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Abstract: In this expository paper, we show that the Deligne–Mumford
moduli space of stable curves is projective over Spec(Z). The proof
we exposit is due to Kollár. Ampleness of a line bundle is deduced
from nefness of a related vector bundle via the Ampleness Lemma, a
classifying map construction. The main positivity result concerns the
pushforward of relative dualizing sheaves on families of stable curves
over a smooth projective curve.

Introduction

LetM𝑔 be the moduli stack of stable curves of genus 𝑔 ≥ 2 and write
𝑀𝑔 for its corresponding moduli space. We prove that the moduli of
stable curves is projective in the following sense; see Theorem 1.45:

Theorem The Deligne–Mumford moduli space 𝑀𝑔 of stable curves of
genus 𝑔 ≥ 2 is a projective scheme over Spec(Z).

In particular, this means that 𝑀𝑔, which is a priori just an algebraic
space, is actually a projective scheme over Z. Together with the work of
Deligne–Mumford [8] (see also Theorem 0E9C) this means that 𝑀𝑔 is
actually an irreducible projective scheme over Z.

We explain a proof due to Kollár in [21]. Specifically, the task of show-
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ing that a certain line bundle on 𝑀𝑔 is ample is transferred, via Kollár’s
Ampleness Lemma, to the problem of showing that a related vector bun-
dle is nef on 𝑀𝑔. Since nefness is a condition that only depends on the
behaviour of the vector bundle upon restriction to curves, projectivity is
thus reduced to a problem regarding positivity of 1-parameter families
of stable curves.

Kollár’s method differs from other existing proofs of projectivity of
𝑀𝑔 in at least two main ways: First, the technique is independent of
the methods of Geometric Invariant Theory, on which the proofs of
[29, 10, 6] rely. Second, Kollár’s criterion does not require one to directly
check that a line bundle on the moduli space is ample, in contrast to the
approach of Knudsen–Mumford [19, 17, 18]; rather, one only needs to
show that some vector bundle on the moduli space is nef. As such, this
method has since been used in other settings, such as in the moduli of
weighted stable curves [13], of stable varieties [22], and, recently, of
K-polystable Fano varieties [5, 33].

An outline of this article is as follows. We set up notation in regards
to the moduli of curves in §1, after which we begin in §§2–4 with some
material on positivity of sheaves. In §5, we explain Kollár’s Ampleness
Lemma, see Proposition 1.33. In §6, we prove the main positivity state-
ment: the pushforward of the relative dualizing sheaf of a 1-parameter
family of stable curves of genus at least 2 is nef, see Theorem 1.43.
Finally, we put everything together in §7 to show that 𝑀𝑔 is projective
over Z when 𝑔 ≥ 2.

Conventions. Throughout, 𝑘 will denote a field. Following the conven-
tions of the Stacks Project, a variety is a separated integral scheme of
finite type over a field 𝑘 and a curve is a variety of dimension 1, see
Definitions 020D and 0A23. Given a scheme 𝑋 over 𝑘 and a sheaf F of
O𝑋-modules, we write

ℎ𝑖 (𝑋, F ) ··= dim𝑘 (𝐻𝑖 (𝑋, F )) for all 𝑖 ∈ Z.

We use the Stacks Project [30] as the main technical reference. Results
therein are referred to via their four character alphanumeric tags.

1 Stable curves

In this section, we record the definition of the moduli problem in which
we are primarily interested, namely that of the moduli space of stable
curves. The main references are [8] and Chapter 0DMG.

https://stacks.math.columbia.edu/tag/020D
https://stacks.math.columbia.edu/tag/0A23
https://stacks.math.columbia.edu/tag/0DMG
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First we define what we mean by a family of curves. Compare the
following with Situation 0D4Z, and with Definitions 0C47, 0C5A, and
0E75. We diverge slightly from the Stacks Project in that we require our
families of nodal curves to have geometrically connected fibres. Caution:
the closed fibres of a family of nodal curves are not curves in the sense
of our conventions, as they may be reducible. See Section 0C58 for a
discussion on such terminology.

Definition 1.1 Let 𝑆 be a scheme.

(i) A family of nodal curves over 𝑆 is a flat, proper, finitely presented
morphism of schemes 𝑓 : 𝑋 → 𝑆 of relative dimension 1 such that all
geometric fibres are connected and smooth except at possibly finitely
many nodes.

(ii) A family of stable curves over 𝑆 is a family of nodal curves such that
the geometric fibres have arithmetic genus ≥ 2 and do not contain
rational tails or bridges.

(iii) A family of stable curves over 𝑆 is said to have genus 𝑔 if all geometric
fibres have genus 𝑔.

Condition (ii) is equivalent to ampleness of the dualizing sheaf, and
also finiteness of automorphism groups. See Section 0E73 for details.
For the following, see Definition 0E77.

Definition 1.2 For 𝑔 ≥ 2, the moduli stack of stable curves of genus 𝑔
is the categoryM𝑔 fibred in groupoids whose category of sections over
a scheme 𝑆 has objects given by families of stable curves of genus 𝑔 over
𝑆, and morphisms given by isomorphisms of families over 𝑆.

The stack M𝑔 is a smooth, proper Deligne–Mumford stack over
Spec(Z), see Theorem 0E9C. Classically, and in many geometric appli-
cations such as [12], it is convenient to work with a space rather than the
stack. As such, it is useful to extract an algebraic space which is, in some
sense, the closest approximation of the stack, obtained by “forgetting”
the automorphism groups: this is the notion of a uniform categorical
moduli space or simply a moduli space of a stack, see Definition 0DUG.

Lemma 1.3 The stackM𝑔 admits a uniform categorical moduli space
𝑓𝑔 : M𝑔 → 𝑀𝑔 such that 𝑓𝑔 is separated, quasi-compact, and a univer-
sal homeomorphism.

Proof The stackM𝑔 has finite inertia by Lemmas 0E7A and 0DSW,
so the existence of 𝑓𝑔 follows from the Keel–Mori Theorem 0DUT. □

https://stacks.math.columbia.edu/tag/0D4Z
https://stacks.math.columbia.edu/tag/0C47
https://stacks.math.columbia.edu/tag/0C5A
https://stacks.math.columbia.edu/tag/0E75
https://stacks.math.columbia.edu/tag/0C58
https://stacks.math.columbia.edu/tag/0E73
https://stacks.math.columbia.edu/tag/0E77
https://stacks.math.columbia.edu/tag/0E9C
https://stacks.math.columbia.edu/tag/0DUG
https://stacks.math.columbia.edu/tag/0E7A
https://stacks.math.columbia.edu/tag/0DSW
https://stacks.math.columbia.edu/tag/0DUT
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Definition 1.4 The space 𝑀𝑔 is the moduli space of curves of genus 𝑔.

Our primary goal is to show that 𝑀𝑔 is projective over Z, see Theorem
1.45. Thus we must exhibit an ample invertible sheaf on 𝑀𝑔. We obtain
invertible sheaves on the moduli space by taking powers of invertible
sheaves on the stackM𝑔, via the following general fact:

Lemma 1.5 Let X be an algebraic stack. Assume the inertia IX → X
is finite and let 𝑓 : X → 𝑀 be its moduli space, as in Theorem 0DUT.
Then

𝑓 ∗ : Pic(𝑀) → Pic(X)

is injective. If X is furthermore quasi-compact, then the cokernel of 𝑓 ∗
is annihilated by a positive integer.

Proof For injectivity, note 𝑓∗OX � O𝑀 as 𝑀 is initial for morphisms
fromX to algebraic spaces and the structure sheaf represents the functor
Hom(−,A1). Thus ifN ∈ Pic(𝑀) is such that 𝑓 ∗N � OX , the canonical
map N → 𝑓∗ 𝑓 ∗N → O𝑀 is an isomorphism as N is locally trivial.
This further shows that if N1,N2 ∈ Pic(𝑀) are such that there exists
an isomorphism 𝜑 : 𝑓 ∗N1 → 𝑓 ∗N2, then there is a unique isomorphism
𝜓 : N1 → N2 such that 𝑓 ∗𝜓 = 𝜑.

We now show that, if X is furthermore quasi-compact, then there is a
positive integer 𝑛 such that for every L ∈ Pic(X), L⊗𝑛 � 𝑓 ∗N for some
N ∈ Pic(𝑀). For this, we may replace X by any X′ with a surjective
separated étale morphism ℎ : X′ → X of algebraic stacks inducing
isomorphisms on automorphism groups. Indeed, Lemma 0DUV gives
the Cartesian square

X′ X

𝑀 ′ 𝑀

ℎ

𝑓 ′ 𝑓

where 𝑀 ′ is the moduli space of X′. If there were N ′ ∈ Pic(𝑀 ′) such
that ℎ∗L⊗𝑛 � 𝑓 ′∗N ′, then injectivity of 𝑓 ′∗ : Pic(𝑀 ′) → Pic(X′) shows
that the étale descent datum for ℎ∗L⊗𝑛 over X induces an étale descent
datum for N ′ over 𝑀 yielding N ∈ Pic(𝑀) as above.

Choose such a cover ℎ : X′ → X as in Lemma 0DUE: X′ = ∐
𝑖∈𝐼 X𝑖

where eachX𝑖 is a quotient stack [𝑈𝑖/𝑅𝑖] in which (𝑈𝑖 , 𝑅𝑖 , 𝑠𝑖 , 𝑡𝑖 , 𝑐𝑖) is a
groupoid scheme with𝑈𝑖 and 𝑅𝑖 affine, and 𝑠𝑖 , 𝑡𝑖 : 𝑅𝑖 → 𝑈𝑖 finite locally
free of some constant rank, see Lemmas 0DUM and 03BI. Since X is
quasi-compact, we are reduced to the case where X is a finite disjoint

https://stacks.math.columbia.edu/tag/0DUT
https://stacks.math.columbia.edu/tag/0DUV
https://stacks.math.columbia.edu/tag/0DUE
https://stacks.math.columbia.edu/tag/0DUM
https://stacks.math.columbia.edu/tag/03BI
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union of such stacks X𝑖 . Let 𝑓𝑖 : X𝑖 → 𝑀𝑖 be the moduli space. If there
exists a positive integer 𝑛𝑖 annihilating the cokernel of 𝑓 ∗

𝑖
, then the least

common multiple 𝑛 of the 𝑛𝑖 annihilates the cokernel of 𝑓 ∗.
Thus it suffices to consider the case where X = [𝑈/𝑅] is as above.

By Proposition 06WT, an invertible OX-module may be represented as
a pair (L, 𝛼) consisting of an invertible O𝑈-module L together with
an isomorphism 𝛼 : 𝑡∗L → 𝑠∗L of O𝑅-modules as in Definition 03LI.
We claim that if 𝑛 is the rank of the morphisms 𝑠, 𝑡 : 𝑅 → 𝑈, then
(L⊗𝑛, 𝛼𝑛) is in the image of 𝑓 ∗. Namely, writing 𝜋 : 𝑈 → 𝑀 , there
exists an invertible O𝑀 -module N and an isomorphism of invertible
modules (𝜋∗N , 𝛼can) � (L⊗𝑛, 𝛼𝑛) on the groupoid (𝑈, 𝑅, 𝑠, 𝑡, 𝑐), where
𝛼can is the identity map; this makes sense since 𝜋 ◦ 𝑡 = 𝜋 ◦ 𝑡 as maps
𝑅 → 𝑀 .

Construct N as follows. First, if 𝑈 =
⋃
𝑈𝑖 is any affine open cover,

then the 𝑉𝑖 ··= 𝜋(𝑈𝑖) together form an affine open cover of 𝑀 . That the
𝑉𝑖 form an open cover follows from the fact that 𝜋 is the composition
of the faithfully flat and finitely presented morphism 𝑈 → X and the
universal homeomorphismX → 𝑀: see Lemmas 01UA and 0DUP. That
the 𝑉𝑖 are affine is because 𝜋 is integral: see Lemmas 03BJ and 05YU.
Next, since 𝑡 : 𝑅 → 𝑈 is finite locally free, Lemma 0BCY constructs an
invertible O𝑈-module L′ ··= Norm𝑡 (𝑠∗L) as follows. Let ({𝑈𝑖}, {𝑢𝑖 𝑗})
be a system of cocycles locally defining L, so that𝑈 =

⋃
𝑈𝑖 is an affine

open cover and 𝑢𝑖 𝑗 ∈ O∗𝑈 (𝑈𝑖 ∩ 𝑈 𝑗) are units. Then L′ is defined by
the cocycles ({𝑈𝑖}, {𝑢′𝑖 𝑗}) with 𝑢′

𝑖 𝑗
··= Norm𝑡♯ (𝑠♯ (𝑢𝑖 𝑗)). Finally, setting

𝑉𝑖 ··= 𝜋(𝑈𝑖), Lemma 03BH implies that the 𝑢′
𝑖 𝑗

lie in the subgroup
O∗

𝑀
(𝑉𝑖 ∩ 𝑉 𝑗) ⊆ O∗𝑈 (𝑈𝑖 ∩ 𝑈 𝑗) of 𝑅-invariant units, so ({𝑉𝑖}, {𝑢′𝑖 𝑗})

forms a system of cocycles on 𝑀 defining an invertible module N .
On the one hand, the construction implies L′ � 𝜋∗N . On the other

hand, Lemma 0BCZ yields an isomorphism

Norm𝑡 (𝛼) : L⊗𝑛 � Norm𝑡 (𝑡∗L) → Norm𝑡 (𝑠∗L) = L′ � 𝜋∗N .

Thus it suffices to show that the diagram of isomorphisms

𝑡∗L⊗𝑛 𝑠∗L⊗𝑛

𝑡∗𝜋∗N 𝑠∗𝜋∗N

𝛼𝑛

𝑡∗ Norm𝑡 (𝛼) 𝑠∗ Norm𝑡 (𝛼)
𝛼can

is commutative. By properties of the norm, the compatibilities of 𝛼 from

https://stacks.math.columbia.edu/tag/06WT
https://stacks.math.columbia.edu/tag/03LI
https://stacks.math.columbia.edu/tag/01UA
https://stacks.math.columbia.edu/tag/0DUP
https://stacks.math.columbia.edu/tag/03BJ
https://stacks.math.columbia.edu/tag/05YU
https://stacks.math.columbia.edu/tag/0BCY
https://stacks.math.columbia.edu/tag/03BH
https://stacks.math.columbia.edu/tag/0BCZ
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Definition 03LH(1), and the diagram of Lemma 03BH, we have

𝛼𝑛 = Norm𝑐 (𝑐∗𝛼) = Norm𝑐 (pr∗1 𝛼 ◦ pr∗0 𝛼)
= Norm𝑐 (pr∗1 𝛼) ◦ Norm𝑐 (pr∗0 𝛼) = 𝑠

∗Norm𝑠 (𝛼) ◦ 𝑡∗Norm𝑡 (𝛼).

Since 𝑠 = 𝑡 ◦ 𝑖 where 𝑖 : 𝑅 → 𝑅 is the inverse, Norm𝑠 (𝛼) = Norm𝑡 (𝑖∗𝛼).
Therefore

𝑠∗Norm𝑡 (𝛼) ◦ 𝛼𝑛 ◦ 𝑡∗Norm𝑡 (𝛼)−1 = 𝑠∗(Norm𝑡 (𝛼 ◦ 𝑖∗𝛼)).

This is the identity since, by Lemma 077Q, 𝑖∗𝛼 is the inverse of 𝛼. □

We now specify some invertible sheaves onM𝑔. By Definition 06TR
and Lemma 06WI, the data of such a sheaf L is the following: for each
family of stable curves 𝑋 → 𝑆, an invertible O𝑆-module L(𝑋 → 𝑆),
and for every Cartesian square

𝑋 ′ 𝑋

𝑆′ 𝑆

𝑓 ′
𝑔′

𝑓

𝑔

an isomorphism of invertible O𝑆′-modules

𝜑𝑔 : 𝑔∗L(𝑋 → 𝑆) � L(𝑋 ′ → 𝑆′)

such that for every composition of Cartesian squares

𝑋 ′′ 𝑋 ′ 𝑋

𝑆′′ 𝑆′ 𝑆
ℎ 𝑔

the isomorphisms are subject to the cocycle condition

ℎ∗(𝑔∗L(𝑋 → 𝑆)) ℎ∗L(𝑋 ′ → 𝑆′)

(𝑔ℎ)∗L(𝑋 → 𝑆) L(𝑋 ′′ → 𝑆′′).

