formally, the time complexity of computing the approximate
cost of merging two nodes, D and E , is a constant, $ (1), operation.

4.2.3 Step 3: Node Merging. At every level of coarsening, C���
�M���� simultaneously merges the top-: non-overlapping lowest-
cost candidate supernodes. For the coarsened graph and merge-
graph, when supernodesD and E are merged to create a new supern-
ode, the new supernode is connected to every neighbor of D and
E . Furthermore, the edges connecting supernodes in the resulting
coarsened graph are weighted by the number of edges connecting
nodes in the two incident supernodes. Moreover, the features of
the supernodes are a weighted average of the features of the nodes
being merged, and in node classi�cation settings, the node label
used for training is the majority label of nodes in a supernode.
More formally, in this step the partition matrix P and the coars-
ened graph G0 = (V0, E0) are updated to account for the merge.
In addition, the cost of a subset of node pairs connected by an
edge in the merge-graph must be updated after a merge. More for-
mally, the time complexity of merging two nodes D and E is roughly
$ (3<4A64

0E6 · (3D +3E)), where 3<4A64
0E6 is the average degree of nodes
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in the merge-graph. This process is also highly parallelizable. De-
tails on the exact updates to the coarse graph and a highly scalable
merging procedure are provided in Appendix B.3. Additionally, we
propose a scalable cost computation and update in Appendix B.5.
An empirical study on the e�ect of the number of nodes simultane-
ously merged at this step on the coarsening time and performance
is provided in the following section.

5 EXPERIMENTS
We perform experiments to answer the following research ques-
tions:

• RQ1: At varying coarsening ratios, how do our C���M����
variants compare to the baselines in terms of summariza-
tion time, as well as GNN training runtime and memory
requirements?

• RQ2: How e�ective are the GCNs trained on graphs summa-
rized by our C���M���� variants (vs. baselines) in down-
stream node classi�cation and link prediction tasks?

• RQ3: What is the e�ect of the number of merges : at each
level of coarsening in C���M���� on the summarization
time and downstream task performance?

All reported results are fully reproducible, with code and data avail-
able at: github.com/amazon-science/convolution-matching.
Datasets. In our experiments, we use six datasets summarized in
Table 2. Citeseer and Cora are citation networks which we use for
both node classi�cation (NC) and link prediction (LP) tasks [31].
Additionally, we use four datasets from the Open Graph Bench-
mark (OGB) [14]. OGBNArxiv (Arxiv) and OGBLCitation2 (Cit2)
are also citation networks and are curated for testing NC and LP
performance, respectively. OGBLCollab (Coll) is a collaboration
network with the LP task of ranking true collaborations higher
than false collaborations. Finally, OGBNProducts (Prod) is a prod-
uct co-purchasing network with the NC task of predicting product
categories. Prediction performance for NC tasks is measured using
accuracy. The prediction performance for LP tasks is measured
using AUC on Citeseer and Cora, Hits@50 on Coll, and MRR on
Cit2.

Table 2: Table of dataset statistics and task (NC: node classi�-
cation; LP: link prediction).

Dataset Task Nodes Edges Features

Citeseer NC / LP 3, 327 4, 732 3, 703
Cora NC / LP 2, 708 5, 429 1, 433
OGBNArxiv NC 169, 343 1, 166, 243 128
OGBLCollab LP 235, 868 1, 285, 465 128
OGBLCitation2 LP 2, 927, 963 30, 561, 187 128
OGBNProducts NC 2, 449, 029 61, 859, 140 100

Baselines. We additionally evaluate the performance of six base-
lines: (a) three coreset methods: Random Node Sampling (RS), Herd-
ing [38], and KCenter [32]; (b) two graph condensation methods:
graph condensdation (GCond) [18] and one-step gradient matching
(DosCond) [17]; and (c) one coarsening method: Variation Neigh-
borhoods (VN) [15, 25]. For implementation and hyperparameter
details see Appendix C.

GCN Architectures and Hyperparameters. All experiments
are performed using a GCN model. We give the details of the GCN
architectures and hyperparameters for summarization baselines and
C���M���� and A-C���M���� in Appendix C. The merge batch
sizes of our algorithm are� xed for each dataset for experiments in
Section 5.1 and Section 5.2 and an ablation study along with�nal
hyperparameter settings are provided in Appendix C.

