OPEN ACCESS
10P Publishing

Journal of Optics

J. Opt. 27 (2025) 045609 (10pp)

https://doi.org/10.1088/2040-8986/adc141

Quantum inspired 3D pendulum beams

V Rodriguez-Fajardo'->*

, T P Nguyen' and E J Galvez'*

! Department of Physics and Astronomy, Colgate University, 13 Oak Drive, Hamilton, NY 13346, United

States of America

2 Present address: Departamento de Fisica, Universidad Nacional de Colombia, Carrera 30 No. 45-03,

Bogota 111321, Colombia

E-mail: vrodriguezf@unal.edu.co and egalvez @colgate.edu
Received 31 January 2025, revised 6 March 2025

Accepted for publication 17 March 2025
Published 27 March 2025

Abstract

®

CrossMark

The technologies used in the manipulation of light can be used to do analogue simulations of
physical systems with wave-like equations of motion. This analogy is maximized by the use of
all the degrees of freedom of light. The Helmholtz equation in physical optics and the
Schodinger equation in quantum mechanics share the same mathematical form. We use this
connection to prepare non-diffracting optical beams representing the spatial and temporal
dynamics of a nonlinear physical system: the quantum pendulum. By using the propagation
coordinate to represent time in the quantum problem, we are able to analogue-simulate quantum
wavepacket dynamics. These manifest themselves in novel optical beams with rich
three-dimensional structures, such as rotation and sloshing of the light’s intensity as it
propagates. Our experimental results agree very well with the predictions from quantum theory,
thus demonstrating that our system can be used as a platform to simulate the quantum pendulum
dynamics. This three-dimensional light-sculpting capability has the potential to impact fields

such as manipulation with light and imaging.
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1. Introduction

Analogies in physics have been recognized as useful tools
for investigating otherwise (nearly) inaccessible systems [1].
For instance, optical analogies have been used for ultra-fast
signal processing [2], studying three-dimensional networks
dynamics [3] and gravitational phenomena at astronomical
scale [3-5]. The parallels between the Schrodinger equation
and the Helmholtz equation in light propagation are well-
known for the study quantum-light analog problems [6]. In
particular, we are interested in the so-called pendulum beams
[7, 8], that bridge between the quantum planar pendulum
and Mathieu beams. The latter are a relatively new family
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of propagation invariant light beams [9] that have been used,
among others, for 3D micro-particle assembly [10] and micro-
cages fabrication [11]. The former was first studied from a
theoretical perspective by Condon considering a gravitational
potential [12], and today has found applications in biosensing
[13]. It is particularly relevant in molecular physics, where
it constitutes a physically reasonable system to model the
rotational dynamics of molecular systems, which constitute
a key witness of inter- and intra-molecular interactions [14].
Specifically, it has been used to model internal rotation and
molecular orientation in spectroscopy [15, 16] and coher-
ent control [17, 18]. The Mathieu equation that arises in
the quantum solution of the problem is the basis for the
implementation of the transmon qubit in the superconducting
Josephson-junction system [19].

While the eigenfunctions of the planar quantum non-linear
pendulum have been theoretically studied [20, 21] and exper-
imentally by analogy using optical beams [8], its dynamic
behavior is less explored, except for the two limiting cases of
the harmonic oscillator and the free rotor. Theoretical studies
investigate the dynamics of coherent superpositions [14, 22],

© 2025 The Author(s). Published by IOP Publishing Ltd
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being of particular interest the observation of quantum revivals
[23-26], in which an initially localized quantum state spreads
out to be later reformed so that the wave packet relocalizes
[27]. Directly observing these quantum systems’ dynamical
behavior is very challenging, if possible, in most real systems.
Hence, there is an interest in experimentally investigating them
by analogy using other more accessible systems.