ℎ∗𝜑𝑔

� 𝜑ℎ

𝜑𝑔ℎ

Definition 1.6 For each integer 𝑚 ≥ 1, define an invertible sheaf 𝜆𝑚
onM𝑔 as follows. Given a family of stable curves 𝑓 : 𝑋 → 𝑆, let 𝜔⊗𝑚

𝑋/𝑆
be its relative dualizing sheaf, see Definition 0E6Q. This is an invertible
O𝑋-module. Note that the sheaves 𝑓∗𝜔⊗𝑚𝑋/𝑆 are locally free on 𝑆. Set

𝜆𝑚( 𝑓 : 𝑋 → 𝑆) ··= det( 𝑓∗𝜔⊗𝑚𝑋/𝑆).

https://stacks.math.columbia.edu/tag/03LH
https://stacks.math.columbia.edu/tag/03BH
https://stacks.math.columbia.edu/tag/077Q
https://stacks.math.columbia.edu/tag/06TR
https://stacks.math.columbia.edu/tag/06WI
https://stacks.math.columbia.edu/tag/0E6Q
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Given a Cartesian square as above, we have isomorphisms 𝜑𝑔 given by

𝑔∗ det( 𝑓∗𝜔⊗𝑚𝑋/𝑆) � det(𝑔∗ 𝑓∗𝜔⊗𝑚𝑋/𝑆) → det( 𝑓 ′∗𝑔′∗𝜔⊗𝑚𝑋/𝑆) � det( 𝑓 ′∗𝜔⊗𝑚𝑋′/𝑆′)

the functorial base change maps and the fact that the formation of 𝜔𝑋/𝑆
commutes with arbitrary base change, see Lemma 0E6R. Functoriality
ensures that these satisfy the required cocycle condition.

Our goal will be to show that there is some 𝑚 such that 𝜆𝑚 descends
to an ample invertible sheaf on 𝑀𝑔.

2 Nakai–Moishezon Criterion for ampleness

In this section, we discuss the Nakai–Moishezon Criterion for ampleness,
relating ampleness of an invertible sheaf with positivity of intersection
numbers. We directly prove the Criterion for proper algebraic spaces
over a field in Proposition 1.10 (compare with [21, Theorem 3.11]);
the proof closely follows that of [16, §III.1, Theorem 1], with suitable
modifications. Using Lemma 0D3A, one can also formulate a relative
version; see, for example, [14, Proposition 2.10].

In the following, we work with proper algebraic spaces over a field.
For generalities on algebraic spaces, see Part 0ELT.

We will use numerical intersection theory on spaces as developed in
Section 0DN3; see also Section 0BEL and [26, Section 1.1.C] for the
situation of varieties. The main construction is the intersection number
(L1 · · · L𝑑 · 𝑍) between a closed subspace 𝜄 : 𝑍 → 𝑋 of positive dimen-
sion 𝑑 and invertible O𝑋-modules L1, . . . ,L𝑑: this is the coefficient of
𝑛1 · · · 𝑛𝑑 of the numerical polynomial

𝜒(𝑋, 𝜄∗O𝑍 ⊗ L⊗𝑛1
1 ⊗ · · · ⊗ L⊗𝑛𝑑

𝑑
) = 𝜒(𝑍,L⊗𝑛1

1 ⊗ · · · ⊗ L⊗𝑛𝑑
𝑑
|𝑍 ).

See Definition 0EDF.
The Nakai–Moisehzon Criterion relates ampleness with positivity of

intersection numbers. To formulate this succinctly, we make a definition.
In the following, recall that a separated algebraic space 𝑍 is integral if
and only if it is reduced and |𝑍 | is irreducible; see Definition 0AD4 and
Section 03I7.

Definition 1.7 Let 𝑋 be a proper algebraic space over 𝑘 and let L be
an invertible O𝑋-module. We say that L has positive degree if for every
integral closed subspace 𝑍 of 𝑋 of positive dimension 𝑑, (L𝑑 · 𝑍) > 0.

https://stacks.math.columbia.edu/tag/0E6R
https://stacks.math.columbia.edu/tag/0D3A
https://stacks.math.columbia.edu/tag/0ELT
https://stacks.math.columbia.edu/tag/0DN3
https://stacks.math.columbia.edu/tag/0BEL
https://stacks.math.columbia.edu/tag/0EDF
https://stacks.math.columbia.edu/tag/0AD4
https://stacks.math.columbia.edu/tag/03I7
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Note that the Stacks Project only defines the degree of an invertible
sheaf L either when L is ample or when dim(𝑋) ≤ 1; see Definitions
0BEW and 0AYR. The content of the Nakai–Moishezon Criterion is
that if L has positive degree, then L is ample. Thus this is a fortiori
compatible with the conventions of the Stacks Project.

The main technical property we need is permanence of positivity
under finite morphisms.

Lemma 1.8 Let 𝑋 be a proper algebraic space over 𝑘 . Let 𝑓 : 𝑌 → 𝑋

be a finite morphism of algebraic spaces. Let L be an invertible O𝑋-
module. If L has positive degree, then 𝑓 ∗L has positive degree.

Proof This follows from the compatibility of numerical intersection
numbers and pullbacks: if 𝑍 ⊂ 𝑌 is a proper integral closed subspace of
dimension 𝑑, then

( 𝑓 ∗L𝑑 · 𝑍) = deg(𝑍 → 𝑓 (𝑍)) (L𝑑 · 𝑓 (𝑍))

where deg(𝑍 → 𝑓 (𝑍)) is positive as 𝑓 is finite; see Lemma 0EDJ. □

The following is the core of the inductive proof of the Criterion:

Lemma 1.9 Let 𝑋 be a proper algebraic space over 𝑘 and let 𝐷 be
an effective Cartier divisor of 𝑋 . If O𝑋 (𝐷) |𝐷 is ample, then O𝑋 (𝑚𝐷) is
globally generated for all 𝑚 ≫ 0.

Proof For each 𝑚 ≥ 0, there is a short exact sequence

0→ O𝑋 ((𝑚 − 1)𝐷) → O𝑋 (𝑚𝐷) → O𝑋 (𝑚𝐷) |𝐷 → 0.

Since O𝑋 (𝐷) |𝐷 is ample, Serre Vanishing, Lemma 0GFA, gives an
integer 𝑚1 such that 𝐻1(𝐷,O𝑋 (𝑚𝐷) |𝐷) = 0 for 𝑚 ≥ 𝑚1. Hence the

𝜌𝑚 : 𝐻1(𝑋,O𝑋 ((𝑚 − 1)𝐷)) → 𝐻1(𝑋,O𝑋 (𝑚𝐷)),

arising from the long exact sequence on cohomology are surjective for
all 𝑚 ≥ 𝑚1, yielding a nonincreasing sequence of nonnegative integers

ℎ1(𝑋,O𝑋 (𝑚𝐷)) ≥ ℎ1(𝑋,O𝑋 ((𝑚 + 1)𝐷)) ≥ · · · .

There is some 𝑚2 ≥ 𝑚1 after which the sequence stabilizes, so that, for
all 𝑚 ≥ 𝑚2, the 𝜌𝑚 are bijective and the restriction maps

𝐻0(𝑋,O𝑋 (𝑚𝐷)) → 𝐻0(𝐷,O𝑋 (𝑚𝐷) |𝐷)

are surjective. Finally, since O𝑋 (𝐷) |𝐷 is ample, there exists some 𝑚3
such that O𝑋 (𝑚𝐷) |𝐷 is generated by its global sections for all 𝑚 ≥ 𝑚3.

https://stacks.math.columbia.edu/tag/0BEW
https://stacks.math.columbia.edu/tag/0AYR
https://stacks.math.columbia.edu/tag/0EDJ
https://stacks.math.columbia.edu/tag/0GFA
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Let 𝑚0 ··= max(𝑚2, 𝑚3). We show that the evaluation maps

𝐻0(𝑋,O𝑋 (𝑚𝐷)) ⊗𝑘 O𝑋 → O𝑋 (𝑚𝐷)

are surjective for all 𝑚 ≥ 𝑚0. We verify this on stalks. For 𝑥 ∈ |𝑋 \ 𝐷 |,
a global section defining 𝑚𝐷 restricts to a unit in O𝑋 (𝑚𝐷)𝑥 and thus
generates. So consider 𝑥 ∈ |𝐷 | and let 𝜅(𝑥) be the residue field of 𝐷 at
𝑥; see Definition 0EMW. Since 𝐷 → 𝑋 is a monomorphism, 𝜅(𝑥) is
also the residue field at 𝑥 of 𝑋 by Lemma 0EMX. Consider the diagram

𝐻0(𝑋,O𝑋 (𝑚𝐷)) ⊗𝑘 𝜅(𝑥) O𝑋 (𝑚𝐷) ⊗O𝑋 𝜅(𝑥)

𝐻0(𝐷,O𝑋 (𝑚𝐷) |𝐷) ⊗𝑘 𝜅(𝑥) O𝑋 (𝑚𝐷) |𝐷 ⊗O𝐷 𝜅(𝑥)

≃

obtained from the evaluation and restriction maps upon taking the fibre
at 𝑥. By our choice of𝑚0, the restriction map on the left is surjective and
O𝑋 (𝑚𝐷) |𝐷 is globally generated, so the bottom map is surjective. Since
the right map is an isomorphism, commutativity of the diagram implies
that the top map is surjective. Nakayama’s Lemma then implies that
the evaluation map is surjective on the local ring O𝑋 (𝑚𝐷)𝑥 . Hence the
evaluation map is surjective, meaning O𝑋 (𝑚𝐷) is globally generated.

□

Proposition 1.10 (Nakai–Moishezon Criterion) Let 𝑋 be a proper
algebraic space over 𝑘 . Let L be an invertible O𝑋-module. Then L is
ample on 𝑋 if and only if L has positive degree.

Proof If L is ample, then 𝑋 is a scheme, L is ample in the schematic
sense, and L has positive degree; see Lemmas 0D32 and 0BEV.

Assuming L has positive degree, we show it is ample. We proceed
by induction on dim(𝑋). When dim(𝑋) = 0, since 𝑋 is separated, it
is a scheme by Theorem 086U, in which case the result is clear. When
dim(𝑋) = 1, our assumption simplifies to deg(L) > 0. Now apply
Proposition 09YC to obtain a finite surjective morphism 𝑓 : 𝑌 → 𝑋

from a scheme 𝑌 . Lemma 1.8 shows that deg( 𝑓 ∗L) > 0 and so Lemma
0B5X gives ampleness of 𝑓 ∗L. Since 𝑓 is finite, Lemma 0GFB shows
L is also ample. So we assume that dim(𝑋) ≥ 2 and that the Criterion
holds for all proper spaces over 𝑘 of lower dimension.

Step 1. Using Lemmas 0GFB, 0GFA, and 1.8, we may replace 𝑋 by
the reduction of an irreducible component and L by its restriction to
assume that 𝑋 is integral.

https://stacks.math.columbia.edu/tag/0EMW
https://stacks.math.columbia.edu/tag/0EMX
https://stacks.math.columbia.edu/tag/0D32
https://stacks.math.columbia.edu/tag/0BEV
https://stacks.math.columbia.edu/tag/086U
https://stacks.math.columbia.edu/tag/09YC
https://stacks.math.columbia.edu/tag/0B5X
https://stacks.math.columbia.edu/tag/0GFB
https://stacks.math.columbia.edu/tag/0GFB
https://stacks.math.columbia.edu/tag/0GFA
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Step 2. We show that some power of L is effective. As 𝑋 is integral,
the discussion of Section 0ENV shows thatL has a regular meromorphic
section 𝑠. Consider its sheaf of denominators I1, the ideal sheaf in O𝑋

whose sections over 𝑉 ∈ 𝑋étale are

I1(𝑉) ··= { 𝑓 ∈ O𝑋 (𝑉) | 𝑓 𝑠 ∈ L(𝑉)};

compare Definition 02P1. Set I2 ··= I1 ⊗ L∨. Since the formation of
the I𝑗 , 𝑗 = 1, 2, is étale local, their properties may be reduced to the
schematic case. Thus Lemma 02P0 shows that the I𝑗 are quasi-coherent
sheaves of ideals and the corresponding closed subspaces 𝑌 𝑗 = 𝑉 (I𝑗)
satisfy dim(𝑌 𝑗) < dim(𝑋). By Lemma 1.8, induction applies so theL|𝑌𝑗

are ample. By construction, for each 𝑚 ≥ 0, there are exact sequences

0 I1 ⊗ L⊗𝑚 L⊗𝑚 L⊗𝑚 |𝑌1 0

0 I2 ⊗ L⊗(𝑚−1) L⊗(𝑚−1) L⊗(𝑚−1) |𝑌2 0.

Serre Vanishing, Lemma 0B5U, gives some 𝑚0 ≥ 0 such that for all
𝑚 ≥ 𝑚0, 𝐻𝑖 (𝑌 𝑗 ,L⊗𝑚 |𝑌𝑗

) = 0 for all 𝑖 > 0 and 𝑗 = 1, 2. Thus comparing
the long exact sequences in cohomology for the sequences above yields

ℎ𝑖 (𝑋,L⊗𝑚) = ℎ𝑖 (𝑋,I1 ⊗ L⊗𝑚)
= ℎ𝑖 (𝑋,I2 ⊗ L⊗(𝑚−1) ) = ℎ𝑖 (𝑋,L⊗(𝑚−1) )

for all 𝑖 ≥ 2 and 𝑚 ≥ 𝑚0. Hence, for all 𝑚 ≥ 𝑚0,

𝑁 :=
∑︁dim(𝑋)

𝑖=2
(−1)𝑖 ℎ𝑖 (𝑋,L⊗𝑚)

is a constant. By definition of the intersection numbers, the leading
coefficient of the numerical polynomial 𝜒(𝑋,L⊗𝑚) is (Ldim 𝑋 · 𝑋) and
this is positive by assumption. Thus

𝜒(𝑋,L⊗𝑚) = ℎ0(𝑋,L⊗𝑚) − ℎ1(𝑋,L⊗𝑚) + 𝑁 →∞ as 𝑚 →∞.

So ℎ0(𝑋,L⊗𝑚) → ∞ and L⊗𝑚 is effective for 𝑚 ≫ 0. Ampleness is
insensitive to powers (see Lemma 01PT), so we may replace L by L⊗𝑚
to assume L = O𝑋 (𝐷) for some effective Cartier divisor 𝐷.

Step 3. By induction, L|𝐷 = O𝑋 (𝐷) |𝐷 is ample, so Lemma 1.9
implies L⊗𝑚 is generated by its global sections for 𝑚 ≫ 0. We may
replace L by L⊗𝑚 to assume that L is generated by its global sections.

Step 4. Via Lemmas 01NE and 085D, a basis of global sections of L

https://stacks.math.columbia.edu/tag/0ENV
https://stacks.math.columbia.edu/tag/02P1
https://stacks.math.columbia.edu/tag/02P0
https://stacks.math.columbia.edu/tag/0B5U
https://stacks.math.columbia.edu/tag/01PT
https://stacks.math.columbia.edu/tag/01NE
https://stacks.math.columbia.edu/tag/085D
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induces a proper morphism

𝑓 : 𝑋 → P𝑛
𝑘 with 𝑛 ··= ℎ0(𝑋,L) − 1

such that 𝑓 ∗OP𝑛
𝑘
(1) = L. We now claim that 𝑓 is finite, from which we

may conclude: 𝑋 is then a scheme as 𝑓 is then representable, and the
pullback of an ample by an affine morphism is ample, see Lemmas 03ZQ
and 0892. By Lemma 0A4X, it suffices to show that 𝑓 has discrete fibres.
But if there were 𝑦 ∈ P𝑛

𝑘
such that the fibre 𝑋𝑦 were positive dimensional,

then we would obtain a commutative diagram

𝐶 𝑋𝑦 𝑋

Spec(𝜅(𝑦)) P𝑛
𝑘

𝜋 𝑓

where the right square is Cartesian, and 𝐶 is some complete curve in
𝑋𝑦 . By commutativity of the diagram, we see that

L|𝐶 = ( 𝑓 ∗OP𝑛 (1)) |𝐶 ≃ 𝜋∗OSpec(𝑘 (𝑦) ) = O𝐶 .

