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Abstract

We investigate how to solve smooth matrix optimization problems with general linear inequal-
ity constraints on the eigenvalues of a symmetric matrix. We present solution methods to
obtain exact global minima for linear objective functions, i.e., F(X) = (C, X), and perform
exact projections onto the eigenvalue constraint set. Two first-order algorithms are devel-
oped to obtain first-order stationary points for general non-convex objective functions. Both
methods are proven to converge sublinearly when the constraint set is convex. Numerical
experiments demonstrate the applicability of both the model and the methods.

Keywords Eigenvalue optimization - Constrained optimization - Frank-Wolfe algorithm -
Non-smooth analysis - Matrix completion

Mathematics Subject Classification 90C26 - 90C52 - 65K10 - 68W40

1 Introduction

Constrained matrix optimization is an essential aspect of machine learning [14], matrix
factorization and completion [4, 7, 32], semidefinite programming [53], robust subspace
recovery [33, 54] and covariance estimation [15]. There are two types of constraints to
consider in matrix optimization: coordinate constraints and spectral constraints. Coordinate
constraints impose prohibitions on the entries of the matrix, such as the diagonal elements
must equal one or the row and column sums must be unity. Spectral constraints force the
eigenvalues or singular values to satisfy certain conditions. For example, assuming a matrix
is positive semidefinite enforces non-negativity on the eigenvalues. The literature is replete
with a diverse array of coordinate constraints, but the variety of spectral constraints is limited.
Given the power of constrained matrix optimization, the lack of general spectral constraints,
with corresponding theory and algorithmic development, is a knowledge gap worth filling.

The goal of this paper is to explore spectrally constrained matrix optimization (SCO) and
develop theory and algorithms to solve new models with general spectral constraints. We
begin with the following spectrally constrained eigenvalue model
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min F(X) (SCO-Eig)
s.t. AMX) < b
X c Snxn

where S"*"* denotes the set of real n-by-n symmetric matrices, F : S"*" — R is con-
tinuously differentiable, A € R™*", b € R™, and A(X) is the vector of eigenvalues of X
in descending order, i.e., A1 (X) > Ay(X) > --- > A,(X). (SCO-Eig) allows general lin-
ear inequality constraints on the eigenvalues; therefore, the model encompasses traditional
spectral constraints, such as non-negativity, while significantly boosting the modeling power
of the practitioner. As an example, low-rank conditions are important and popular in matrix
optimization [39, 62]. The general low-rank model, min{F (X) | rank(X) <k, X € S_’,’_X” }
where 81" denotes the set of real n-by-n positive semidefinite matrices, can be written in
the form of (SCO-Eig) as

min {F(X) | 4,(X) = 0, 2+1(X) <0, X € ™"}

orapproximated as min { F(X) | ;(X) € [0,8],i =k +1,...,n, X € S"™"}, wheres >
0 controls the accuracy of the approximation.

This paper presents the first study of (SCO-Eig) and is a departure from the current corpus
devoted to matrix optimization. Our approach offers a change of perspective which has
somehow escaped scrutiny by the community. To demarcate the novelty of our framework,
we embark on a brief excursion into the literature.

1.1 Literature Review

Matrix optimization with an emphasis on the spectrum has been a subject of rigorous explo-
ration for decades. These efforts have amassed a sizable body of work known as eigenvalue
optimization [11, 36, 37, 42, 45-47, 51, 59]. The main focus of these papers is minimizing
functions of the eigenvalues or singular values of a constrained parameterized matrix. A
general framework often seen in eigenvalue optimization models is

min f(A(A(x)))
s.t.x € 2 CR™, D

where A : R"™ — S is a smooth map and £2 could be a strict subset of R”. Many of
these works focus on a specific form of the objective function in (1), such as minimizing the
maximum eigenvalue of a parameterized matrix [45] or minimizing a weighted-sum of the
k-largest eigenvalues or singular values [11, 47, 59]. According to Overton [47], the work
of Cullum, Donath and Wolfe in 1975 seems to be the first study of minimizing the sum of
the k-largest eigenvalues of a parameterized matrix. In particular, Cullum et al. investigated
minimizing fi(x) = Y i_; A (A(x)) where A(x) = Ao + diag(x) for a fixed matrix Ao.
In the case of Hermitian matrices, Mengi et al. [42] provide a general framework similar
to (1), and Kangal et al. [29] consider an infinite dimensional problem by minimizing the
k-th largest eigenvalue of a compact self-adjoint operator. Early overviews of eigenvalue
optimization are provided by Lewis and Overton [36, 37].

The seminal work of Cullum, Donath and Wolfe focused on understanding the non-
smoothness of f,, and the study of non-smooth functions composed of eigenvalues and
singular values has remained a common direction of inquiry. We see this in the works of
Overton [45—47] and Lewis [23, 34, 35, 38] where much discussion surrounds computing
the subdifferentials of functions whose arguments are eigenvalues and singular values. A
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particularly important setting where subdifferentials and derivatives are readily available in
eigenvalue optimization is that of spectral functions. Spectral functions are a staple in the
eigenvalue optimization literature [1, 34, 38]. The function F : S"*" — R is a spectral
function (over S"*") if F(X) = f(A(X)) for some symmetric function f : R" — R
where f symmetric means f(x) = f(Px) for all permutation matrices P € R"*". The key
feature of spectral functions is they are independent of the order of the eigenvalues, e.g.,
F(X)=Tr(X) = Z?:] Xi (X) is a spectral function. Example 7.13 in [1] presents a number
of common spectral functions encountered in the literature.

Studies on how to avoid non-smoothness also exist. Shapiro and Fan [51] detailed how
to avoid some issues of non-smoothness at repeated eigenvalues by proving under certain
conditions the set {x € R™ | A1 (A(x)) = - -- = Ak (A(x))} is a smooth manifold near a point
x* where A1 (A(x™)) has multiplicity and A is a smooth map from R™ to S"*".

1.2 Contributions: A New Perspective

A common thread present in the eigenvalue optimization literature is minimizing objective
functions solely dependent on the spectrum of the decision matrix. As a result, these papers
fixate on exploring the non-smoothness of these objectives. This has led to beautiful math-
ematics and robust application; however, the success of these models has simultaneously
limited the scope of the investigation. Constrained matrix optimization revolves around
coordinate and spectral constraints, and the current eigenvalue optimization literature has
not expanded our understanding of general spectral constraints.

Our work on (SCO-Eig) begins a novel study to understand eigenvalues being present
functionally in the constraint set. Ours is a perspective shift, instead of focusing on eigen-
values in the objective, we focus on eigenvalues in the constraint, and, to our surprise, this
perspective seems uncommon. Almost no papers consider general functional constraints on
the eigenvalues, e.g., g(A(X)) < 0, and those that do restrict themselves to spectral func-
tions. In the very recent work [39], which appeared while we were finishing this paper, the
authors allow spectral functions in the constraint set they consider; however, they do not go
beyond this paradigm and they further require convexity of the spectral functions. We do not
assume the constraint set in (SCO-Eig) is composed of spectral functions, and, unlike [39],
we develop approaches to solve our model without convexification. Another work which
considers general functional eigenvalue constraints is [28]. In this paper, the authors inves-
tigate error bound conditions for constraint sets of the form {X e 8| f(MX)) < 0}
where f : R" — R, but they did not utilize their results to investigate matrix optimization.
A paper which appeared following the completion of this work by Ito and Lourenco [26]
is the closest to our study. They approached the same type of problem we consider using
a different mathematical framework. Their work supports our belief this is the genesis of a
fruitful optimization model.

It is important to note a comprehensive study of (SCO-Eig) must depart from the current
literature around spectral functions. First, the constraint set we consider cannot be obtained
via spectral functions except in special circumstances. Second, the objective function we
consider is never assumed to be a spectral function. For example, even in the simple case of
a linear objective function, which we study in Sect.4, the objective function is not, except
in special instances, a spectral function; therefore, one cannot simply utilize the current
literature to directly answer the questions we are posing, so we sought to expand the current
state-of-affairs to address new challenges.
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The main contribution of this work is the first study of a matrix optimization model with
general linear inequality constraints on the eigenvalues. We prove in the case of a linear
objective function that a global minimum of (SCO-Eig) can be computed regardless of the
non-convexity of the constraint set, and we prove how to perform optimal projections onto the
constraint set. With these results, we develop two first-order algorithms to compute stationary
points to (SCO-Eig) and provide a proof of their sublinear convergence rate. Numerical
experiments demonstrate the applicability of our procedures.

1.3 Organization

The organization of the paper is as follows. Section2 presents and proves some facts about
the eigenvalue constraint set, such as its connectedness. Section3 provides a discussion of
necessary optimality conditions for (SCO-Eig) and an approximated version of the model
which avoids the non-smoothness associated with repeated eigenvalues. Sections4 and 5
demonstrate we can solve essential instantiations of (SCO-Eig) which form crucial steps in
classical optimization algorithms. Namely, Sect.4 proves solving (SCO-Eig) with a linear
objective function can be done exactly, regardless of the non-convexity of the constraint, and
only requires solving a linear program and performing a spectral decomposition. Section 5
solves the projection problem onto the eigenvalue constraint set. From these results, in Sect. 6
we present a projected gradient method and a Frank-Wolfe algorithm which obtain first-order
e-stationary points to (SCO-Eig) when the constraint set is convex and the objective function
is smooth though possibly non-convex. Section7 presents the convergence analysis for our
presented algorithms, and Sect. 8 displays the results of numerical experimentation; Sect. 8.1
applies both methods to the question of determining a preconditioning matrix for solving
linear systems; Sect. 8.2 investigates the solving of systems of quadratic equations with our
projected gradient method while Sect. 8.3 presents an example in matrix completion. We
conclude the paper in Sect. 9 with directions for future inquiries.

