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Abstract
Serverless computing has grown rapidly as a new cloud com-
puting paradigm that promises ease-of-management, cost-
e!ciency, and auto-scaling by shipping functions via self-
contained virtualized containers. Unfortunately, serverless
computing su"ers from severe cold-start problems—starting
containers incurs non-trivial latency. Full container caching
is widely applied to mitigate cold-starts, yet has recently
been outperformed by two lines of research: partial con-
tainer caching and container sharing. However, either partial
container caching or container sharing techniques exhibit
their drawbacks. Partial container caching e"ectively deals
with burstiness while leaving cold-start mitigation halfway;
container sharing reduces cold-starts by enabling containers
to serve multiple functions while su"ering from excessive
memory waste due to over-packed containers.

This paper proposes RainbowCake, a layer-wise container
pre-warming and keep-alive technique that e"ectively miti-
gates cold-starts with sharing awareness at minimal waste
of memory. With structured container layers and sharing-
aware modeling, RainbowCake is robust and tolerant to invo-
cation bursts. We seize the opportunity of container sharing
behind the startup process of standard container techniques.
RainbowCake breaks the container startup process of a con-
tainer into three stages and manages di"erent container lay-
ers individually. We develop a sharing-aware algorithm that
makes event-driven layer-wise caching decisions in real-time.
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1 Introduction
Serverless computing, as a new programming paradigm, has
revolutionized how applications utilize cloud resources. Var-
ious application domains, such as web services, online video
processing, data analytics, scienti#c computing, and machine
learning [3, 4, 14, 24, 30, 33, 46, 54], have embraced server-
less computing model as this model simpli#es how users
deploy applications. Serverless platforms relieve users from
heavy daily operations (e.g., infrastructure maintenance and
resource provisioning) with transparent auto-scaling. Users
only need to upload their code onto serverless platforms as
functions1 and invoke the functions, leaving everything else
to the service provider.

1In this paper, a function refers to an executable code package deployed on
a serverless platform, and a function invocation is a running instance of the
package. A function can be invoked multiple times over time.
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Serverless functions are latency-sensitive due to their
short execution time—often in the range of seconds [53]—
leaving limited time for platforms to prepare a container2,
which takes over hundreds of milliseconds, severely in$at-
ing function response time, known as the notorious cold-
start problem. Fig. 1 shows the landscape of recent stud-
ies proposed to mitigate cold-starts in serverless comput-
ing, including new container techniques [1, 27], checkpoint-
ing [5, 21, 55], memory deduplication [49], and caching (i.e.,
pre-warming [12, 29, 48, 53] and keep-alive [25, 45, 48, 53]).

However, serverless workloads are highly volatile, bursty,
and hard-to-predict—recent research indicates that over 50%
of functions on Microsoft Azure Function witness signi#-
cantly varying invocation patterns [53]. The full-container
caching has been widely applied as an e"ective solution
addressing the burstiness in serverless computing [12, 25,
29, 45, 48, 53]. A fully initialized container is also fully spe-
cialized, only serving requests of one speci#c function but
occupying hundreds of MBs in memory. Thus, any mispre-
dictions may lead to frequent cold-starts and vast memory
waste [13].

A few recent studies attempt to accommodate the dilemma
by seeking #ne-grained trade-o"s from two main perspec-
tives: 1) partial container caching approaches break a con-
tainer into fragments [39, 42] or layers [13] and caches partial
containers to reduce memory waste while accelerating con-
tainer initialization; 2) container sharing schemes [2, 23, 37,
40, 43, 50] enable an idle container to servemultiple functions
by packing their common dependencies (or libraries) into
one monolithic container image, thus tolerating potential
mispredictions.
Intuitively, given the same memory budget, partial con-

tainer caching increases the number of containers inmemory,
thus raising the hit rate of partially initialized containers. In-
stead, container sharing decreases the number of containers
in memory due to their increased size (by packing more de-
pendencies) but generalize a container to be hit by di"erent
functions, which raises the hit rate of the “over-packed” con-
tainers. However, both partial caching and container sharing
solutions fail to strike a fundamental balance between cold-
start mitigation and memory wasting, thus leading to either
halfway cold-start mitigation or excessive memory waste.

We argue that partial container caching and sharing must
be synergized to mitigate cold-starts with minimal mem-
ory waste. Fig. 1 describes RainbowCake’s position in the
design space of cold-start mitigation solutions. RainbowCake
is the #rst serverless cold-start mitigation technique that
enjoys the merits from both sides, i.e., joint partial container
caching and sharing. RainbowCake enables layer-wise con-
tainer caching and sharing by carefully exploiting di"erent

2We use the term “container” to denote general virtual environments that
execute function invocations in serverless computing, such as Docker con-
tainers and Firecracker MicroVMs.
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Figure 1. Design space for cold-start mitigation.
layers’ generalities: Lower-level container layers are lighter
and can be shared by more functions. Higher-level layers save
more start-up latency but are heavier and more specialized.
Based on this insight, RainbowCake leverages invocations’
historical information to customize pre-warm and keep-alive
strategies tailored to every function. Overall, we make the
following key contributions:

• We carefully examine layer-wise container initializa-
tion process and identify three layers that naturally
decouple the initialization process without breaking
any system dependencies that enable RainbowCake
with layer-wise partial container caching and sharing.

• We propose a layer-wise sharing-aware algorithm to
mitigate cold-starts with minimal memory wasting
by proactively pre-warm and adaptively keep-alive
layer-wise containers, achieving a high tolerance to
burstiness.

• We implement RainbowCake in OpenWhisk and de-
ploy it on a real cluster. Extensive experiments with
industrial traces and real-world applications show that
RainbowCake reduces 68% function startup latency and
77% container memory waste compared to state-of-the-
art solutions.

2 Background and Motivation
We describe the cold-start problem in serverless computing
(§2.1), then brie$y introduce existing cold-start mitigation
techniques with a focus on partial container caching and
sharing (§2.2), and motivate the necessity of a joint design
(§2.3).