But now we reach a contradiction: on the one hand, L has positive
intersection numbers with 𝐶, but on the other hand, by Lemma 0EDK,

0 < (L · 𝐶) = deg𝐶 (L|𝐶) = deg𝐶 (O𝐶) = 0,

the degree on the right being the usual degree on a curve; see Definition
0AYR. Thus 𝑓 is a finite morphism, as claimed. □

3 Positivity of invertible sheaves

We next prove some preliminary results about nef invertible sheaves
on proper algebraic spaces and about big invertible sheaves on proper
schemes over arbitrary fields. See [26] for the theory for varieties over
algebraically closed fields.

We start with the definition of nefness.

Definition 1.11 Let 𝑋 be a proper algebraic space over 𝑘 . An invertible
O𝑋-module is nef if (L·𝐶) ≥ 0 for every integral closed subspace𝐶 ⊂ 𝑋
of dimension 1.

To show that nef invertible sheaves behave well under pullbacks, we
show that we may lift curves along surjective morphisms; compare with
[16, §I.4, Lemma 1]:

https://stacks.math.columbia.edu/tag/03ZQ
https://stacks.math.columbia.edu/tag/0892
https://stacks.math.columbia.edu/tag/0A4X
https://stacks.math.columbia.edu/tag/0EDK
https://stacks.math.columbia.edu/tag/0AYR
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Lemma 1.12 Let 𝑋 be a proper algebraic space over 𝑘 . Let 𝑓 : 𝑌 → 𝑋

be a surjective morphism of algebraic spaces and let 𝐶 ⊂ 𝑋 be an
integral closed subspace of dimension 1. Then there exists an integral
closed subspace 𝐶′ ⊂ 𝑌 of dimension 1 such that 𝐶 = 𝑓 (𝐶′).

Proof By the weak version of Chow’s Lemma, Lemma 089J, there
exists a proper surjective morphism 𝑔 : 𝑌 ′ → 𝑓 −1(𝐶) from a scheme 𝑌 ′
projective over 𝑘 . Taking dim(𝑌 ′) − 1 general hyperplane sections, we
obtain a scheme 𝐶′′ ⊂ 𝑌 ′ of dimension 1 mapping onto 𝐶, since 𝐶′′
intersects the fibre over the generic point of 𝐶. We can then take 𝐶′ ⊂ 𝑌
to be one of the irreducible components of 𝑔(𝐶′′) mapping onto 𝐶 with
reduced induced algebraic space structure. □

Nef invertible sheaves behave well under pullbacks.

Lemma 1.13 Let 𝑋 be a proper algebraic space over 𝑘 . Let 𝑓 : 𝑌 → 𝑋

be a proper morphism of algebraic spaces. Let L be an invertible O𝑋-
module.

(i) If L is nef, then 𝑓 ∗L is nef.
(ii) If 𝑓 is surjective and 𝑓 ∗L is nef, then L is nef.

Proof For (i), let 𝐶 ⊂ 𝑌 be an integral closed subspace of dimension
1. By the projection formula, Lemma 0EDJ, we have

( 𝑓 ∗L · 𝐶) = deg(𝐶 → 𝑓 (𝐶)) (L · 𝑓 (𝐶)) ≥ 0,

where we set deg(𝐶 → 𝑓 (𝐶)) = 0 by convention if dim( 𝑓 (𝐶)) = 0.
For (ii), let 𝐶 ⊂ 𝑋 be an integral closed subspace of dimension 1. By

Lemma 1.12, there exists an integral closed subspace 𝐶′ ⊂ 𝑌 such that
𝐶 = 𝑓 (𝐶′). The projection formula again gives

(L · 𝐶) = (L · 𝑓 (𝐶′)) = deg(𝐶′ → 𝐶)−1( 𝑓 ∗L · 𝐶′) ≥ 0. □

Nef invertible sheaves are also well-behaved under field extensions.

Lemma 1.14 Let 𝑋 be a proper algebraic space over 𝑘 . Let L be
an invertible O𝑋-module. Then L is nef if and only if for every field
extension 𝑘 ⊆ 𝑘 ′, the pullback of L to 𝑋 ⊗𝑘 𝑘 ′ is nef.

Proof ⇐ holds by setting 𝑘 = 𝑘 ′, and hence it suffices to show⇒. By
the weak version of Chow’s Lemma, Lemma 089J, there exists a proper
surjective morphism 𝑔 : 𝑌 → 𝑋 from a scheme 𝑌 proper over 𝑘 . Since
L is nef, 𝑔∗L is nef by Lemma 1.13, and hence the pullback of 𝑔∗L
to 𝑌 ⊗𝑘 𝑘 ′ is nef by [14, Lemma 2.18(1)]. Finally, the pullback of L to
𝑋 ⊗𝑘 𝑘 ′ is nef by applying Lemma 1.13 again. □

https://stacks.math.columbia.edu/tag/089J
https://stacks.math.columbia.edu/tag/0EDJ
https://stacks.math.columbia.edu/tag/089J
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We will need the following result about nef invertible sheaves on
curves that are not necessarily integral.

Lemma 1.15 Let 𝑋 be a proper scheme of dimension 1 over 𝑘 . Let L
be an invertible O𝑋-module. If L is nef, then deg𝑋 (L) ≥ 0.

Proof When 𝑋 is integral, the conclusion follows from Lemma 0BEY
and the definitions. In general, let𝐶1, 𝐶2, . . . , 𝐶𝑡 be the irreducible com-
ponents of 𝑋 viewed as subschemes of 𝑋 with the reduced induced
subscheme structure. By Lemma 0AYW, we have

deg𝑋 (L) =
∑︁𝑡

𝑖=1
𝑚𝑖 deg𝐶𝑖

(L|𝐶𝑖
) for some positive integers 𝑚𝑖 .

The integral case gives deg𝑋 (L|𝐶𝑖
) ≥ 0 and thus deg𝑋 (L) ≥ 0. □

We adopt the following definition for big invertible sheaves on proper
schemes, following Kollár [21, (i) on pp. 236–237].

Definition 1.16 Let 𝑋 be a proper scheme over 𝑘 . An invertible O𝑋-
module L is big if there exists a constant 𝐶 > 0 such that

ℎ0(𝑋,L⊗𝑛) > 𝐶 · 𝑛dim(𝑋) for all sufficiently large 𝑛.

By the asymptotic Riemann–Roch Theorem, Proposition 0BJ8, ample
invertible sheaves are big. We show that unlike ampleness, the property
of being big behaves well under birational morphisms.

Lemma 1.17 Let 𝑓 : 𝑌 → 𝑋 be a birational morphism of proper
schemes over 𝑘 . Let L be an invertible O𝑋-module on 𝑋 . Then L is big
if and only if 𝑓 ∗L is big.

Proof Consider the short exact sequence

0→ O𝑋 → 𝑓∗O𝑌 → Q → 0.

Then dim(Q) ≤ dim(𝑋) − 1 as 𝑓 is birational, so upon twisting by L⊗𝑛
and taking global sections, we see that, by [7, Proposition 1.31(a)], there
exists a constant 𝐶′ > 0 such that

ℎ0(𝑌, 𝑓 ∗L⊗𝑛) − ℎ0(𝑋,L⊗𝑛) ≤ ℎ0(𝑋,Q ⊗O𝑋 L⊗𝑛) ≤ 𝐶′ · 𝑛dim(𝑋)−1

for all sufficiently large 𝑛. Thus L is big if and only if 𝑓 ∗L is big. □

Our next goal is to give an alternative characterization of big invertible
sheaves on projective varieties. We start with the following result, known
as Kodaira’s Lemma; see [20, p. 42] and [26, Proposition 2.2.6].

https://stacks.math.columbia.edu/tag/0BEY
https://stacks.math.columbia.edu/tag/0AYW
https://stacks.math.columbia.edu/tag/0BJ8
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Lemma 1.18 Let 𝑋 be a proper scheme over 𝑘 . LetL be a big invertible
O𝑋-module. Then for every closed subscheme 𝑍 ⊂ 𝑋 of dimension less
than dim(𝑋), there exists an integer 𝑚 > 0 for which

𝐻0(𝑋,I𝑍 ⊗O𝑋 L⊗𝑚) ≠ 0.

Proof Consider the twisted ideal sheaf sequence

0→ I𝑍 ⊗O𝑋 L⊗𝑛 → L⊗𝑛 → L⊗𝑛 |𝑍 → 0.

Since 𝑍 is a proper scheme of dimension < dim(𝑋) over 𝑘 , there exists
a constant 𝐶′ > 0 such that

ℎ0(𝑍,L⊗𝑛 |𝑍 ) ≤ 𝐶′ · 𝑛dim(𝑍 )

for all sufficiently large 𝑛 by [7, Proposition 1.31(a)]. Since L is big,

ℎ0(𝑋,L⊗𝑚) > ℎ0(𝑍,L⊗𝑚 |𝑍 )

for some 𝑚 > 0. Taking global sections in the twisted ideal sheaf se-
quence then gives 𝐻0(𝑋,I𝑍 ⊗O𝑋 L⊗𝑚) ≠ 0. □

We now prove that a variant of the conclusion in Kodaira’s Lemma
1.18 characterizes big invertible sheaves on projective varieties.

Lemma 1.19 Let 𝑋 be a projective variety over 𝑘 . LetL be an invertible
O𝑋-module. Then the following are equivalent:

(i) L is big.
(ii) For every ample invertible O𝑋-module A, there exists an integer

𝑚 > 0 for which 𝐻0(𝑋,A−1 ⊗O𝑋 L⊗𝑚) ≠ 0.

Proof (i) ⇒ (ii). Let 𝑟 be sufficiently large so that there are effective
Cartier divisors 𝐻𝑟 ∈ |A⊗𝑟 | and 𝐻𝑟+1 ∈ |A⊗(𝑟+1) |. By Lemma 1.18,
there exists an integer 𝑚 > 0 for which 𝐻0(𝑋,O𝑋 (−𝐻𝑟+1) ⊗O𝑋 L⊗𝑚) ≠
0. Since the composition

O𝑋 (−𝐻𝑟+1) � A⊗−(𝑟+1) � O𝑋 (−𝐻𝑟 ) ⊗O𝑋 A−1 ↩→ A−1

is injective, we then have

0 ≠ 𝐻0(𝑋,O𝑋 (−𝐻𝑟+1) ⊗O𝑋 L⊗𝑚) ↩→ 𝐻0(𝑋,A−1 ⊗O𝑋 L⊗𝑚).

(ii)⇒ (i). Let A be a very ample invertible sheaf on 𝑋 ′ and choose
an effective Cartier divisor 𝐻 ∈ |A|. By (ii), there exists an integer
𝑚 > 0 such that 𝐻0(𝑋,O𝑋 (−𝐻) ⊗O𝑋 L⊗𝑚) ≠ 0. We can therefore find
an effective Cartier divisor 𝐸 ∈ |O𝑋 (−𝐻) ⊗O𝑋 L⊗𝑚 | which satisfies

O𝑋 (𝐸) � O𝑋 (−𝐻) ⊗O𝑋 L⊗𝑚 � A−1 ⊗O𝑋 L⊗𝑚.
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By the asymptotic Riemann–Roch Theorem of [7, Proposition 1.31(b)],
there exists a constant 𝐶′ > 0 such that for 𝑛 sufficiently large,

ℎ0(𝑋,L−𝑖 ⊗O𝑋 A⊗𝑛) > 𝐶′ · 𝑛dim(𝑋) for every 𝑖 ∈ {0, 1, . . . , 𝑚 − 1}.

Writing 𝑛 = 𝑚 · ⌈𝑛/𝑚⌉ − 𝑖 for 𝑖 ∈ {0, 1, . . . , 𝑚 − 1}, we then have

ℎ0(𝑋,L⊗𝑛) = ℎ0(𝑋,L−𝑖 ⊗O𝑋 A⊗⌈𝑛/𝑚⌉ (⌈𝑛/𝑚⌉𝐸))
≥ ℎ0(𝑋,L−𝑖 ⊗O𝑋 A⊗⌈𝑛/𝑚⌉)

> 𝐶′ · ⌈𝑛/𝑚⌉dim(𝑋) >
𝐶′

𝑚dim(𝑋) · 𝑛
dim(𝑋)

and hence choosing 𝐶 = 𝐶′/𝑚dim(𝑋) , we see that L is big. □

4 Nef locally free sheaves

In this section, we define and study basic properties of nef locally free
sheaves; note that these are referred to as semipositive in [21]. See [27,
Part Two] for the theory for varieties over algebraically closed fields.

First, a definition. Compare with [21, Definition-Proposition 3.3].

Definition 1.20 Let 𝑋 be a proper algebraic space over 𝑘 . A finite
locally free O𝑋-module E is ample (resp. nef ) if OP(E) (1) is ample
(resp. nef) on P(E) in the sense of Definition 0D31 (resp. Definition
1.11).

Here, P(E) denotes the projective bundle of one-dimensional quo-
tients of E. In other words, we set

P(E) := Proj
𝑋
(Sym•(E)),

where Proj
𝑋

is defined as in Definition 084C. By Lemma 085D, P(E) sat-
isfies the following universal property: for an algebraic space 𝑔 : 𝑌 → 𝑋 ,
giving a morphism 𝑟 : 𝑌 → P(E) is the same as giving an invertible sheaf
L on 𝑌 and a surjective morphism 𝑔∗E → L. Here, L � 𝑟∗OP(E) (1).

We show that locally free quotients of ample or nef locally free sheaves
are ample or nef. See [21, Corollary 3.4(i)].

Lemma 1.21 Let 𝑋 be a proper algebraic space over 𝑘 . Let E → F be
a surjection of finite locally free O𝑋-modules. If E is ample (resp. nef),
then F is ample (resp. nef).

Proof The surjection E → F induces a closed embedding P(F ) ↩→
P(E) such that OP(E) (1) restricts to OP(F) (1) by functoriality of Proj;

https://stacks.math.columbia.edu/tag/0D31
https://stacks.math.columbia.edu/tag/084C
https://stacks.math.columbia.edu/tag/085D
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see Lemma 085H. The ample case follows from the fact that P(E) is
a projective 𝑘-scheme by the assumption that OP(E) (1) is ample, and
ampleness is preserved under restriction; see Lemma 01PU. The nef
case follows from Lemma 1.13(i). □

We now focus our attention on nef locally free sheaves. First, nef
locally free sheaves behave well under pullbacks, as was the case for
invertible sheaves in Lemma 1.13.

Lemma 1.22 Let 𝑋 be a proper algebraic space over 𝑘 . Let 𝑓 : 𝑌 → 𝑋

be a proper morphism of algebraic spaces. Let E be a finite locally free
O𝑋-module.

(i) If E is nef, then 𝑓 ∗E is nef.
(ii) If 𝑓 is surjective and 𝑓 ∗E is nef, then E is nef.

Proof By Lemma 085C, we have a Cartesian diagram

P( 𝑓 ∗E) P(E)

𝑌 𝑋

𝑓 ′

𝑓

such that 𝑓 ′∗OP(E) (1) � OP( 𝑓 ∗E) (1). Both statements follow from
Lemma 1.13 applied to OP(E) (1), where for (ii), note that 𝑓 ′ is sur-
jective, being the base change of 𝑓 ; see Lemma 03MH. □

Nef locally free sheaves are also well-behaved under field extensions.