In this paper, scalars, vectors and matrices are denoted by lower case, bold lower case,
and bold upper case letters respectively, e.g., x, y and Z. Given the positive integer k,
[k] := {1, ..., k}. If x € R", Diag(x) denotes the diagonal matrix whose diagonal is x. The
set of real n-by-n symmetric, positive semidefinite, and positive definite matrices are denoted
s S and SYL" respectively, and O(n) := {X eR™>™ | XTX = I} denotes the set
of orthogonal matrices where I is the identity matrix.

2 The Eigenvalue Constraint Set

The paradigm shift we are pursuing rests on the eigenvalues being functionally present in
the constraints. Due to the limited attention received by such settings, we begin by proving
some general facts about the constraint set in (SCO-Eig), which we denote as

Si(A,b) :={X € 87" | AMX) < b}. 2)

We shall desire to take advantage of writing the constraint without ordering the eigenvalues.
To this end, let Ly € R” be the unordered vector of eigenvalues for X € §"*"; we define the
matrix D, € R~D*" to enforce the descending order of the eigenvalues, i.e., the i-th row
of D, is (ej4+1 — e;) | where e; € R” has a one in the i-th place and zeros elsewhere. Thus,
an equivalent manner of writing (2) is Sx (A, b) = {X e S| AAx < b, Dyrx < 0} .
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=1.5 X, =0.75 X3 =0

Fig. 1 Demonstration of Sy (A, b) in Example 1. Each subplot shows the black regions of coordinates x| and
x7 of X € S5y (A, b) for a fixed value of x3, which is specified above each subplot

Our first fact demonstrates the unsurprising but key truth that Sy (A, b) has the potential to
be convex and non-convex as a function of the problem’s data.

Fact1 Sy (A, b) can be both convex and non-convex dependent on A € R™*" and b € R™.

Proof If A = —I and b = 0, then Sy (A, b) = S’*" which is convex. Let A € R**? and
b € R? enforce the constraint X € S>*% with 1;(X) > 3 and A»(X) < 1. One can easily
produce examples where convex combinations of matrices satisfying these constraints fail
these conditions. For example, the matrices

3515 417
X1= (15 6) and X = (17 63)

satisfy the eigenvalue constraints; however, Y := % (X1 + X») fails the condition A (Y) < 1.
O

We further explore the non-convexity of Sy (A, b) with an example.
Example 1 Let Sy (A, b) = {X € 87?2 | M(X) € [3,5], LX) €0, 2]}. This set is non-
convex. To visualize this, we take slices of the constraint set. Let

x| X .
X = < ! 3) with x1, xp, x3 € R.
X3 X2

Fixing x3 for different values, we plotin Fig. 1 the values of x| and x, such that X € Sy (A, b).
The three subplots in Fig. 1 clearly display the non-convexity of the set. When x3 = 0, the
disjoint interval constraints become evident in the two square regions of the third subplot.

Though the constraint set in (SCO-Eig) may be non-convex, the feasible region, however,
is always connected.

Fact2 Sy (A, b) is a connected subset of S"*".

Proof Let X| = QA QlT and X» = 0,43 Q2T be arbitrary elements of Sy (A, b). With-
out loss of generality, we may assume Q;, O, € SO(n) := {X € O(n) | det(X) = 1}.
Moreover, we may assume without loss of generality the diagonal elements of A and A;
are in descending order. Using the fact SO (n) is path connected, there exists a continuous
map G : [0, 1] — SO(n) such that G(0) = @, and G(1) = @,. Thus, we can define the
continuous parameterization X : [0, 1] — S™*" such that

X)) =G@t)(Ar+ (1 —1) (A1 — A2)) G(1) .
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By construction, X (0) = X and X (1) = X», and the convexity of
{AeR"| AL <b, D,A <0}
ensures X (1) € Sy (A, b) forall ¢ € [0, 1]. O

Remark 1 Figure 1, especially the third subplot in Fig. I, might seem to suggest a counter-
example refuting the connectedness of Sy (A, b). However, this is not the case. The stills in
Fig. 1 represent slices of the feasible region and paths connecting points in Sy (A, b) are not
restricted to slices.

The capacity for non-convexity in the constraint is the trade-off incurred by removing the
eigenvalues from the objective. Potential non-smoothness of the objective function associated
with the eigenvalues has been replaced with potential non-convexity associated with the
eigenvalues in the constraint. Constrained problems over non-convex sets are exceptionally
challenging; therefore, the cases where Sy (A, b) is convex are of interest. The next theorem
provides a verifiable condition which ensures the convexity of the constraint and proves the
convexity of common eigenvalue constraints such as S} " and condition number constraints
[52, 58]. To prove the result we require the following proposition

Proposition 1 Ifay > ... > ay, then f(X) =Y !_, o;jri(X) is convex.

Proof Tt is well-known g (X) := Zle Ai(X) and h,(X) = ;’:0 An—j(X) are convex

and concave functions respectively forany 1 < k <nand 0 < p < n — 1 [3]. From this

and simple operations which preserve convexity it follows g, (X) := Z;’z 1 %A (X) and

f}fl(X) = 27;6 Bn—jrin—j(X)withey > ... > a, > 0and B, < ... < 1 < 0are convex.
us,

n
ga(X) +hp(X) =Y (ai + fi)i(X)
i=1
is convex. The equivalence of the sets {x € R” | x; > ... > x,} and
{y+zeR'|y1>...23% >0, z, <... <21 <0}
completes the argument. O

Utilizing Proposition 1, we present a general condition guaranteeing the convexity of
Sr(A, b).

Theorem 1 [f each row of A is an element of RL :={x € R" | x; > ... > x,}, Sx(A, b) is
convex.

Proof Assume each row of A is an element of R’é. Fori = 1,...,m we define f;(X) :=
Z?:l A;jAj(X). Since each f; is convex by Proposition I, the level sets of each f; are
convex. The result then follows because Sy (A, b) is the intersection of the level sets of the
fi's. O

3 General Optimality Conditions

The non-smoothness of the eigenvalues necessitates a discussion of concepts from non-
smooth analysis. Consider an open set £2 of R” and f : 2 — R locally Lipschitz on £2,i.e.,
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given x € £2 there exists Ly and §y > 0 such thatif ||y — x| <, then | f(x) — f(y)] <
Ly ||lx — y|. The (radial) directional derivative of f at x in the direction of d € R" is

x+1td)— f(x
f'(x:d) := lim M7
t—04 t
when the limit exists. A relaxed version of the directional derivative is the Clarke directional
derivative. The Clarke directional derivative of f at x in the direction of d is

f(y+td)—f(y).

fC(x;d) = limsup ;

(t,y)—>(04,x)

Unlike d — f'(x;d),d — f Clx:d) is guaranteed to be a finite convex function for all
x € §2 (see Sect. 5.1 in [48]). The Clarke subdifferential of f at x is

dc f(x) == [s eR" | (s,d) < fC(x:d), Vd € R”].

The Clarke subdifferential is a non-empty, compact and convex set, and these properties
make it a frequently utilized generalization of differentiation for non-smooth functions. The
definitions presented here for Clarke subdifferentials can be found in Sect. 2 of [23]. It is
often necessary to assume a function is regular at a point for certain results to hold. Different
definitions of regularity exist, but in this section we say f is regular at x € £2 if

fc(x; d) = liminf w

(t,v)—>(04.,d) t
for all d € R" (see Definition 5.46 and Proposition 4.3 in [48]). This notion of regularity
focuses on the equality of two slightly different generalizations of the directional derivative
of f. One deals with perturbing the point x while the other perturbs the direction d. Convex
functions are regular at all points in their domain and if f is continuously differentiable at
x then it is also regular at x. A thorough discourse on Clarke subdifferentials and regularity
is presented in [48]. The interested reader should consult this text and the references therein
for further details. We now present general necessary conditions for optimal solutions to
(SCO-Eig).

Theorem 2 Assume F : S"*" — Ris continuously differentiable and g; (X) := aiTX(X)—b,-
fori € [p]l. Let X* be a local minimizer of

min {F(X) | gi(X) <0, i € [p], X € """}
and Z(X*) := {i € [p] : gi(X*) = 0}. Suppose
teRE, 4 =0Vie[pI\I(X*), 0 € 1dcg1(X*) + - +1pdcgp(X*) = t=0
and each g; is regular at X*, then there exist multipliers . € Ri such that, 1;gi (X*) =0

forall i and,

n
0 VE(X®) + 1y aiicony {va |v e Ei(X), o] = 1]
i=1

n
+~-~+,up2apiconv[va|vGIE,-(X*), ||v||=1} 3)
i=1

where E; (X*) denotes the eigenspace of X* corresponding to the i-th largest eigenvalue of
X* and conv(S) is the convex hull of a given set S.
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Proof Using the framework of Corollary 5.54 in [48], let f = F and g; be as defined.
Since A(-) is globally Lipschitz continuous, g; is locally Lipschitz for all X € §"*". By the
assumption F is continuously differentiable, it follows d¢c F(X) = {VF(X)} for all X. The
proof is completed by computing the Clarke subdifferential of the g;’s. Since g; is regular at
X,

dcgi(X) =Y dc (aijr; () (X)

j=1

n
= aijoch;(X)

j=l1

n
=Za,-jconv[va|veEj(X), ol =1] &)
j=1

where the first and second equalities follow by Theorem 5.51 and Proposition 5.9 in [48]
respectively. The last equality is due to Theorem 5.3 in [23]. O

Theorem 2 provides general optimality conditions for (SCO-Eig). Note, if g;(X) =
a;r)»(X) — b; for i € [m] where a; is the i-th row of A, then S)(A,b) =
{X eS| gi(X)<0,ic¢€ [m]}‘ The assumptions required for Theorem 2 to hold are
substantial including: a constraint qualification, regularity and non-trivial convex hulls of
eigenspaces; however, if the local minimizer has unique eigenvalues, the necessary condi-
tions simplify immensely.