In addition, the use of the propagation coordinate creates
new three-dimensional structures that can give rise to novel
light patterns for imaging and manipulation. Various recre-
ations of this type have been made with Gaussian beams,
such as knots of vortex lines [28, 29] and M&bius patterns
of polarization [30-32]. These knots have been discussed as
potential carriers of information [33]. The selection of the
propagation vectors in pulsed beams leads to 3D beams in
space and time [34]. In the case of continuous-wave beams,
superpositions of non-diffracting modes constitute a platform
for manipulating the angular spectrum of the light to render
rotations [35] and the generation of 3D caustic patterns [36].
Manipulation of the angular spectrum can be used as a labor-
atory astrophysics platform to study gravitational lensing [5].

In this work, we use quantum dynamics to define the 3D
structure of the light. We propose and experimentally demon-
strate an optical system that prepares coherent superpositions
of Mathieu beams and uses the propagation coordinate to
represent time in the dynamics of the quantum planar non-
linear pendulum. In doing so we create static 3D patterns
of light intensity that represent the temporal evolution of a
physical system. In section 2, we present the mathematical
description of the problem from the quantum-mechanical and
beam-mode perspectives. It is followed by the experimental
procedure in section 3. In section 4, we present the results
of three distinct quantum-dynamical cases, where the optical
beams represent quantum wavepackets that illustrate the
quantum rotor, the swinging pendulum and the non-classical
double-pendulum. Discussion and conclusions are given in
section 5.

2. Mathematical framework

Mathieu functions were first introduced to describe the vibra-
tional modes of an elliptical membrane [37]. Since then, they
have found applications in various fields of physics [38],
including the description of the planar quantum pendulum [12]
and, in physical optics, Mathieu beams [9]. We are interested
in the connection between these two apparently distinct sys-
tems. Previously, we were interested in how non-diffracting
2D optical patterns represented the quantum problem, which
also showed that the patterns in the far field were proportional
to the quantum probabilities for the pendulum at a fixed time
[8]. In this work, we create a 3D optical beam that repres-
ents the quantum problem for a range of times simultaneously,
where the propagation direction serves as time in the quantum
system. In this section, we outline how we set up the super-
position of optical modes to mimic the time evolution of the
quantum pendulum in 3D.

2.1 Quantum pendular systems

The behavior of a particle free to move along a ring and
immersed in a periodic potential is a problem of interest in
chemistry [39]. This is the case, for instance, of the methyl
groups in Ethane (C,Hg) and the PtClg complex in Potassium
hexachloroplatinate (K,PtClg) [39]. For these systems, the
potential is of the form V= %(1 + cosmf)) [22], where V
is the height of the barrier, m depends on the symmetry of
the molecule, and 6 represents the angular position of the
particle. As an example, figure 1(a) shows the potential for
ethane (m = 3). The eigenfunctions of the system are found by
solving the time—independent Schrédinger equation
2 2

(—Z]ddm-i-‘;()(l—i-cosmG))w—Ew, €))
where I is the moment of inertial of the particle, E the energy
eigen-values and v the wave-functions. By defining the adi-

mensional scaled energies Uy = % and e = sz—f as well as
doing the change of variable mf = 27, equation (1) becomes
d2
df7;f+(a—2q005277)w =0, 2)

where a = % (e — %) and g = % . This equation is known as
the ordinary (or angular) Mathieu equation and its solutions as
the ordinary Mathieu functions [40]. The latter are divided into
first-kind solutions, which are periodic and stable; and second-
kind solutions, which are non-periodic and stable, or unstable.

The case m =1 corresponds to the pendulum. Given the
symmetry of the physical system, we are only interested in
the solutions of the first kind, for which ¢ is real. These solu-
tions are divided into two independent families with even or
odd parity, and 7- or 27-periodicity [41]. Each family forms a
countably infinite set of solutions {A,[n] }»cz-,. In this case,
the values of a in equation (2) are its eigenvalues, which are
real, depend on the value of ¢, and are denoted as a, and b,, for
even and odd solutions, respectively. Moreover, since our sys-
tem requires solutions with periodicity 27 in 6, we continue
only with solutions with period 7 in 1, which corresponds to
even n. Specifically, they are the cosine- and sine-elliptical
functions

Wl = Anli] = { )
S€p [77’ Q]

n—0,2,4,.... 3)
n=24.6,...