5.1 (RQ1) Runtime and Memory E�ciency
First, we evaluate the e�ciency of our proposed C���M���� vari-
ants and the baseline graph summarization algorithms, as well as
the training time and memory e�ciency of the GNNs trained on
the resultant graph summaries.

Graph Summarization Time. We compare the graph sum-
marization time of C���M���� and A-C���M���� to baselines
at varying coarsening ratios for each dataset and task. The av-
erage time across 5 rounds of summarization for all datasets are
shown in Figure 1. First, we observe for Cora A-C���M���� is
over 5⇥ faster than C���M����. For this reason we chose to only
run A-C���M���� on the larger OGB datasets. A-C���M����
is consistently faster than all other baseline graph summarization
methods on the larger OGB datasets. The VN baseline is faster than
A-C���M���� in Cora, however we empirically demonstrate this
method struggles to scale to larger graphs (e.g., it timed out after 24
hours on the OGBNProducts dataset). A-C���M���� is faster than
the condensation and coreset baselines as it does not compute gra-
dients of a GNN model with the full graph during summarization.
Finally, we note that the coarsening methods have the additional
advantage of being bottom-up multi-level approaches, and thus the
time required to reach the coarsening ratio A = 0.1% includes the
time required to reach the ratio A = 1% and A = 10% and so on. On
the other hand, creating the synthetic graphs with the condensation
methods for two di�erent ratios is two separate procedures and the
work to reach one ratio is not obviously usable to reach another.
This property could be leveraged in GNN learning curriculums or
hyperparameter exploration.

GNN Training Runtime and Memory E�ciency. We exam-
ine the amount of GPU memory used and the time required to
complete a� xed number of training epochs for each dataset at
varying coarsening ratios. Table 3 shows the average total time and
maximum amount of GPU memory used across 5 rounds of training
on a graph coarsened using A-C���M����. Table 3 shows there
is a signi�cant decrease in the amount of GPU memory and time
required to complete training on a coarsened graph. The results are
most notable on the largest datasets: OGBLCitation2 and OGBN-
Products, where the amount of memory required to compute the
batch gradient for the GCN exceeded the 120⌧⌫ of GPU memory
available on our machine.

5.2 (RQ2) Downstream Task Prediction
Performance

We now compare the prediction performance of GCNs trained on
graphs summarized using C���M����, A-C���M����, and base-
line summarization methods at varying coarsening ratios. Link
prediction and node classi�cation performance of the trained GCNs
are reported in Table 4a and Table 4b, respectively. C���M���� or
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Figure 1: Plots of graph summarization times at multiple coarsening ratios for all datasets and tasks. C���M���� and A-
C���M���� are fast summarization algorithms when compared to baselines.

Table 3: Average time, rounded to the nearest minute, and GPU memory, rounded to the nearest GB, required to complete all
training epochs at varying coarsening ratios.

(a) Link Prediction

Dataset Ratio Time (min) Memory (GB)

Citeseer
1 3 2
10 3 3
100 10 12

Cora
1 4 1
10 4 1
100 12 7

Coll

0.1 6 9
1 15 9
10 40 12
100 210 70

Cit2
0.1 60 22
1 660 40

100 > 1440 > 120

(b) Node Classi�cation

Dataset Ratio Time (min) Memory (GB)

Citeseer
1 4 1
10 5 1
100 5 1

Cora
1 2 1
10 4 1
100 4 1

Arxiv

0.1 5 7
1 10 7
10 20 8
100 170 20

Prod
0.1 60 38
1 150 45

100 > 1440 > 120

A-C���M���� is consistently among the top three performing sum-
marization methods for both tasks. Furthermore, A-C���M����
achieves the best overall performance, as indicated by the lowest
average rank.

Table 4a shows C���M���� and A-C���M���� are signi�-
cantly better at creating summarized graphs for training a GCN
for link prediction compared to alternative summarization meth-
ods. Notably, GCN’s trained on C���M���� and A-C���M����
summarized graphs achieve up to 90% of the link prediction per-
formance at a coarsening ratio of A = 1% in Citeseer and Cora,

respectively. Moreover, A-C���M���� achieves a nearly 2 ⇥ im-
provement over the best performing baseline in Cit2 at A = 0.1% and
over a 20% point improvement at A = 1%. A possible explanation for
this is that C���M���� and A-C���M���� merge nodes that are
equivalent or similar with respect to the GCN convolution opera-
tion, which captures both nodes attributes and structural properties.
For this reason the summarized graph contains supernodes that can
be used to create good positive and negative link training examples.

