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Abstract
Serverless computing has rapidly prospered as a new cloud
computing paradigm with agile scalability, pay-as-you-go
pricing, and ease-to-use features for Machine Learning (ML)
inference tasks. Users package their ML code into light-
weight serverless functions and execute them using contain-
ers. Unfortunately, a notorious problem, called cold-starts,
hinders serverless computing from providing low-latency
function executions. To mitigate cold-starts, pre-warming,
which keeps containers warm predictively, has been widely
accepted by academia and industry. However, pre-warming
fails to eliminate the unique latency incurred by loading
ML artifacts. We observed that for ML inference functions,
the loading of libraries and models takes signi!cantly more
time than container warming. Consequently, pre-warming
alone is not enough to mitigate the ML inference function’s
cold-starts.
This paper introduces I!"#$I!%&’, an opportunistic pre-

loading technique to achieve instant inference by eliminat-
ing the latency associated with loading ML artifacts, thereby
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achieving minimal time cost in function execution. I!"#$I!(
%&’ fully utilizes the memory of warmed containers to pre-
load the function’s libraries and model, striking a balance
between maximum acceleration and resource wastage. We
design I!"#$I!%&’ to be transparent to providers and com-
patible with existing pre-warming solutions. Experiments on
OpenWhisk with real-world workloads show that I!"#$I!(
%&’ reduces up to 93% loading latency and achieves up to 8→
speedup compared to state-of-the-art pre-warming solutions.

CCS Concepts
• Computer systems organization ↑ Cloud computing.

Keywords
Serverless Computing, Cloud Computing, Cold-Start, Ma-
chine Learning

ACM Reference Format:
Yifan Sui, Hanfei Yu, Yitao Hu, Jianxun Li, and Hao Wang. 2024.
Pre-Warming is Not Enough: Accelerating Serverless Inference
With Opportunistic Pre-Loading. In ACM Symposium on Cloud
Computing (SoCC ’24), November 20–22, 2024, Redmond, WA, USA.
ACM,NewYork, NY, USA, 19 pages. https://doi.org/10.1145/3698038.
3698509

1 Introduction
With the increasing popularity of machine learning (ML)
applications, e.g., image recognition and large language mod-
els (LLMs), their resource demands are booming.1 Thismakes
it imperative to develop performance- and cost-e"cient
computing architectures to serve large-scale ML inference
queries. Serverless computing, as a new cloud paradigm, has
gained immense popularity for serving ML inferences due
to its agile scalability, pay-as-you-go pricing, and ease-of-
deployment. Many ML inference products proposed from

1Facebook alone serves over 200 trillions of inference queries daily [45].
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academia and industry have been shifted to serverless archi-
tectures, such as Amazon Alexa [1], Azure RAG Chatbot [11],
Nuclio [57], and ServerlessLLM [28].

ML inference applications are packaged as lightweight
serverless functions invoked by users on-demand, executed
in containers.2 When an invocation arrives yet no available
initialized (also known as “warmed”) containers, it has to
wait for a container to be launched from scratch—the notori-
ous cold-starts [41]. Existing works [4, 16, 24, 30, 48, 72, 73,
77] have been extensively proposed to mitigate cold-starts in
serverless computing. The predominant approach is referred
to as “pre-warming” [16, 30, 48, 72]: creating the container
and setting up the runtime in advance, while keeping the
container alive after serving a query.3 Thus, the warmed
containers can avoid the cold-starts.

A serverless function typically goes through three stages:
1) containerwarming, 2) loading dependencies such as Python
libraries, and 3) serving the query. For serverless workloads,
the container warming dominates the cold-start, while the
time cost to load dependencies is negligible. Thus, pre-warming
methods suit well for these functions. However, we observed
that for ML inference functions, the time spent on loading
dependencies—which falls outside the scope of pre-warming
strategies—is considerably signi!cant.
Fig. 1 shows a real-world experiment of serving eight

popular ML inference functions with invocation patterns
following 4-hour industrial traces [72], with state-of-the-art
pre-warming methods [30, 48, 72]. Loading the ML artifacts,
including large libraries (e.g., PyTorch) and model !les (e.g.,
BERT [23]) from disk into memory, and transferring the
model into a GPU, accounts for 70% of the whole latency be-
fore the inference is actually executed. Such loading latency
cannot be simply mitigated by pre-warming—we argue that
pre-warming is not enough for accelerating serverless ML
inferences.

A few recent studies also noticed this issue and proposed
to pre-load ML models [35, 46, 63], allow user-de!ned warm-
up triggers [52], and enable snapshots [8, 80]. However,
they cannot completely mitigate the ML artifacts loading
stage. Some solutions [35, 46, 63] ignored the library loading,
some [8, 80] are incompatible with GPUs, and some [8, 52, 80]
introduced additional constraints and delays.
To fully accelerate ML inference functions and achieve a

minimal end-to-end latency, we aim to take a step further
beyond pre-warming—pre-loading the ML artifacts into con-
tainers and GPU instances in advance. Therefore, upon an

2The term “container” here denotes virtual environments that execute func-
tion invocations in serverless computing, such as Docker containers and
Firecracker MicroVMs.
3In the context of this paper, we use the term "pre-warming" to encompass
both the techniques of pre-warm and keep-alive.
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Figure 1: Cumulative time cost and breakdown of real-
world serverless inference invocations driven by Azure
traces [72]. The blue bars indicate the container warm-
ing stage, and the orange bars indicate the ML artifact
loading stage.

upcoming invocation, the function can jointly avoid the con-
tainer warming and ML artifact loading stages to execute
inference immediately.