Theorem 3 Assume F : S8"*" — R is continuously differentiable. Define g;(X) :=
aiTl(X) — bj fori € [p]. Let X* be a local minimizer of

min {F(X)| g (X) <0, i e[p]}
XGS"X"

with no repeated eigenvalues. If {a; | i € Z(X™)} is a linearly independent set, then there
exist multipliers . € Rf_ such that,

14
VF(X*)+ ) uiV*Diag(a)(V:)" =0,

i=1
and p*g;(X*) =0 for all i where X* = V*Diag(A(X*))(VH)T,

Proof Since X* has no repeated eigenvalues, g; is regular at X*. The uniqueness of the
eigenvalues of X* imply there is a neighborhood about X* such that A;(-) is continuously
differentiable with a continuously varying associated eigenvector (Theorem 3.1.1 of [44]).
Thus, each g; is continuously differentiable at X * and therefore regular at X *. The calculation
of the Clarke subdifferential of g; follows from the fact each eigenspace of X* contains a
single element, d¢ g (X*) = {V*Diag(a;)(V*)"} where X* = V*Diag(A(X*))(V*)T is
the eigendecomposition of X*. Hence,

119cg1(X) + -+ +1p0cgp(X)

14 14
=Y 4 V*Diag(a,)(V*)" = V*Diag <Z t,-a,) vHT. 5)

i=1 i=1
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To complete the proof, we prove the constraint qualification condition for Corollary 5.54
in [48] holds given our assumption on {a; | i € Z(X™)}. Without loss of generality, we
assume the first r constraints are active. Then the constraint qualification will hold provided

0=10cg1(X)+ - --+1t0cg-(X) ifand only if 1 = ... = t, = 0. From (5), we see this
is equivalent to 0 = Diag(tja| + - - -+ t,a,) ifandonly if#;{ = ... =1, = 0 which follows
from the assumptions. O

Comparing the necessary conditions with and without repeated eigenvalues inclines us
to prefer the latter. The eigenspace dependence, the required regularity, and the constraint
qualification limit the utility of Theorem 2 while such difficulties dissipate when the local
minimizer has no repeated eigenvalues. In some cases, the constraint set ensures uniqueness;
however, many constraints have feasible matrices with repeated eigenvalues. This seems
unavoidable, but we now prove it is possible to approximate the original model and remove
all feasible solutions with repeated eigenvalues. Letting € > 0, we define the approximated
(SCO-Eig) model,

min F(X) (SCO-Eig-¢)
st. AM(X) <b

Air1(X) <A X)—e,i=1,...,n—1

X e S,

The next result shows that it is possible to bound the gap in the optimal values of the two
models as a function of € given certain assumptions.

Theorem 4 Assume F is Lipschitz continuous with constant L > 0, the interior of Sy (A, b)
is non-empty, and [ATID,;'—] € R +n=U pas full rank. Let X* be a global minimizer of
(SCO-Eig). Then there exists €y > O such the constraint set of (SCO-Eig-€) is non-empty
for all € € [0, €y, and, letting X} be a global minimizer of (SCO-Eig-€), we have for all
€ € [0, eo]

|F(X*) = F(X)| < L-x([ATID, 1) - (Vn—De,

where x(Z) = {||ZE1||2 |ZCcm+n—1], |Z|=n, Z1 non—singular}1 with Z1 being
the matrix formed from the columns of Z whose indices belong in 7.

Proof By our assumptions, there exists X € 8™ such that AA(X) < b and D,A(X) < 0.
Therefore, there exists €g > 0 such that Al()_( ) < b and Dnl()_( ) < —epe which implies
the constraint set of (SCO-Eig-¢) is non-empty for all € € [0, ].

Let X* = V*Diag(A*)(V*)T be a spectral decomposition of X* and Ps,(A*) be the
projection of A* onto S¢ := {x € R" | Ax < b, D,x < —ee}. By the Lipschitz continuity
of F, for any € € [0, €]

|F(X*) — F(X})| = |F(V*DiagW*)(V*)") — F(X})|
< |[F(V*Diag(\*)(V*)T) — F(V*Diag(Ps, A*))(V*) )|
< L||[V*Diag\*)(V*)" — V*Diag(Ps, A*)(V*) " ||
= L|A* = Ps,(A%) |2 (6)

! This constant was first presented by Dikin [13]. Equivalent definitions, as the one stated, were proven in
[55, 61].
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Using Hoffman’s error bound for linear systems, we bound the distance between A* and
Ps_(A*). By Theorem 3.6 in [61], for all z € R”

Iz~ Ps, @l < x(IATID]]) - H (taTID Tz -7 —ee1T) | ™

2

where ()4 = (VD) +, .-, (yn)+)T for y € R" with (a)+ := max(0, a) for a € R and for
Z € R™*" with full rank

X (Z) = {||z;1||2 | 1Z| =m, Z1is non-singular], 8)

where Z7 denotes the submatrix matrix of Z composed of the columns of Z in the index set
Z C [n] [61]. Since A* is contained in {x € R" | Ax < b, D,x < 0},

H (IATID]1ITA — 16T —ee™1T) | = IDuA* +eo)illa < el =eVn—1. ()

2

Combining (6), (7) and (9) concludes the argument. ]

4 Solving SCO-Eig with Linear Objective Functions

The simplest, non-trivial objective function to consider for (SCO-Eig) is a linear objective
function,
min (C, X)
s.t. AM(X) <b

X e 8™, (10)
As we saw in Sect. 2, the constraint set S) (A, b) can be highly non-convex. Therefore, one
may not expect to guarantee a global minimizer; however, Theorem 5 below shows a global
minimizer is readily computable regardless of the constraint set. Moreover, the solution to

(10) comes down to performing a single spectral decomposition and solving a single linear
program.

Theorem5 Let C € R™" with $(C + C') = PRP" for P € O(n) and £ =

Diag([w1, w2, ..., w,]) With 1 > wy > ... > w,. Then a global minimizer of (10) is
given by
X* = P Diag([A;. A_y. -+ AP T (11)
where
n
\* € argmin {Zwikn+1_,- | AL < b, DA < 0} . (12)
i=1

Proof We may assume without loss of generality C € S"*". Observe,
1
(€. X) = <5(c +Ch), X>

forall C € R"*", 50 (10) can be rewritten such that the objective function is the inner product
of two symmetric matrices. Thus, for the remainder of the proof, we assume C € S"*" and
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C=prPPT for orthogonal P and £ = Diag([w;, w2, ..., w,]) withw; > wy > ... > w,.
Utilizing the spectral decomposition of X,

min {(C, X) | AAM(X) < b, X € 8"}
—min{(P2PT, 0 Diag) Q) | AN <b, D,A <0, Q € O(n)}

[«
min [(sz, PTQ Diag\)Q P) | A <b, DA <0, Q€ O(n)}
(

min{ 2,0 DiagM) Q) | AL <b, DA <0, Q€ O(n)}
= min [Tr (sz 0" Diag%) Q) | AL <b, Dyh <0, Q€ O(n)] . 13)

By Theorem 2.1 in [40], it follows for any A € R”" satisfying AXA < b, D,A < 0 that
- T _ - n
min {Tr (SZQ Diag(X) Q) |0 e O(n)} = ki1
i=1

Therefore,

min {(C, X) | AM(X) <b, X € 8"}

n

= min {Z“’M"Hi | AL < b, DA < 0] .
i=1

Let A* € argmin {>_7_| w;jAnt1—i | AL < b, DA <0} . In-order to compute X* such that

the constraints are satisfied and Tr(C Tx ) = Z?:l wi A

that,

% . — %
n1—i> We must determine Q such

Tr (Q(Q*)TDiag().*)Q*) => okl (14)
i=1

With Q" defined by (14) and using (13) to see Q = Q" P, a global minimizer X* is given
by,

X* = P(Q0")Diaga®) Q" P".
Since Q* = [e, e,—1 ...eq] solves (14), we obtain our final result. ]

Remark 2 Though Theorem 5 was stated and proven for C € R"*" and X € §"*", the same
general argument applies with slight modifications if X € C"*" is Hermitian and C € C"*".

Theorem 5 provides a straight-forward procedure for computing a global minimizer to (10)
by solving a single linear program and performing one spectral decomposition, and the result
was independent of the convexity of Sy (A, b); therefore, (10) is solvable in polynomial-time
and constitutes a reasonable subproblem for an algorithm.

Upon completing the paper, we were made aware of a relatively recent and interesting
though, unfortunately, unnoticed paper by Gowda [19]. This paper presents results of an
equivalent nature to the results presented in this section and the next; however, the author
uses a more technical approach than our own which is more direct and tailored to our goals
of developing algorithms to solve (SCO-Eig). The importance of this result lies in leveraging
it toward algorithm design. We present in this paper the first algorithms for general spectral
optimization taking advantage of these tractable sub-procedures.
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5 Projecting onto the Eigenvalue Constraint Set

Projecting onto the constraint set is a crucial procedure in numerous constrained optimization
algorithms. In this section, we utilize an argument similar to the one applied in Sect.4 to
compute projections onto Sy (A, b). That is, given ¥ € R"*" we solve

.1 2

min 5||X Y%

st. AAMX) <b
X e 8™, (15)

Theorem6 Let Y € R™" with 5(Y + Y') = PRP' for P € O(n) and 2 =

Diag([wy, w2, ..., op]) withw) < wy < ... < w, and @ := [w,, wy—1, ..., w117 Then
X* = PDiag([A5, A5, ..., AP T

is a global minimizer of (15) where

1
A* € argmin {Eux —®|3| AL <b, DA < 0} . (16)

Proof Let 1 (Y +YT) = PRQP" with P € O(n) and 2 = Diag([w, @), ..., ®,]) such
that w; < wp < ... < w,. Define  := —2 and @ := [w,, Wp_1, ..., ®1]". Utilizing the
spectral decomposition of X,