2.1 Cold-starts in Serverless Computing
Fig. 2(a) illustrates the varying cold-start latencies of 20 re-
alistic functions executed on an OpenWhisk cluster with
Docker containers, which in$ate the end-to-end function
response time signi#cantly [53, 57]. Similar to existing par-
tial container caching works [13], we carefully identify the
following three key stages in serverless function cold-starts:
Stage #1: Environment setup. Upon receiving a function
invocation, the serverless computing platform prepares the
infrastructural environment (e.g., selecting a worker node
and checking the container pool) for container initialization
and execution. A container proxy is created to provide the



RainbowCake: Mitigating Cold-starts in Serverless with Layer-wise Container Caching and Sharing ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Setup env.
Init. lang.
Load lib/code
Execution

Fu
nc

tio
n

DT-Java
DL-Java
DQ-Java
DS-Java
DG-Java

MD-Py
FC-Py
VP-Py
IR-Py

SA-Py
GP-Py
GM-Py
GB-Py
DV-Py
OI-Js
TN-Js
UL-Js
DH-Js
IS-Js

AC-Js

(a) Latency (ms)
0 10,000

Fu
nc

tio
n

DT-Java
DL-Java
DQ-Java
DS-Java
DG-Java

MD-Py
FC-Py
VP-Py
IR-Py

SA-Py
GP-Py
GM-Py
GB-Py
DV-Py
OI-Js
TN-Js
UL-Js
DH-Js
IS-Js

AC-Js

(b) Memory footprint (MB)
0 200 400

Figure 2. Cold-start latency and memory footprint break-
down of three stages for 20 realistic functions of Node.js,
Python, and Java (details in §7.1).

necessary utilities for the container, such as logging, com-
munication, and container health checking.
Stage #2: Language runtime initialization. After the con-
tainer proxy is ready, the platform pulls an image into the
container for the invocation’s corresponding language run-
time and related built-in libraries to initialize the runtime.
For example, the invocation to IR-Py will create a container
based on an image with Python runtime.
Stage #3: User deployment package loading. After the
container is created, the platform then loads the user deploy-
ment code package into the container, including user code,
execution tools, libraries, and other dependencies. Fig. 2(b)
shows that the memory consumption varies between di"er-
ent languages and user deployment packages.
The three stages of cold-starts and their varied latency

and memory footprints imply the existence of a more fun-
damental trade-o" between cold-start latency and memory
consumption, motivating the idea of RainbowCake that par-
tially pre-warms & keeps alive containers initialized to one
of the three stages at runtime.

2.2 Recent Trends in Cold-start Mitigation
Existing pre-warming & keep-alive strategies [12, 25, 29,
45, 48, 53] make coarse-grained decisions, i.e., either reserv-
ing a full-size container or completely terminating the con-
tainer, can hardly #nd the optima between cold-starts and
resource wasting. Choosing either decision can lead to se-
vere problems—keeping a full-size container alive wastes
hundreds of MBs of memory if no invocations to serve,
while terminating the container leads to potential perfor-
mance degradation due to cold-starts. Recently, researchers
have attempted to tackle the coarse-grained trade-o" in
mitigating cold-starts in two directions: partial container
caching [13, 39, 42] and container sharing [37, 43].
Partial container caching solutions resort to #ner-grained
trade-o"s by breaking a container into fragments, such as
network connectors [42] and namespace constructors [39];
or layered structures based on the common three stages [13]
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Figure 3. Timelines of running the 20-function workload
driven by eight-hour Azure Functions traces. Metrics in-
clude cumulative function end-to-end latency and cumula-
tive memory waste.

in §2.1. The key idea behind partial container caching is
to keep containers with only partial fragments or layers in
memory, so that memory cost can be e"ectively reduced
while cold-starts are mitigated with partial containers.
Container sharing aims to avoid the trade-o" by recycling
idle containers from one function to help other functions.
Containers of serverless functions are typically private—
every container is assigned to a speci#c function and in-
compatible with others. Full container caching techniques
inevitably accumulate (private) idle containers due to imper-
fect pre-warming or keep-alive policies. Sharing approaches
utilize those idle containers to serve other functions (selected
via tree cache [43] or weighted sampling [37]), thus further
reducing cold-starts. Commercial serverless platforms’ lim-
ited language versions (e.g., AWS Lambda supports at most
four Python versions [9]) also make container sharing prac-
tical.
However, either partial container caching or container

sharing techniques have non-trivial downsides. Next, we
use a real-world experiment to demonstrate a co-design by
jointly applying the two methods to achieve an optimum.

2.3 Layer-wise Caching and Sharing
In the prototype of RainbowCake on OpenWhisk [6], we
identify three types of containers according to their initial-
ized layers in bottom-up order. The three container types
are aligned with existing partial container caching solutions
(e.g., the three initialization paths in SEUSS [13]):

• A Bare container has only initialized the infrastruc-
tural environment and utilities for containers (e.g., es-
tablishing network connections and logs). It has a low
memory consumption and is compatible with any func-
tions but has to install a language runtime and load
user code before executing an invocation.

• A Lang container has initialized a container with a
language runtime (e.g., Python) based on the Bare

container. It is compatible with functions of the same
language (e.g., DV-Py and IR-Py). Compared to a Bare
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container, a Lang container consumes more memory
but takes less time to prepare for invocation execution.

• A User container, also known as a full-size container,
has initialized user library/codebase (e.g., IR-Py) based
on the Lang container. It is instantly ready to execute
an invocation but only compatible with one function
(e.g., IR-Py).

To motivate the need of RainbowCake, we run a serverless
workload [17, 18, 52] driven by 8-hour industrial invoca-
tion traces [53]. Detailed experimental setup can be viewed
in §7.1. Fig. 3 shows the cumulative function end-to-end
latency and cumulative memory cost, respectively. We im-
plement Histogram [53], SEUSS [13], and Pagurus [37] in
OpenWhisk as baselines to represent full container caching,
partial container caching, and container sharing, respectively.
Compared to full container caching (Histogram) and con-
tainer sharing (Pagurus), partial container caching (SEUSS)
signi#cantly reduces the memory cost for keeping contain-
ers. However, partial warm-starts delivered by partial con-
tainer caching fail to match the latency reduction of complete
warm-starts. Though container sharing reduces cold-starts
and accelerates function startup, shareable full-size contain-
ers are overweight due to over-packed, resulting in excessive
memory waste.

With a joint design of partial container caching and shar-
ing, our proposed RainbowCake can achieve both a low func-
tion end-to-end latency and minimal memory cost. Rain-
bowCake carefully makes pre-warm & keep-alive decisions
on caching proportions of containers to di"erent layers at
runtime with cross-function sharing awareness.

3 RainbowCake Overview
3.1 Objectives and Challenges
We carefully design RainbowCake to achieve three goals:

Mitigating cold-starts with minimal resource wast-
ing. RainbowCake is designed to proactively pre-warm and
keep-alive containers with #ne-grained layer-wise caching
decisions. With a joint design, RainbowCake should enable
function invocations to reuse and share containers with dif-
ferent layers. Tolerance to burstiness and mispredic-
tions. Serverless computing workloads are typically event-
driven and bursty, making it hard to accurately predict the
arrivals of invocation bursts. RainbowCake should e"ectively
mitigate cold-starts and maintain stable resource wasting
when dealing with such burstiness and potential mispredic-
tions.