Figure 1(b) shows the first eleven solutions, each displaced
to its scaled energy level and adjusted in magnitude for bet-
ter visualization. The even and odd solutions are drawn as
continuous and dotted lines, respectively. The corresponding
potential barrier is drawn as a thick orange line for reference.
For m=1, g = Uy is the scaled energy of the potential barrier.
The scaled energy levels of the eigensolutions of the system
are given by
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Figure 1. (a) Gray-scale representation of the electrostatic potential V() for a methyl group in Ethane (C,Hg). (b) First eleven
eigenfunctions (equation (3)) for a non-linear quantum pendulum, drawn as continuous and dotted lines for even and odd states,
respectively. Each function has been centred on the state’s energy along the vertical axis and magnified for better visualization. (c) The
elliptic coordinate system with interfocal separation 2f. Continuous gray lines and dotted blue lines represent radial (£) and angular (1)

coordinate lines, respectively.

Above the barrier, the difference between the scaled energies
of even and odd solutions for energy levels decreases with
increasing n to become nearly degenerate [41].

2.2. Pendulum beams

In light, Mathieu functions appear as solutions to the 2-
dimensional Helmholtz equation for non-diffracting beams
in elliptical coordinates, resulting in Mathieu beams [9].
Elliptical coordinates (£,7) are defined by

x =fcoshécosn

y =fsinhsingy )

where & € [0,00) and 7 € [0,27) are the radial- and angular-
like variables, respectively. Figure 1(c) shows that contour
lines of constant radial coordinate ¢ are ellipses, and contour
lines of constant angular coordinate 7 are hyperbolas. 2f is the
separation between the two foci of the two types of curves.
Expressed in elliptical coordinates, the Helmholtz equation
takes the form

2 (82+82> +Ku=0, (6)
=+ == |u u=0,

12 (cosh®2¢ —cos?2n) \9& ~ On? !

where k; is the propagation constant in the transverse plane

defined through = kt2 + kf, with k = 27” the wavevector and

A the wavelength. Equation (6) is solved following the method

of separation of variables by making u = A(n) R(£), yielding

the ordinary (or angular) and modified (or radial) Mathieu dif-
ferential equations

d’A
dng”] + (a—2gcos2n)Afn] =0, %
dﬁ?—w—Mmm%mmzm ®)

where a is a separation constant and

R
9="71" (&)

The angular-elliptical solutions of equation (7) are identical
to the quantum solutions described in section 2.1. The radial-
elliptical solutions of equation (8) are expressed in terms of
even and odd Bessel functions of the first kind, Je, and Jo,,.
They can be easily calculated from the angular solutions since
equation (8) becomes equation (7) by making £ = in. Thus,
the modified Mathieu functions of the first kind are given by
[40, 42]

Je, [€;q] = ce, [i&; n=0,1,2,...
Ryfg] = | Tor Sid —cenlicia . (10)
Jo, [&;q) = —ise,[i&;q] n=1,2,3,...
Ideal non-diffracting Mathieu beams are then given by
M; [€m;q) =Jen [§q] cenniq) n=0,1,2,... (11
M; [€m;q) =Jou [§;q] sen[m;q] n=1,2,3,...
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However, these are not experimentally realizable because they
are made of plane waves of infinite energy. Fortunately, we
can overcome this by multiplying them by a Gaussian term,
such that at the waist plane uy = exp(—r2/w3)M°[€,m;4],
where wy is the Gaussian width. The propagated beam is given
by [43]

elke 2 2

ulr] = MGS° [€,1,2:q] = 76"7156_7"3 M€ m5q]
(12)

where = pufz] =1+iz/zr, with zg =kw3/2 being the
Rayleigh range of the Gaussian beam [44]. Equation (12)
describes the Mathieu—Gauss beam, which is a solution of the
homogeneous Helmholtz equation in the paraxial regime.
Crucially, because equations (7) and (2) have the
same form, we can establish a direct connection between
the quantum non-linear pendulum and Mathieu beams.
Remarkably, their transverse Fourier spectrum is proportional
to the quantum probabilities of the pendulum, as has been
theoretically proposed [7] and experimentally demonstrated

[8].