However, two challenges remain to be addressed in achiev-
ing our goals: 1) Pre-loading is memory costly. For the
whole workload, higher acceleration performance means
pre-loading more functions, leading to huge memory cost
due to the large size of libraries and model !les. 2) Pre-
loading must avoid any extra function startup over-
heads. Serverless functions usually have critical latency re-
quirements (sub-second level) [72]. Pre-loading libraries and
ML artifacts should be lightweight and transparent to avoid
incurring any additional overheads.
This paper proposes I!"#$I!%&’, an opportunistic pre-

loading system for serverless inference tasks to tackle these
challenges. To balance the trade-o# between minimizing
loading latency and avoiding memory wastage, I!"#$I!%&’
pre-loads functions only in existing warmed containers and
GPU instances created by the platform, rather than proac-
tively reserving memory.4 To consistently provide optimal
function acceleration, I!"#$I!%&’ e"ciently utilizes idle re-
sources by dynamically loading and o$oading functions. Be-
sides, I!"#$I!%&’ is compatible with existing pre-warming
and keep-alive schemes by avoiding interfering with the
container creation or removal policies.

We summarize I!"#$I!%&’’s key contributions as follows:
• We observe the bottleneck of loading ML artifacts in
serverless inference systems and propose the oppor-
tunistic ML model pre-loading technique to achieve
minimal function startup latency.

• We design a pre-loading scheduler that accelerates
the cluster-wide workload, which is compatible with
existing pre-warming solutions.

4The warmed containers include both pre-warmed and kept-alive containers
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• We implement I!"#$I!%&’ atop OpenWhisk, deploy
it on an AWS EC2 cluster, and evaluate it using in-
dustrial traces and popular inference functions. Ex-
tensive experiments show that I!"#$I!%&’ reduces
the end-to-end function latency by 87% compared to
start-of-the-art solutions.

2 Motivation and Background
2.1 Dissecting Serverless Inference
We carefully pro!le real-world serverless inference invo-
cations and summarize their lifecycle into three stages: 1)
container warming, 2) ML artifact (e.g., libraries and models)
loading, and 3) ML inference. Fig. 2 shows a dissection of
a serverless inference process invoking a SeBS benchmark
function [21] running the ResNet152 model.
Container warming. Upon an inference request to the

model, the serverless platform begins to prepare and warm
up the container, including pulling the base runtime image
to create the container instance, initializing and bounding a
GPU to the container, and con!guring the required runtime
environment. The con!guration process involves setting up
networks (e.g., VPC), security con!gurations (e.g., con!gur-
ing !rewalls, establishing secure connections), setting envi-
ronmental variables (e.g., model path, log level, and API key
of remote storage), and deploying user custom con!gurations
(e.g., timeout and concurrency settings). Then, the container
retrieves and unzips the function package uploaded by the
developer. The package contains the ResNet152 model’s bi-
nary “.pth” !le, associated Python scripts, and dependent
libraries.
ML artifact loading. After the container is warmed up,

it starts to load ML artifacts (e.g., ML library and model !les)
into CPU and GPU memory. Speci!cally, each library un-
dergoes a initialization process to be loaded into memory.
Then, the ML inference model, i.e., a pre-trained ResNet152
model, stored in the binary “.pth” format, is read and de-
serialized into the container’s CPU memory to reconstruct
the model structure and weight parameters. The process of
reading and deserializing models is I/O- and CPU-intensive.
Finally, if a GPU is attached to the container, the model will
be transferred from the CPU memory to the GPU memory.
Inference. After the warming and loading stages, the

function executes the inference on the incoming user data
with the loaded ResNet152 model on the GPU. When the
user receives the returned inference results, the function will
be either terminated or kept alive based on the serverless
platform’s policy.
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Figure 2: The life cycle of a serverless inference func-
tion with the ResNet152 model.

2.2 Container Warming vs.ML Artifact
Loading

As Fig. 2 shows, a major indicator to distinguish the two
stages, i.e., container warming and ML artifact loading, is
whether the container starts executing user code. General
serverless workloads share the container warming stage,
known as the “cold-start” issues. These issues have prompted
extensive research on mitigating the latency introduced by
“cold-starts,” resulting in various solutions such as container
caching [13, 16–18, 30, 32, 48, 49, 55, 61, 67, 68, 72, 77, 85] and
sharing [4, 26, 48, 51, 59, 71, 85], snapshotting [8, 17, 24, 69,
80, 82], and virtualization refactoring [3, 8, 24, 31, 69, 73, 75].
However, the ML artifact loading stage is speci!c to

serverless ML workloads due to the lengthy loading time
of increasingly larger neural network models and their de-
pendent libraries. General serverless workloads (e.g., web
serving and video processing) also have this loading stage
but typically take much less time than the warming stage.
Fig. 1 shows that the loading stage has dominated the end-
to-end latency of serverless ML inference requests, yet it
is overlooked by the aforementioned “cold-start” solutions,
which are designed for general serverless workloads. There-
fore, we argue that pre-warming is not enough for serverless
inference functions.

2.3 The Necessity of Pre-loading
To further demonstrate that pre-warming alone is insu"cient
for eliminating inference functions’ cold-starts, we select the
eight most popular ML models based on their GitHub popu-
larity.We conduct an experiment using real-world workloads
driven by 4-hour industrial invocation traces fromAzure [72].
Four NVIDIA A10 GPUs are used for inference. The Azure
trace records the timing and frequency of real-world function
invocations over the four hours. We swipe the whole Azure
trace and randomly select eight function traces to build the
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workload. Each trace is mapped to one benchmark function
and drives the invocations in the experiment. The detailed
experimental setup is described in Sec 7.2.

We implement OpenWhisk’s default keep-alive policy and
three state-of-the-art pre-warming methods, including His-
togram [72], FaaSCache [30], and Pagurus [48], inside Open-
Whisk as baselines. These strategies are compared against
our proposed method, I!"#$I!%&’, which focuses on pre-
loading. We report the total time spent on warming, loading,
and inference stages for the entire workload for each method.