Lightweight and high scalability. Serverless comput-
ingworkloads are typically latency-sensitive (e.g., sub-second
response time) and involve large-scale concurrent invoca-
tions. RainbowCake should be able to e"ectively mitigate
cold-starts of high concurrent invocations without introduc-
ing non-negligible overhead.

To achieve the above objectives, we need to answer the
following challenging questions:
How to!nd the optimumof the trade-o" between cold-
start and resource wasting? Introducing #ne-grained con-
tainer layers (i.e., Bare layer, Lang layer, and User layer)
extensively complexi#es the decision space of trade-o"s be-
tween cold-start latency and resource wasting. Besides, the
diversity of language runtimes and user deployment pack-
ages as well as their varying cold-start overheads further
complicate the solution search space.
How to tune RainbowCake’s sensitivity and tolerance
of burstiness and mispredictions? Ideally, perfect pre-
dictions enable pre-warming & keep-alive methodologies
to achieve 100% hit rate of full-size containers—zero cold-
starts. In reality, with the existence of mispredictions, how
RainbowCake adapts to bursty invocations by tweaking the
containers’ compatibility to function types is a non-trivial
decision.
How to be compatiblewith various container software
stacks of di"erent serverless platforms? Serverless com-
puting has a rich and diverse software stack, such as Fire-
cracker [1] and gVisor [27], involving di"erent virtualization
techniques, programming frameworks, dependencies, and
languages. RainbowCake’s layer-wise pre-warming and keep-
alive must be su!ciently general to support e"ective cold-
start mitigation for the serverless computing eco-system.

3.2 Architecture
RainbowCake has two key components: the History Recorder
and the Container Pool. The History Recorder keeps observing
invocation request arrivals and captures the invocation pat-
terns by #tting sharing-aware distribution models with the
collected invocation arrival records (§5.1). The Container Pool
maintains containers of di"erent layers and executes event-
driven pre-warming and keep-alive operations according to
the estimation of upcoming invocations (§5.2).

3.3 Work#ow
Fig. 4 presents an example of our work$ow by comparing
RainbowCake with existing keep-alive approaches. Full con-
tainer caching approaches keep full-size containers (with
User layer) alive before termination. The containers stay
idle unless reused by invocations from the same function,
resulting in container resource wasting. In the top of Fig. 4,
Function A invocation arrives, executes with a container,
and then starts to keep alive. During the keep-alive period
of A’s container, Function B invocation arrives but cannot
reuse A’s container due to incompatible User-layer, which
has to start a new container for execution with cold-start.
Container sharing solutions pack multiple libraries in one
container with a heavy User layer, yet may still su"er from
cold-starts. In the middle of Fig. 4, Function B invocation can
reuse the idle container, but C invocation is cold-started due
to incompatible User layers.
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Figure 4. RainbowCake’s work$ow.

In contrast to existing container caching and sharing ap-
proaches, RainbowCake enables idle containers partial keep-
alive ability for safe and cross-function reuse. In the bottom
of Fig. 4, we keep A’s User container alive for a while, then
peel o" the User layer of A, which downgrades to a Lang
container. Function B invocation can now reuse the Lang

container since they have the same language runtime. B
invocation reuses the Lang container by installing its own
User layer inside it, which can be considered as a partial
warm-start that saves the startup time of installing Lang and
Bare layers. Similarly, we peel o" the User and Lang layers
of B’s container during keep-alive, and C invocation can still
reuse the Bare container of B with a partial warm-start to
reduce startup latency.

4 Problem Formulation
4.1 System Model
We consider a workload with a set of functions served by a
serverless platform. Each function has a speci#c user deploy-
ment package and a language runtime, and each function
invocation takes a container with suitable language run-
time and deployment packages to execute. Let b, l, u denote
Bare container, Lang container, User container, respectively.
We assume the platform owns a limited amount of resources
(e.g., memory) for keepingmulti-layered containers. A newly-
arrived invocation either hits an available container in one
of the three types (Bare, Lang, and User) with warm-start or
triggers the initialization of a new container with cold-start.

Bare containers can serve any invocations from arbitrary
functions, Lang containers can be shared by any invocations

Null Run

Layer-wise Keep-alive

Layer-wise Pre-warm

Done/TimeoutClean lib.Del. runtimeTerminate

Env. setup Init. runtime Load lib. Execute

Bare Lang User

Figure 5. Life cycle and state transition of a container in
RainbowCake.

of the same language runtime (e.g., an Lang containers with
Python can be reused among GM, GB, VP, IR, and DV invo-
cations in Fig. 2), and User containers can only be reused
by invocations launched within the same function. The plat-
form o"ers pre-warming and keep-alive services for every
function. Concretely, the platform pre-warms containers to
one of the three types to serve future function invocations.
The containers start their keep-alive period immediately af-
ter either being pre-warmed or completing execution. Hence,
a running container always belongs to one of the three types
(i.e., Bare, Lang, and User). Fig. 5 depicts the state transition
among di"erent types and the life cycle of multi-layered
containers. A container upgrades to the next type when
installing the corresponding layer and downgrades to the
previous type after its current time window expires.

4.2 Cost Metrics
We use two metrics to measure the performance of a server-
less platform addressing cold-starts for a workload: 1) startup
overhead of a function invocation refers to the time start-
ing from preparing a container until actual execution, and
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2) wasted resource of a container refers to the resources oc-
cupied during the idle phase without serving invocations.
We consider each metric as a cost that the platform takes to
serve a workload.

Let𝐿 (𝐿)
𝑀𝑁𝑂𝑃𝑁𝑄𝑅 and𝐿 (𝐿)

𝑆𝑇𝑆𝑈𝑃𝑉 denote the total startup cost and
total resource waste cost for handling all invocations of a
function at type 𝑀 ↑ {b, l, u}, respectively. Across all three
types of layers, the total startup cost𝐿𝑀𝑁𝑂𝑃𝑁𝑄𝑅 and total mem-
ory waste cost 𝐿𝑆𝑇𝑆𝑈𝑃𝑉 are summed by

𝐿𝑀𝑁𝑂𝑃𝑁𝑄𝑅 :=
∑

𝐿↑{b,l,u}
𝐿 (𝐿)
𝑀𝑁𝑂𝑃𝑁𝑄𝑅 , 𝐿𝑆𝑇𝑆𝑈𝑃𝑉 :=

∑
𝐿↑{b,l,u}

𝐿 (𝐿)
𝑆𝑇𝑆𝑈𝑃𝑉 .

Thus, the uni#ed cost 𝐿 consisting of the startup cost and
the resource waste cost is given by

𝐿 := 𝑁 ↓𝐿𝑀𝑁𝑂𝑃𝑁𝑄𝑅 + (1 ↔ 𝑁) ↓𝐿𝑆𝑇𝑆𝑈𝑃𝑉, (1)
where parameter 𝑁 ↑ (0, 1) serves as a tunable knob that the
platform can trade o" between two types of costs.