Lemma 1.23 Let 𝑋 be a proper algebraic space over 𝑘 . Let E be a
finite locally free O𝑋-module. Then E is nef if and only if for every field
extension 𝑘 ⊆ 𝑘 ′, the pullback of E to 𝑋 ⊗𝑘 𝑘 ′ is nef.

Proof It suffices to apply Lemma 1.14 to OP(E) (1) on P(E). □

To show some other important properties of nef locally free sheaves,
we prove the following characterization of nefness. The statement for
schemes is known as the Barton–Kleiman Criterion; see [2, p. 437], [27,
Proposition 6.1.18], and [21, Definition-Proposition 3.3].

Proposition 1.24 Let 𝑋 be a proper algebraic space over 𝑘 . Let E be
a finite locally free O𝑋-module. Then the following are equivalent:

(i) E is nef.
(ii) For every 𝑘-morphism 𝑓 : 𝐶 → 𝑋 from a projective 𝑘-scheme 𝐶

of dimension 1, and for every surjection 𝑓 ∗E → L where L is
invertible, we have deg𝐶 (L) ≥ 0.
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(iii) For every 𝑘-morphism 𝑓 : 𝐶 → 𝑋 from a regular projective curve 𝐶
over 𝑘 , and for every surjection 𝑓 ∗E → L where L is invertible, we
have deg𝐶 (L) ≥ 0.

If 𝑘 is algebraically closed, then these conditions are also equivalent to:

(iv) For every 𝑘-morphism 𝑓 : 𝐶 → 𝑋 from a regular projective curve 𝐶
over 𝑘 , and for every ample invertible sheafH on 𝐶, the locally free
sheafH ⊗O𝐶 𝑓 ∗E is ample.

Proof (i)⇒ (ii). Let 𝑓 : 𝐶 → 𝑋 be a morphism as in (ii), and let L be
an invertible quotient of 𝑓 ∗E on 𝐶. By the universal property of P(E),
we obtain a morphism 𝑟 : 𝐶 → P(E) such that L � 𝑟∗OP(E) (1). By
Lemma 1.13(i), L is nef. We then have deg𝐶 (L) ≥ 0 by Lemma 1.15.

(ii) ⇒ (iii). This holds since the morphisms appearing in (iii) are
special cases of those appearing in (ii).

(iii) ⇒ (i). Let 𝑔 : 𝐶′ ↩→ P(E) be an integral closed subspace of
dimension 1. By the weak version of Chow’s Lemma, Lemma 089J,
there exists a proper surjective morphism 𝑓 : 𝐶 → 𝐶′ from a scheme 𝐶
projective over 𝑘 , and by Lemma 1.12, we may replace 𝐶 by a closed
integral subscheme mapping onto 𝐶′ to assume that dim(𝐶) = 1. Re-
placing 𝐶 by a suitable irreducible component of its normalization, we
may also assume that 𝐶 is regular and integral. Let 𝜋 : P(E) → 𝑋 be
the projection morphism. By the universal property of P(E), we have a
surjection

(𝜋 ◦ 𝑔 ◦ 𝑓 )∗E → (𝑔 ◦ 𝑓 )∗OP(E) (1)

on 𝐶. By (iii) and Lemma 0BEY, the pullback (𝑔 ◦ 𝑓 )∗OP(E) (1) is nef.
Thus 𝑔∗OP(E) (1) is also nef by Lemma 1.13(ii), and (OP(E) (1) ·𝐶) ≥ 0.

We show (i) ⇒ (iv) assuming that 𝑘 is algebraically closed. Let
𝜋 : P( 𝑓 ∗E) → 𝐶 be the projection morphism. We want to show that

OP(H⊗O𝐶 𝑓 ∗E) (1) � OP( 𝑓 ∗E) (1) ⊗OP( 𝑓 ∗E) 𝜋
∗H

is ample, where the isomorphism shown holds by definition of relative
Proj under the identification P(H⊗O𝐶 𝑓 ∗E) � P( 𝑓 ∗E). Let𝑌 ⊂ P( 𝑓 ∗E)
be an integral closed subscheme. By the Nakai–Moishezon Criterion (see
Proposition 1.10), it suffices to show that(

(OP( 𝑓 ∗E) (1) ⊗OP( 𝑓 ∗E) 𝜋
∗H)𝑑 · 𝑌

)
> 0

where 𝑑 = dim(𝑌 ). If 𝑌 is contained in a closed fibre over 𝐶, then this
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positivity holds since OP( 𝑓 ∗E) (1) restricts to OP𝑛 (1) on the closed fibre,
where 𝑛 = rank( 𝑓 ∗E) − 1. Otherwise, it suffices to show that(
(OP( 𝑓 ∗E) (1) ⊗OP( 𝑓 ∗E) 𝜋

∗H)𝑑 · 𝑌
)
≥
(
(OP( 𝑓 ∗E) (1))𝑑−1 · 𝜋∗H · 𝑌

)
since the right-hand side is positive by the fact that 𝜋∗H ·𝑌 corresponds
to a closed subscheme of dimension 𝑑 −1 contained in a union of closed
fibres over𝐶, in which case we can apply the case above. This inequality
holds since we can expand the left-hand side by additivity (Lemma
0BER) and then observe that since 𝑓 ∗E is nef by Lemma 1.22(i), every
term involving OP( 𝑓 ∗E) (1) is nonnegative by [14, Lemma 2.12], and
every term with more than one power of 𝜋∗H is zero.

Finally, we show (iv)⇒ (iii) assuming that 𝑘 is algebraically closed.
Let 𝑓 ∗E → L be a surjection where L is invertible. Choose an ample
invertible sheafH on𝐶 of degree 1, which exists since 𝑘 is algebraically
closed. Twist this surjection byH . Since the quotient of an ample locally
free sheaf is ample by Lemma 1.21, and ample invertible sheaves have
positive degree by Lemma 0B5X, we have

1 + deg𝐶 (L) = deg𝐶 (H ⊗O𝐶 L) ≥ 1

where the equality holds by Lemma 0AYX, and the inequality holds by
(iv). This shows that deg𝐶 (L) ≥ 0. □

We can now show that nefness is preserved under extensions.

Lemma 1.25 Let 𝑋 be a proper algebraic space over 𝑘 . Let

0→ E′ → E → E′′ → 0

be a short exact sequence of finite locally free O𝑋-modules. If E′ and
E′′ are both nef, then E is nef.

Proof Let 𝑓 : 𝐶 → 𝑋 be a 𝑘-morphism from a regular projective curve
𝐶 over 𝑘 , and let 𝑓 ∗E → L be an invertible quotient. By Proposition
1.24, it suffices to show that deg𝐶 (L) ≥ 0.

Denote by L′ the image of 𝑓 ∗E′ in L and by L′′ the quotient sheaf
L/L′. We then have a commutative diagram

0 𝑓 ∗E′ 𝑓 ∗E 𝑓 ∗E′′ 0

0 L′ L L′′ 0

where the top row is exact since E′′ is locally free, and the bottom row
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is exact by definition. The sheaf L′ is torsion-free since it is a subsheaf
of L, and is therefore locally free since 𝐶 is regular of dimension 1; see
Lemma 0AUW.

First consider the case where rank(L′) = 0, in which case L′ = 0 and
L → L′′ is an isomorphism. We then have deg𝐶 (L) = deg𝐶 (L′′) ≥ 0
by Proposition 1.24 since E′′ is nef.

It remains to consider the case where rank(L′) = 1, in which case
rank(L′′) = 0. Additivity of Euler characteristics, Lemma 08AA, and
the definition of degree, Definition 0AYR, give the first three equations:

deg𝐶 (L) = 𝜒(𝐶,L) − 𝜒(𝐶,O𝐶)
= 𝜒(𝐶,L′) − 𝜒(𝐶,O𝐶) + 𝜒(𝐶,L′′)
= deg𝐶 (L′) + 𝜒(𝐶,L′′) = deg𝐶 (L′) + ℎ0(𝐶,L′′) ≥ 0.

The fourth equation follows from Lemma 0AYT as L′′ is rank 0, and
the final inequality is Proposition 1.24 as E′ is nef. □

Our next goal is to prove that nefness is preserved under various tensor
operations. The idea is to use the Barton–Kleiman Criterion, Proposition
1.24, to reduce to the curve case, in which case we will use the following:

Lemma 1.26 Let𝐶 be a regular projective curve over an algebraically
closed field 𝑘 , E a nef finite locally free O𝐶-module, andH an invertible
O𝐶-module of degree ≥ 2𝑔. Then E ⊗O𝐶 H is globally generated.

Proof We first show that ifH is an invertible O𝐶-module such that

𝐻1(𝐶, E ⊗O𝐶 H) ≠ 0,

then deg𝐶 (H) ≤ 2𝑔 − 2. By Serre Duality, Lemma 0FVV, we have

𝐻1(𝐶, E ⊗O𝐶 H) � HomO𝐶 (E ⊗O𝐶 H , 𝜔𝐶) ≠ 0,

and we therefore have a nonzero morphism E ⊗O𝐶H → 𝜔𝐶 . The image
M of this morphism is torsion-free, hence invertible since𝐶 is regular of
dimension 1; see Lemma 0AUW. This invertibleO𝐶-moduleM satisfies

2𝑔 − 2 = −2𝜒(𝐶,O𝐶) = deg𝐶 (𝜔𝐶) ≥ deg𝐶 (M)

sinceM is a subsheaf of 𝜔𝐶 . Twisting the surjection E ⊗O𝐶 H → M
byH−1,

2𝑔 − 2 − deg𝐶 (H) ≥ deg𝐶 (M) − deg𝐶 (H)
= deg𝐶 (M ⊗O𝐶 H−1) ≥ 0
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where the equality holds by Lemma 0AYX, and the last inequality holds
by the nefness of E and Proposition 1.24.

We now show the statement of the lemma. Let 𝑥 ∈ 𝐶 be a closed point
with ideal sheaf O(−𝑥). We have a short exact sequence

0→ E ⊗O𝐶 H(−𝑥) → E ⊗O𝐶 H → E ⊗O𝐶 H|𝑥 → 0.

Using Lemma 0AYX again, we have

deg𝐶 (H (−𝑥)) = deg𝐶 (H) − deg(O𝐶 (𝑥)) = deg𝐶 (H) − 1 ≥ 2𝑔 − 1,

and hence 𝐻1(𝐶, E ⊗O𝐶 H(−𝑥)) = 0 by the previous paragraph. Thus,
E ⊗O𝐶 H is globally generated. □

We will also need the following to reduce to the case when the ground
field 𝑘 is of positive characteristic.

Lemma 1.27 Let 𝑌 be a Noetherian scheme, and let 𝑓 : 𝑋 → 𝑌 be a
proper morphism from an algebraic space 𝑋 . Let E be a finite locally
free O𝑋-module. Let 𝑦 ∈ 𝑌 be a point such that E𝑦 is ample on the fibre
𝑋𝑦 . Then there exists an open neighborhood 𝑉 ⊆ 𝑌 of 𝑦 such that E𝑦′ is
ample on the fibre 𝑋𝑦′ for every point 𝑦′ ∈ 𝑉 .

Proof Apply Lemma 0D3A to OP(E) (1) on P(E). □

Note that the statement analogous to Lemma 1.27 for nefness does not
hold as shown by Langer [24, 25] due to examples of Monsky, Brenner,
and Trivedi [24, Example 5.3], of Ekedahl, Shepherd-Barron, and Taylor
[24, Example 5.6], and of Moret-Bailly [25, §8].

We now prove the following result, originally due to Barton for
schemes [2, Proposition 3.5(i)].

Proposition 1.28 Let 𝑋 be a proper algebraic space over 𝑘 . Let E and
E′ be nef finite locally free O𝑋-modules. Then E ⊗O𝑋 E′ is nef, as are
E⊗𝑛, Sym𝑛 (E), Γ𝑛 (E) ··= (Sym𝑛 (E∨))∨, and

∧𝑛 (E) for all 𝑛 ≥ 0.

Proof If E and E′ are nef, then G ··= E ⊕ E′ is nef by Lemma 1.25,
and E ⊗O𝑋 E′ is a locally free quotient of the locally free sheaf G⊗2. By
Lemma 1.21, it therefore suffices to show that E⊗𝑛, Sym𝑛 (E), Γ𝑛 (E),
and

∧𝑛 (E) are nef. We will denote any such sheaf by 𝜌𝑛 (E). By Lemma
1.23, we may assume that 𝑘 is algebraically closed.

Step 1. Proof when char(𝑘) > 0.
Fix a 𝑘-morphism 𝑓 : 𝐶 → 𝑋 from a regular projective curve 𝐶 over

𝑘 . Let L be a quotient invertible sheaf of 𝜌𝑛 (E), and set 𝑑 ··= deg𝐶 (L).
By Proposition 1.24, it suffices to show that 𝑑 ≥ 0.
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LetH be an invertible O𝐶-module of degree 2𝑔, where 𝑔 is the genus
of 𝐶. For every 𝑒 > 0, consider the 𝑒-th iterate of the absolute Frobenius
morphism 𝐹𝑒 : 𝐶 → 𝐶, which is a finite morphism of degree 𝑝𝑒. We
claim that for every 𝑒 > 0, there is a generic isomorphism

(H−𝑛)⊕𝑟 → 𝐹𝑒∗𝜌𝑛 ( 𝑓 ∗E), (★)

where 𝑟 ··= rank(𝜌𝑛 ( 𝑓 ∗E)). Since 𝐹𝑒∗ 𝑓 ∗E is nef by Lemma 1.22, the
sheaf 𝐹𝑒∗ 𝑓 ∗E⊗O𝐶H is globally generated by Lemma 1.26. By choosing
𝑠 ··= rank( 𝑓 ∗E) global sections that form a basis after localizing at the
generic point of 𝐶, we obtain a morphism (H−1)⊕𝑠 → 𝐹𝑒∗ 𝑓 ∗E that
induces an isomorphism at the generic point of 𝐶. Applying the functor
𝜌𝑛 (−), we obtain the generic isomorphism

𝜌𝑛
(
(H−1)⊕𝑠

)
→ 𝐹𝑒∗𝜌𝑛 ( 𝑓 ∗E).

The left-hand side is a direct sum of the sheavesH−𝑛, and hence passing
to a direct summand, we obtain a generic isomorphism of the form in
(★).

We now show that 𝑑 = deg𝐶 (L) ≥ 0. Note that 𝐹𝑒∗L � L⊗𝑝𝑒 is a
quotient invertible O𝐶-module of 𝐹𝑒∗𝜌𝑛 ( 𝑓 ∗E) and that deg𝐶 (𝐹𝑒∗L) =
𝑝𝑒𝑑 by Lemma 0AYZ. By the previous paragraph, (H−𝑛)⊕𝑟 surjects
onto a subsheafM of 𝐹𝑒∗L that is torsion-free of rank 1, hence invertible
since 𝐶 is regular of dimension 1; see Lemma 0AUW. Twisting the
surjection (H−𝑛)⊕𝑟 → M by H⊗𝑛, we see that M ⊗O𝐶 H⊗𝑛 is nef
since it is globally generated, and hence

deg𝐶 (M) = deg𝐶 (M ⊗O𝐶 H⊗𝑛) + deg𝐶 (H−𝑛) ≥ −2𝑔𝑛

by Lemma 0AYX and Proposition 1.24. We then have

𝑝𝑒𝑑 = deg𝐶 (𝐹𝑒∗L) = 𝜒(𝐶, 𝐹𝑒∗L) − 𝜒(𝐶,O𝐶)
= 𝜒(𝐶,M) − 𝜒(𝐶,O𝐶) + 𝜒(𝐶,L/M)
= deg𝐶 (M) + ℎ0(𝐶,L/M) ≥ −2𝑔𝑛

where the equalities hold by the additivity of Euler characteristics and
the definition of degree; see Lemma 08AA and Definition 0AYR. Since
this inequality must hold for all 𝑒 > 0, we see that 𝑑 ≥ 0.