2.3. 3D quantum wavepackets

In this work, we extend the analogy between the quantum
pendulum and pendulum beams from the stationary to the
dynamic situation. For a time—independent Hamiltonian, the
time evolution of a superposition of even and odd eigenfunc-
tions is given by

N E5, N\ E5,
Ulnd=> {wép [n]exp <1ht) + 143, [n]exp <1ht> } ,
p=1
(13)

where the state quantum number is n = 2p. The summation
starts at p = 1 to pair even with odd functions since odd modes
are only defined for n > 2. The superposition consists of 2N
modes, all sharing the same value of g, the height of the poten-
tial barrier.

The first step in the optical implementation is to create
superpositions of Mathieu beams

N
Ulriql = (MG, [€,n,2:q] +1MG3, [€,n,2:q]) . (14)
p=1

where the terms in the summation represent Helical Mathieu—
Gauss beams. These are elliptical in shape, containing n
optical vortices linearly arrayed along the semi-major axis
of the ellipse. The phase of the mode increases following
an elliptical trajectory and carries orbital angular momentum

[45]. We complete the implementation of equation (13) by spe-
cifying different propagation vectors for each value of p

2
u e : (kfzﬁ )
Z

U[l'] = Z M2p [&777‘1] eXp | 1

2k
p=1
2
+1iM3, [£,m;q)ex i(k?zp) eikze_% (15)
2p 154 p 2% < .

To make an exact parallel with equation (13) we scale k;,,
to be proportional to the energy of the quantum states of the

pendulum:
0 e,0
K0 = Egp e __ €2 %
tpy T Ee. "ty T ee T
2N 2N

We note that to reach this simplified dependence with z, we
make wy in equation (12) sufficiently large so that the approx-
imation p(z) & 1 is valid along the experimental propagation
range we measured over, as detailed in the next section. In the
ray description of these non-diffracting modes, equation (15)
entails a superposition of non-diffracting modes with differing
conical angles.

(16)

3. Experimental details

In figure 2(a) we show a schematic of the optical setup used in
the laboratory. A light beam from a He—Ne laser was expanded
and collimated using a telescope composed of lenses L; and
L,, with focal lengths fj =5 cm and f, = 75 cm, respectively.
A half-waveplate in combination with a fixed linear polarizer
(LP) was used to control the power of the beam.

The beam was subsequently steered to a phase-only
liquid-crystal spatial light modulator (SLM: Hamamatsu
model LCOS, with 800 x 600 pixels of size 20 um), where
a computer-generated hologram was encoded. Holograms
included amplitude modulation [46], a blazed phase grating,
and a correction to counteract aberrations of the optical system
[47]. Figure 2(b) shows the hologram for one of the cases we
studied, with the grating periodicity increased for illustration.

The SLM plane was imaged using lenses L3 and L4 (with
focal lengths f5 = 75 cm and fy = 25 cm, respectively) in a 4f
configuration. The conjugate plane of the SLM is shown by the
dotted lines in figure 2(a). Undesired diffraction orders were
filtered using a spatial filter (SF) located at the focal plane
of L3. A digital camera (CAM;: Thorlabs DCC1645C with
3.6 cm pixel size) mounted on a motorized translation stage
(Thorlabs LTS300) was used to acquire images of light beams
along the optical path from the image plane, at z =0, to a dis-
tance z = 30 cm.



J. Opt. 27 (2025) 045609

V Rodriguez-Fajardo et al

Figure 2. (a) Schematic diagram of the implemented experimental setup. A liquid crystal spatial light modulator (SLM) was illuminated
with an expanded and collimated He—Ne laser light beam (A = 633 nm). The spatial mode of the beam was created by a hologram displayed
on the SLM, as shown in (b). A 4-f system of lenses relayed the beam further downstream, where images of the propagating beam were
taken using a digital camera on a rail (CAM,), as shown in (c). A second camera (CAM>) was placed at the Fourier plane of the SLM to
capture images of the far-field beam, shown in (d). Unwanted diffraction orders were removed by using a spatial filter (SF) and power was

controlled using a half-wave plate (HWP) / LP (LP) combination.