4.3 Objective and Complexity
To serve future function invocations, the platform keeps a
certain number of containers by pre-warming and keep-alive
for each type 𝑀 ↑ {b, l, u}. In real-time, we make two kinds
of decisions for each type 𝑀 ↑ {b, l, u}: pre-warming and
keeping containers alive. The objective is to minimize the
uni#ed cost in Eq. 1 over the total time span of a workload,
where #nding the optimal set of decisions can be naturally
formulated as an Integer Linear Programming (ILP) problem
with NP-completeness. However, searching for the optimum
in large-scale serverless platforms with sub-second latency
requirements and online invocation arrivals is extremely
challenging. Therefore, we opt for an e!cient event-driven
design of RainbowCake to enable #ne-grained layer-wise
pre-warming and keep-alive decisions.

5 RainbowCake Design
5.1 Sharing-aware Invocation Modeling
We leverage invocation history to model the sharing-aware
arrival distributions of hits on each container type.
Function-speci!c modeling. To capture the latest invo-
cation patterns, we #rst #t the invocation distribution of
function 𝑂 using a sliding window on the latest 𝑃 invoca-
tions (e.g., six invocations). We record the arrival timestamp
𝑄 ↗ of the stalest invocation in the window to calculate the
rate parameter of the distribution 𝑅𝑊 = 𝑋

𝑌↔𝑌 ↗ , where 𝑄 is the
current timestamp. For each function, we model a Poisson
distribution with random variable 𝑆𝑊 ↘ 𝑇𝑈𝑉𝑊𝑊𝑈𝑃(𝑅𝑊 ). Pois-
son distribution is commonly applied to describe request
arrival patterns [22, 26, 34, 56].
Sharing-aware estimation. We employ compound Pois-
son distribution for the sharing-aware invocation modeling.
Given the invocation history of a set of functions 𝑋 , each
function 𝑂 ↑ 𝑋 is modeled by a function-speci#c Poisson
distribution with a random variable 𝑆𝑊 ↘ 𝑇𝑈𝑉𝑊𝑊𝑈𝑃(𝑅𝑊 ). Let

Algorithm 1: RainbowCake’s Pre-warming
1 async def SchedulePrewarm(function_id, IAT):
2 Sleep(IAT) /* Wait until next request */

3 if Available(function_id) is False then
/* Pre-warm if no warm ones */

4 PrewarmContainer(function_id, type=User)
5 else

/* Skip if warm containers exist */

6 pass
7 return
8 while function invocation arrives do
9 function_id ≃ function.get_id()

10 next_IAT ≃ Poisson(function_id, type=User)
/* Asynchronous execution */

11 SchedulePrewarm(function_id, next_IAT)

𝑋 (𝐿) denote the set of functions equipping with 𝑀-type layer
within 𝑋 , where 𝑀 ↑ {b, l, u}. For each container type 𝑀 , we
compound the corresponding function-speci#c distributions
to be a Poisson distribution 𝑌 (𝐿) :

𝑌 (𝐿) ↘ 𝑇𝑈𝑉𝑊𝑊𝑈𝑃(𝑅 (𝐿) ) =
∑

𝑊 ↑𝑍 (𝐿 )

𝑆𝑊 , (2)

where 𝑅 (𝐿) =
∑

𝑊 ↑𝑍 (𝐿 ) 𝑅𝑊 . The compounded summand in Eq. 2
can be transformed to an equivalent exponential distribution
with the following cumulative distribution function (CDF):

𝐿𝑍𝑋 (𝑎 ; 𝑅 (𝐿) ) =
{
1 ↔ 𝑏𝑎

(𝐿 )𝑏 𝑎 ⇐ 0,
0 𝑎 < 0,

(3)

Using the CDF in Eq. 3, we can estimate the probability
of a given inter-arrival time (IAT) of the distribution, where
IAT is de#ned as the time interval between two consecutive
invocation arrivals. Inversely, given a quantile 𝑐 , the IAT of
type 𝑀 can be derived from the quantile function of 𝑑𝑎𝑐 (𝑅 (𝐿) ):

𝑒𝑓𝑔 (𝑀, 𝑐) = 𝐿𝑍𝑋↔1 (𝑐; 𝑅 (𝐿) ) = ↔𝑕𝑃(1 ↔ 𝑐)
𝑅 (𝐿) , 0 ⇒ 𝑐 < 1. (4)

Thus, by specifying 𝑐 , we can estimate an invocation ar-
riving in at most 𝑒𝑓𝑔 (𝑀, 𝑐) time. Intuitively, the quantile 𝑐
represents the con#dence of predicting future invocations—
the higher 𝑐 , the longer RainbowCake tends to keep partial
containers alive. RainbowCake further uses the estimated
IATs to determine pre-warming and keep-alive Time-to-Live
(TTL) decisions.

5.2 Layer-wise Pre-warming and Keep-alive
RainbowCake enforces TTL-based pre-warming and keep-
alive strategies when provisioning #ne-grained containers
layer-wise. However, pre-warming and keep-alive decisions
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Algorithm 2: RainbowCake’s Keep-alive
1 def ComputeTTL(container, IAT):
2 𝑖 ≃ container.get_startup_latency()
3 𝑗 ≃ container.get_memory_footprint()
4 𝑘 ≃ (𝑁 ↓ 𝑖)/((1 ↔ 𝑁) ↓𝑗) /* Equation 6 */

5 return Min(IAT, 𝑘)
6 while container timeouts do
7 function_id ≃ container.get_function_id()
8 layer≃ container.get_type()
9 if layer is Bare then

/* Bare containers timeout */

10 container.kill()
11 else

/* User or Lang containers timeout */

12 container.downgrade()
13 layer≃ container.get_type()
14 next_IAT≃ Poisson(function_id, layer)
15 TTL≃ ComputeTTL(container, next_IAT)
16 SetContainerTimeout(container, TTL)

are highly correlated with each other. Finding an optimal so-
lution is impractical in serverless platforms with sub-second
latency requirements (§4).