Table 4b shows Herding and KCenter methods perform well
for the node classi�cation task on the larger OGB datasets. These
methods do however have a trade o� as they initially� t a GNN
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Table 4: Link prediction and node classi�cation performance at varying coarsening levels. The top three performing scores are
highlighted as: First , Second , Third . Average ranks are reported for methods that were ran on all datasets and coarsening
ratios. Our A-C���M���� approach performs the best across datasets and coarsening ratios, as indicated by the lowest average
rank in both link prediction and node classi�cation tasks (1.4 and 2.5, resp.).

(a) Link Prediction

Sumarizer

Ratio RS GCond DosCond VN C���M���� (ours) A-C���M���� (ours)

Ci
te
se
er 1% 67.41 ± 1.26 65.01 ± 1.09 63.54 ± 6.36 80.26 ± 4.51 87.72 ± 1.38 87.68 ± 1.24

10% 69.11 ± 2.09 72.65 ± 6.78 53.06 ± 12.28 88.55 ± 0.77 90.43 ± 0.49 88.41 ± 0.97
100% 91.57 ± 0.55

Co
ra 1% 70.91 ± 3.67 67.08 ± 0.64 71.60 ± 0.35 75.19 ± 3.01 66.33 ± 2.35 78.63 ± 1.55

10% 72.84 ± 2.15 66.19 ± 0.39 60.21 ± 0.52 81.81 ± 2.06 83.51 ± 1.01 83.30 ± 1.45
100% 85.04 ± 0.68

Co
ll

.1% 7.22 ± 0.97 7.61 ± 0.41 1.15 ± 0.88 6.60 ± 1.47 - 9.14 ± 2.07
1% 11.41 ± 0.35 OOM OOM 5.45 ± 1.95 - 26.25 ± 1.84
10% 15.80 ± 3.11 OOM OOM 24.33 ± 1.61 - 35.94 ± 1.86
100% 44.08 ± 0.94

Ci
t2

.1% 9.86 ± 0.01 OOM OOM 10.43 ± 2.71 - 30.42 ± 0.63
1% 9.87 ± 0.01 OOM OOM 38.95 ± 4.83 - 60.34 ± 1.15

100% 84.74 ± 0.00

Avg. Rank 3.4 � � 2.6 � 1.4
(b) Node Classi�cation

Sumarizer

Ratio RS KCenter Herding GCond DosCond VN C���M���� A-C���M����
(ours) (ours)

Ci
te
se
er 1% 19.22 ± 6.85 59.02 ± 2.25 62.80 ± 1.33 68.22 ± 2.08 71.36 ± 1.27 35.92 ± 3.76 65.40 ± 4.12 67.68 ± 2.87

10% 28.00 ± 9.15 54.70 ± 3.62 53.5 ± 1.68 70.10 ± 3.43 68.76 ± 0.97 53.88 ± 7.36 69.84 ± 1.58 68.46 ± 1.61
100% 71.40 ± 0.35

Co
ra 1% 18.76 ± 9.67 59.92 ± 1.67 63.74 ± 2.24 77.44 ± 1.90 78.40 ± 0.83 31.96 ± 11.02 72.60 ± 3.11 72.30 ± 2.90

10% 27.52 ± 9.89 56.12 ± 7.46 64.10 ± 2.12 80.02 ± 0.92 78.64 ± 1.87 59.22 ± 4.90 79.82 ± 0.60 80.12 ± 1.09
100% 81.02 ± 0.19

A
rx
iv

0.1% 42.45 ± 3.62 49.79 ± 2.87 58.79 ± 0.90 48.10 ± 3.27 21.69 ± 4.30 28.90 ± 5.79 - 54.82 ± 2.67
1% 59.97 ± 1.58 61.99 ± 1.24 61.42 ± 1.34 OOM OOM 53.61 ± 2.76 - 64.08 ± 0.39
10% 67.50 ± 0.63 68.25 ± 0.25 67.75 ± 0.58 OOM OOM 67.12 ± 1.26 - 67.51 ± 0.47
100% 72.14 ± 0.18