1
min{illX— Y||2F | ALM(X) <b,X € S"X”}

1 1
= min | S| X[} — (X.¥) | AMX) < b.X s} +SIY I

1 1
= min | A — (@ Diag}) Q", PZPT) | AN < b, D) <0, 0 € O(n)} + IV I

1 _ - - 1
= min EII)»II2 +(0" Diagh) 0. 2) | AL <b. DA <0, 0 ¢ O(n)} + EIIYII%

1 1
= min | JIA) — (@ 3) | AL < b, DA < 0} + IV I

. 1 B 1 _
= min | [} — @3 | AL <b, DA < 0} + 5(||Y||2F — [l@113)

1 . _ _
= E(||Projc<w>—co||%+||Y||%—||w||%) (17)

where C := {x e R" | Ax < b, D,x <0} and Proj,(-) is the projection operator onto C.
Note, the fourth equality above follows from Theorem 2.1 in [40]. Let A* := Proj. (@). Note,
if Q* =le, e,—1 ... e1], then
- - . - 1 _ _ _
Te(2(Q")' Diagh") Q) = 5 (IN* = &I° — VI = 16]°) = (", —)
and by the change-of-variable above X* = P(Q")T Diag(A*) Q" P is a global minimizer
of (15). O
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Thus, similar to the linear objective problem, projecting onto the eigenvalue constraint only
requires computing a spectral decomposition and solving a convex optimization problem. In
this case, a projection onto {x € R"” | Ax < b, D,x < 0} must be computed. This
problem can be solved via any convex optimization solver, but specialized fast algorithms
for projecting onto a polyhedron have been developed [20]. We now utilize our results to
develop two optimization algorithms which obtain first-order stationary points to (SCO-Eig)
when the constraint set is convex.

6 Spectrally Constrained Solvers

We develop two first-order algorithms to compute stationary points for (SCO-Eig). Our
capacity to solve the linear objective problem motivates the construction of a Frank-Wolfe
algorithm and accessible projections make possible the development of a projected gradient
method.

6.1 Inexact Projected Gradient Method

For Y € R™*" let Projg, (-) be the operator which maps ¥ to an element of the argmin set of
(15), 1.e.,

1
Projg, (Y) € argmin {EHX — Y% | X € Si(A, b)} )

For S) (A, b) convex, the projection is unique. If the set is non-convex multiple optimal
projections are likely present. Since inexact computations are the reality in implementation,
we introduce a notion of inexact projections.

Definition 1 For convex Sy (A, b) and parameter § > 0, the set of inexact projections of
Y € R™" onto Sy (A, b) is

PBSA(Y) ={ZeSAb)I|{(Z-Y,X-Z)> -6 VX € Si(A,b)}. (18)

The standard results for projections onto convex sets tell us Z* is the optimal projection of
Y onto convex Sy (A, b) if and only if

(Z*—Y,X —Z*) > 0, VX € Si(A, b).

Therefore, the set of inexact projections are the points which inexactly satisfy this condition
where the level of inexactness is controlled by §. Clearly, P%A (Y) = Projg, (Y) when Sy (A, b)
is a convex set.

For the sake of our analysis, we make the following assumption throughout Sect. 6

Assumption 1 Sj (A, b) is convex.

This assumption enables us to have a clear notion of first-order e-stationary points for
(SCO-Eig).

Definition2 Let ¢ > 0. The point X* € Sy (A, b) is a first-order e-stationary point of
(SCO-Eig) provided

min {(VF(X*), X = X*) | |X = X*|r < 1, X € Sx(A, b)} = —e.
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Algorithm 1 presents our inexact projected gradient method for solving (SCO-Eig). The
method can be neatly described. A point X is selected from Sy (A, b) and the traditional
gradient update step is taken to compute X = X — o« VF(X) where o > 0 is the stepsize.
Since it is not necessarily true X € Sy (A, b), because « could be too long of a step or
V F (X) might point out of the constraint set, feasibility is maintained by projecting X 4 onto
the constraint. To save computational expenses, the projection is done inexactly. Line-search
is performed at each iteration to ensure a sufficient decrease is obtained. The algorithm
terminates when the gap between consecutive iterates decreases below a provided tolerance.

The approach is a fairly straightforward implementation of the traditional method in con-
strained optimization. The key novelty of Algorithm 1 comes from the fact we can solve
the projection problem by Theorem 6. Without this result the algorithm would not be imple-
mentable.

Algorithm 1 Inexact Projected Gradient Method

Require: X € $53(A,b); e >0; §€[0,1); «a>0;711€(0,1); h>0
1: fork=0,1,2...do

2: hp=h

3 Xps1 =Py (Xi — g VF(Xp)

4:  if | Xg — Xg41llF < € then

S: Return X

6: else

7: while F(Xj41) > F(Xp) — | Xg41 — Xil% do
8: hy =11 - hy

9: Xip1 = Pf,sx (Xp —hgVF(Xp)
10: end while

11:  endif

12: end for

‘We now explicitly state the convergence result of Algorithm 1. A more generalized version
of the algorithm is proven in Sect.7 which is applicable to the block model described in
Remark 3.

Theorem 7 Assume F is gradient Lipschitz with parameter L > 0, the initial level set,
e, {X €S (A,b) | F(X) < F(Xo)}, is a bounded subset of S"*" with diameter D, there
exists F* such that F* < F(X) for all X € S)(A,b), there exists M > 0 such that
IVF(X))lF < M forallk > 0, and Assumption I holds. If inexact projections are computed
with sufficient accuracy, dependent on €, then Algorithm 1 will converge to a first-order -
stationary point of (SCO-Eig) in O(e ~2) iterations. More explicitly, a first-order e-stationary
point will be returned after no more than

3 - iterations
h; o €
ow

<4<D + Mgy + 1)2> <F(X0) - F) 1

rovide e accuracy of the inexact projections, 8, satisfies 5 < min { ~©% ¢, €2, 1, where

provided th y of th t project 8, sat s < }”20” ;:201 h
R - hiow€

higw 1= 11/(L + 2a) and €;p) := DT Mh D)
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6.2 Inexact Frank-Wolfe Algorithm

We now present a Frank-Wolfe algorithm for solving (SCO-Eig). The algorithm and analysis
we present are an extension of the work in the concise technical report of Lacoste-Julien
[30]. The author in this paper presents the first Frank-Wolfe method for smooth non-convex
functions over a compact and convex constraint. Our approach extends the work in [30] by
removing the compactness assumption. To accomplish this, we utilized a different notion of
first-order stationarity, replaced the compactness assumption with the weaker assumption that
the initial level set of the objective function is bounded, and introduced a modified subproblem
for our model. Traditional Frank-Wolfe approaches would require solving subproblems of
the form

min (C, X — Xg)
s.t. AM(X) <b
X — Xollr <1
X e 8", (19)

This model appears outside the scope of (SCO-Eig); however, Theorem 8 below shows (19)
can be bounded by an alternative optimization model which only contains linear constraints
on the eigenvalues.

Theorem 8 Given any X € 8"*", we have the following upper bound to (19)

‘min{(C,X —Xo) | X € Su(A,b), IX — Xollr = 1}‘

=

min {(C, X — Xo) | X € Si(A4, D), [AM(X) —A(X0)lloo = 1} ' (20)

Proof From Section 6.3 of [24], we know for any X, X € S"*"
IA(X) — A(Xo)ll2 < IIX — Xoll2 implying [|A(X) — A(X0)llec < IIX — XollF.
Thus, given any X € §"*" such that || X — Xo||r < 1itfollows [|A(X) —A(X0)|lec < | and

(X eS8 X — Xollr <1} C{X €S | IAMX) = A(X0) oo < 1}.
Hence

min {(C, X — Xo) | X € Si(A, b), |X — XollF < 1}
> min {(C, X — Xo) | X € Su(A, b), [M(X) —A(X0)[loo =1}, @

and we know the optimal value of both models is non-positive since X is a feasible solu-
tion for each model. Therefore, the right-hand side of (21) is greater in terms of absolute
magnitude. O

Theorem 8 results in our ability to approximate the solution to (19) by solving an alterna-
tive optimization model which only appends additional linear inequality constraints on the
eigenvalues. Since Definition 2 is equivalent to the left-hand side of (20) being less than
€, it follows the right-hand side of (20) provides an estimate of the optimality of X via a
tractable subproblem. Therefore, in our Frank-Wolfe approach, instead of solving (19), we
solve models of the form

min {(C, X — Xo) | X € Sy(A, b), [A(X) —A(X0)[oo = 1}
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and use these solutions to bound the first-order stationarity condition of (SCO-Eig).

Algorithm 2 is our proposed inexact Frank-Wolfe algorithm for (SCO-Eig). At each itera-
tion it seeks to improve upon the current iterate by minimizing a first-order approximation of
the function over the constraint set. We approximate the traditional Frank-Wolfe subproblem
by Theorem 8. The subproblem then produces a direction which will decrease the value of
the objective function, and a stepsize is determined which maintains the feasibility of the
next iterate.

Algorithm 2 Inexact Frank-Wolfe algorithm
Require: Xg € S5 (A,b); € >0; ¢ €[0,1); § €[0,x€); ® >0
I: fork =0,1,2,...do
2:  Approximately compute a solution, Dy, to
m} = min {(VF(Xg), D — Xi) | D € (A, b), |A(D) — MXp)lloo < 1) (22)

3 such that my := (VF(Xy), Dy — X¢) < 0 and is within § of m};
4 if |my| < (1 — a)e then

5: Return X

6:  else

7 Set yk := min {|my|/©, 1}

8 Update X1 := Xg + vk (Dg — Xp)

9: endif

10: end for

Theorem 9 states the sublinear convergence rate of Algorithm 2 to stationary points of
(SCO-Eig). The convergence analysis of the algorithm is provided in the next section.