We used a mirror on a flip mount (depicted as a dashed
gray line after Ls) to optionally redirect the beam towards
a lens Ls, which Fourier-transformed the image plane onto
a second digital camera (CAM,;: Thorlabs DCC1545M with
5.2 um pixel size). Accessing the Fourier plane allowed us
to define the maximum transversal wavevector our system
could sustain, which was limited mainly by the size of the
SF in the beam’s path. The latter was made as large as
possible, while also filtering out other diffraction orders.
We choose the maximum value of k¢, =15 x 10> m~! for
all our measurements. The complete data acquisition pro-
cess was automated using custom-made MATLAB scripts,
including driving the translation stage and capturing the
images.

We created superpositions of Mathieu beams following
equation (15). In all cases, we used a Gaussian width wy =
5 mm that fit well within the SLM, which corresponds to a
Rayleigh range zg ~ 124 m. This leads to = 1+iz/zr = 1
for the range of the experiments, with a maximum propaga-
tion distance z = 0.3 m (see equation (12)). Since all modes
must share the same parameter g, but have different k;, it was
necessary to modify the semi-focal separation f in the defin-
ition of elliptical coordinates (equation (5)) for each mode to
ensure that equation (9) was satisfied. Mathieu functions were
calculated using adaptations of the MATLAB libraries created
by Gutiérrez-Vega [41]. This setup enables the simulation of
other physical systems with distinct dynamics by changing the
hologram displayed without modifying the optical setup.

4. Results

A key difference between the quantum pendulum and Mathieu
beams is that while the first one is a one-dimensional system,
the second one is two-dimensional. That is, the quantum prob-
ability encoded in the angular-elliptical coordinate is distrib-
uted along the radial-elliptical coordinate of the beam mode,
as can be appreciated in figure 2(c). In addition, for m=1,
6 = 2n, so there is a 1:2 mapping of the theoretical quantum
probability for the pendulum to the intensity of the optical
mode. That is, the optical mode corresponds to a variation in 6
that goes from O to 47 in the captured image. This makes the
pattern on the top half of the image repeat on the lower half.
This feature is particularly evident in the quantum superposi-
tion shown, which is asymmetric, representing the pendulum
at a turning point of its oscillation.

In the far field, the radial component for a stationary state,
expressed in terms of Bessel functions, collapses into a delta
function of the radial (polar) coordinate. Optically, this corres-
ponds to a single ring with a radius proportional to the trans-
verse wave-vector, with the angular solution modulating the
intensity along the ring [7, 48]. This has been demonstrated
experimentally to be proportional to the quantum probability
|¥[n]|? [8]. However, in the case of a superposition of modes
Ulr; q| (states U[n,?]) of different transverse wave-vectors ks,
(energies E,), the far-field pattern consists of several rings
with a radius that depends on &, (Ey,), as shown in figure 2(d).
The top half of this image and mirror-inverted lower half are
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Figure 3. Energy levels diagrams of the modes in the superposition for (a) a rotor or unbounded pendulum (g =0.2, n = 2,4), (c) an
oscillating pendulum (¢ = 120, n = 2,4), and (e) a double pendulum (¢ = 120, n = 2,4, 6, 8,10), and corresponding experimental (left) and
numerically simulated (right) Fourier transform of the optical beam for the same cases in (b), (d) and (f), respectively. Here, we have taken
advantage of the symmetry of the intensity profiles, and show only the left (right) parts of the experimental (simulated) images.

an analogue form of the energy-level diagram of the states
of the superposition, modulated by their respective quantum
probabilities. The specific case of figure 2(d) corresponds to
the superposition of four states. Focusing on the upper half
of the insert, the ordering of states is, from lower to upper,
n=2 (odd), n=2 (even), n =4 (odd), and n =4 (even). The
odd (even) parity of each state is evident by a node (antinode)
at the centres of the respective patterns. The image is a strik-
ing analogue-optical representation of a quantum energy-level
diagram such as the one in figure 1(b).