Therefore, we propose an event-driven heuristic algorithm
to dynamically adjust the length of pre-warming and keep-
alive TTLs in real-time. The event-driven design is aligned
with the serverless computing nature, where serverless func-
tion invocations are highly volatile, bursty, and usually trig-
gered by various user events. The algorithm utilizes sharing-
aware distributions modeled from historical invocation infor-
mation to adapt the length of TTLs. RainbowCake’s algorithm
consists of two parts: pre-warming and keep-alive.
Pre-warming. Upon the latest invocation arrives, Rainbow-
Cake’s container pool queries the function history to esti-
mate the IAT in Eq. 4. Then, the pool schedules a pre-warm
event after the IAT time to pre-warm a User container for the
function. When the event is scheduled, the container pool
#rst checks whether any idle User containers of the function
exist. If any, we ignore the pre-warming schedule since an
incoming invocation can directly reuse idle User containers
in the pool. Otherwise, we start pre-warming a User con-
tainer for the function. Pre-warmed containers proceed to
the keep-alive period immediately after startup, which can
further downgrade and be reused by other invocations.
Keep-alive. Every idle container needs to uninstall three
layers sequentially in a keep-alive period: User, Lang, and
Bare. Before transitioning to the next type, a container noti-
#es the container pool that stores the invocation distribution
models. The pool uses the corresponding distribution’s quan-
tile function to estimate the IAT of invocations in the next

type. We de#ne 𝑖 (𝐿) as the startup latency of installing the
dependencies of the corresponding layer, and de#ne 𝑗 (𝐿)

as the memory consumption of an idle container in type
𝑀 ↑ {b, l, u}. The startup cost𝐿 (𝐿)

𝑀𝑁𝑂𝑃𝑁𝑄𝑅 in Eq. 1 is measured by
accumulating startup latency 𝑖 (𝐿) . Since CPU allocation can
be adjusted using CPU sharing techniques without terminat-
ing the container (e.g., cpu-shares in Linux cgroups [31]),
we measure the product of memory occupation 𝑗 (𝐿) and
idle time to account for resource waste cost𝐿 (𝐿)

𝑆𝑇𝑆𝑈𝑃𝑉 in Eq. 1
of an idle container. The startup latency and memory foot-
print of an idle container for a function is typically constant,
thus we use the average startup latency 𝑖 (𝐿) and the average
memory occupation 𝑗̄ (𝐿) :

𝑖𝐿 =

∑𝑋
𝑐=1 𝑖

(𝐿)
𝑐

𝑃
, 𝑗̄𝐿 =

∑𝑋
𝑐=1𝑗

(𝐿)
𝑐

𝑃
, (5)

over the sliding window of 𝑃 invocations of the function for
type 𝑀 . We compute an upper bound 𝑘 (𝐿) for the predicted
IAT of 𝑀 by assuming 𝑁 ↓ 𝑖 (𝐿) = (1 ↔ 𝑁) ↓ 𝑗̄ (𝐿)𝑘 (𝐿) in Eq. 1:

𝑘 (𝐿) :=
𝑁𝑖 (𝐿)

(1 ↔ 𝑁)𝑗̄ (𝐿) , 𝑀 ↑ {b, l, u}. (6)

The IAT upper bound 𝑘 in Eq. 6 dictates the maximum du-
ration for a container to stay idle, thus constraining a con-
tainer’s memory waste cost cannot exceed its startup cost
of the function. The TTL length for function 𝑃 keep-alive
decisions with quantile 𝑐 at 𝑀 is given by

𝑔𝑔𝑙(𝑃,𝑀, 𝑐) = min{𝑒𝑓𝑔 (𝑀, 𝑐), 𝑘 (𝐿) }, 𝑀 ↑ {b, l, u}. (7)

Algorithms 1 and 2 summarize RainbowCake’s event-driven
pre-warming and keep-alive strategies. We design Rainbow-
Cake to make layer-wise pre-warming and keep-alive de-
cisions driven by invocations. The event-driven design ef-
#ciently shrinks the decision space, which has immense
exponential complexity analyzed in §4. We make decisions
of pre-warming and keep-alive separately, where invocation
arrivals trigger RainbowCake to make pre-warming decisions
and idle container timeouts trigger keep-alive decisions. Both
pre-warming and keep-alive require RainbowCake to per-
form a constant complexity of operations as described in
§5.2. Hence, RainbowCake’s pre-warming and keep-alive de-
cisions incur negligible operational overhead compared to
the original decision space.

5.3 Security
Container-sharing techniques have been vastly proposed in
recent years to better serve serverless computing [23, 36, 37,
40, 50]. Despite existing works claiming to share containers
among functions securely, one may question RainbowCake
for compromising security by sharing Lang and Bare con-
tainers. In RainbowCake’s design, we strictly follow server-
less computing work$ow and reverse the steps of container
startup to enable safe container sharing. All the functions
are enforced to run on RainbowCake as non-root users of
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containers [10, 11, 28]. For any functions, we #rst create and
anonymously amount an Action folder into the container
before importing user packages. We install user dependen-
cies and manage all user #les under the Action folder. Before
downgrading to Lang, we enforce the container to remove
the Action folder by sending a Clean HTTP request. We
prevent attackers from breaching their workspace with jail
techniques [35], such as chroot jail in Linux systems [16].
User-speci#ed libraries are treated as part of the User layer,
and user-spawned background processes can be tracked by
recording the PIDs upon execution. We make sure Lang and
Bare containers are isolated from any user-related contents
by removing them before sharing the container with other
functions. RainbowCake guarantees that a User container’s
user remnants are completely wiped out before moving to
Lang and Bare. Hence, we assure that all Lang and Bare con-
tainers of RainbowCake are safe for cross-function sharing.

6 Implementation
RainbowCake is designed to be a generic solution to miti-
gate cold-starts and reduce memory wasting for serverless
platforms. For concreteness, we describe its implementation
in the context of Apache OpenWhisk [6], an open-source,
distributed serverless platform that executes functions using
Docker containers [41]. We implement RainbowCake with
8K lines of Scala for OpenWhisk modi#cations and 2K lines
of Python for user client that runs experiments, which is
open-sourced3 for community adoption.

6.1 OpenWhisk’s Container System
We implement our layer-wise policy on top of the Open-
Whisk container system. OpenWhisk employs the actor
model [32] to construct the container system using Akka Ac-
tor library [38]. On each worker server, OpenWhisk #rst ini-
tializes a parent actor to represent the container pool, which
further spawns on-demand child actors to represent con-
tainer proxy driven by function invocations. Upon receiving
a function invocation, OpenWhisk forwards the invocation
message to the container pool actor. The container pool
checks whether it can reuse a warm container. If no warm
container is found, the container pool creates a new con-
tainer proxy actor, which initializes a new Docker container
with a speci#c language runtime and supervises it to execute
user functions.
OpenWhisk manages life cycles of containers by wrap-

ping every container proxy into a Finite State Machine (FSM).
Fig. 5 illustrates the diagram of the states of an OpenWhisk
container proxy with RainbowCake’s layer-wise policy. In
RainbowCake, a container upgrades or downgrades to the
next type when its proxy transitions into the next state. A
container proxy keeps its supervised container active and

3https://github.com/IntelliSys-Lab/RainbowCake-ASPLOS24

listens to HTTP requests for initializing function code, run-
ning the function, returning execution results to container
FSMs, and terminating the container. In OpenWhisk, the cold
startup overhead of a function invocation includes preparing
an Akka actor, initializing the language runtime, and loading
user package in the container. RainbowCake further divides
three container types based on the initialization stages ob-
served in OpenWhisk.