Theorem 9 Assume F is gradient Lipschitz with parameter L > 0, the initial level set is
bounded, there exists F* such that F* < F(X) for all X € S)(A, b), and Assumption 1
holds. Define

p =sup {I¥Y = XII3|F(X) < F(X0), IMX) = A(N)[lo < 1, ¥, X € Si(A, b))} .

If ® > pL, then Algorithm 2 will compute a first-order €-stationary point to (SCO-Eig) in
O(e~2) iterations. More precisely, a first-order e-stationary point will be obtained after no
more than

% 2
K > "max (2(F(Xo) — F7), O} — 1—‘ iterations.
(1 —a)2e?

The condition in Theorem 9 requiring ® > pL might appear unruly since both p and L
could be unknown. In practice this difficulty is overcome by updating & on an iterative basis.
For example, if ® > pL, then the inequality in (26) shall hold. If this inequality fails, then ®
can be increased until the inequality is satisfied at the current iterate. In our implementation
of Algorithm 2, we update the value of @ at each iteration depending on whether or not the
value of the objective function was improved. This is why we ensure an improvement of the
value of the objective function.

Both Algorithms 1 and 2 converge sublinearly to first-order stationary points of (SCO-Eig)
under reasonable assumptions. The convexity assumption is necessary for the current con-
vergence analysis of both algorithms and is required to maintain the feasibility of the iterates
generated by Algorithm 2. The projected gradient method however can be applied success-
fully to instances of (SCO-Eig) with non-convex constraints and maintain feasibility. We
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observe this, for example, in Sect.8.2 when Algorithm 1 is applied to solve systems of
quadratic equations.

Remark 3 The theory and algorithms we have developed extend to the block optimization
model

min F(Xq,..., Xy)
st. X; € Su(Ai,by), i=1,... k. (23)

Letting V := 8™ X" x ... x §™>*" with vectors X = (X1, ..., X}) and associated inner
product (X, V)y = Zi‘{:l (X, Y;),the analysis in Sect. 7 proves Algorithm 1 computes first-
order stationary points of (23) where exact projections onto Sy (Ay, b1) X - - - X Sy (Ax, by)
are readily computed by projecting onto each component Sy (A4;, b;). Similarly, the required
subproblem to implement a modified version of Algorithm 2 on (23) is equivalent to solving
k subproblems of the form described in Sect. 6.2. Proving convergence of a modified version
of Algorithm 2 to stationary points of (23) only requires minor alterations to the analysis
presented in the next section.

7 Convergence Analysis
7.1 Proof of Theorem 9

Proof We first show p provides a usable bound for all iterations of Algorithm 2. If |mg| < O,
then by the gradient Lipschitz condition on F we have,

Ly2
F(X1) < F(Xo) + w(VF(Xo), Do — Xo) + TOHDO - Xol%

pLyg
EF(Xo)-l-VO(VF(Xo),Do—XoH—T
O 5
< F(Xo) + yomo + 5 %0
Imo|? 1 2
< F(Xo) — —
< F(Xp) ) +2@|m0|
1
=F(Xo) — | — 2 24
(Xo) <2@>|m0| (24)

where the second inequality follows from the definition of p. If instead we have |mg| > ©
then
() ®
F(XI)SF(XO)_|m0|+E <F(Xo)—5- (25)
Therefore, regardless of how the stepsize is computed, F (X 1) < F(X() which implies X is
contained in the initial level set. So, the bound provided by p remains valid for all iterations
and by induction on the iteration count we have

2
. mg ®
F(Xg+1) < F(Xy) — min { Lt s Img| — f1{|mk|>(~>}} . (26)

26 2

Thus, using the same argument presented for Theorem 1 in [30] it follows for all K > 0,
max {2(F (Xo) — F*), 6}

VK +1 '

min |my| <
<k=<K
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Since mjy measures the first-order stationary condition inexactly, it then follows an e-
stationary point will be obtained provided |m;| < (1 —a)e wheret € {0, 1..., K} produces
the minimum value of |my/| over all the iterates since |m| < |m;| < |m;| + 8 < €. Finally,
by (20) it follows if |m| < € then

min {(C, X — X;) | X e Su(A, b), IX —Xi|F = 1}| <e

7.2 Proof of Theorem 7

In this section, we state and prove a general convergence result for Algorithm 1. Our argument
is given for a general vector space )V with associated inner product (-, -)y and induced norm
I - [lv. For the remainder of this section, we drop the subscript and refer to the inner product
andnormon Vas (-, -) and || - || respectively. Thus, the Frobenius norm used in the description
of Algorithm 1 has been replaced with our general norm for V. We assume the norm associated
with V defines the first-order e-stationary condition. Let Pg denote the inexact projection
onto a convex subset C of V.

Theorem 10 Assume F is gradient Lipschitz with parameter L > 0, the initial level set,
i.e., {X €C| F(X) < F(Xo)}, is a bounded subset of V with diameter D, there exists F*
such that F* < F(X) for all X € C, there exists M > 0 such that ||VF(Xy)|| < M for
all k > 0, and C is a convex subset of the normed vector space V. If inexact projections
are computed with sufficient accuracy, dependent on €, then Algorithm I will converge to a
first-order e-stationary point of min{F (X) | X € C} in O(e~?) iterations. More explicitly, a
first-order e-stationary point will be returned after no more than

(4(1) + Mhjgy, + 1)2> (F(Xg) _F*

h2

low

= iterations
o €

provided the accuracy of the inexact projections, §, satisfies § < min [h’%e l6301], where

)
. . hiow€
hiow := T1 /(L + 2a) and €, := 72(D+A];Zlow+l).

Proof Compute Xj11 € P‘SC(Xk — hiVF(Xp). If | Xk+1 — Xkl < €101, we shall prove Xy
is a first-order e-stationary point. If || X1 — X¢| > €101, we will show a sufficient decrease
can be obtained provided the stepsize iy and precision § > 0 are appropriately sized. To
these ends, assume || Xy+1 — Xkl > €o1. If Ar < (L + 20) ' and § < %etzol, then it follows
(Xk — e VF(Xi) — Xie1, Xk — Xp41) <90
= (VF(Xp), Xis1 — Xi) <8 — [ Xps1 — Xl
= (VF(Xp), Xi1 — Xi) < b (8 — 1 Xur — Xill?).

By our assumptions, § < %etzol < %||Xk+1 — Xk||2. Therefore,
-1

(VF(X1), Xi+1 — Xp) < 2k I Xkt — Xell? < — (

L + 2«
2

) X1 — Xl
Thus, from the gradient Lipschitz assumption on F and the above inequality,

L
F(Xir1) = F(X0) + (VF(X0), Xiepr = Xi) + 21 Xep1 = Xx I
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L L s
= FX) — (=5 ot 5 ) 1 X — Xl

= F(Xp) — ol Xks1 — Xill 27
Hence, the line-search shall terminate with a sufficient decrease obtained after no more than

[log, (h(2a 4 L))] inner iterations. So, for all k > 0 we have

F(Xi) — F(Xg41)
o

2
1 Xkt1 — Xkl <

Summing this inequality up from k = 0 to k = K — 1 and using the lower bound F* we
obtain

. 28
0<k<K— o K (28)

*
min | 1X - Xol? = (RO £
We now prove if consecutive iterates generated by Algorithm 1 are sufficiently close together
and the approximated projections are sufficiently accurate then a first-order e-stationary point
has been obtained. By the Lipschitz gradient assumption on F and the boundedness of the ini-
tial level set there exists M > Osuchthat ||V F(X)| < M forallk > 0.Let D be the diameter
of the initial level set where the diameter of a set S is defined as sup {||x — y| | x, y € S}.
D is finite due to the boundedness of the initial level. Also, since a sufficient decrease is

obtained if iy < (L 4 2a)~ !, it follows Aoy = 71 (L + 22)~! lower bounds the stepsize hy

for all k > 0. Assume || Xy — X+1]| < €101 and § < min [h‘z”we, %6301], where

hiowe
2(D + Mhlow + 1).

Then for all X € C such that || X — X|| < 1 we have

€0l =

(Xpx =k VF(Xi) — Xpg1, X — Xpq1) <96
— (i VF(X1), X — Xis1) <8+ (Xir1 — X, X — Xiq1)
= (- VF(Xy), X — Xr41) <
8+ 11 Xks1 — Xecll - I1IX — Xpe + X — Xt |
= (- VF (X)), X — Xj41) <
8+ 1 Xks1 — Xecl - (1X — Xill + 1 X — X1 1)
(~heVF(X), X — Xip1) <8+ (1+ D) Xep1 — Xell
(VF(X$), X — Xir1) = —8h " — (1 + D) 1 X1 — Xl
(VF(X1), X — Xiq1) = —Shpgs, — (1 + D)hig I X1 — Xl
(VF(Xp), X — Xi) =
— 8hpgh, — (14 DYy I Xkt — Xkl — (VF(Xp), X — Xiq1)
— (VF(Xi), X — Xy) >
— 8higg, = (14 DYy I Xit — Xill = MIXk — X |

= (VF(X0), X — Xi) = =8hig), — (1 + D)higy, + M)[[ Xxs1 — X

low low

— (VF(Xp), X — Xx) > —¢ (29)

where the first implication comes from the definition of X4 € P‘SC (Xx — hiVF(Xy)), the
sixth comes from hjoy lower bounding Ay for all k, the eighth is a product of the bound
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on the norm of the gradient of F, and the last implication follows from the bounds on §
and || X — Xx41/||. Therefore, under these conditions X is a first-order e-stationary point,
and from (28) a point satistying || Xz — X¢+1]| < €11 Will be obtained within K iterations
provided

2 2°
hlow o €

2 *
P <4<D+Mhlow+1> )(F(Xo)—F >.i

8 Numerical Experiments

The (SCO-Eig) paradigm applies to many constrained matrix problems: semidefinite pro-
gramming [53], condition number constraints [52, 58], and rank constrained optimization
[39, 62] to list a few. In this section, we first demonstrate the performance of Algorithms 1
and 2 on a popular preconditioning model to showcase how the convergence theory aligns
with what is observed in practice. Then, we demonstrate the applicability of our methodol-
ogy on two important tasks: solving systems of quadratic equations and matrix completion.
Our numerical results demonstrate our method can outperform classical approaches for solv-
ing quadratic systems, such as Newton’s method, and best classical approaches to matrix
completion when additional spectral information is available.