Pr
od

0.1% 48.20 ± 1.57 60.88 ± 1.31 66.14 ± 0.71 OOM OOM TIMEOUT - 62.36 ± 0.84
1% 66.57 ± 1.47 69.66 ± 0.31 71.79 ± 0.45 OOM OOM TIMEOUT - 68.20 ± 0.36

100% 75.64 ± 0.00⇤

Avg. Rank 5.9 3.8 3.2 - - - - 2.5

using the complete graph to obtain node embeddings resulting in
a slower summarization time, as shown in the previous section.
Condensation methods perform extremely well on Citeseer and
Cora, however they have di�culty creating larger summarized
graphs hitting out of memory errors on the OGB datasets because
they compute a full gradient using the original graph. Furthermore,
the results we� nd for GCond on OGBNArxiv di�er from those
reported in Jin et al. (2022a) [17] as the GCN architecture in the
summarizer and the GCN being trained are not exactly matched.
The authors mention this behavior in their appendix section C.5.

Finally, we observe A-C���M���� is the most reliable summarizer
for node classi�cation with the best average rank of 2.3. The next
best method in terms of average rank is Herding at 3.3.

5.3 Ablation for C���M���� Merge Batch Size
First, we analyze the e�ect the number of node pairs simultane-
ously merged at each level of coarsening in C���M���� has on
the summarization time and prediction performance of the pro-
posed approach. We summarize the training graph for each of the 6
datasets to the coarsening ratio A = 1.0% and train a GCN using the
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Table 5: C���M���� graph summarization time in seconds and prediction performance at varying merge batch sizes and a
coarsening ratio A = 1.0%.

(a) Link Prediction

Dataset Batch Size Time (sec) Perf.
Valid. Test

Citeseer
1 178.03 85.42 87.68
10 37.95 86.78 86.44
100 8.46 88.19 88.25

Cora
1 105.46 74.21 74.93
10 25.73 76.20 78.44
100 4.72 69.98 67.53

Coll
100 777.77 22.59 26.23

1, 000 259.11 22.78 24.63
10, 000 205.53 23.70 26.25

Cit2 10, 000 6, 555 60.05 60.05
100, 000 4, 740 55.21 55.24

(b) Node Classi�cation

Dataset Batch Size Time (sec) Perf.
Valid. Test.

Citeseer
1 198.84 66.92 66.08
10 36.78 72.40 68.90
100 8.03 65.20 62.30

Cora
1 101.74 74.40 74.70
10 27.16 70.20 72.30
100 4.89 71.40 71.20

Arxiv
100 624.91 63.94 63.46

1, 000 194.73 62.25 61.07
10, 000 149.91 64.05 64.12

Prod
10, 000 11, 285 85.95 68.57
100, 000 6, 729 86.18 68.20

summarized graph. The summarization time in seconds and predic-
tion performance are reported in Table 5 for both link prediction
and node classi�cation. We� nd increasing the merge batch size has
a limited e�ect on the prediction performance across all datasets
and for both NC and LP tasks. However, the summarization time
improves considerably.

6 CONCLUSION AND FUTUREWORK
We introduced the C���M���� graph summarization algorithm
and a principled approximation, A-C���M����, which preserve
the output of graph convolution. Our methods were empirically
proven to produce summarized graphs that can be used to� t GCN
model parameters with signi�cantly lower memory consumption,
faster training times, and good prediction performance on both
node classi�cation and link prediction tasks, a� rst for summariza-
tion for scalable GNN training. Notably, our model is consistently
a top-performing summarization method and achieves up to 20%
point improvements on link prediction tasks. There are exciting
next steps to this research, including extending the idea of con-
volution matching to heterogeneous graphs and developing GNN
training algorithms that leverage multiple levels of a graph coars-
ening. Moreover, although in this work we focus on motivating
our approach and providing a comprehensive evaluation for GCN’s,
no change to our coarsening algorithm is necessary to apply it to
di�erent GNN architectures. Future research on applying the same
algorithmic framework of ConvMatch but specialized to preserving
the operations applied in another GNN model is promising.
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