As shown in Fig. 1, existing pre-warmingmethodsmitigate
the warming latency over OpenWhisk. However, loading ML
artifacts dominates the overall latency before inference with
over 68% of the time, while only 25% is spent on warming
and just 6% for inference. Thus, existing approaches severely
overlooked the pre-loading opportunity for serverless infer-
ence tasks. In contrast, I!"#$I!%&’ reduces the time for the
entire workload by over 55%, demonstrating that pre-loading
signi!cantly reduces the overall latency.
Although the loading stage can be accelerated through

other methods like using snapshot [8, 80], compressed mem-
ory [70], and RDMA [83] to minimize the I/O overhead asso-
ciated with reading library and model !les, these methods
cannot enhance the library initialization and model dese-
rialization stages. Consequently, they are insu"cient for
accelerating inference function.

2.4 Existing Solutions’ Limitations
Current works have attempted to eliminate functions’ cold-
starts in three directions: container pre-warming [16, 30, 48,
72, 73, 77], snapshot [8, 17, 24, 69, 80, 82], and model pre-
loading [35, 46, 63].

Pre-warming, the most mainstream method for mitigating
cold-starts, assumes that functions start execution immedi-
ately after warming. Thus, the warming stage is identi!ed
as the primary bottleneck. It predictively initializes the con-
tainer before request arrivals and keeps the container alive
after function executions. However, for inference functions,
the unique loading delay prevents pre-warming methods
from fully mitigating the whole latency.

Snapshot methods capture functions’ completed states as
checkpoints on disk. When requests arrive, the snapshots are
restored into the process and start execution. For inference
functions, snapshots can freeze the state with loaded models
and libraries to skip the loading stage, hence outperforming
pre-warming. However, the large size of model and library
!les introduces high latency when the snapshot is loaded
from the disk. Moreover, these solutions rely on Linux’s
memory mapping, which is incompatible with GPUs due to
the di"culty in capturing and restoring the GPU memory
and context as they are separate from CPU memory.
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Figure 3: Time cost of executing inference functions.

Naive model pre-loading methods address the model load-
ing bottleneck by either sharing common layers among dif-
ferent models [35, 46] or pre-loading part of the layers post-
warming [63] However, they largely ignore crucial stages
such as loading libraries and transferring models to the GPU.
Additionally, the assumptions of layer similarity across mod-
els severely limit their e#ectiveness, hindering function ac-
celeration across the whole workload.

Several works in other !elds propose to employ pre-loading
for acceleration. For example, [33, 93] focus on reducing the
data fetching latency in databases. [39, 60] pre-load appli-
cations on mobile devices. [12, 74] pre-load information on
network devices. However, these approaches do not cover
the loading stage of inference tasks.
In conclusion, none of the existing works can eliminate

the inference function’s loading delay. To further motivate
the need for pre-loading, we evaluate the latency of di#erent
inference functions with all types of cold-start mitigation
schemes. Detailed evaluation setup is in Section 7.2. We
implement Histogram [72], REAP [80], and AsyFunc [63]
as baselines to represent pre-warming, snapshot, and naive
model pre-loading, respectively. Fig. 3 shows that I!"#$I!%&’
outperforms all other baselines by achievingminimal loading
latency via its pre-loading.

2.5 The Opportunity of Pre-loading
A straightforward idea for realizing pre-loading is to load
all inference functions in advance, which is infeasible due to
excessive CPU and GPU memory requirements. Therefore,
an ideal solution must seek a balance in reducing loading
latency and resource costs. Fortunately, the existence of idle
containers created by providers and the over-allocation phe-
nomenon of functions [27, 32, 66, 72, 86, 87, 92, 92, 94] present
an opportunity for pre-loading without extra resource costs.

Serverless providers like Microsoft Azure, AWS, and IBM
usually keep large volumes of idle containers on standby to
serve incoming requests [9, 16, 72]. We only leverage those
existing idle containers for pre-loading, avoiding any extra
containers and additional resource costs.
Furthermore, due to the !xed proportion between func-

tion’s computation ability and memory size [10], numerous
studies [27, 32, 66, 72, 92] have demonstrated that for optimal
execution speed and handling peak workload, inference func-
tions tend to over-provision memory to hold the libraries and
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Figure 4: System overview. Boxes with red bold italic
names are new components introduced by I!"#$I!%&’.

models. Therefore, the vast memory gap between containers’
running and idle states presents another opportunity for our
opportunistic pre-loading.

3 An Overview of I!"#$I!%&’
3.1 Objectives & Challenges
I!"#$I!%&’ aims to achieve the following objectives:

• Instant inference: Minimizing the overall end-to-end
(E2E) latency of ML inference invocations.

• Zero wastage: Utilizing only the idle capacities in ex-
isting containers and GPU instances to pre-load func-
tions.

• Transparent to providers: Pre-loading should avoid
con%icts with the platform’s inherent pre-warming
mechanism.

To achieve the above objectives, we seek answers to the
three challenging questions:
How to maximize the acceleration performance with
limited idle containers and GPU instances?With only
idle containers and GPU instances, we cannot pre-load all
functions simultaneously. We must identify and select func-
tions with a high potential for latency improvement and
accurately assign them to each container instance.

How to avoid extra resource overheadswhenpre-loading
functions? Holding libraries and models in containers can
be memory-costly. We must seek a balance between memory
waste and more pre-loading for optimal acceleration.
How to enable pre-loading without incurring addi-
tional function startup overheads? Serverless functions
typically have critical latency requirements. For example,
over 50% of functions on Azure Functions execute in less
than one second [72]. We must design the pre-loading pro-
cess in a lightweight and transparent manner to avoid any
extra function startup overheads.

3.2 I!"#$I!%&’’s System Architecture
We introduce the design of I!"#$I!%&’, an opportunistic pre-
loading framework to mitigate the loading stage of inference
functions. To achieve optimal acceleration within resource
constraints, we design a secure instance-sharing mechanism
that allows multiple functions to be pre-loaded simultane-
ously into a single container and share a GPU. I!"#$I!%&’
includes three principal components: Proactive Pre-Loader,
Pre-Loading Scheduler, and Intra-Container Manager.