6.2 Layer-wise Policy Implementation
We focus on designing server-level pre-warming and keep-
alive policy, i.e., we do not discuss scheduling or load balanc-
ing among multiple servers since they are orthogonal. In our
RainbowCake’s system architecture, we have one container
pool that manages life cycles of multiple containers. To im-
plement our layer-wise policy in OpenWhisk, we modi#ed
the following modules in OpenWhisk:
HTTP handlers. OpenWhisk implements a daemon that
routes HTTP requests inside all its language runtimes, where
the request type is speci#ed in the URL path. Upon receiving
an Init HTTP request, the container proxy #rst creates an
Action folder under user home directory and installs user
packages (import user code from database, activate libraries,
and set environment variables) under it. We add a Clean

HTTP handler to delete the Action directory and unset all
user-de#ned environment variables. When a User container
downgrades to Lang, it makes an HTTP POST request speci-
fying Clean in the URL path to wipe out user packages, thus
returning to a plain language runtime container. All three
HTTP handlers are implemented in OpenWhisk language
runtimes including Java, Python, and Node.js.
Container proxy. Wemake container proxies communicate
with the container pool to query new TTLs before entering
the next keep-alive period. The proxy operates its container
using the HTTP handlers and Docker APIs [41]. Because of
using actor models, the inter-transition overhead is negligi-
ble compared to the installing time of three layers (§7.7).
Container pool. The invocation history recorder and dis-
tribution modeling are implemented in the OpenWhisk con-
tainer pool. We use Linux cgroups tools [31] to measure the
memory occupation of containers. The maintenance over-
head of the history recorder is trivial, as the total memory
footprint of keeping track of one million functions only re-
quires 250 MB of memory. For pre-warming a container, the
container pool queries the history recorder for the given
function and estimates the IAT of the next invocation ar-
rival. We then register a pre-warming event using the utility
method scheduleOnce(IAT, pre-warm) from Akka Sched-
ulers, which pre-warm a User container after waiting for
an IAT duration. For determining keep-alive TTLs, when a
container proxy needs to enter the next keep-alive period, it
#rst sends a query embedded with its current container prop-
erties (e.g., layer name, user package ID, and language name)

https://github.com/IntelliSys-Lab/RainbowCake-ASPLOS24
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to the container pool. The pool estimates an IAT from the his-
tory recorder with a corresponding invocation distribution
and sends the IAT back to proxies as the new TTL.

7 Evaluation
7.1 Experimental Setup
Testbeds. We deploy and evaluate RainbowCake on a three-
node OpenWhisk cluster using AWS EC2 [7], including one
client node for invoking functions, one controller node that
hosts OpenWhisk components, and one worker node. The
m5.4xlarge client node has 16 AMD EPYC CPU cores, the
m5.8xlarge controller node has 32 CPU cores, and theworker
of m5.24xlarge has 96 CPU cores and 240 GB of memory
for launching Docker containers and executing functions.
Each of the three nodes has 100 GB EBS storage.
Workloads.We employ three open-source serverless bench-
mark suites [17, 18, 52] with in total 20 applications varying
from Node.js, Python, and Java in our evaluation. Table 1
characterizes the 20 functions across three programming
languages and #ve domains. We con#gure each function’s
resource limit and input data according to the default settings
from the suites.
Invocation traces.We used real-world Azure Functions in-
vocation traces [53] for evaluation on OpenWhisk. In total,
eight trace sets were sampled for evaluating RainbowCake.
Speci#cally, we sampled an 8-hour trace set for evaluating
the overall performance, and other seven 1-hour trace sets
with IAT CVs ranging from 0.2 to 4.0, to evaluate Rainbow-
Cake ’s robustness to workloads with di"erent IATs. For
sampling each set, we swipe the 14-day Azure invocation
trace #les and select the function traces that #rst match our
required invocation IAT CVs. Each trace is mapped to one
function and drives the invocations in evaluation. We leave

Table 1. Characterizations of serverless applications.
Language Function Domain

Node.js

Auto Complete (AC) Web App
Dynamic HTML (DH) Web App
Uploader (UL) Web App
Image Sizing (IS) Multimedia
Thumbnailer (TN) Multimedia
OCR-Image (OI) Multimedia

Python

DNA Visualization (DV) Scienti#c Computing
Graph BFS (GB) Scienti#c Computing
Graph MST (GM) Scienti#c Computing
Graph Pagerank (GP) Scienti#c Computing
Image Recognition (IR) Machine Learning
Sentiment Analysis (SA) Machine Learning
File Compression (FC) Web App
Markdown (MD) Web App
Video Processing (VP) Multimedia

Java

Data Transform (DT) Data Analysis
Data Load (DL) Data Analysis
Data Query (DQ) Data Analysis
Data Scan (DS) Data Analysis
Data Group (DG) Data Analysis

the sampled traces unaltered to ensure an evaluation closely
re$ecting production environments.
RainbowCake’s settings. RainbowCake can con#gure three
important system parameters for improving performance:
knob parameter 𝑁 that balances the initialization cost and
memory waste cost, window size 𝑃 that keeps historical
information of recent invocations, and the quantile 𝑐 that
represents the con#dence for estimating invocation IATs. In
our evaluation, we compute the upper bounds, which limit
the maximum survival time of idle containers, for the three
container types per function and set them as the initial TTLs
of the three container types. When the experiment proceeds,
the TTLs will be dynamically con#gured in runtime using
Eq. 7. We set the knob parameter 𝑁 of uni#ed cost as 0.996 so
that all functions’ initialization cost consistently outweighs
the memory waste cost. The invocation history recorder
uses a sliding window to monitor the latest 𝑃 invocations for
modeling distributions per container type. The window size
𝑃 is set to six invocations. We set all functions’ IAT quantile
to be 0.8. The sensitivity of RainbowCake’s three parameters
are analyzed in §7.5.
Baselines.We compare RainbowCake with #ve state-of-the-
art cold-start mitigation techniques: 1) OpenWhisk, the
default keep-alive policy in OpenWhisk that keeps every
idle container alive for a #xed 10 minutes before termina-
tion. Commercial serverless platforms such as AWS Lambda,
Google Cloud Function, and Azure functions adopt a similar
strategy. 2) Histogram [53], a histogram-based full con-
tainer caching approach to dynamically adjust pre-warming
and keep-alive TTLs by predicting the inter-arrival time
of function invocations. 3) FaaSCache [25], a greedy full
container caching approach to predict and decide which
container to keep-alive, where containers are cached alive
in the pool until evicted due to creating new containers. 4)
SEUSS [13], a partial container caching approach to handle
invocation bursts. Since the code repository of SEUSS [51] is
outdated (not maintained since 2019), we implement SEUSS
in OpenWhisk for evaluation. 5) Pagurus [37], a container
sharing scheme to recycle idle containers for helping other
functions. Pagurus claimed to use AWS best-practice appli-
cations, yet the implementations are all sleep functions [44].
Original Pagurus and its sleep functions cannot provide
meaningful utilization metrics, so we implement Pagurus
in OpenWhisk and evaluate it with realistic serverless func-
tions.