Step 2. Proof when char(𝑘) = 0.
It suffices to show that for every 𝑘-morphism 𝑓 : 𝐶 → 𝑋 from a

regular projective curve 𝐶 over 𝑘 , and every invertible quotient L of
𝜌𝑛 ( 𝑓 ∗E), we have deg𝐶 (L) ≥ −𝑛. Indeed, if 𝑔 : 𝐶′ → 𝐶 is a finite
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surjective morphism of degree 𝑒 > 0, then

𝑒 · deg𝐶 (L) = deg𝐶′ (𝑔∗L) ≥ −𝑛

holds by Lemma 0AYZ. Since this inequality must hold for all 𝑒 > 0, we
see that deg𝐶 (L) ≥ 0, and hence 𝜌𝑛 ( 𝑓 ∗E) is nef by Proposition 1.24.

We now show that deg𝐶 (L) ≥ −𝑛 for every morphism 𝑓 : 𝐶 → 𝑋

and every quotient invertible sheaf L of 𝜌𝑛 ( 𝑓 ∗E) as above. Since 𝐶 is
projective over 𝑘 , there exists a finitely generated Z-algebra 𝐴 ⊂ 𝑘 and
a projective morphism 𝐶𝐴→ Spec(𝐴) such that the diagram

𝐶 𝐶𝐴

Spec(𝑘) Spec(𝐴)

𝑓 𝑓𝐴

is Cartesian. LetH be an invertible sheaf on 𝐶 of degree 1. By Lemma
0B8W, after possibly enlarging 𝐴, we may assume that there exist in-
vertible O𝐶𝐴

-modulesH𝐴 and L𝐴, and a finite locally free O𝐶𝐴
-module

F𝐴 that pull back to H , L, and 𝑓 ∗E, on 𝐶. By Lemma 01ZR and [11,
Corollaire 8.5.7], we may also assume that there exists a surjection

𝜌𝑛 (F𝐴) → L𝐴 (★★)

that pulls back to 𝜌𝑛 ( 𝑓 ∗E) → L on𝐶. Now by Proposition 1.24, theO𝐶-
moduleH ⊗O𝐶 𝑓 ∗E is ample. By Lemma 1.27, after possibly replacing
𝐴 by a principal localization, we may assume thatH𝐴⊗O𝐶𝐴

F𝐴 is ample
on every fibre of 𝑓𝐴, since it is ample after pulling back to the generic
fibre of 𝑓𝐴 by applying Lemma 0D2P on P(H𝐴⊗O𝐶𝐴

F𝐴). Moreover, by
generic flatness, Proposition 052A, and Lemma 05F7, we may assume
that 𝑓𝐴 is flat with one-dimensional fibres.

Let 𝑦 ∈ Spec(𝐴) be a closed point with residue field 𝜅(𝑦), and set
𝐶𝑦 ··= 𝑓 −1

𝐴
(𝑦). Since 𝑓𝐴 is flat, the invertible O𝐶𝐴

-modules L𝐴 and O𝐶𝐴

are flat over 𝐴. So, writing 𝜂 for the generic point of Spec(𝐴), we have

deg𝐶 (L) = deg𝐶𝜂
(L𝜂) = 𝜒(𝐶𝜂 ,L𝜂) − 𝜒(𝐶𝜂 ,O𝐶𝜂

)
= 𝜒(𝐶𝑦 ,L𝑦) − 𝜒(𝐶𝑦 ,O𝐶𝑦

) = deg𝐶𝑦
(L𝑦)

where the first equality holds by Lemma 0B59 applied to the field exten-
sion Frac(𝐴) ⊂ 𝑘 , and the third equality follows from the constancy of
Euler characteristics in proper flat families, Lemma 0B9T. By the same
argument, deg𝐶𝑦

(H𝑦) = 1. Since H𝑦 ⊗O𝐶𝑦
F𝑦 is ample, it is nef, and

hence H⊗𝑛𝑦 ⊗O𝐶𝑦
𝜌𝑛 (F𝑦) is nef by Step 1. Thus, the surjection (★★)
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twisted byH⊗𝑛
𝐴

and then restricted to 𝐶𝑦 implies

deg𝐶𝑦
(L𝑦) = deg𝐶𝑦

(H−𝑛𝑦 ⊗O𝐶𝑦
H⊗𝑛𝑦 ⊗O𝐶𝑦

L𝑦)
= −𝑛 + deg𝐶𝑦

(H⊗𝑛𝑦 ⊗O𝐶𝑦
L𝑦) ≥ −𝑛

by Lemma 0AYX and Proposition 1.24, as desired. □

We end this section with a criterion for bigness that will feature in the
proof of Lemma 1.32:

Lemma 1.29 Let 𝑋 be a projective variety over 𝑘 and let L be an
invertible O𝑋-module. Let F be a finite locally free O𝑋-module with
associated projective bundle 𝜋 : P→ 𝑋 . Assume that

(i) L is nef,
(ii) F ∨ is nef, and

(iii) there exists 𝑎 ≥ 1 and an ample invertible sheaf A on 𝑋 such that

𝐻0(P,OP(𝑎) ⊗OP 𝜋
∗L ⊗OP 𝜋

∗A−1) ≠ 0.

Then L is big and nef.

Proof Set 𝑑 ··= dim(𝑋). By (i) and the asymptotic Riemann–Roch The-
orem of [7, Proposition 1.31(b)], it suffices to show that the intersection
number (L𝑑) is positive. By (iii), we may choose a nonzero morphism

OP → OP(𝑎) ⊗OP 𝜋
∗L ⊗OP 𝜋

∗A−1.

Applying the projection formula and rearranging yields a nonzero mor-
phism 𝜏 : Γ𝑎 (E∨) → L ⊗O𝑋 A−1. Since the sheaf on the right-hand
side is locally trivial, the image of 𝜏 is of the form I ⊗O𝑋 (L ⊗O𝑋 A−1)
for some coherent sheaf of ideals I. Let 𝑓 : 𝑌 → 𝑋 be the blowup along
I, with exceptional divisor 𝐷. Then 𝑓 ∗𝜏 gives a surjection

𝑓 ∗Γ𝑎 (E∨) ↠M ··= 𝑓 ∗L ⊗O𝑌 𝑓 ∗A−1 ⊗O𝑌 O𝑌 (−𝐷).

By (ii), Proposition 1.28, and Lemma 1.22(i), the sheaf on the left-hand
side is nef, hence by Lemma 1.21,M is also nef. Rearranging gives

𝑓 ∗L � 𝑓 ∗A ⊗O𝑌 M ⊗O𝑌 O𝑌 (𝐷).

Since 𝑓 is birational, dim(𝑌 ) = 𝑑 = dim(𝑋) and, by Lemma 0BET,
( 𝑓 ∗L𝑑) = (L𝑑) and ( 𝑓 ∗A𝑑) = (A𝑑). In particular, the latter quantity
is positive sinceA is ample, see Lemma 0BEV. Additivity of intersection
numbers, Lemma 0BER, gives

(L𝑑) = ( 𝑓 ∗L𝑑) = ( 𝑓 ∗A𝑑) +
∑︁𝑑

𝑖=1
( 𝑓 ∗A𝑑−𝑖 · 𝑓 ∗L𝑖−1 · M(𝐷)).
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The latter sum is nonnegative: by additivity and restriction, Lemmas
0BER and 0BEU, the 𝑖-th summand is the sum

( 𝑓 ∗A𝑑−𝑖 · 𝑓 ∗L𝑖−1 · M) + ( 𝑓 ∗A𝑑−1 |𝐷 · 𝑓 ∗L𝑖−1 |𝐷) ≥ 0

of intersection numbers of nef invertible sheaves, and hence each non-
negative by [14, Lemma 2.12]. Therefore (L𝑑) ≥ (A𝑑) > 0. □

5 Ampleness Lemma

In this section, we formulate a method for proving ampleness of line
bundles of the form det(Q), where Q is a locally free quotient of a
symmetric power of a nef finite locally free sheaf E. The basic method is
due to Kollár in [21, Lemmas 3.9 and 3.13], refining an idea of Viehweg
[31]. We also include a refinement due to Kovács and Patakfalvi [22].

The idea is as follows: locally, Q is a quotient by a trivial vector
bundle, so det(Q) is locally the pullback of the Plücker bundle under
a classifying map to a Grassmannian. Globalize this by passing to its
frame bundle to universally trivialize E; the quotient bundle now gives a
classifying map to a stack of the form [G(𝑁, 𝑞)/PGL𝑛]. The Ampleness
Lemma 1.33 is then a generalization of the familiar fact that the pullback
of an ample sheaf under a finite map is ample.

We begin by constructing frame bundles. Let 𝑆 be a scheme and let
E be a finite locally free O𝑆-module of rank 𝑛. Let 𝑇 be a scheme and
consider triples ( 𝑓 : 𝑇 → 𝑆,L, 𝜓) where

(i) 𝑓 : 𝑇 → 𝑆 is a morphism of schemes,
(ii) L is an invertible O𝑇 -module, and

(iii) 𝜓 : O⊕𝑛
𝑇
→ 𝑓 ∗E ⊗O𝑇 L is an isomorphism of O𝑇 -modules.

Call two triples ( 𝑓 ,L, 𝜓) and ( 𝑓 ′,L′, 𝜓′) over 𝑇 equivalent if 𝑓 = 𝑓 ′

and if there exists an isomorphism 𝛽 : L → L′ such that 𝛽 ◦ 𝜓 = 𝜓′.
The frame functor of E is the functor

Fr(E) : Schopp → Sets
𝑇 ↦→ {equivalence classes of ( 𝑓 : 𝑇 → 𝑆,L, 𝜓) as above}

with pullbacks under 𝑇 ′ → 𝑇 defined as expected.
Two important structures: First, projection of ( 𝑓 : 𝑇 → 𝑆,L, 𝜓) onto

the first factor yields a morphism of functors Fr(E) → 𝑆. Second, given
𝑓 : 𝑇 → 𝑆, the set of equivalence classes of ( 𝑓 ,L, 𝜓) admit a simply
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transitive action of PGL𝑛 via pre-composition on 𝜓; note this is well-
defined since automorphisms of L are given by scalar multiplication.
Therefore Fr(E) is a functor of PGL𝑛-sets over 𝑆.

Lemma 1.30 Let 𝑆 be a scheme. LetE be a finite locally freeO𝑆-module
of rank 𝑛 and set P ··= P(Hom(E,O⊕𝑛

𝑆
)). There exists an effective Cartier

divisor D ⊂ P such that Fr(E) is represented by the open subscheme

Fr(E) = P \ D.

The structure map Fr(E) → 𝑆 exhibits this as a PGL𝑛-torsor over 𝑆.

Proof Consider a triple ( 𝑓 : 𝑇 → 𝑆,L, 𝜓) as above. By adjunction, the
isomorphism 𝜓 : O⊕𝑛

𝑇
→ 𝑓 ∗E ⊗O𝑇 L uniquely determines a surjection

𝜑 : 𝑓 ∗Hom(E,O⊕𝑛
𝑆
) → L. This exhibits Fr(E) as the subfunctor of the

projective bundle P on which 𝜓 is an isomorphism.
On the other hand, let 𝜋 : P → 𝑆 be the structure map and consider

the universal quotient 𝜑univ : 𝜋∗Hom(E,O⊕𝑛
𝑆
) → OP(1). By adjunction,

this yields an injective map 𝜑#
univ : O⊕𝑛P → OP(1) ⊗OP 𝜋

∗E and hence a
universal determinant

det(𝜑#
univ) : OP → det(OP(1) ⊗OP 𝜋

∗E).

Let D be the divisor determined by its vanishing. Then the open sub-
scheme Fr(E) ··= P \ D represents the functor Fr(E). □

We call the scheme Fr(E) the frame bundle of E over 𝑆. The torsor
structure on the frame bundle induces a classifying map from 𝑆 to the
classifying stack 𝐵PGL𝑛 fitting into a Cartesian diagram

Fr(E) pt

𝑆 𝐵PGL𝑛

𝜋

We now construct lifts of this classifying map to quotient stacks of certain
Grassmannians whenever given, additionally,𝛼 : Sym𝑑 (E) → Q a finite
locally free quotient of rank 𝑞, with 𝑑 some positive integer. The strategy
is to pull the quotient back to the frame bundle and take symmetric
powers of the universal trivialization map

𝜓univ ··= 𝜑#
univ |Fr(E) : O⊕𝑛Fr(E) → OFr(E) (1) ⊗OFr(E) 𝜋

∗E

to give PGL𝑛-equivariant morphisms to G ··= G(𝑁, 𝑞), the Grassman-
nian parameterizing rank 𝑞 quotients of the module Sym𝑑 (Z⊕𝑛) � Z⊕𝑁
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with 𝑁 =
(𝑛+𝑑−1

𝑑

)
. Note 𝜓univ is equivariant for the action of PGL𝑛 on

Fr(E), where the action is tautological on the source and trivial on the
target; likewise, PGL𝑛 acts on G via the action on Sym𝑑 (Z⊕𝑛) induced
by its tautological action.

Lemma 1.31 Notation as above, there exists a commutative diagram

Fr(E) G pt

𝑆 [G/PGL𝑛] 𝐵PGL𝑛

𝜋

[𝜋∗𝛼]

[𝛼]

such that all squares are Cartesian. Moreover, writing OG(1) for the
Plücker line bundle on G, we have

[𝜋∗𝛼]∗OG(1) � OFr(E) (𝑞𝑑) ⊗OFr(E) 𝜋
∗ det(Q).

Proof Pulling back 𝛼 to Fr(E) and pre-composing with the 𝑑-th sym-
metric power of the universal trivialization 𝜓univ gives a surjection

Sym𝑑 (O⊕𝑛Fr(E) ) → OFr(E) (𝑑) ⊗ 𝜋∗ Sym𝑑 (E) → OFr(E) (𝑑) ⊗ 𝜋∗Q.

The universal property of G yields a morphism [𝜋∗𝛼] : Fr(E) → G
which is PGL𝑛-equivariant by the description of the actions above,
and such that the pullback of the universal quotient bundle on G is
OFr(E) (𝑑) ⊗ 𝜋∗Q. Since the Plücker line bundle is the determinant of the
universal quotient, this gives the identification of line bundles. Finally,
this data of a PGL𝑛-torsor over 𝑆 together with a PGL𝑛-equivariant mor-
phism to G is precisely the data of a morphism [𝛼] : 𝑆 → [G/PGL𝑛]
lifting the classifying map for Fr(E); see Sections 04UI and 04UV. □

The morphism [𝛼] : 𝑆 → [G/PGL𝑛] is called the classifying map of
𝛼. The aim is to pull positivity back to det(Q) via [𝛼] from OG(1). This
is achieved most directly by asking for [𝛼] to be a quasi-finite morphism
of stacks; see Definition 0G2M and compare with [21, Definition 3.8].
Concretely, since 𝑆 is a scheme, [𝛼] is a representable morphism, so by
Lemma 04XD, [𝛼] is quasi-finite if and only if [𝜋∗𝛼] : Fr(E) → G is
a quasi-finite morphism of schemes. Kovács and Patakfalvi observed in
[22, Theorem 5.5] that, when working a field 𝑘 , it is sufficient to ask for
[𝛼] to have finite fibres on 𝑘̄-points.

The following statement is the heart of the Ampleness Lemma, and
is an analogue of the fact that the pullback of an ample line bundle by a
generically quasi-finite morphism is big.

Lemma 1.32 In the situation of Lemma 1.31, assume that
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(i) 𝑆 is a normal projective variety over 𝑘 ,
(ii) E is nef, and

(iii) there exists a dense open subset 𝑆0 ⊆ 𝑆 over which the classifying
map [𝛼] has finite fibres on 𝑘̄-points.

Then det(Q) is big and nef. In particular, (det(Q)dim(𝑆) ) > 0.

Proof We aim to apply Lemma 1.29 with F ··= H𝑜𝑚(E,O⊕𝑛𝑆
) and

L ··= det(Q)⊗𝑚 for some appropriately chosen integer 𝑚 > 0. The first
two hypotheses are already satisfied: 1.29(i) is because L is a tensor
power of a determinant of a quotient of a nef sheaf, see Lemma 1.21 and
Proposition 1.28; 1.29(ii) is because F ∨ � E⊕𝑛 is a sum of nef bundles
and hence is itself nef by Lemma 1.25.