Proactive Pre-Loader leverages the prediction model of
the platform’s pre-warming mechanism to forecast function
invocation arrivals. The prediction results are then used to
determinewhen to pre-load each function. To achieve cluster-
wide acceleration, when receiving a request, it routes the
request to the worker node that has pre-loaded the function.
Pre-Loading Scheduler runs on each worker node and

assigns functions that need pre-loading to proper contain-
ers and GPUs. To maintain optimal acceleration over time,
it dynamically makes pre-loading and o$oading decisions
based on the worker node’s container creation and removal
events triggered by the platform’s pre-warm and keep-alive
policies.
Intra-Container Manager independently operates the

loading and o$oading executions for each function. We de-
sign a three-tier security protection mechanism to ensure
the security and privacy of each pre-loaded function that
shares the same container.

3.3 I!"#$I!%&’’s Work!ow
Fig. 4 shows the work%ow and architecture of I!"#$I!%&’.
Upon the arrival of an ML inference function invocation,
I!"#$I!%&’ follows a !ve-step work%ow:
Stage 1: The Proactive Pre-Loader records the arrival of

each inference function’s requests. It then predicts the ar-
rival time of the next invocation to determine the optimal
moments for loading and o$oading each function (Step 1
in Fig. 4).
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Stage 2: The Proactive Pre-Loader selects a worker node
with enough available resources and sends the prediction re-
sult to the node’s Pre-Loading Scheduler. The scheduler then
pre-loads the function in a suitable idle container, extracting
the function’s code, and unzipping ML artifacts from the
platform’s database (Step 4 ).
Stage 3: Concurrently, each request activates the plat-

form’s cold-start manager, which prompts the cold-start
agent to control the creation and removal of containers based
on the pre-warming mechanism (Steps 2 and 3 ). The
events of container removal and creation trigger the Pre-
Loading Scheduler to make pre-load and o$oad decisions,
which are asynchronous with Stage 2.

Stage 4: When the request arrives, the Proactive Pre-
loader routes the request to a worker node that has pre-
loaded the corresponding function. Then, the node’s Pre-
Loading Scheduler selects an idle container that pre-loads
the function and an idle GPU that pre-loads the function’s
model. The request is then sent to the corresponding con-
tainer’s Intra-Container Manager (Step 5 ).
Stage 5: Once receiving the request, the Intra-Container

Manager immediately calls the corresponding function’s pre-
loading process (Step 6 ) and o#-loads all other pre-loaded
function states (Step 7 ). We ensure that only one function
can use the container during inference to guarantee security
and privacy. Meanwhile, the Pre-Loading Scheduler selects
other idle containers and GPUs to migrate the o#-loaded
functions to serve future invocations.

4 Proactive Pre-Loader
Because one container has limited CPU and GPU memory,
not all functions can be pre-loaded concurrently. Pre-loading
a function too early preempts the loading of other functions
while doing this too late misses serving function invoca-
tions. Therefore, to achieve optimal acceleration, we design
a Proactive Pre-Loader that decides when to pre-load a func-
tion based on its invocation arrival prediction. We o$oad
the function to make room for pre-loading other functions if
mispredictions occur.

4.1 Function Invocation Prediction
A straightforward approach is to load all functions and never
o$oad them. However, due to the limited memory capacity,
pre-loading all functions is infeasible. In contrast, we design
I!"#$I!%&’ to opportunistically pre-load a function right
before the invocation arrival and o$oad the function to
allow other pre-loadings if mispredicted.

Existing pre-warming approaches typically hold a predic-
tor to forecast invocation arrivals (e.g., Histogram in [48, 72],

ARIMA in [72], Poisson Distribution in [85], Variable Or-
der Markov Model in [13]). I!"#$I!%&’ employs the plat-
form’s inherent prediction model to maintain transparency
for serverless providers, avoiding introducing extra opera-
tional costs such as building new models.

4.2 Function Pre-Loading and O"loading
To e#ectively manage pre-loading and o$oading of a func-
tion, denoted as 𝐿 , we de!ne two thresholds: a probability
𝑀load (𝐿 ) for pre-loading and a probability 𝑀o!oad (𝐿 ) for of-
%oading. As the invocation’s arrival probability increases,
the function is immediately pre-loaded if the probability
reaches 𝑀load (𝐿 ). Conversely, if the function remains pre-
loaded without being invoked for an extended period, such
that the probability exceeds 𝑀o!oad (𝐿 ), I!"#$I!%&’ identi!es
that the prediction is incorrect and o$oads the function to
free up resources for pre-loading other functions.

Invocation patterns can vary over time [72, 90], and using
outdated data severely degrades the prediction accuracy. To
enhance pre-loading accuracy, we use a sliding window to
capture each function’s temporal shifts and align predictions
with the latest data. It is compatible with various prediction
models as we only adjust the temporal scope without altering
the underlying model.

We take the PoissonDistributionmodel of RainbowCake [85]
as an example to show how to compute optimal timings for
loading and o$oading functions. Let𝑁 denote the window
size and𝑂𝐿 denote the duration between the last and !rst in-
vocations within the window.We can compute the request ar-
rival rate as 𝑃𝑀 = 𝑁

𝑂𝐿
. Thus, the probability distribution of the

arrival time for the next request is: 𝑄 (𝑅 ; 𝑃𝑀 ) = 1↓𝑆↓𝑃𝑀 𝑄 , 𝑅 ↔ 0.
The future timestamp to load and o$oad function 𝐿 ,𝑂load (𝐿 )

and 𝑂o!oad (𝐿 ) are given by

𝑂load (𝐿 ) = ↓ 1
𝑃𝑀

ln(1 ↓ 𝑀load (𝐿 ))

𝑂o!oad (𝐿 ) = ↓ 1
𝑃𝑀

ln(1 ↓ 𝑀o!oad (𝐿 ))

We set the default 𝑀load (𝐿 ) and 𝑀o!oad (𝐿 ) to be 6% and
94%, respectively. These values are derived from a sensitivity
analysis detailed in Section 7.11.