7.2 Latency and Memory Waste
We evaluate the performance of OpenWhisk, Histogram,
FaaSCache, SEUSS, Pagurus, and RainbowCake using the
8-hour Azure trace set and 20 serverless functions. Fig. 10
characterizes the total invocation arrivals of the 8-hour trace
set in minutes. The Azure Functions dataset originally de-
picts invocations in per-minute buckets. When replaying
the traces, we inject the invocation at the beginning of the
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Figure 6. Average function startup and end-to-end latency of six baselines.
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Figure 9. Ablation study of RainbowCake.

minute if only one invocation exists in a minute-bucket; oth-
erwise, for multiple invocations within a minute, we evenly
distribute invocations throughout the minute, similar to the
methodology used in FaaSCache [25].
Function latency. Fig. 6 shows the average end-to-end
(top) and startup (bottom) latency per function for six base-
lines, respectively. Compared to OpenWhisk, Histogram,
SEUSS, and Pagurus, RainbowCake reduces the average end-
to-end/startup latency by 69%/97%, 60%/96%, 43%/74%, and
31%/68%, respectively. RainbowCake increases the average
function end-to-end/startup latency by 50ms/20ms compared
to FaaSCache.
Invocation details. Fig. 7 shows the end-to-end latency of
every invocation executed by six baselines. Red dash and
straight lines represent the 99th percentile (P99) and aver-
age latency. Compared to OpenWhisk, Histogram, SEUSS,
and Pagurus, RainbowCake reduces the average/P99 invo-
cation end-to-end latency by 84%/58%, 75%/45%, 43%/18%,

and 29%/13%, respectively. RainbowCake increases the aver-
age/P99 invocation end-to-end latency by 0.4s/1.8s compared
to FaaSCache.
Memory waste. Fig. 8 shows the timeline of memory waste
for six baselines. Compared to OpenWhisk, Histogram, FaaS-
Cache, SEUSS, and Pagurus, RainbowCake reduces total mem-
ory waste by 60%, 63%, 75%, 44%, and 77%, respectively. FaaS-
Cache incurs excessive memory waste throughout the ex-
periment due to no container termination. Pagurus also has
considerable memory waste because of heavy monolithic
containers.

7.3 Ablation Study
We conduct an ablation study by comparing RainbowCake
with its two variants: 1) RainbowCake without sharing-
aware modeling.We replace the sharing-aware modeling
with a #xed keep-alive TTL policy similar to the OpenWhisk
default policy. We set the 5, 3, and 2 minutes for User, Lang,
and Bare keep-alive TTLs, respectively. 2) RainbowCake
without layer caching. We only pre-warm and keep User

containers alive, and terminate them once timed out to skip
Bare and Lang phases. We run the experiments using the
same traces and functions in §7.2.
Startup latency. Left of Fig. 9 shows the total startup la-
tency summed over all invocations. RainbowCake increases
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Figure 10. Invocation arrivals and startup timeline of the 8-hour trace set with RainbowCake.

the total startup latency by 23% and 14% without sharing-
aware modeling and layer caching, respectively.
Memory waste. Right of Fig. 9 shows the total memory
waste time of invocations. RainbowCake increases the mem-
orywasting by 25% and 39%without sharing-awaremodeling
and layer caching, respectively.

7.4 Performance Source Analysis
Fig. 10 characterizes the invocation arrivals and the number
of invocations in each startup type of the 8-hour trace set
with RainbowCake in minutes. The number of cold-starts
is signi#cantly reduced, as many cold invocations are o"-
loaded to shareable Lang and Bare containers. While User
containers reduce 35% cold-starts, Lang and Bare containers
also reduce 41% and 13%, respectively. The analysis shows
that reusing all three types of containers is necessary for
RainbowCake’s cold-start mitigation.

7.5 Sensitivity Analysis
We analyze the sensitivity of three parameters in Rainbow-
Cake: knob parameter 𝑁 of uni#ed cost in Eq. 1, IAT quantile
𝑐 in Eq. 4, and the size of invocation sliding window 𝑃 in
Eq. 5. We use the same traces and functions in §7.2 to run the
experiments. Recall that in Eq. 1, uni!ed cost consists of the
total initialization cost (startup latency) and the total mem-
ory cost from (memory wasting). We show the contribution
of each cost in Fig. 11.
Knob parameter 𝑁 . We set 𝑁 = 0.996 in Eq. 1 so that the to-
tal initialization cost outweighs the total container memory
wasting cost. Fig. 11(a) shows the uni#ed cost when grad-
ually increasing 𝑁 from 0.990 to 0.999 in the step of 0.001.
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Figure 11. Sensitivity analysis of RainbowCake’s total wast-
ing cost and total startup cost for knob parameter 𝑁 (0.990
to 0.999), IAT quantile 𝑐 (0.1 to 0.9), and invocation sliding
window 𝑃 (1 to 10).
With 𝑁 increasing, the total wasting cost contributes less
to the uni#ed cost while the total initialization cost grows.
RainbowCake achieves the lowest cost when 𝑁 is 0.996.
IAT quantile 𝑐 . In our evaluation, we set RainbowCake’s
IAT quantile as 0.8 for determining keep-alive TTLs. Fig. 11(b)
shows the uni#ed cost when gradually increasing 𝑐 from
0.1 to 0.9 in the step of 0.1. When 𝑐 increases, RainbowCake
gradually predicts the IATs wildly with longer keep-alive
TTLs, which increases the total wasting cost. Meanwhile,
longer keep-alive TTLs mitigate cold-starts and decreases
the total initialization cost. RainbowCake achieves the lowest
uni#ed cost when 𝑐 is set to 0.8.
Size of invocation sliding window 𝑃. We set the size of
the sliding window as six invocations. Fig. 11(c) reports the
uni#ed cost when increasing the window size from 1 to 10
in the step of 1. When the size increases from 1 to 5, the
characteristics that RainbowCake captures from functions
become more precious. After six invocations, the latest in-
vocation patterns are interfered with by staled invocation
information. RainbowCake achieves the lowest uni#ed cost
when 𝑃 is set to six invocations.
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Figure 12. Robustness to burstiness and limited memory
budgets of six baselines.