It remains to arrange for condition 1.29(iii). The construction of the
classifying map in Lemma 1.31 gives a rational map [𝜋∗𝛼] : P d G.
Blowing up the ideal sheaf in the image of∧𝑞

Sym𝑑 (O⊕𝑛P ) → OP(𝑞𝑑) ⊗OP 𝜋
∗ det(Q)

induced by 𝜋∗𝛼 ◦Sym𝑑 (𝜓univ) yields a birational morphism 𝑏 : P′ → P,
a morphism 𝑓 : P′ → G resolving [𝜋∗𝛼], and an effective Cartier divisor
𝐷 of P′ such that

𝑓 ∗OG(1) = 𝑏∗
(
OP(𝑞𝑑) ⊗OP 𝜋

∗ det(Q)
)
⊗OP′ OP′ (−𝐷).

Let T be the schematic image of (𝜋 ◦ 𝑏, 𝑓 ) : P′ → 𝑆 ×𝑘 G, and let
𝜌 : T → 𝑆 and 𝑔 : T → G be the induced morphisms. We claim that 𝑔
is generically quasi-finite. Identify Fr(E) as a dense open subscheme of
P′ via the birational morphism 𝑏. Let T0 ⊆ T be the dense set obtained
as the intersection of the image of Fr(E), which is a dense constructible
subset by Chevalley’s Theorem 054K, and the open set 𝑆0 ×𝑘 G with 𝑆0
from hypothesis (iii). Then there is a commutative diagram

Fr(E)|𝑆0

T0 G

𝑆0 [G/PGL𝑛]

[𝜋∗𝛼]

𝜋
𝑔

𝜌

[𝛼]

Let 𝑥 ∈ G( 𝑘̄) be a 𝑘̄-point and let 𝑦̄ ∈ [G/PGL𝑛] ( 𝑘̄) be its image along
the quotient map. Since the outer square is Cartesian by Lemma 1.31, the
fibre (Fr(E)|𝑆0) 𝑥̄ maps via 𝜋 to 𝑆0, 𝑦̄ . Since T0 is the image of Fr(E)|𝑆0

in 𝑆0 ×𝑘 G, this implies that T0, 𝑥̄ is contained in the finite set 𝑆0, 𝑦̄ × {𝑥}.

https://stacks.math.columbia.edu/tag/054K
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Thus 𝑔 has finite fibres on 𝑘̄-points over T0, so T contains a dense set
of closed points at which the fibre dimension of 𝑔 is 0. This latter set is
open by Lemma 02FZ. Therefore 𝑔 is generically quasi-finite.

We may now complete the proof of the Lemma. Since OG(1) is ample
and 𝑔 is generically quasi-finite, 𝑔∗OG(1) is a big invertible sheaf on T.
LetA be any very ample invertible sheaf on 𝑆. Then Lemma 1.18 gives

𝐻0(T, 𝑔∗OG(𝑚) ⊗O𝑇 𝜌∗A−1) ≠ 0 for some integer 𝑚 > 0.

Pulling back to P′, multiplying by an equation of the effective divisor
𝐷, and then applying the projection formula gives

0 ≠ 𝐻0(P′, 𝑓 ∗OG(𝑚) ⊗OP′ 𝑏
∗𝜋∗A−1)

⊂ 𝐻0(P′, 𝑏∗(OP(𝑞𝑑𝑚) ⊗OP 𝜋
∗ det(Q)⊗𝑚 ⊗OP 𝜋

∗A−1))
� 𝐻0(P, (OP(𝑞𝑑𝑚) ⊗OP 𝜋

∗ det(Q)⊗𝑚 ⊗OP 𝜋
∗A−1) ⊗OP 𝑏∗OP′).

Now P is normal by hypothesis (i), so the Stein factorization of the
birational map 𝑏 is trivial; see Theorem 03H0. In particular, 𝑏∗OP′ � OP.
Setting L ··= det(Q)⊗𝑚 and 𝑎 ··= 𝑞𝑑𝑚, we conclude that

𝐻0(P,OP(𝑎) ⊗OP 𝜋
∗L ⊗OP 𝜋

∗A−1) ≠ 0.

Thus hypothesis (iii) of Lemma 1.29 is satisfied and it applies to show
that det(Q)⊗𝑚 is big and nef, and so det(Q) is itself big and nef. □

Proposition 1.33 (Ampleness Lemma) Let 𝑋 be a proper algebraic
space over 𝑘 , E a locally free O𝑋-module of rank 𝑛, 𝑑 a positive integer,
and 𝛼 : Sym𝑑 (E) → Q a locally free quotient of rank 𝑞. Assume that

(i) E is nef, and
(ii) the classifying map [𝛼] has finite fibres on 𝑘̄-points.

Then det(Q) is ample on 𝑋 .

Proof We aim to apply the Nakai–Moishezon Criterion, Proposition
1.10. Thus we need to show that det(Q) has positive degree on each
integral closed subspace 𝜄 : 𝑌 ↩→ 𝑋 . Applying Chow’s Lemma 088U
and normalizing gives a modification 𝑓 : 𝑌 ′ → 𝑌 from a normal projec-
tive variety 𝑌 ′. Compatibility of intersection numbers with pullbacks,
Lemma 0EDJ, gives

(det(Q)dim(𝑌 ) · 𝑌 ) = (𝜄∗ det(Q)dim(𝑌 ) ) = ( 𝑓 ∗𝜄∗ det(Q)dim(𝑌 ′ ) ).

This final quantity is positive by Lemma 1.32: the pullback of E to 𝑌 ′
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is nef by Lemma 1.22(i), and the classifying map on 𝑌 ′ associated with
the pullback of 𝛼 is the composite

[ 𝑓 ∗𝜄∗𝛼] : 𝑌 ′
𝑓
−→ 𝑌

𝜄−→ 𝑋
[𝛼]
−−−→ [G/PGL𝑛]

which generically has finite fibres on 𝑘̄-points as each of 𝑓 , 𝑖, and [𝛼]
do. □

6 Nefness for families of nodal curves

In this section, we prove that 𝑓∗𝜔⊗𝑚𝑆/𝐶 is nef for all 𝑚 ≥ 2 and any family
𝑓 : 𝑆 → 𝐶 of stable curves over a smooth projective curve 𝐶 over 𝑘; see
Theorem 1.43. In other words, we show that the corresponding vector
bundle on the stackM𝑔 is nef.

Since nefness is insensitive to field extensions by Lemmas 1.14 and
1.23, throughout, we assume our base field 𝑘 is algebraically closed.
Furthermore, all schemes and morphisms appearing will be over 𝑘 . We
will make constant use of the following transitivity property of relative
dualizing sheaves: by Lemma 0E30, there is an isomorphism

𝜔𝑆/𝐶 � 𝜔𝑆 ⊗O𝑆 𝑓 ∗𝜔−1
𝐶 .

The first positivity result is Proposition 1.36 and it concerns families
in which the generic fibre is smooth. This is generalized in Proposition
1.40 to positivity when 𝜔𝑆/𝐶 is twisted up by some sections. Finally,
as a general family of stable curves is essentially obtained by glueing
generically smooth families along horizontal curves, this gives us the
main positivity result in Theorem 1.42.

To begin, we discuss the local structure of nodal families of curves.
So let 𝑓 : 𝑆 → 𝐶 be a nodal family of curves over a smooth projective
curve 𝐶. Consider the closed subset Sing( 𝑓 ) ⊂ 𝑆 of points at which 𝑓

is not smooth. This has a canonical scheme structure given by the first
Fitting ideal of Ω1

𝑆/𝐶 ; see Section 0C3H.

Lemma 1.34 Let 𝑓 : 𝑆 → 𝐶 be a family of nodal curves over a smooth
projective curve 𝐶.

(i) If 𝑠 is an isolated point of Sing( 𝑓 ), then

O∧𝑆,𝑠 � O
∧
𝐶, 𝑓 (𝑠) [[𝑥, 𝑦]]/(𝑥𝑦 − 𝜋

𝑛)

where 𝜋 is a uniformizer of O∧
𝐶, 𝑓 (𝑠) and 𝑛 ≥ 1.
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(ii) If 𝑠 is not isolated in Sing( 𝑓 ), then there exists a commutative diagram

𝑆 𝑈 𝑊

𝐶 𝑉

𝑓

where 𝑊 ··= 𝑉 ⊗𝑘 𝑘 [𝑢, 𝑣]/(𝑢𝑣), the morphisms 𝑆 ← 𝑈 → 𝑊 and
𝐶 ← 𝑉 are étale, and there is a point 𝑢 ∈ 𝑈 mapping to 𝑠 ∈ 𝑆.

Proof In the isolated case, this follows from Lemma 0CBX, noting
that all nodes are split since we assume 𝑘 is algebraically closed. In the
non-isolated case, this follows from Lemma 0CBY. See also 0CDD. □

The isolated points in Sing( 𝑓 ) as in 1.34(i) are rational double points
and can be resolved by repeated blowup. See Section 0BGB and also [1].
Since the singularity is rational, we may harmlessly pass to a resolution
of such singularities:

Lemma 1.35 Let 𝑓 : 𝑆 → 𝐶 be a family of nodal curves over a smooth
projective curve 𝐶. Let 𝑏 : 𝑆′ → 𝑆 be the minimal resolution of the
isolated singularities of 𝑆. Then 𝑏∗𝜔𝑆′/𝐶 � 𝜔𝑆/𝐶 .

Proof There is a canonical morphism 𝑏∗𝜔𝑆′/𝐶 → 𝜔𝑆/𝐶 obtained by
dualizing the map 𝑏# : O𝑆 → 𝑏∗O𝑆′ . This map is an isomorphism: it
is clear on the locus where 𝑏 is an isomorphism; around the singular
points, this follows from Lemma 0BBU. □

We are now ready for the first positivity result, concerning families of
nodal curves in which the generic fibre is smooth. In this case, the total
space is normal as only the isolated singularities of Lemma 1.34(i) may
appear. Compare with [21, Proposition 4.5].

Proposition 1.36 Let 𝑓 : 𝑆 → 𝐶 be a family of nodal curves over a
smooth projective curve 𝐶. If the generic fibre of 𝑓 is smooth of genus
𝑔 ≥ 2, then 𝑓∗𝜔

⊗𝑚
𝑆/𝐶 is nef for any 𝑚 ≥ 2.

We first prove Proposition 1.36 under a series of simplifying assump-
tions in Lemma 1.38, then explain afterward how these assumptions may
be removed. The crucial input is the following consequence of Ekedahl’s
vanishing theorems for surfaces of general type.

Lemma 1.37 Suppose that char(𝑘) = 𝑝 > 0. Let 𝑆 be a smooth
projective minimal surface of general type, and 𝐷 a reduced effective
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Cartier divisor with smooth connected components of genus at least 2
and O𝑆 (𝐷) |𝐷 � O𝐷 . Then for any 𝑚 ≥ 2,

ℎ1(𝑆, 𝜔⊗𝑚
𝑆
(𝐷))

{
= 0 if char(𝑘) ≠ 2 or 𝑚 ≠ 2,
≤ 1 if char(𝑘) = 2 and 𝑚 = 2,

Proof From the cohomology of the exact sequence

0→ 𝜔⊗𝑚
𝑆
→ 𝜔⊗𝑚

𝑆
(𝐷) → 𝜔⊗𝑚

𝑆
(𝐷) |𝐷 → 0,

it suffices to show ℎ1(𝑆, 𝜔⊗𝑚
𝑆
(𝐷) |𝐷) = 0 and bound ℎ1(𝑆, 𝜔⊗𝑚

𝑆
). For

the former, the adjunction formula, Lemma 0B4B, gives

𝜔⊗𝑚
𝑆
(𝐷) |𝐷 � 𝜔⊗𝑚𝑆 (𝑚𝐷) |𝐷 � 𝜔

⊗𝑚
𝐷 .

Since the genus of each connected component of 𝐷 is at least 2,

𝐻1(𝑆, 𝜔⊗𝑚
𝑆
(𝐷) |𝐷) � 𝐻1(𝐷, 𝜔⊗𝑚𝐷 ) = 0

when 𝑚 ≥ 2, by degree reasons, see Lemma 0B90. The bound on
ℎ1(𝑆, 𝜔⊗𝑚

𝑆
) follows from vanishing theorem of Ekedahl [9, Main theo-

rem. (i)]. □

Lemma 1.38 Proposition 1.36 holds with additional assumptions that

(i) the characteristic of 𝑘 is 𝑝 > 0,
(ii) 𝑆 is minimal, and

(iii) the genus of 𝐶 is at least 2.

Proof If 𝑓∗𝜔⊗𝑚𝑆/𝐶 is not nef, then the Barton–Kleiman Criterion, Propo-
sition 1.24 gives an invertible quotient 𝛼 : 𝑓∗𝜔⊗𝑚𝑆/𝐶 → M

−1 such that
𝑑 ··= deg(M) > 0. The assumption on the genus of the fibres of 𝑓

together with (iii) imply that a resolution of 𝑆 is of general type; see [4,
Theorem 1.3]. We now seek a contradiction to Lemma 1.37.

Let 𝐹𝐶 : 𝐶 → 𝐶 be the absolute Frobenius of 𝐶 and consider the
base change 𝑓 ′ : 𝑆′ → 𝐶 of 𝑓 along 𝐹𝐶 . This is still a family of nodal
curves by Lemma 0C5B. Since smoothness is stable under base change
by Lemma 01VB, the generic fibre of 𝑓 ′ is also smooth. Since formation
of dualizing sheaves commutes with base change, see Lemmas 0B91
and 0E6R,

𝐹∗𝐶 𝑓∗𝜔
⊗𝑚
𝑆/𝐶 � 𝑓 ′∗𝑔

∗𝜔⊗𝑚
𝑆/𝐶 � 𝑓 ′∗𝜔

⊗𝑚
𝑆′/𝐶

where 𝑔 : 𝑆′ → 𝑆 is the projection. Pulling 𝛼 back by 𝐹𝐶 yields a
negative quotient 𝑓 ′∗𝜔⊗𝑚𝑆′/𝐶 → 𝐹∗

𝐶
M−1 of degree −𝑑𝑝. Replacing 𝑓 by
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𝑓 ′, we can take 𝑑 = deg(M) to be arbitrarily large. Thus we may assume
M � L ⊗O𝐶 𝜔⊗𝑚𝐶 for some very ample invertible O𝐶-module L.

Since the generic fibre of 𝑓 : 𝑆 → 𝐶 is assumed to be smooth, 𝑆
has only isolated rational double points as in Lemma 1.34(i). A mini-
mal resolution of singularities is obtained by repeated blowups and the
resulting exceptional divisor is a chain of projective lines joined along
nodes. Thus the minimal resolution of singularities of 𝑆 will remain a
family of nodal curves over 𝐶. Therefore, by furthermore using Lemma
1.35, we may replace 𝑆 by its minimal resolution of its singularities and
assume that 𝑆 is a smooth minimal surface of general type.

Upon rearranging terms of 𝛼, we obtain a surjection of sheaves

L ⊗O𝐶 𝜔⊗𝑚𝐶 ⊗O𝐶 𝑓∗𝜔
⊗𝑚
𝑆/𝐶 ↠ O𝐶 .

Since 𝐶 is of dimension 1, we obtain the inequality

ℎ1(𝐶,L ⊗O𝐶 𝜔⊗𝑚𝐶 ⊗O𝐶 𝑓∗𝜔
⊗𝑚
𝑆/𝐶) ≥ ℎ

1(𝐶,O𝐶) = 𝑔.