5 Pre-Loading Scheduler
We design a Pre-Loading Scheduler that dynamically selects
and assigns functions to appropriate instances for optimal
acceleration. To optimize performance over time, the sched-
uler adaptively adjusts the pre-loading policy to changes.
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Figure 5: The scheduler’s operation after detecting each event.

5.1 Latency-Aware Function Mapping
The simplest way to load functions is one-to-one mapping,
where each instance holds only one pre-loaded function.
However, this method cannot fully utilize all idle memory to
pre-load more functions for further acceleration. To strike a
balance between maximum acceleration and avoiding addi-
tional costs, we propose an instance-sharing mechanism that
allows multiple functions to be pre-loaded simultaneously
into a single container until its idle memory runs out while
their models share the same GPU.
To select an appropriate container for each function to

pre-load, we propose a Latency-Aware Bin-Packing Policy.
Our goal is to maximize the acceleration of the entire work-
load, i.e., to maximize the expected value of the saved loading
latency among all selected functions. As function loading
latency and container capacity are known, this problem !ts
well with the multiple knapsack bin-packing, wherein con-
tainers and functions are treated as bins and items. A bin’s ca-
pacity is the container memory limit, while an item’s weight
is the memory cost for loading the function. The item’s value
is the expected latency saved by pre-loading (calculated as
the product of function arrival probability and the loading
latency). The objective is to maximize the overall value of
the assigned items.
The Latency-Aware Bin-Packing Policy takes functions

and idle containers as inputs, using dynamic programming
to optimize assignments. The policy computes maximum
latency savings 𝑇𝑀 [𝑈] [ 𝑉] for 𝑈 functions in 𝑉 containers
by determining whether to place a function based on con-
tainer capacity and the latency saved. The DP table is up-
dated as: 𝑇𝑀 [𝑈] [ 𝑉] = max(𝑇𝑀 [𝑈 ↓ 1] [ 𝑉],𝑇𝑀 [𝑈 ↓ 1] [ 𝑉 ↓ 1] +
latency_savings(𝑈)). The algorithm iterates over all func-
tions and containers to !ll the DP table, with the optimal
con!guration found at 𝑇𝑀 [𝑊] [𝑋]. A backtracking method
is used to determine the function-to-container assignments
that yield this optimal latency savings.

Besides library and model loading, transferring the model
from container CPU memory to GPU memory also intro-
duces non-negligible overhead due to IO and CUDA opera-
tions such as memory allocation, especially for large models.
For further acceleration, themodel of the pre-loaded function
can be pre-transferred to GPU. As the GPU pool’s capacity is
usually smaller than the container memory pool, only part
of the models can be kept on GPUs. To optimally determine
which model should be kept on GPU, we use the same bin-
packing policy wherein GPUs are treated as bins and models
as items. The item’s value is the expected latency to save,
which is calculated as the product of the function’s arrival
probability and the transfer overhead.

5.2 Optimal Pre-loading Over Time
Due to time-varying workloads, a series of events will cause
a !xed bin-packing policy to be sub-optimal: pre-loading or
o$oading a function, invocation arrivals, container creations,
and container removals. We describe how our scheduler
reacts to these events to maintain optimal acceleration over
time as follows.

As shown in Fig. 5, Functions A, B, and D are pre-loaded on
containers, while models of Function A and D are transferred
to GPU. In the !rst case at 𝑅1, when Function A’s invoca-
tion arrives, the scheduler !rst forwards the request to the
GPU container that loads Functions A and D. Immediately,
Function D is re-assigned to another container to ensure
Function A execution performance. Since no GPUs are avail-
able, Function D’s model is transferred from the GPU back
to the container memory. In 𝑅2, after execution, Function A
follows the platform’s keep-alive mechanism and remains
in the GPU container. Note that since each function has a
unique resource con!guration, the scheduler adjusts the con-
tainer’s resource limitations immediately upon receiving the
invocation to match the function’s con!guration. The second
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Figure 6: Timeline of I!"#$I!%&’’s pre-loading.

case is function pre-loading. As shown in 𝑅3, the scheduler se-
lects a container along with its GPUs that have enough space
to load Function C. The third case is container removals. In
𝑅4, when terminating the container that loads Functions B
and D, the scheduler is enforced to o$oad models of B and
D. The fourth case is the container creations. In 𝑅5, once
detecting a new idle container is available, the scheduler pre-
loads Functions B and D inside the new container. The last
kind of event is function o$oading. The scheduler o$oads
Function A from both the container and its associated GPU
directly, as shown in 𝑅6. Subsequently, Function C’s model is
transferred to the GPU to utilize the newly freed resources.
The event-driven scheduler dynamically optimizes the bin-
packing policy over time while ensuring compatibility with
the platform’s inherent pre-warming mechanism.

6 Intra-Container Manager
The Intra-Container Manager interfaces with the scheduler
to control the process-level execution of functions, including
loading, o#-loading, and model transfer. Besides, for func-
tions in the same container, it ensures no resource con%icts,
and maintains security.

6.1 Pre-Loading Management
As each container holds multiple function’s pre-loading pro-
cesses, the design principle follows three steps: waiting for
future invocations and forwarding them to corresponding
processes, terminating all processes irrelevant to the incom-
ing invocation, and guaranteeing each function’s security
and privacy. Upon receiving a pre-loading message from

the scheduler, the manager executes the function code to
load the library and model. It then transfers the model to
the container’s corresponding GPU based on the scheduler’s
decision. After loading, the process enters a blocked state,
awaiting future invocations.
The manager’s work%ow is shown in Fig. 6. After pre-

loading Functions A and B, upon receiving Function A’s
invocation, the manager forwards the request to Function A
process’s input pipeline, awakening the process to start infer-
ence and return the result. To avoid memory preemption and
to guarantee function isolation requirements, the arrival of
Function A’s invocation prompts the immediate termination
of all other pre-loading processes and the clearing of their
memory allocations. This design ensures that the invoked
function runs in a clean and isolated environment.
Similarly, while receiving the o#-loading message from

the scheduler, the manager terminates the corresponding
function’s process and erases all related data to protect user
privacy. While functions are served as black-box, user code
only needs slight changes to expose the model and library
!les to I!"#$I!%&’. We o#er two modi!cation options with
di#erent objectives:

# Original

model.load_state_dict(torch.load(model_path))

inference ()...