8.1 Preconditioning

One could argue solving systems of linear equations is the most important task in applied
mathematics. Many iterative methods have been devised to solve Ax = b with A € R™*"
full rank and b € R™ such as the Jacobi method [50] and the conjugate gradient method [22].
Methods for solving linear systems often converge linearly with the rate dependent upon the
condition number of the matrix A, i.e.,

Omax (A)
Omin(A)

where omax (A) and omin(A) are the largest and smallest singular values of A respectively.
If A € S}7", then k(A) = A1(A)/A,(A). Table 1 in [49] compares how the convergence
rates of different iterative methods depend on « (A). The art of matrix preconditioning is to
form an equivalent linear system with an improved condition number which can be solved
faster by iterative methods. This is accomplished by multiplying A by simple matrices X
and Y such that AX, YA or Y AX have an improved condition number. Preconditioning is a
well-studied aspect of numerical linear algebra [9, 57] and numerous approaches have been
proposed. For example, a recent paper proposes optimal diagonal preconditioners, i.e., X
and Y are diagonal matrices [49]. One popular preconditioning model proposed by Benson
[2] is

k(A) =

min |AX — I||p
st. X e M (30)

where M is a special set of matrices. To reduce computation, Benson [2] assumed sufficiently
sparse matrices in M, e.g., positive diagonal matrices. We demonstrate the performance of
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Fig.2 Convergence plots of the first-order e-stationary condition for Algorithms 1 and 2 applied to (30). The
y-axis is in log-scale. For Algorithm 1 the y-axis measures the minimum distance between consecutive iterates
at iteration k. For Algorithm 2, the y-axis measures the best solution obtained to (22) at iteration k

our algorithms by solving (30) with various convex eigenvalue constraints, where we do not
restrict to sparse matrices:

M :={X eS| 1(X) €[0.001,1], i =1,...,n}, (31)
My :={X € 8™" | L (X) — k1n(X) <0, 1,(X) > 0}, (32)
and
M :={XGS”X"|ciTA(X)§1,i=1,...,m}, (33)
wherex > Oande¢; =[i,i —1,...,1,0,...,0]" foralli. The constraints M; and M, are

reasonable choices for the constraint in (30) because they enforce the preconditioning matrix
to be well-conditioned. The first ensures the condition number of the preconditioning matrix
X is bounded above by 1000 with bounded eigenvalues between 0.001 and 1; the second
ensures the condition number is bounded above by x while not enforcing an upper bound on
the eigenvalues. Note, M»> does admit the zero matrix as feasible which has an undefined
condition number, but this is often of no consequence because often non-zero matrices are
present in M»> which yield better objective function values. The purpose of the last constraint
is to showcase the algorithms applied to a general convex set as generated by Theorem 1. The
goal of these experiments is to evince the functionality of Algorithms 1 and 2 applied with
different constraints on an objective function of practical import. Developing new specialized
approaches for preconditioning is outside the scope of this paper.

We applied Algorithms 1 and 2 on three different instances of (30) with M, M, and
M3 serving as the constraint space M. The matrix A € §2°°%2%0 to be preconditioned was
generated as A = VV T where each element of V € R?>0%20 was drawn from a standard
normal. Figure 2 displays the convergence plots of the experiments.

Both methods were initialized at the identity matrix and ran for a total of 3000 iterations.
The convergence plots display clearly the sublinear convergence rates guaranteed by Theo-
rems 7 and 9. These numerical results demonstrate the algorithms’ performance aligns with
the developed theory. We now turn to an application where our methodology outperforms
classical approaches.
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8.2 Solving Systems of Quadratic Equations

Solving systems of quadratic equations occurs regularly across scientific domains. Two highly
studied examples are phase retrieval and the algebraic Riccati equations. Phase retrieval is a
problem of recovering a signal from the magnitude of its Fourier transform. Phase retrieval
problems are important in imagining science with applications in X-ray crystallography [21,
43], X-ray tomography [12] and astronomy [17], and all phase retrieval problems can be
formulated as a system of quadratic equations [5, 6, 27, 56]. The algebraic Riccati equations
are crucial in the study of stochastic and optimal control [31], and they also are equivalently
expressed as a system of quadratic equations.

Here we demonstrate how to apply our methods to solve systems of quadratic equations.
The general form of the problem we consider is:

Find x eR" st. x' Qix=b;, i=1,...m (34)
where Q; € R"*" and b € R™. An equivalent matrix form of the problem is:
Find X € 87", rank(X) =1 s.t. (Q;, X)=b;, i=1,...m

which naturally leads to the rank constrained model

min Y ((Q;. X) — b;)’
i=1

s.t. rank(X) =1
X esy . (35)

If X* is computed yielding an objective value of zero to (35), then (34) has been solved. If no
solution exists to (34), then (35) represents a least-squares approximate solution. A common
relaxation of (35) is to drop the rank constraint to obtain a convex model. A global solution to
the convex relaxation can be computed and projected onto the set of rank-1 matrices to obtain
an approximate solution to (34). Another more precise relaxation of (35) is made possible
with our framework. We instead consider the model

min Y ((Q;. X) — b;)*
i=1

s.t.A;(X) €[0,8], i=2,...,n,
X e 8™ (36)

where 6 > 0. For small §, the constraint closely approximates the rank-1 condition. It is
easy to check this is a non-convex constraint on the eigenvalues which means the analysis in
Sect. 6 does not guarantee convergence to stationary points; however, Theorem 6 guarantees
we can compute optimal projections onto the constraint, so we can implement Algorithm 1
on (36).

We considered three methods for solving (34):

Newton: Apply Newton’s method directly to (34). In our tests, we initialized and imple-
mented Newton’s method ten times and took the best result as the solution.

Convex + Newton: Solve the convex relaxation of (35), project the solution onto the set
of rank-1 matrices, and then run Newton’s method initialized from the projected solution.
In our experiments, we utilized CVX to solve the convex relaxation [18].
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SCO +Newton: Apply Algorithm 1 to approximately solve (36), project the solution onto
the set of rank-1 matrices, and then run Newton’s method initialized from the projected
solution.

Our experiments were performed on synthetic data. We simulated random instances of
(34) by drawing each entry in the Q;’s from a standard normal distribution and projecting
the resulting matrix onto the set of symmetric matrices. The coefficients b; were determined
by randomly selecting a vector y € R" with entries from a standard normal and computing
¥ Q;y foralli.In this way, every system admitted a solution. We conducted ten numerical
experiments; five with (n, m) = (75, 75) and five with (n, m) = (100, 100). The maximum
allowed iterations for every instance of Newton’s method was 5000, and the maximum
iterations for Algorithm 1 was 10,000. We used § = 1e — 10 in (36). The error of a potential
solution x € R” to (34) was measured as

error(x) = Z(xT 0;x — bi)z. (37)

i=1

We initialized Newton’s method and Algorithm 1 in two ways. Table 1 displays the results
when Newton’s method was initialized randomly by sampling from a standard normal dis-
tribution and Algorithm 1 was initialized at a fixed diagonal matrix satisfying the constraint
in (36). Table 2 provides the results when Newton’s method and Algorithm 1 were both
initialized near a solution to (34), that is, in all implementations of Newton’s method each
application of the method was initialized as

x*+no, (38)

where x* was a solution to (34), n > 0 and each element of & was sampled from a standard
normal. Algorithm 1 was initialized at xox(—)r where x( was generated by (38). Wesetn = 0.4
in our experiments. Note, Convex + Newton does not rely on initialization.

The entries in each table provide the error of the approximated solutions obtained by the
three methods above, and the errors obtained by solving the convex relaxation of (35) and
solving (36) with Algorithm 1 before application of Newton’s method.

In Table 1, we see SCO + Newton significantly outperformed Newton and Convex +
Newton in our experiments. The results show SCO + Newton located solutions in three
of the ten tests while the other methods failed to compute any solutions to (34). We note
also the rank-1 projections of the approximated solutions to (36), obtained by Algorithm 1,
given under header “SCO” in Table 1, were always better than the approximated solutions
of Newton and Convex + Newton. The vast discrepancy between the projected solutions of
the convex relaxation, given under the header “Convex” in Table 1, and (36) demonstrate the
over-relaxed nature of removing the rank condition from (35). Though a global minimizer
to (36) was not computed, the resulting approximate solution was significantly better than
the global minimizer of the convex relaxation, by at least a factor of 10°. In Table 2, we
observe SCO + Newton was able to obtain accurate solutions in nine of the ten experiments
when being initialized near a solution to the system of equations. Newton, however, failed
to locate any solutions while being initialized in the same neighborhood. We note further
in Experiments 4 and 5 when (n, m) = (75, 75) that Algorithm 1 obtained a sufficiently
accurate solution to (34) without applying Newton’s method. These experiments showcase
how our methodology effectively augments the local convergence of Newton’s method. Thus,
the framework offered by (SCO-Eig) presents a significantly better relaxation of the rank-1
condition which far surpasses the standard convex relaxation. This lends support for our
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Table 1 Errors of the three different solvers and the two initial solvers for different synthetic settings