4.1 Cases

We present three cases of superpositions with distinct dynamic
behavior.

4.1.1. Case I: the pendulum rotor. This case corresponds
to the unbounded pendulum, where the states involved in
the superposition are above the potential barrier, as seen in
figure 3(a). In this case, the superposition consists of four
modes (N = 2), all sharing the parameter g = 0.2. Each wave-
function is drawn at a height that corresponds to its energy
level, and magnified in amplitude for better visualization. Even
and odd modes are drawn as continuous and dotted lines,
respectively. The height of the potential barrier is given by
q. The experimental and numerically simulated Fourier trans-
forms of the optical superposition are shown in figure 3(b),
where taking advantage of the symmetry of the images, we
compare the two, with the left half being the experimental
image and the right half the simulation. Only two rings are
seen since the even and odd states of the same n are nearly
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Figure 4. Analytically computed intensity for (a) an unbounded pendulum (a rotor), (c) an oscillating pendulum, and (e) a double
pendulum. Example hyperbolas of constant angular-elliptical coordinate 7 are shown for reference, along with the two foci of the coordinate
system. (b), (d), (f) Corresponding experimental images of the propagated beam from z =0 to z = 25 cm in steps of Az =5 cm Insets

present the numerically simulated light beams.

degenerate. The rings are not modulated in intensity because
the probability of finding the rotor is the same for all angles.

The analytically calculated mode at z=0 is shown in
figure 4(a), along with the contour lines for the angular-
elliptical coordinate, in multiples of 7= %. Because g —
0, elliptical coordinates converge to polar ones, and these
lines resemble radial lines. The experimental images of the
propagating beam are shown in figure 4(b) as a sequence
of images. They include inserts with numerically simulated
calculations using the first Rayleigh—Sommerfeld diffraction
solution [49]. Upon propagation, the whole pattern rotates
counter-clockwise in a rotor-like fashion, such that its size
slightly increases and its shape is mostly maintained. For
instance, the two predominant lobes in the middle rotate
around the centre while their relative position is unchanged.
Simulated images showcase the same type of behavior,
although the rotation rate is slower. The difference may be due
to a systematic error in the imaging system. Similar patterns
and rotation dynamics have been previously observed using
Bessel beams [50, 51] and tornado waves [52].

Notice also that while there are arcs of high intensity at
low radius, other arcs at larger radii are offset. A long-term
examination of this problem shows that the offset intensities
are due to temporal recurrences. That is, the states involved
in the superposition can be in phase, showing a single rotor,
but can also double their period for other phase combina-
tions. The sequence mildly shows the combination of these
two situations.

4.12. Case lI: the oscillating pendulum. The second case
corresponds to the oscillating pendulum. Figures. 3(c) and (d)
show, respectively, the energy-level diagram of the four states
involved in the superposition and the Fourier transform of the
optical beam. The state parameters for this case are N =2 and
q=120. This is also the example shown in figures 2(b)—(d).

In this case, the states are all relatively low in the potential
well and are nondegenerate. Thus, the Fourier transform of the
mode consists of four rings with their intensity modulated by
the corresponding probability for each state (|2/(n)[?).

Figures 4(c) and (d) present, respectively, the analytical
and measured images of the beam pattern for this case. The
intensity of the beam shown starts symmetrically distrib-
uted with respect to 7= 7 at z=0. Subsequently, it shifts
to one of the pendular turning points (angles) for z=35 cm
and z = 10 cm. After returning to be almost symmetrical at
z=15 cm, the pendulum swings to the other turning point
at z=20 cm and z =25 cm. This oscillation in the intens-
ity distribution resembles the back-and-forth movement of a
pendulum.