# InstaInfer

model.load_state_dict(InstaInfer.load(model_path))

sys.stdin.readline () # wait for request

inference ()...

Maximum transparency. As the following Python code
snippet shows, developers only need to modify two lines of
code: First, replace the model loading line (torch.load) with
the I!"#$I!%&’ API to expose the model !le’s path. Second,
add the sys.stdin.readline() line after loading the model for
listening invocations. The function process will be resumed
upon receiving requests.
Maximum privacy. If non-intrusive pre-loading is pre-
ferred, developers can simply implement a LOAD function
similar to AzureWarmup Trigger [52] to hold the pre-loading
content. The manager calls the LOAD API to perform pre-
loading without accessing any function-speci!c data.

6.2 Privacy & Security Guarantee
As multiple functions’ code and data are stored in the same
container, it’s necessary to guarantee the privacy and secu-
rity of each function. I!"#$I!%&’ provides a three-layer secu-
rity protection mechanism. In the user layer, only functions
belonging to the same user can be pre-loaded on one con-
tainer. In the process layer, as shown in Fig. 6, when Function
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A’s invocation arrives, all other functions in the same con-
tainer are o#-loaded. Their data and code are deleted immedi-
ately. In the OS layer, each function’s pre-loading process and
data are allocated with a unique non-root user managed by
Linux privilege domain and privilege control. Meanwhile, the
isolation is enhanced with jail techniques [42] such as chroot
jails [19]. These designs ensures that a function’s process is
restricted from accessing the data of other processes, both
in memory and on disk. The OS-level isolation also avoids
library version con%icts across functions, as the libraries
for each function are isolated and stored under the path of
its speci!c Linux user. Furthermore, for the strictest secu-
rity guarantee that completely forbids container sharing and
only allows a container to pre-load one function, I!"#$I!%&’
still signi!cantly outperforms existing pre-warmingmethods
(Sec. 7.10).

7 Evaluation
7.1 Implementation
We implement a prototype of I!"#$I!%&’ using Apache
OpenWhisk [9]. We implement the Proactive Pre-Loader
and Pre-Loading Scheduler as OpenWhisk components us-
ing 4K lines of Scala code and implement the Intra-Container
Manager in each container’s proxy using 2K lines of Golang
code. We use PyTorch [62] as the ML environment, although
I!"#$I!%&’ is compatible with any other ML frameworks
(e.g., TensorFlow).

Proactive Pre-Loader. We implement the Proactive Pre-
Loader in OpenWhisk’s load balancer module where all invo-
cations pass by. The Proactive Pre-Loader records the times-
tamp of invocations, thereby updating each function’s pre-
diction.
Pre-Loading Scheduler. OpenWhisk runs a container

pool module in each node to manage each container’s cre-
ation and removal. We implement the scheduler in this mod-
ule so that the scheduler can acquire all the information it
needs for pre-loading. The scheduler sends loading and o#-
loading messages to the Intra-Container Manager through
HTTP requests. To make sure containers’ resource limita-
tions match the invoked function’s con!guration, the sched-
uler speci!es limits using the --memory, --cpu, and --gpus
%ag when running Docker container.

Intra-Container Manager. We implement the manager
in each container’s proxy, which is used to communicate
with OpenWhisk. The manager is written in Golang. We
modify the Action Proxy module to receive the message from
the scheduler. We modify the Executor module to execute
loading and o#-loading. Each pre-loaded function runs as an
independent process.

GPU support. As all functions run in Docker containers,
we apply the NVIDIA container toolkit [58] that can let

the container use the CUDA devices without any additional
con!guration. To improve GPU resource utilization, we use
NVIDIA MPS [22] to partition a GPU for multiple functions
and control the GPU limitation of each function.

7.2 Experiment Settings
We describe the experimental settings for evaluating I!"#$I!(
%&’ and state-of-the-art baselines.
Testbed: We evaluate I!"#$I!%&’ on three OpenWhisk

clusters: 1) Single-nodeCPU cluster on anAWSm5.16xlarge
EC2 instance with 64 Intel Xeon Platinum-8175 CPU cores
and 256 GB memory. We perform the E2E latency evaluation,
comparisons with snapshot-based solutions, ablation study,
sensitivity analysis, and scalability tests on this cluster. 2)
Single-node GPU server on an AWS g5.12xlarge EC2 in-
stance with 48 CPU cores, 196 GB of memory, and 4 NVIDIA
A10 GPUs. We conduct the E2E latency and memory cost
evaluation on this cluster. 3) Multi-node cluster that in-
cludes one controller node and four worker nodes, each an
AWSm5.8xlarge EC2 instance with 32 CPU cores and 128 GB
of memory. We perform E2E latency evaluation, large-scale
evaluation of 1000 functions, and prediction evaluation on
this cluster.
Workloads: We select the inference function of SeBS

benchmark [21] to load each model. For simplicity, each
function only runs one model. To optimize subsequent re-
quests and avoid re-loading if warm containers have cached
the function process, we follow the optimization approach
of AWS Lambda [7]. We place the model and library load-
ing code within the “INIT” structure and the inference code
within the “Handler” structure.

To approximate the real-world invocation patterns, we
sample the invocations from the Azure Function traces [72],
which are collected in production environments. We scan
the 14-day Azure invocation trace !les and randomly select
eight di#erent 4-hour traces that satisfy the Coe"cient of
Variation (CoV) requirement for each benchmark function.
Each trace is then mapped to an inference function, which
drives the invocations during the evaluation. For generality,
we de!ne three patterns based on the CoV: Predictable (CoV
<1), Normal (1<CoV <4), and Bursty (CoV >4).