Dimension (n, m) Newton Convex Convex +Newton SCO SCO +Newton
(75,75) Exp. 1 214.21 8.11e8 559.51 1.95 1.40
Exp. 2 331.68 6.30e8 385.27 14.44 3.80
Exp. 3 388.15 7.13e8 471.95 0.03 7.64e—11
Exp. 4 69.09 6.76e8 570.88 37.95 6.16
Exp. 5 154.01 1.03e9 141.76 54.30 7.37
(100,100) Exp. 1 512.87 1.50e9 833.87 1.76 1.33
Exp. 2 929.21 2.18¢9 1.22¢3 74.86 8.65
Exp. 3 742.94 6.44¢9 969.96 0.37 5.32¢—13
Exp. 4 660.32 2.05¢9 386.52 2.25 3.06e—10
Exp. 5 748.96 4.09¢9 832.66 51.74 7.19

The column titled “Dimension” states the size of the matrices, Q; € R"*", and the number of quadratic
equations in (34); the rows give the individual experiments for each dimension. The errors (according to (37))
of the proposed methods are given below their respective headers. The column titled “Convex” provides the
error of the rank-1 projection of the solution to the convex relaxation of (35); the column “SCO” states the
error of the rank-1 projection of the approximate solution to (36) with § = le — 10. The bolded numbers mark
the best error obtained for each experiment

Table 2 Errors of Newton, SCO

. Dimension (n, m) Newton SCO SCO +Newton

+ Newton, and one initial solver

for different synthetic settings (75,75) EXp. 1 171.20 2.57 2.62e—9

with initialization near an optimal ’

solution Exp. 2 68.98 0.14 4.06e—13
Exp. 3 200.52 0.01 7.17e—9
Exp. 4 83.27 6.24e—5 2.40e—10
Exp. 5 93.94 1.24e—4 1.14e—9

(100,100) Exp. 1 347.66 0.16 1.86e—10

Exp. 2 207.88 0.01 0.09
Exp. 3 151.35 0.59 2.18e—13
Exp. 4 410.53 0.47 2.14e—13
Exp. 5 193.35 0.12 2.05e—13

The column titled “Dimension” states the size of the matrices, Q; €
R™ " and the number of quadratic equations in (34); the rows give
the individual experiments for each dimension. The errors (according
to (37)) of the proposed methods are given below their respective head-
ers. The column “SCO” states the error of the rank-1 projection of the
approximate solution to (36) with § = le — 10. The bolded numbers
mark the best error obtained for each experiment

framework being a means of relaxing rank constraints, and the results displayed Algorithm
1 can still perform well even when the constraint set is non-convex.

8.3 Matrix Completion

The problem of completing a matrix with missing entries has proved to be useful and important
for many tasks including: image reconstruction [60], recommender systems [10], and the
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sensor network localization problem [41] among numerous others [16]. Formally, the matrix
completion problem can be described as follows: given a partially observed matrix M €
R™>" with known entries M; ; for (i, j) € $2 recover the missing entries. A classical
approach to this problem has been to reformulate it as the rank minimization problem

min rank(X)
S.t. X,',j:M,"j, (i, j)es2
X e R™, (39)

This formulation of the problem utilizes the assumption the matrix being recovered has low-
rank, which may or may not be the case. A direct approach to solving (39) is well-known to
be imprudent because it is in-general NP-hard; so alternative approaches have been proposed.
A well-studied approach is to replace the rank function with the nuclear norm and instead
solve the convex program

min - [| X[+
S.t. Xi,j=Mi7j, @i, j)e 2
X e R™*". (40)

In the seminal work by Candes and Recht [8], they demonstrated solving (40) was able to
perfectly recover with high probability low-rank matrices provided enough of the entries
were sampled. The main benefit of (40) is the fact it is convex and global minimums of the
model are computable; however, as demonstrated in the prior section, sometimes non-convex
relaxations yield better solutions than globally solvable convex relaxations. We demonstrate
this is also the case for matrix completion when additional information about the spectrum
of the desired matrix is known.

Let us consider recovering positive semidefinte matrices. Our set-up is similar to the
numerical experiments conducted in [8], but we add the additional piece of information that
we know the eigenvalue structure of the matrices being recovered. In detail, given positive
integers n and s, with s < n, we randomly generate M € S*" such that A{(M) = --- =
As(M) =nand A;1 (M) = --- = A, (M) = 0. Leveraging this additional knowledge, we
propose the following spectrally constrained matrix completion model

1
min 2 [|W © (X — M) |}

st MX)=---=rxX)=n
Asp1(X) =+ =2 (X) =0
X € §mxn (41)

where W;; = 1if (i, j) € £2 and W;; = 0 otherwise and © denotes the Hadamard product.
It is clear if a feasible X is computed to (41) such that the objective value is zero a global
minimum has been located which satisfies the equality constraints in (40). Also observe, since
our theory applies for linear inequality constraints on the spectrum, we can easily deal with
equality constraints by adding additional inequality constraints. Thus, (41) is an instance of
(SCO-Eig).

In our numerical experiment, we set n = 50 and let s € {1, 2, ..., 49, 50} and randomly
generated data matrices M as described above. We then uniformly at random selected o €
{0.05,0.1, ..., 0.90, 0.95} percent of the elements of M to hide. Algorithm 1 was applied
to solve (41) and CVX [18] was applied to solve the nuclear norm minimization problem
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Fig. 3 Displays the results from the matrix recovery experiments. The left panel presents the results from
solving the nuclear norm minimization problem (42), while the right panel showcases the results from solving
(41); white cells in the figures equate to the method perfectly recovering the matrix in all ten randomized
experiments for each setting (s, &) where s € {1,2,...,49,50} and « € {0.05,0.10, ..., 0.90, 0.95}; black
cells correspond with failure to recover the matrix in any of the ten experiments; gray cells correspond to
partial success, i.e., some percentage of the matrices were accurately completed

min Tr(X)
sit. X j=M;j, (i,j)e 2
X es (42)

Note, (42) is equivalent to (40) when X is restricted to be positive semidefinite. For all
combinations of s and « we conducted ten random experiments. Following [8], we considered
a matrix M recovered if the returned matrix X, satisfied || X,p, — M||r/|IM|F < 1073,
In our tests, we first solved the convex program (42) and projected the solution onto the
eigenvalue constraint set in (41) using Theorem 6; from this projected matrix we initialized
Algorithm 1 to locate a solution to (41). The results of the experiments are displayed in Fig. 3.
Studying the results, we observe the spectrally constrained approach dominated the clas-
sical convex approach by taking into account the eigenvalue structure of the matrices. Of
the 9500 numerical tests we conducted represented in the heat maps in Fig.3 (note white
cells equate to perfectly completing the matrix in all ten experiments for the associated (s, o)
while black cells equate to failure to recovery the matrix in any of the ten experiments), our
procedure recovered the matrices in about 77% of the tests while the convex approach only
recovered about 39% of the matrices. Thus, our method nearly doubled the chance of recov-
ery. Though (41) is a highly non-convex problem, our projected gradient method was able to
locate global minimums. And by initializing intelligently using the projection of the solution
obtained from (42), our method was able to obtain perfect recovery with great frequency.
The regions of recovery approximated in Fig.3 are also noteworthy. A clear half-circle
region in the right panel of Fig.3 showing failure to recover by solving (41) makes us
conjecture a probabilistic recover result is possible for our procedure; this would be an
intriguing avenue for future investigation. The key conclusion to draw from this experiment
is that when structured eigenvalue information is known non-convex models can significantly
best convex relaxations which are incapable of accounting for additional constraints on the
spectrum. Also note that though this was a synthetic experiment, examples exist in the
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literature where particular structural information about the eigenvalues are known; see for
example Theorem 1 of [25]. Such applications are fertile grounds for future investigation.

9 Conclusion

This paper investigates the first matrix optimization model with linear inequality constrained
eigenvalues. Theory was developed to understand the nature of the eigenvalue constraint set,
and we presented KKT conditions for (SCO-Eig). We additionally verified the accuracy of
a relaxation which ensured the differentiability of the eigenvalue operator over the feasible
domain. We proved global minima can be computed to (SCO-Eig) for linear objective prob-
lems, independent of the convexity of the constraint, and we proved how to compute exact
projections. The computational complexity to obtain these global solutions is polynomial and
only requires performing a spectral decomposition and solving a simple convex model, e.g., a
linear program. Using these results, we developed two algorithms which compute first-order
e-stationary points for (SCO-Eig) with a sublinear convergence rate. The practicality of our
algorithms was assessed through numerical experimentation. Our example on solving sys-
tems of quadratic equations and matrix completion showcased a new and effective method
which can best convex relaxations of classical problems.

Many future directions are open for investigation. First, we plan on extending the frame-
work of (SCO-Eig) to include equality constraints on the coordinates of the matrix,

min F(X)
st.Gi(X)=0,i=1,...,p
AMX) <b
X e 8™, (43)

This paradigm will encompass most matrix optimization models studied over symmetric
matrices and allow new spectral constraints never before considered. Additionally, we plan
to develop approaches to solve models which constrain the singular values of non-square
matrices and generalized singular values of tensors. As the applications of tensors expand
in the burgeoning field of data science, the capability to manipulate the spectrum of these
mathematical objects will become ever more important.

Acknowledgements The authors thank the anonymous editor and reviewer for their helpful feedback and
comments.

Funding Research Fellowship Program under Grant No. 2237827 and NSF Award DMS-2152766. Any opin-
ions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and

do not necessarily reflect the views of the National Science Foundation.

Data Availability The datasets generated during and/or analysed during the current study are available from
the corresponding author on reasonable request.