7.6 Robustness to Burstiness and Concurrency
We examine the robustness of RainbowCake and #ve base-
lines when dealing with burstiness and concurrency. We
sampled seven sets of 1-hour invocation traces from the
Azure Functions trace dataset, where the trace sets have a
Coe!cient of Variance (CV) of IAT from 0.2 to 4.0. Each trace
set contains 3,600 function invocations. Fig. 12(a) character-
izes the invocation arrival timelines of seven trace sets. With
a higher IAT CV, a trace is more bursty and volatile [53].
Intuitively, a trace with an IAT CV of 0 invokes the same
number of invocations every minute, whereas a trace with
an IAT CV of 4 is full of burstiness. RainbowCake is more
robust to burstiness than #ve baselines due to joint support
of partial container caching and sharing. We analyze the
details of the results below.
Startup latency. Fig. 12(b) shows the total startup latency
of invocations handled by RainbowCake and #ve baselines.
RainbowCake is more robust to burstiness while maintaining
the slowest growth rate when the IAT CV increases.
Memory wasting. Fig. 12(c) shows the total memory waste
time of invocations handled by RainbowCake and #ve base-
lines. We use the product of memory occupation and idle
time to characterize overall memory wasting. RainbowCake
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Figure 13. Inter-transition overhead as the number of con-
current invocations increase, including Bare-to-Lang (B-L),
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achieves signi#cantly less memory wasting than #ve base-
lines when the IAT CV increases.
Constrained memory budget. Fig. 12(c) shows the total
startup latency of invocations handled by RainbowCake and
#ve baselines. We vary the memory size of the container pool
to evaluate the robustness to constrained memory budget.
RainbowCake shows signi#cantly less total startup latency
when the memory budget is limited.
Concurrency. Fig. 13 shows RainbowCake’s inter-transition
overheads of Bare to Lang (B-L), Lang to User (L-U), and
User to function execution (U-Run), respectively. We gradu-
ally increase the number of concurrent invocations from 100
to 1,000. All three inter-transition overheads consistently
stay trivial compared to function startup latency and execu-
tion time, with negligible $uctuations when the number of
concurrent invocations increases.

7.7 Overheads of RainbowCake
Fig. 14 shows the startup latency breakdown of 20 real-world
functions used in the evaluation. Each part is normalized
to a relative percentage compared to the total startup la-
tency. Latency components include initialization delay for
three layers (Bare, Lang, and User) and the inter-transition
overheads (B-L, L-U, U-Run), respectively. The total inter-
transition overhead (B-L + L-U + U-Run) incurs less than 3%
delay, which is negligible for the total startup latency, while
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providing extensive merits such as cold starts mitigation via
container sharing and memory wasting reduction.

7.8 Integrating with Orthogonal Techniques
RainbowCake can be easily integrated with orthogonal tech-
niques, such as checkpointing [21, 55], to accelerate con-
tainer cold startup. We evaluate checkpoint-support Rain-
bowCake by enabling Docker container checkpoint API [20]
in OpenWhisk, which relies on CRIU [19] to checkpoint and
restore container processes. Instead of launching new con-
tainers from scratch, checkpoint-support RainbowCake can
restore a container from checkpoint #les. When running
the same experiment as in §7.2, checkpoint-support Rain-
bowCake reduces the average startup latency by 36% while
increasing the total memory waste by 15% due to caching
additional checkpoint images in memory.

8 Discussion
RainbowCake on distributed clusters. To enable Rain-
bowCake across multi-node distributed clusters, we can de-
sign an inter-node scheduler considering the three factors: 1)
Locality—prioritizing a node with fully warmed (User) con-
tainers, 2) Sharing—selecting a node with the most available
layer-sharing (Lang and Bare) opportunity, and 3) Load—
distributing functions in a manner that avoids resource con-
tention and waste.
RainbowCake with tiered caching. To integrate Rainbow-
Cake with tiered caching, we can leverage the character-
istics of di"erent caches. For example, with memory and
non-volatile memory (NVM), we can adaptively cache di"er-
ent layers in memory and NVM by computing their priori-
ties using statistics, such as hit rate and memory footprint.
Frequently-hit or heavy layers can be cached in memory for
fast access while storing others in NVM.
Security ofRainbowCake’s container sharing. Rainbow-
Cake’s container sharing may introduce two types of user
data leakage: 1) The attacker creates a malicious container by
invoking its malicious function, where RainbowCakemay fail
to clean the function remnants such as background processes.
2) The attacker invokes its function to obtain a container, pur-
posely detects if a container is shared or reused, and searches
for any states (such as code, input data, dependencies) left by
previous users. In RainbowCake, we can snapshot Bare and
Lang containers as zygotes and serve functions by forking
the zygote templates [21, 37]. The zygote templates are safe
checkpoints, as they do not import any user-related code and
data. Hence, the privacy of function software environments
can be enhanced.

9 Related Work
Virtualization-layer solutions.Recently, researchers have
focused on virtualization-layer infrastructure optimization to
provide faster container initialization. Some works develop

new container types [1, 27] and propose to initialize contain-
ers from checkpoints [21, 55]. Other works develop e!cient
memory management techniques to accelerate container
startup [5, 49]. RainbowCake is orthogonal to virtualization-
layer solutions and can be easily integrated with them.
Container-caching solutions. Apart from low-level im-
provements, massive works aim to mitigate function startup
latency via full container caching [12, 15, 25, 29, 45, 47, 48, 53].
Recent research proposes partial container caching [13, 39,
42] to alleviate coarse-grained trade-o"s in full container
caching. However, experimental results show that Rainbow-
Cake outperforms existing partial container caching solu-
tions by reducing function startup latency with sharing
awareness.
Container-sharing solutions. Under the premise of not
compromising security, container-sharing techniques have
become popular for optimizing serverless computing and
alleviating cold-starts [2, 23, 37, 40, 43, 50]. RainbowCake
outperforms state-of-the-art container sharing techniques
by achieving similar (or better) function startup latency
while minimizing memory waste. Commercial serverless
platforms’ shareable layers, such as AWS Lambda layers [8],
are designed for fast user code deployment, not for mitigat-
ing cold-starts.

10 Conclusion
This paper proposed RainbowCake, a layer-wise container
pre-warming and keep-alive technique with sharing aware-
ness that e"ectively mitigates cold-starts with minimal mem-
ory waste. Compared to existing solutions, RainbowCake is
tested to be more robust and tolerant to function invocation
bursts on real clusters with realistic workloads. Experimen-
tal results showed that RainbowCake reduces 68% startup
latency and 77% container memory waste compared to exist-
ing solutions.
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