Models and Libraries: We use PyTorch [62] as the ML
framework. We collect eight most popular ML models in
computer vision (CV) and natural language processing (NLP)
as evaluation benchmarks based on the number of stars
on GitHub: AlexNet [44], Inception_V3 [79], ResNet18 [34],
ResNet50, ResNet152, VGG19 [76], GoogleNet [78], and Bert-
Base [23]. Themodel size varies from 45MB to 549MB, provid-
ing su"cient diversity for evaluating I!"#$I!%&’’s e"ciency.
We expand the function type to 1000 for further evaluation
in Section 7.8.



SoCC ’24, November 20–22, 2024, Redmond, WA, USA Yifan Sui, Hanfei Yu, Yitao Hu, Jianxun Li, and Hao Wang

Table 1: The average E2E latency, warming+loading latency, and pre-loading rate of baselines.

Metrics Avg. E2E (ms) (Speedup →) Avg. warming+loading (ms) (Speedup →) Pre-loading Rate (%)

Workload Predictable Normal Bursty Predictable Normal Bursty Predictable Normal Bursty

I!"#$I!%&’+Histogram 538 (5.6) 707 (4.7) 814 (4) 295 (9.4) 462 (6.6) 567 (5.3) 79 66 48
Histogram 2642 (1.14) 2661 (1.24) 2630 (1.24) 2397 (1.15) 2409 (1.27) 2387 (1.26) - - -

I!"#$I!%&’+Pagurus 468 (6.4) 552 (6) 618 (5.3) 223 (12.4) 309 (9.8) 376 (8) 85 78 71
Pagurus 2553 (1.18) 3017 (1.1) 2624 (1.3) 2304 (1.2) 2771 (1.1) 2382 (1.26) - - -

I!"#$I!%&’+FaaSCache 826 (3.6) 955 (3.5) 1165 (2.8) 581 (4.7) 709 (4.3) 917 (3.3) 63 51 45
FaaSCache 2537 (1.19) 2715 (1.2) 2690 (1.21) 2292 (1.2) 2469 (1.24) 2445 (1.24) - - -
OpenWhisk 3012 (N/A) 3309 (N/A) 3274 (N/A) 2767 (N/A) 3059 (N/A) 3025 (N/A) - - -

I!"#$I!%&’+* Settings: As I!"#$I!%&’ can be easily
integrated with pre-warming solutions, I!"#$I!%&’+* indi-
cates integration with three solutions: Histogram [72], Pagu-
rus [48], and FaaSCache [30]. I!"#$I!%&’ pre-loads functions
in the warmed containers created by these solutions.

Baselines: we compare I!"#$I!%&’ with the state-of-the-
art baselines that mitigate cold-starts in serverless comput-
ing: 1) OpenWhisk [9], the default keep-alive policy of
OpenWhisk that keeps each container alive for a !xed 10
minutes after invocation. 2)Histogram Policy, a histogram-
based container caching approach to dynamically determine
when to pre-warm the container and how long the container
is kept alive by predicting the inter-arrival time of function
invocations. We implemented the Histogram Policy inside
OpenWhisk. 3) FaaSCache proposes a Greedy-Dual keep-
alive caching policy to keep functions alive. Our evaluation
reused FaaSCache’s open-sourced code repository [29] in
OpenWhisk. 4) Pagurus avoids cold start by “lending” other
functions’ idle containers to the function being invoked.5 5)
REAP [80] is a snapshot-based cold start mitigation method
that stores function completion states as snapshots on disk.
6) Azure Function with warmup trigger [52] allows pre-
loading user-de!ned content while scaling up new instances.

Evaluation Metrics: 1) End-to-End (E2E) latency: the
total time of an invocation from being triggered to return-
ing the results. 2) Warming+Loading latency: the time
period before the inference is actually executed, including
both container warming and ML artifacts loading. 3) Pre-
loading rate: the ratio of invocations whose function has
already been pre-loaded to the total invocations. 4) Speedup:
the acceleration performance against baselines. 5) Memory
cost: the platform’s CPU and GPU memory consumption
for running the whole workload.

7.3 Reducing E2E Latency
We evaluate I!"#$I!%&’+* and baselines on the single-node
cluster. Fig. 7 shows that integrating I!"#$I!%&’ with the
baseline solutions reduces up to 86% E2E latency and 93%
warming+loading latency compared with the pre-warming

5Pagurus’s original implementation [47] is not for OpenWhisk. We repro-
duced Pagurus in OpenWhisk and tuned its performance to the best for a
fair comparison.
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Figure 7: Average E2E latency of I!"#$I!%&’+* and
baselines running the Predictable, Normal, and Bursty
workloads.

baselines and vanilla OpenWhisk, as I!"#$I!%&’ e#ectively
mitigates the latency with library and model pre-loading.
The Azure Function baseline utilizes the warmup trig-

ger [52] to pre-load user-de!ned contents, including libraries
andmodels. Deviating from the traditional on-demand server-
less products, warmup trigger is only available on the Pre-
mium plan [53], which keeps at least one “always-on” con-
tainer and scales dynamically. For fair comparisons, we select
the “EP2” con!guration with two “always-on” containers,
each with 4 vCPUs and 7 GB memory, totaling at least 64
vCPUs, compared to 48 vCPUs in I!"#$I!%&’.

Fig. 7 shows that I!"#$I!%&’ outperforms Azure Function
when serving most of the functions. Despite Azure’s minimal
warming latency due to “always-on” containers, it exhibited
three main drawbacks compared with I!"#$I!%&’: 1) The
function’s library !les are stored on Azure Files [54]. During
loading, reading many small !les incurs heavy overhead
(over 10 seconds). 2) Warmup triggers only work during
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Figure 9: E2E latency breakdown of individual invoca-
tions served by Pagurus and I!"#$I!%&’+Pagurus.

scaling and never proactively pre-load functions in “always-
on” containers, losing the opportunity to mitigate loading
latency. 3) Unlike traditional serverless products that charge
per use, the Premium plan has !xed hourly or monthly fees,
leading to over 20→ higher expense (Sec. 7.5).