On the other hand, consider the invertible O𝑆-module

F ··= 𝑓 ∗L ⊗O𝑆 ( 𝑓 ∗𝜔⊗𝑚𝐶 ⊗O𝑆 𝜔⊗𝑚𝑆/𝐶) � 𝑓 ∗L ⊗O𝑆 𝜔⊗𝑚𝑆
where we have used transitivity of dualizing sheaves. Since 𝑓 has relative
dimension 1, the Leray spectral sequence, Lemma 01F2, for 𝑓 and F
degenerates on the 𝐸2-page and yields a short exact sequence

0→ 𝐻1(𝐶, 𝑓∗F ) → 𝐻1(𝑆, F ) → 𝐻0(𝐶, 𝑅1 𝑓∗F ) → 0.

The projection formula gives 𝑓∗F � L ⊗O𝐶 𝜔⊗𝑚𝐶 ⊗O𝐶 𝑓∗𝜔
⊗𝑚
𝑆/𝐶 , so this

sequence together with the inequality above gives

ℎ1(𝑆, 𝑓 ∗L ⊗O𝑆 𝜔⊗𝑚𝑆 ) = ℎ
1(𝑆, F ) ≥ ℎ1(𝐶, 𝑓∗F ) ≥ 𝑔 ≥ 2.

Since L is very ample, we may choose an effective Cartier divisor 𝐷 in
| 𝑓 ∗L| which is the union of smooth fibres of 𝑓 . Then 𝑓 ∗L � O𝑆 (𝐷)
yields a contradiction to Lemma 1.37. Therefore 𝑓∗𝜔⊗𝑚𝑆/𝐶 is nef. □

Proof of Proposition 1.36 We explain how to remove the assumptions
(i), (ii), and (iii) of Lemma 1.38.

We may reduce to characteristic 𝑝 > 0 as in Step 2 in the proof of
Proposition 1.28. That is, if 𝑘 were of characteristic 0 and 𝑓∗𝜔

⊗𝑚
𝑆/𝐶 had a

negative quotient, then choose a finitely generated Z-algebra over which
everything is defined. We may then reduce modulo some prime 𝑝 to
yield a contradiction to Lemma 1.38. Thus we may drop assumption (i).

If 𝑆were not minimal, consider any (−1)-curve 𝐸 . Then 𝐸 is contained
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in fibres of 𝑓 since, otherwise, 𝑓 |𝐸 : 𝐸 → 𝐶 would be a dominant
morphism from a curve of genus 0 to a curve of genus 𝑔 ≥ 2, which
is impossible. So contracting 𝐸 as in Lemma 0C2N yields a normal
projective surface 𝑆′ a morphism 𝑓 ′ : 𝑆′ → 𝐶 such that 𝑓 = 𝑓 ′ ◦ 𝑏,
where 𝑏 : 𝑆 → 𝑆′ is the contraction map. Since 𝑏∗𝜔𝑆′ � 𝜔𝑆 , transitivity
of relative dualizing sheaves implies 𝑓 ′∗𝜔⊗𝑚𝑆′/𝐶 � 𝑓∗𝜔

⊗𝑚
𝑆/𝐶 . Successively

contracting (−1)-curves will produce a minimal model 𝑓min : 𝑆min → 𝐶

of 𝑓 : 𝑆 → 𝐶. Induction on the number of contractions gives

𝑓∗𝜔
⊗𝑚
𝑆/𝐶 � 𝑓min,∗𝜔

⊗𝑚
𝑆min/𝐶

and nefness of the former follows from the nefness of the latter. Thus we
may drop both assumptions (i) and (ii) in Lemma 1.38.

Finally, if the genus of 𝐶 is less than 2. Let 𝑔 : 𝐶′ → 𝐶 be any finite
cover from a smooth projective curve 𝐶′ of genus at least 2 and let
𝑓 ′ : 𝑆′ → 𝐶 be the base change of 𝑓 . Then, as before, 𝑓 ′ is a family of
nodal curves with smooth generic fibre and 𝑔∗ 𝑓∗𝜔⊗𝑚𝑆/𝐶 = 𝑓 ′∗𝜔

⊗𝑚
𝑆′/𝐶 . This

is nef by Lemma 1.38. Hence 𝑓∗𝜔
⊗𝑚
𝑆/𝐶 is also nef by Lemma 1.22(ii).

This completes the proof. □

As a consequence, we obtain the following weak positivity result for
𝜔𝑆/𝐶 on 𝑆. See also [21, Corollary 4.6].

Corollary 1.39 In the situation of Proposition 1.36, let 𝐶𝑡 be a section
of 𝑓 . Then (𝜔𝑆/𝐶 · 𝐶𝑡 ) ≥ 0.

Proof Consider the pushforward along 𝑓 of the sequence

0→ 𝜔⊗𝑚
𝑆/𝐶 (−𝐶𝑡 ) → 𝜔⊗𝑚

𝑆/𝐶 → 𝜔⊗𝑚
𝑆/𝐶 |𝐶𝑡

→ 0.

We have 𝑅1 𝑓∗(𝜔⊗𝑚𝑆/𝐶 (−𝐶𝑡 )) = 0 by looking at degrees along fibres, see
Lemma 0B90. So this gives a surjection 𝑓∗𝜔

⊗𝑚
𝑆/𝐶 ↠ 𝑓∗𝜔

⊗𝑚
𝑆/𝐶 |𝐶𝑡

. But
𝑓 |𝐶𝑡

: 𝐶𝑡 → 𝐶 is an isomorphism, so this is an invertible quotient of
degree (𝜔𝑆/𝐶 ·𝐶𝑡 ). By the nefness of Proposition 1.36, we conclude that
(𝜔𝑆/𝐶 · 𝐶𝑡 ) ≥ 0. □

Towards positivity for general families of stable curves, we need the
following generalization of Proposition 1.36, in which the relative dual-
izing sheaf is twisted up by sections, and where the fibres of 𝑓 may be
of genus 0 or 1. Compare with [21, Proposition 4.7].

Proposition 1.40 Let 𝑓 : 𝑆 → 𝐶 be a family of nodal curves over a
smooth projective curve 𝐶. If the generic fibre of 𝑓 is smooth, then, for
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any set of pairwise distinct sections 𝐶1, . . . , 𝐶𝑛 of 𝑓 contained in the
smooth locus of 𝑆,

𝑓∗(𝜔⊗𝑚𝑆/𝐶 (𝑎1𝐶1 + · · · + 𝑎𝑛𝐶𝑛))

is nef for any 𝑚 ≥ 2 and any 0 ≤ 𝑎1, . . . , 𝑎𝑛 ≤ 𝑚.

Proof Since the 𝐶𝑖 avoid the singularities of 𝑆, we may reduce to case
in which 𝑆 is smoooth by passing to a minimal resolution of singularities
of 𝑆 using Lemma 1.35. We split the proof into three cases, depending
on whether the genus of the generic fibre of 𝑓 is ≥ 2, 0 or 1. Each case
will proceed by induction on 𝑗 ··=

∑
𝑎𝑖 .

Case 1. The generic fibre of 𝑓 is of genus 𝑔 ≥ 2.
Here the base case where each 𝑎𝑖 = 0 is Proposition 1.36. Assume the

claim is proven for 𝐷 𝑗 ··=
∑
𝑎𝑖𝐶𝑖; we will prove it for 𝐷 𝑗+1 ··= 𝐷 𝑗 + 𝐶𝑡

for any index 𝑡 such that 𝑎𝑡 + 1 ≤ 𝑚. Consider the exact sequence

0→ 𝜔⊗𝑚
𝑆/𝐶 (𝐷 𝑗) → 𝜔⊗𝑚

𝑆/𝐶 (𝐷 𝑗+1) → 𝜔⊗𝑚
𝑆/𝐶 (𝐷 𝑗+1) |𝐶𝑡

→ 0

obtained by twisting sequence for 𝐶𝑡 by 𝜔⊗𝑚
𝑆/𝐶 (𝐷 𝑗+1). Since the 𝐶𝑖 are

pairwise disjoint, together with transitivity of relative dualizing sheaves
and the adjunction formula, we have

𝜔⊗𝑚
𝑆/𝐶 (𝐷 𝑗+1) |𝐶𝑡

� 𝜔⊗𝑚−𝑎𝑡−1
𝑆/𝐶 |𝐶𝑡

⊗
(
𝜔
⊗𝑎𝑡+1
𝑆

((𝑎𝑡 + 1)𝐶𝑡 ) |𝐶𝑡
⊗ 𝜔⊗−𝑎𝑡−1

𝐶𝑡

)
� 𝜔⊗𝑚−𝑎𝑡−1

𝑆/𝐶 |𝐶𝑡
.

Because 𝑎𝑡 + 1 ≤ 𝑚, Corollary 1.39 together with Lemma 0BEY shows
that this invertible sheaf has non-negative degree on 𝐶𝑡 . Also note that
𝑅1 𝑓∗(𝜔⊗𝑚𝑆/𝐶 (𝐷 𝑗)) = 0 due to degree on the fibres; see Lemma 0B90.

Thus applying 𝑓∗ to the above exact sequence yields an exact sequence

0→ 𝑓∗
(
𝜔⊗𝑚
𝑆/𝐶 (𝐷 𝑗)

)
→ 𝑓∗

(
𝜔⊗𝑚
𝑆/𝐶 (𝐷 𝑗+1)

)
→ 𝑓∗

(
𝜔
⊗𝑚−𝑎𝑡−1
𝑆/𝐶 |𝐶𝑡

)
→ 0.

The subsheaf is nef by the induction hypothesis, and the quotient sheaf is
a nonnegative invertible sheaf on𝐶, as𝐶𝑡 is a section. Thus the extension
is nef by Lemma 1.25, completing the induction in this case.

Case 2. The generic fibre of 𝑓 is of genus 𝑔 = 0.
When 𝑗 =

∑
𝑎𝑖 ≤ 2𝑚 − 1, the sheaf 𝜔⊗𝑚

𝑆/𝐶 (
∑
𝑎𝑖𝐶𝑖) is negative on

fibres of 𝑓 and hence has vanishing, whence nef, pushforward; these
are the base cases. Let 𝑗 ≥ 2𝑚 − 1 and assume that the claim is true
for all divisors of the form

∑
𝑎𝑖𝐶𝑖 with

∑
𝑎𝑖 = 𝑗 ; we will prove it for

𝐷 = 𝐶𝑡 +
∑
𝑎𝑖𝐶𝑖 for any index 𝑡 such that 𝑎𝑡 + 1 ≤ 𝑚.

We can assume that (𝐶2
𝑡 ) ≤ 0. Indeed, by the Hodge Index Theorem,

we may assume that among 𝐶1, . . . , 𝐶𝑛, the only section with positive
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self-intersection is 𝐶1. So if 𝐷 = 𝐶1 +
∑
𝑎𝑖𝐶𝑖 , as 𝑎1 ≤ 𝑚 < 2𝑚 − 1,

there is some index 𝑡 ≠ 1 such that 𝑎𝑡 ≠ 0. Thus we may write

𝐷 = 𝐶1 +
∑︁

𝑎𝑖𝐶𝑖 = 𝐶𝑡 +
∑︁

𝑎′𝑖𝐶𝑖

with 𝑎′1 ··= 𝑎1 + 1, 𝑎′𝑡 ··= 𝑎𝑡 − 1, and 𝑎′
𝑖
··= 𝑎𝑖 for 𝑖 ≠ 1, 𝑡. Then∑

𝑎𝑖 =
∑
𝑎′
𝑖
= 𝑗 and induction will apply to

∑
𝑎′
𝑖
𝐶𝑖 . With this, we see

by the adjunction formula as in Case 1, that

𝜔𝑆/𝐶 (𝐶𝑡 ) |𝐶𝑡
� O𝐶𝑡

so (𝜔𝑆/𝐶 · 𝐶𝑡 ) = −(𝐶2
𝑡 ) ≥ 0.

From here, induction proceeds as in Case 1.
Case 3. The generic fibre of 𝑓 is of genus 𝑔 = 1.
To establish the base case and the nonnegativity (𝜔𝑆/𝐶 · 𝐶𝑡 ) ≥ 0, we

claim that it suffices to show 𝜒(𝑆,O𝑆) ≥ 0. Indeed, the canonical bundle
formula for elliptic surfaces in [3, Theorem 2] gives

𝜔𝑆/𝐶 � 𝑓 ∗M ⊗O𝑆 O𝑆 (𝐹)

where 𝐹 is an effective Cartier divisor supported along fibres of 𝑓 and
M is an invertible O𝐶-module with degree ≥ 𝜒(𝑆,O𝑆). Thus

𝑓∗(𝜔⊗𝑚𝑆/𝐶) �M
⊗𝑚 and (𝜔𝑆/𝐶 · 𝐶𝑡 ) ≥ ( 𝑓 ∗M · 𝐶𝑡 ) ≥ 𝜒(𝑆,O𝑆)

so nefness of 𝑓∗(𝜔⊗𝑚𝑆/𝐶) and nonnegativity will follow from 𝜒(𝑆,O𝑆) ≥ 0.
Since 𝜒(𝑆,O𝑆) is a birational invariant, we may in fact assume 𝑆 is

minimal over 𝐶. In this case, the effective Cartier divisor 𝐹 is actually
a sum of fibre classes, at least viewed as a Q-Cartier divisor: see [3,
Bottom of p. 28]. Thus 𝜔𝑆 is a sum of fibre classes and so (𝜔2

𝑆
) = 0.

Noether’s Formula then gives

12𝜒(𝑆,O𝑆) = (𝜔2
𝑆) + 𝑒(𝑆) = 𝑒(𝑆) ≥ 𝑒(𝐶)𝑒(𝑆 𝜂̄) = 0,

where 𝑒 denotes ℓ-adic topological Euler characteristic, ℓ any prime
different from 𝑝, and 𝑆 𝜂̄ is the geometric generic fibre of 𝑓 : 𝑆 → 𝐶.
The inequality follows from [23, Lemma 1], and 𝑒(𝑆 𝜂̄) = 0 since the
generic fibre of 𝑓 is a smooth curve of genus 1. With this, induction may
proceed as in Case 1, and the proof of the Proposition is complete. □

To obtain a positivity result for a general family 𝑓 : 𝑆 → 𝐶 of
stable curves, it remains to consider the non-isolated singularities of
Lemma 1.34(ii). Let 𝐷 be the subscheme of 1-dimensional components
of Sing( 𝑓 ), and call it the double locus of 𝑆. The following explains how
a general family of nodal curves is obtained by glueing nodal families
with only double points along the double locus:
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Lemma 1.41 Let 𝑓 : 𝑆 → 𝐶 be a family of nodal curves over a smooth
projective curve 𝐶. Let 𝜈 : 𝑆𝜈 → 𝑆 be the normalization. Then 𝑆𝜈 is a
disjoint union of nodal families of curves over 𝐶 with smooth generic
fibre and 𝜔𝑆𝜈/𝑆 � O𝑆𝜈 (−𝐷𝜈) where 𝐷𝜈 ··= 𝜈−1(𝐷).

Proof Let 𝑠 ∈ 𝐷 be a point of the double locus of 𝑆 and consider the
diagram of Lemma 1.34(ii):

𝑆 𝑈 𝑊

𝐶 𝑉

𝑓

Since the morphisms 𝑆 ← 𝑈 → 𝑊 are étale and normalization com-
mutes with smooth base change by Lemma 03GV, there are étale mor-
phisms 𝑆𝜈 ← 𝑈𝜈 → 𝑊𝜈 . Since 𝐶 ← 𝑉 is also étale, 𝑉 is smooth, so
the same Lemma gives

𝑊𝜈 = 𝑉 ⊗𝑘 (𝑘 [𝑢] × 𝑘 [𝑣]) → 𝑉 ⊗𝑘 𝑘 [𝑢, 𝑣]/(𝑢𝑣) = 𝑊.

In particular, 𝑊𝜈 is smooth. As the morphisms from 𝑈𝜈 are étale, we
conclude that 𝑆𝜈 , locally around 𝑠, is the disjoint union of two families
of nodal curves over 𝐶 with smooth generic fibre. Since this is true for
all 𝑠 ∈ 𝐷, 𝑆𝜈 itself is a disjoint union of families of nodal curves over 𝐶
with smooth generic fibre.