Declarations
Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

@ Springer



89 Page280f29 Journal of Scientific Computing (2024) 100:89
References
1. Beck, A.: First-Order Methods in Optimization. SIAM (2017)
2. Benson, M.W.: Iterative solution of large sparse linear systems arising in certain multidimensional approx-
imation problems. Util. Math. 22, 127-140 (1982)
3. Boyd, S.P,, Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
4. Cai, J.E, Candes, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM
J. Optim. 20(4), 1956-1982 (2010)
5. Candes, E.J., Eldar, Y.C., Strohmer, T., Voroninski, V.: Phase retrieval via matrix completion. STAM Rev.
57(2),225-251 (2015)
6. Candes, EJ., Li, X.: Solving quadratic equations via PhaseLift when there are about as many equations
as unknowns. Found. Comput. Math. 14, 1017-1026 (2014)
7. Candes, E.J., Plan, Y.: Matrix completion with noise. Proc. IEEE 98(6), 925-936 (2010)
8. Candes, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9,
717-772 (2009)
9. Chen, K.: Matrix Preconditioning Techniques and Applications. Cambridge Monographs on Applied and
Computational Mathematics. Cambridge University Press (2005)

10. Chen, Z., Wang, S.: A review on matrix completion for recommender systems. Knowl. Inf. Syst. 64(1),
1-34 (2022)

11. Cullum, J., Donath, W.E., Wolfe, P.: The Minimization of Certain Nondifferentiable Sums of Eigenvalues
of Symmetric Matrices. Nondifferentiable Optimization, pp. 35-55 (1975)

12. Dierolf, M., Menzel, A., Thibault, P.,, Schneider, P., Kewish, C.M., Wepf, R., Bunk, O., Pfeiffer, F.:
Ptychographic x-ray computed tomography at the nanoscale. Nature 467(7314), 436439 (2010)

13. Dikin, LI: Iterative solution of problems of linear and quadratic programming. In: Doklady Akademii
Nauk, Vol. 174, pp. 747-748. Russian Academy of Sciences (1967)

14. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic opti-
mization. J. Mach. Learn. Res. 12(7), 1 (2011)

15. Fan, J., Liao, Y., Liu, H.: An overview of the estimation of large covariance and precision matrices.
Economet. J. 19(1), C1-C32 (2016)

16. Maryam, F.: Matrix Rank Minimization with Applications, Ph.D. thesis,. Stanford University (2002)

17. Fienup, C., Dainty, J.: Phase retrieval and image reconstruction for astronomy. Image recovery: theory
and application 231, 275 (1987)

18. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.1. http://cvxr.
com/cvx (2014)

19. Gowda, M.S.: Optimizing certain combinations of spectral and linear/distance functions over spectral
sets. arXiv:1902.06640 (2019)

20. Hager, W.W., Zhang, H.: Projection onto a polyhedron that exploits sparsity. SIAM J. Optim. 26(3),
1773-1798 (2016)

21. Harrison, R.W.: Phase problem in crystallography. JOSA a 10(5), 1046-1055 (1993)

22. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur.
Stand. 49(6), 409436 (1952)

23. Hiriart-Urruty, J.B., Lewis, A.S.: The Clarke and Michel-Penot subdifferentials of the eigenvalues of a
symmetric matrix. Comput. Optim. Appl. 13, 13-23 (1999)

24. Horn, R.A., Johnson, C.R.: Matrix analysis. Cambridge University Press (1985)

25. Kasten, Y., Geifman, A., Galun, M., Basri, R.: Algebraic characterization of essential matrices and their
averaging in multiview settings. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 5895-5903 (2019)

26. Ito, M., Lourenco, B.F.: Eigenvalue programming beyond matrices. arXiv:2311.04637 (2023)

27. Jaganathan, K., Eldar, Y.C., Hassibi, B.: Phase retrieval: an overview of recent developments. Optical
Compressive Imaging, pp. 279-312 (2016)

28. Jourani, A., Ye, J.J.: Error bounds for eigenvalue and semidefinite matrix inequality systems. Math.
Program. 104, 525-540 (2005)

29. Kangal, F.,, Meerbergen, K., Mengi, E., Michiels, W.: A subspace method for large-scale eigenvalue
optimization. SIAM J. Matrix Anal. Appl. 39(1), 48-82 (2018)

30. Lacoste-Julien, S.: Convergence Rate of Frank-Wolfe for Non-Convex Objectives. arXiv:1607.00345
(2016)

31. Lancaster, P, Rodman, L.: Algebraic Riccati equations. Clarendon Press (1995)

32. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Proceedings of the 13th

International Conference on Neural Information Processing Systems, NIPS’00, pp. 535-541. MIT Press,
Cambridge, MA (2000)

@ Springer


http://cvxr.com/cvx
http://cvxr.com/cvx
http://arxiv.org/abs/1902.06640
http://arxiv.org/abs/2311.04637
http://arxiv.org/abs/1607.00345

Journal of Scientific Computing (2024) 100:89 Page290f29 89

33. Lerman, G., Maunu, T.: An overview of robust subspace recovery. Proc. IEEE 106(8), 1380-1410 (2018)

34. Lewis, A.S.: Derivatives of spectral functions. Math. Oper. Res. 21(3), 576-588 (1996)

35. Lewis, A.S.: Nonsmooth analysis of eigenvalues. Math. Program. 84(1), 1-24 (1999)

36. Lewis, A.S.: The mathematics of eigenvalue optimization. Math. Program. 97, 155-176 (2003)

37. Lewis, A.S., Overton, M.L.: Eigenvalue optimization. Acta numerica 5, 149-190 (1996)

38. Lewis, A.S., Sendov, H.S.: Twice differentiable spectral functions. SIAM J. Matrix Anal. Appl. 23(2),
368-386 (2001)

39. Li, Y., Xie, W.: On the Partial Convexification for Low-Rank Spectral Optimization: Rank Bounds and
Algorithms. arXiv:2305.07638 (2023)

40. Liang, X., Wang, L., Zhang, L.H., Li, R.C.: On generalizing trace minimization principles. Linear Algebra
Appl. 656, 483-509 (2023)

41. So, AM.C,, Yinyu, Y.: Theory of semidefinite programming for sensor network localization. Math.
Program. 109(2), 367-384 (2007)

42. Mengi, E., Yildirim, E.A., Kilic, M.: Numerical optimization of eigenvalues of Hermitian matrix functions.
SIAM J. Matrix Anal. Appl. 35(2), 699-724 (2014)

43. Millane, R.P.: Phase retrieval in crystallography and optics. JOSA A 7(3), 394-411 (1990)

44. Ortegar, J.M.: Numerical Analysis. Society for Industrial and Applied Mathematics (1990)

45. Overton, M.L.: Large-scale optimization of eigenvalues. SIAM J. Optim. 2(1), 88-120 (1992)

46. Overton, M.L., Womersley, R.S.: On minimizing the spectral radius of a nonsymmetric matrix function:
Optimality conditions and duality theory. SIAM Matrix Anal. Appt. 9, 473 (1988)

47. Overton, M.L., Womersley, R.S.: Optimality conditions and duality theory for minimizing sums of the
largest eigenvalues of symmetric matrices. Math. Program. 62(1-3), 321-357 (1993)

48. Penot, J.-P.: Calculus without derivatives, vol. 266. Springer (2013)

49. Qu, Z., Gao, W., Hinder, O., Ye, Y., Zhou, Z. Optimal Diagonal Preconditioning: Theory and Practice.
arXiv:2209.00809 (2022)

50. Saad, Y.: Iterative methods for sparse linear systems. SIAM (2003)

51. Shapiro, A., Fan, M.K.: On eigenvalue optimization. SIAM J. Optim. 5(3), 552-569 (1995)

52. Tanaka, M., Nakata, K.: Positive definite matrix approximation with condition number constraint. Optim.
Lett. 8(3), 939-947 (2014)

53. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49-95 (1996)

54. Vaswani, N., Bouwmans, T., Javed, S., Narayanamurthy, P.: Robust subspace learning: Robust pca, robust
subspace tracking, and robust subspace recovery. IEEE Signal Process. Mag. 35(4), 32-55 (2018)

55. Vavasis, S.A., Ye, Y.: A primal-dual interior point method whose running time depends only on the
constraint matrix. Math. Program. 74(1), 79-120 (1996)

56. Wang, G., Giannakis, G.B., Eldar, Y.C.: Solving systems of random quadratic equations via truncated
amplitude flow. IEEE Trans. Inf. Theory 64(2), 773-794 (2017)

57. Wathen, A.J.: Preconditioning. Acta Numer 24, 329-376 (2015)

58. Won, J.-H., Lim, J., Kim, S.-J., Rajaratnam, B.: Condition-number-regularized covariance estimation. J.
R. Stat. Soc.: Ser. B (Stat. Methodol.) 75(3), 427-450 (2013)

59. Ying, Y., Li, P.: Distance Metric Learning with Eigenvalue Optimization. J. Mach. Learn. Res. 13, 1-26
(2012)

60. Zhang, D.,Hu, Y., Ye, J., Li, X., He, X.: Matrix completion by truncated nuclear norm regularization. In:
2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2192-2199 (2012)

61. Zhang, S.: Global error bounds for convex conic problems. SIAM J. Optim. 10(3), 836-851 (2000)

62. Zhu, Z., Li, Q., Tang, G., Wakin, M.B.: Global optimality in low-rank matrix optimization. IEEE Trans.
Signal Process. 66(13), 3614-3628 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer


http://arxiv.org/abs/2305.07638
http://arxiv.org/abs/2209.00809

	Spectrally Constrained Optimization
	Abstract
	1 Introduction
	1.1 Literature Review
	1.2 Contributions: A New Perspective
	1.3 Organization

	2 The Eigenvalue Constraint Set
	3 General Optimality Conditions
	4 Solving SCO-Eig with Linear Objective Functions
	5 Projecting onto the Eigenvalue Constraint Set
	6 Spectrally Constrained Solvers
	6.1 Inexact Projected Gradient Method
	6.2 Inexact Frank–Wolfe Algorithm

	7 Convergence Analysis
	7.1 Proof of Theorem 9
	7.2 Proof of Theorem 7

	8 Numerical Experiments
	8.1 Preconditioning
	8.2 Solving Systems of Quadratic Equations
	8.3 Matrix Completion

	9 Conclusion
	Acknowledgements
	References