4.1.3. Case lll: the double pendulum. A third case that
we show consists of a non-classical version of the pendulum,
which we call the double pendulum. It corresponds to a super-
position of 10 states, with N =25 and ¢ = 120. This case is
shown in figures 3(e) and (f). Since there are 10 modes in the
superposition, all below the potential barrier, the energy dia-
gram and image are more congested. As the energy of the state
increases, the maximum elongation of the arc also increases,
corresponding to larger pendular turning points. The non-
classical aspect of the dynamics is evident in figures 4(e) and
(f), where the quantum probability is localized at two distinct
angles. The two bright lobes in the pattern move in opposite
directions: towards the centre of the pattern atz = 5,10, 15 cm,
across in the middle for z =~ 20 cm, to continue moving away
from each other for z = 25 cm. We interpret this as two pendu-
lums moving in opposite directions in a coordinated fashion,
a situation that has no analogy in the classical system for a
single pendulum. It may resemble the case of two pendulum
bobs that oscillate but collide elastically at the lower point of
the oscillation.
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Intensity —»
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Figure 5. (a) Evolution in space of the corresponding three-dimensional intensity for a coherent superposition of modes representing a rotor
(Case I in the text). (b) Computed evolution in time of the probability of the quantum pendulum.

4.2. 3D beams

We took data over a span of values of z to map the 3D shape
of the beam. This is shown in figure 5(a) for Case I. It is a
composite of the images taken stepwise along z. The graph of
a surface representing the intensity of the beam illustrates the
3D character of the beam. The 2:1 mapping of the quantum
probability into the beam mode results in a non-diffracting
double helix, which for the span measured corresponds to one
full revolution of the helix. In figure 1(b), we plot the analyt-
ically calculated beam, showing excellent agreement. We note
that the helix shown is static in space, with its phase depending
on the initial absolute phase of the superposition encoded onto
the SLM. Changing this phase in real-time makes the helix
rotate. Such a 3D pattern could be used in the optical trans-
port of trapped particles in an optical tweezer as a form of an
Archimedes screw.

5. Conclusions

In summary, we have developed an optical platform to study
the dynamics of the quantum planar non-linear pendulum. We
present a theoretical framework that supports the analogy and
experimental results that confirm it. We presented three rep-
resentative cases with distinct dynamical behavior, all exhibit-
ing quantum-like traits. Our approach provides a reliable, ver-
satile, and relatively easy-to-implement tool for mimicking a
quantum system using a classical system: light beams. Thus,
opening the possibility of investigating quantum systems by
analogy. Interestingly, an optical analogy of the classical pen-
dulum was recently reported [53], where a harmonic poten-
tial is considered and its typical oscillatory behavior observed,

with the added advantage of observing the wave-particle dual-
ity of their so-called light particles.

Given the good performance of our platform, we anti-
cipate that it could be used to simulate other systems gov-
erned by a Schrodinger equation that can be mimicked by the
wave equation. One such system is the particle in a quartic
potential, which is mimicked by accelerating parabolic beams
[54]. Other examples include transmons [19], and oscillatory
quantum-fluid polaritons [55]. In addition, it could also be
used to introduce a wider range of audiences to concepts in
quantum mechanics using a more visual approach. The images
of the energy-level diagram specified by the corresponding
quantum probabilities, shown in figures 2(d), 3(a),(c) and (e)
are a pedagogical analogue illustration of the quantization of
mechanical systems. Besides the potential as a platform for
optical analogies, future research includes the investigation
of optical knots in our three-dimensional optical pendulum
beams and creating vector beams using them to investigate
skirmions in propagation.

These 3D beams have potential for applications in particle
manipulation with light. For example, the 3D helical pattern
of figures 1(d) and (e), where an optical helix of intensity can
be rotated for transporting trapped particles in either axial dir-
ection in a new optical version of Archimedes screw [56-58].
Other combinations of sloshing intensities could do similarly
by rendering traveling waves of various types, opening possib-
ilities for applications in light sculpturing and imaging.
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