For 𝜔𝑆𝜈/𝑆 , since 𝜈 is a finite morphism, its relative dualizing sheaf is
characterized by the formula

𝜈∗𝜔𝑆𝜈/𝑆 = HomO𝑆 (𝜈∗O𝑆𝜈 ,O𝑆);

see Section 0FKW. Evaluation at 1 yields an injection 𝜈∗𝜔𝑆𝜈/𝑆 → O𝑆
whose image is an ideal sheaf I of a subscheme supported on 𝐷. In fact,
this is the ideal sheaf of 𝐷. To see this, since formation of the evaluation
map commutes with flat pullback (see Lemmas 0C6I and 02KH), using
the local structure of 𝑆 around 𝑠 ∈ 𝐷 above, it suffices to show that, for

𝑅𝜈 ··= 𝑘 [𝑢] × 𝑘 [𝑣] ← 𝑘 [𝑢, 𝑣]/(𝑢𝑣) =·· 𝑅

we have 𝐼 ··= Hom𝑅 (𝑅𝜈 , 𝑅) = (𝑢, 𝑣). Indeed, 𝑅𝜈 is generated as an
𝑅-module by (1, 0) and (0, 1), and they are annihilated by 𝑣 and 𝑢,
respectively, so any 𝑅-module map 𝜑 : 𝑅𝜈 → 𝑅 must be of the form

𝜑((1, 0)) = 𝛼𝑢 and 𝜑((0, 1)) = 𝛽𝑣 for some 𝛼, 𝛽 ∈ 𝑅.

Furthermore, this shows that the image of 𝐼 under the ring extension
𝑅 → 𝑅𝜈 is the ideal of the two preimages of the node. Hence we conclude
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that 𝜈∗𝜔𝑆𝜈/𝑆 � I the ideal sheaf of 𝐷 in 𝑆, and so 𝜔𝑆𝜈/𝑆 � O𝑆𝜈 (−𝐷𝜈)
is the ideal sheaf of 𝐷𝜈 in 𝑆𝜈 . □

With the notation above, we have the following intermediate result:

Proposition 1.42 Let 𝑓 : 𝑆 → 𝐶 be a family of stable curves over a
smooth projective curve 𝐶. Assume that

(i) the double curve 𝐷 is a union of sections of 𝑓 , and
(ii) its preimage 𝐷𝜈 ··= 𝜈−1(𝐷) is a union of sections of 𝑓 𝜈 : 𝑆𝜈 → 𝐶.

Then 𝑓∗𝜔
⊗𝑚
𝑆/𝐶 is nef for any 𝑚 ≥ 2.

Proof By transitivity of relative dualizing sheaves and Lemma 1.41,
𝜈∗𝜔𝑆/𝐶 � 𝜔𝑆𝜈/𝐶 (𝐷𝜈). Thus pulling 𝜔⊗𝑚

𝑆/𝐶 back to 𝑆𝜈 and tensoring
with the subscheme sequence for 𝐷𝜈 yields

0→ 𝜔⊗𝑚
𝑆𝜈/𝐶 ((𝑚 − 1)𝐷𝜈) → 𝜈∗(𝜔⊗𝑚

𝑆/𝐶) → 𝜔⊗𝑚
𝑆𝜈/𝐶 (𝑚𝐷

𝜈) |𝐷𝜈 → 0.

Since 𝐷𝜈 is an effective Cartier divisor of 𝑆𝜈 , the adjunction formula,
Lemma 0AA4, together with hypothesis (ii) gives

𝜔𝑆𝜈/𝐶 (𝐷𝜈) |𝐷𝜈 � 𝜔𝐷𝜈/𝐶 � O𝐷𝜈 .

Applying 𝜈∗ to the short exact sequence yields an exact sequence on 𝑆:

0→ 𝜈∗
(
𝜔⊗𝑚
𝑆𝜈/𝐶 ((𝑚 − 1)𝐷𝜈)

)
→ 𝜔⊗𝑚

𝑆/𝐶 ⊗O𝑆 𝜈∗O𝑆𝜈 → O⊕2
𝐷 → 0.

Since the preimage of the antidiagonal O𝐷 along the map 𝜈∗O𝑆𝜈 → O⊕2
𝐷

is O𝑆 , there is a short exact sequence

0→ 𝜈∗
(
𝜔⊗𝑚
𝑆𝜈/𝐶 ((𝑚 − 1)𝐷𝜈)

)
→ 𝜔⊗𝑚

𝑆/𝐶 → O𝐷 → 0.

Now push down to 𝐶. Write 𝑓 𝜈 ··= 𝑓 ◦ 𝜈 : 𝑆𝜈 → 𝐶. Since the fibres
of 𝑓 are stable curves, the fibres of 𝑓 𝜈 are stable pointed curves, so
𝑅1 𝑓 𝜈∗ (𝜔⊗𝑚𝑆𝜈/𝐶 ((𝑚−1)𝐷𝜈)) = 0 for all𝑚 ≥ 2. The relative Leray spectral
sequence for 𝑓 𝜈 , Lemma 0734, shows that 𝑅1 𝑓∗𝜈∗(−) is a subsheaf of
𝑅1 𝑓 𝜈∗ (−). Thus applying 𝑓∗ to the preceding short exact sequence yields

0→ 𝑓 𝜈∗
(
𝜔⊗𝑚
𝑆𝜈/𝐶 ((𝑚 − 1)𝐷𝜈))

)
→ 𝑓∗𝜔

⊗𝑚
𝑆/𝐶 → 𝑓∗O𝐷 → 0.

The term on the left is nef by Lemma 1.41 together with (ii) and Propo-
sition 1.40; by (i), the sheaf 𝑓∗O𝐷 is isomorphic to the sum of copies of
O𝐶 . Thus 𝑓∗𝜔⊗𝑚𝑆/𝐶 is an extension of a direct sum of non-negative line
bundles by a nef bundle, and hence nef by Lemma 1.25. □

Putting everything together now gives the main positivity result.

https://stacks.math.columbia.edu/tag/0AA4
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Theorem 1.43 Let 𝑓 : 𝑆 → 𝐶 be a family of stable curves over a
smooth projective curve 𝐶. Then 𝑓∗𝜔

⊗𝑚
𝑆/𝐶 is nef for any 𝑚 ≥ 2.

Proof In order to apply Proposition 1.42 to 𝑓 , we need to arrange
for the components of the double curve 𝐷 and its preimage 𝐷𝜈 in the
normalization 𝜈 : 𝑆𝜈 → 𝑆 to be sections over 𝐶. So let 𝐶′ be any such
component and form the Cartesian diagram

𝑆′ 𝑆

𝐶′ 𝐶

𝑓 ′ 𝑓

𝑔

By Lemma 0E76, 𝑓 ′ is still a family of stable curves. Moreover, the in-
verse image of𝐶′ is now a section over𝐶′. Since 𝑔∗ 𝑓∗𝜔⊗𝑚𝑆/𝐶 � 𝑓 ′∗𝜔

⊗𝑚
𝑆′/𝐶′ ,

by Lemma 1.22(ii), we may replace 𝑓 by 𝑓 ′. Repeating this for every
component of 𝐷 and 𝐷𝜈 , we may arrange for hypotheses (i) and (ii) of
Proposition 1.42 to be verified, upon which we may conclude. □

7 Projectivity of the moduli of curves

Finally, we put everything together to show that the Deligne–Mumford
moduli space 𝑀𝑔 of stable curves is projective over Spec(Z).

The first step is to show that for a family of curves 𝑓 : 𝑋 → 𝑆 over
an algebraically closed field 𝑘 whose moduli map has finite fibres, there
is some 𝑚 such that 𝜆𝑚 pulls back to an ample invertible sheaf on 𝑆. In
fact, 𝑚 = 6 works by using the fact that tri-canonically embedded stable
curves are projectively normal and are determined by their quadratic
equations, see [28, Corollary on p. 58]. In the following, we argue
directly and only show that 𝑚 = 3𝑑 work for all sufficiently large 𝑑,
perhaps depending on the family 𝑓 .

Lemma 1.44 Let 𝑓 : 𝑋 → 𝑆 be a family of stable curves of genus
𝑔 ≥ 2 over an algebraically closed field 𝑘 . If the moduli map [ 𝑓 ] : 𝑆 →
M𝑔 is of finite type and has finite fibres on 𝑘-points, then [ 𝑓 ]∗𝜆3𝑑 =

det( 𝑓∗𝜔⊗3𝑑
𝑋/𝑆) is ample on 𝑆 for all 𝑑 ≫ 0.

Proof We apply the Ampleness Lemma 1.33 to the multiplication map

𝜇𝑑 : Sym𝑑 ( 𝑓∗𝜔⊗3
𝑋/𝑆) → 𝑓∗𝜔

⊗3𝑑
𝑋/𝑆 .

We choose 𝑑 sufficiently large so that

https://stacks.math.columbia.edu/tag/0E76
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(i) the fibres of 𝑓 are determined by their degree 𝑑 equations in their
tri-canonical embedding, and

(ii) 𝜇𝑑 is surjective.

To see that this is possible, note that by Lemma 0E8X, 𝜔⊗3
𝑋/𝑆 is 𝑓 -very

ample, so there is a commutative diagram

𝑋 P

𝑆

𝑓

𝜄

𝜋 where P ··= P( 𝑓∗𝜔⊗3
𝑋/𝑆)

and 𝜄 is a closed immersion in which the fibres of 𝑓 : 𝑋 → 𝑆 are
embedded as tri-canonical curves of degree 6𝑔−6. Thus (i) is satisfied for
any 𝑑 ≥ 6𝑔−6, as can be seen by taking joins with disjoint codimension
3 linear spaces; see for example [28, Theorem 1].

As for (ii), let I be the ideal sheaf of 𝑋 in P and consider the sequence

0→ I ⊗OP OP(𝑑) → OP(𝑑) → 𝜄∗𝜔
⊗3𝑑
𝑋/𝑆 → 0.

Then 𝜇𝑑 is the direct image under 𝜋 of the surjection. Now 𝑆 is Noethe-
rian as it is of finite type overM𝑔, which is of finite presentation over
Spec(Z) (see Lemmas 0DSS and 0E9B). Thus relative Serre Vanishing,
Lemma 02O1, applies to give a 𝑑0 such that

𝑅1𝜋∗(I ⊗OP OP(𝑑)) = 0 for all 𝑑 ≥ 𝑑0

whence (ii) is satisfied for any 𝑑 ≥ 𝑑0.
Choose any 𝑑 ≥ max(6𝑔 − 6, 𝑑0) and set 𝜇 ··= 𝜇𝑑 . We now verify

the hypotheses of the Ampleness Lemma 1.33. The basic positivity is
given by Theorem 1.43, ensuring that 𝑓∗𝜔⊗3

𝑋/𝑆 is nef. To understand the
classifying map, fix a closed point 0 ∈ 𝑆 and set 𝑉 ··= 𝐻0(𝑋0, 𝜔

⊗3
𝑋0/𝑘).

For each closed point 𝑠 ∈ 𝑆, choose an isomorphism

𝜑𝑠 : 𝑉 �−→ 𝐻0(𝑋𝑠, 𝜔
⊗3
𝑋𝑠/𝑘)

to view 𝑋𝑠 as being embedded in P𝑉 . We obtain maps

𝜇0,𝑠 : Sym𝑑 (𝑉)
Sym𝑑 (𝜑𝑠 )−−−−−−−−→ Sym𝑑 (𝐻0(𝑋𝑠, 𝜔

⊗3
𝑋𝑠/𝑘))

𝜇 |𝑠−−→ 𝐻0(𝑋𝑠, 𝜔
⊗3𝑑
𝑋𝑠/𝑘)

whose kernel is the space of degree 𝑑 equations defining 𝑋𝑠 in P𝑉 . Up to
the action of PGL(𝑉) on the source, 𝜇0,𝑠 is independent of the choice of
isomorphism 𝜑𝑠. Since 𝑅1 𝑓∗𝜔

⊗3
𝑋/𝑆 = 0 by Lemma 0E8X, the base change

https://stacks.math.columbia.edu/tag/0E8X
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maps on direct images are isomorphisms by Lemma 0D2M. Therefore
the classifying map of Lemma 1.31 is identified with the map

[𝜇] : 𝑆 → [G(Sym𝑑 (𝑉), 𝑞)/PGL(𝑉)] where 𝑞 ··= (6𝑑 − 1) (𝑔 − 1),

which sends a closed point 𝑠 of 𝑆 to the PGL(𝑉) equivalence class 𝐾𝑠

of ker(𝜇0,𝑠). Now condition (i) from our choice of 𝑑 implies that for any
two closed points 𝑠, 𝑠′ ∈ 𝑆,

𝐾𝑠 = 𝐾𝑠′ if and only if 𝑋𝑠 � 𝑋𝑠′

meaning [𝜇] has finite fibres on 𝑘-points if and only if [ 𝑓 ] : 𝑆 → M𝑔

does. Thus the Ampleness Lemma 1.33 applies to show that 𝑓∗𝜔⊗3𝑑
𝑋/𝑆 is

ample. □

Theorem 1.45 The moduli space 𝑀𝑔 of stable curves of genus 𝑔 ≥ 2
is projective over Spec(Z).

Proof SinceM𝑔 is quasi-compact, by Lemma 0E9B, Lemma 1.5 al-
lows us to choose an integer 𝑛 such that the invertible sheaf 𝜆⊗𝑛𝑚 descends
to an invertible sheaf L𝑚 on 𝑀𝑔 for all 𝑚. We show that there exists
some 𝑚 such that L𝑚 is ample over Spec(Z).

By Lemmas 0E7A and 1.3,M𝑔 is a Deligne–Mumford stack with a
moduli space, so [32, Proposition 2.6] shows there exists a scheme 𝑆 and
a finite surjective morphism 𝜑 : 𝑆 →M𝑔. We have a diagram

𝑆 M𝑔

𝑀𝑔

𝜋

𝜑

𝑓

We claim that 𝜋 ··= 𝑓 ◦ 𝜑 is a finite surjective morphism of algebraic
spaces. Indeed, 𝜋 is the composition of a finite surjective map 𝜑 with
a universal homeomorphism 𝑓 (see Theorem 0DUT), so 𝜋 is surjective
with discrete fibres. By Lemma 0A4X, finiteness of 𝜋 will now follow
from properness of 𝜋. Since M𝑔 is proper over Spec(Z) by Theorem
0E9C, the same is true for both 𝑆 and 𝑀𝑔, by Lemmas 0CL7 and 0DUZ,
respectively. Hence 𝜋 is proper by Lemma 04NX.

By Lemma 0GFB, L𝑚 is ample on 𝑀𝑔 over Spec(Z) if and only
if 𝜋∗L𝑚 is ample on 𝑆 over Spec(Z). Thus it suffices to show that
there exists some 𝑚 such that 𝜋∗L𝑚 = 𝜑∗𝜆⊗𝑛𝑚 is ample over Spec(Z).
Let 𝑝 be a prime number and let 𝑆𝑝 be the base change of 𝑆 along
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Spec(F𝑝) → Spec(Z). The restriction 𝜑𝑝 : 𝑆𝑝 → M𝑔 of 𝜑 to 𝑆𝑝 is
finite and satisfies

𝜑∗𝑝𝜆
⊗𝑛
𝑚 = 𝜑∗𝜆⊗𝑛𝑚 |𝑆𝑝

= 𝜋∗L𝑚 |𝑆𝑝
.

By Lemma 1.44, we may choose 𝑑𝑝 such that 𝜑∗𝑝𝜆⊗𝑛3𝑑 is ample for all
𝑑 ≥ 𝑑𝑝. Now Lemma 0D2N gives an open neighbourhood 𝑈𝑝 of 𝑝 in
Spec(Z) over which 𝜑∗𝜆⊗𝑛3𝑑 is ample. By quasi-compactness, there exists
a finite set of primes 𝑃 such that Spec(Z) = ⋃

𝑝∈𝑃𝑈𝑝. Then 𝜋∗L𝑚 is
ample over Spec(Z) for any 𝑚 = 3𝑑 with 𝑑 ≥ max(𝑑𝑝 | 𝑝 ∈ 𝑃). □
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