Table 1 presents the average E2E latency, warming+loading
latency, speedup, and pre-load rate of each baseline. I!"#$I!(
%&’+* outperforms each corresponding baseline on each met-
ric. I!"#$I!%&’+Pagurus achieves the best performance due
to having more idle containers for pre-loading. This is be-
cause Pagurus removes fewer containers and keeps more
warmed containers over other baselines.

To further explore E2E latency reduction, we show the E2E
latency’s cumulative distribution function (CDF) of running
the Normal workload for I!"#$I!%&’ and each baselines
in Fig. 8. The results show that I!"#$I!%&’ can e#ectively
accelerate the workload without increasing the tail latency.

InstaInfer+Histogram
InstaInfer+Pagurus

InstaInfer+FaaSCache
Histogram

Pagurus
FaaSCache

OpenWhisk

0

2000

4000

ResNet18 ResNet50ResNet152 AlexNet GoogleNetInceptionV3 VGG19 Bert

InstaInfer+Histogram
InstaInfer+Pagurus

InstaInfer+FaaSCache
Histogram

Pagurus
FaaSCache

OpenWhisk

0

2000

4000

ResNet18 ResNet50ResNet152 AlexNet GoogleNetInceptionV3 VGG19 Bert

Predictable (CoV < 1)

Normal (1 < CoV < 4)

Bursty (CoV > 4)

Av
er

ag
e 

la
te

nc
y 

(m
s)

0

1k

2k

3k

4k

ResNet18
ResNet50

ResNet152
AlexNet

GoogleNet
InceptionV3

VGG19
Bert

Av
er

ag
e 

la
te

nc
y 

(m
s)

0

1k

2k

3k

4k

ResNet18
ResNet50

ResNet152
AlexNet

GoogleNet
InceptionV3

VGG19
Bert

Av
er

ag
e 

la
te

nc
y 

(m
s)

0

1k

2k

3k

4k

ResNet18
ResNet50

ResNet152
AlexNet

GoogleNet
InceptionV3

VGG19
Bert

Figure 10: Average E2E latency of I!"#$I!%&’+* and
baselines running each workload on GPUs.

To show I!"#$I!%&’’s acceleration e#ect more intuitively,
we present a time breakdown of the E2E latency of Pagu-
rus and I!"#$I!%&’+Pagurus running a “Normal” workload
in Fig. 9. Pagurus is selected in this case since it outper-
forms Histogram and FaaSCache. Fig. 9 shows that I!"#$I!(
%&’+Pagurus eliminates the latency of not just the warming
stage but also the library and model loading stage for most
invocations.

Note that in Pagurus’s timeline in Fig. 9, several functions
are invoked multiple times within a minute and are required
to load everything from scratch due to two main reasons:
First, if the request concurrency of a function exceeds the
number of cached containers, additional warmed containers
must be spawned to serve the extra requests. Second, to share
the container among multiple functions, Pagurus transforms
a dedicated container into a shareable one, which clears the
cached states inside the container. Thus, if a request is served
by a shared container, it must re-load the ML artifacts even
if it’s already warm-started.

7.4 I!"#$I!%&’ GPU Evaluation
To show the bene!ts of opportunistic pre-loading in both

CPU memory and GPU memory, we evaluate the E2E la-
tency of workloads with I!"#$I!%&’ in the GPU cluster with
4 NVIDIA A10 GPUs. As shown in Fig. 10, integrating I!(
"#$I!%&’ with each baseline can signi!cantly reduce at most
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Table 2: Multi-node cluster’s average E2E latency, warming+loading latency, and pre-loading rate of baselines.

Metrics Avg. E2E (ms) (Speedup →) Avg. warming+loading (ms) (Speedup →) Pre-loading Rate (%)

Workload Predictable Normal Bursty Predictable Normal Bursty Predictable Normal Bursty

I!"#$I!%&’+Histogram 559 (5.6) 712 (4.4) 903 (3.8) 310 (9.2) 461 (6.9) 656 (4.9) 78 66 52
Histogram 2703 (1.16) 2729 (1.24) 2861 (1.28) 2452 (1.17) 2480 (1.3) 2614 (1.23) - - -

I!"#$I!%&’+Pagurus 452 (7.7) 564 (6.2) 623 (5.6) 203 (14.1) 313 (10.3) 375 (8.6) 86 79 70
Pagurus 2493 (1.25) 2917 (1.2) 2624 (1.3) 2203 (1.3) 2663 (1.2) 2377 (1.35) - - -

I!"#$I!%&’+FaaSCache 821 (3.8) 968 (3.6) 1043 (3.6) 576 (5) 725 (4.5) 811 (4) 61 46 42
FaaSCache 2526 (1.23) 2751 (1.27) 2723 (1.27) 2289 (1.26) 2508 (1.3) 2476 (1.3) - - -
OpenWhisk 3124 (N/A) 3496 (N/A) 3459 (N/A) 2879 (N/A) 3247 (N/A) 3216 (N/A) - - -
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Figure 11: Average memory cost of I!"#$I!%&’+* and
baselines running the same workload.
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baselines running the same workload.

93% average E2E latency for each inference function. Com-
pared with CPU-based I!"#$I!%&’ in Section 7.3, I!"#$I!%&’
with GPU pre-loading further improves the function execu-
tion time cost as it mitigates the CUDA runtime initialization
and model swapping latency.
7.5 Memory and Monetary Cost
We evaluate the monetary cost of I!"#$I!%&’, baseline pre-
warming methods, and naive pre-loading while running the
same Azure trace workload. In the evaluation, I!"#$I!%&’ is
combined with each baseline. In the OpenWhisk Pre-loading
baseline, each container can only hold one pre-loaded func-
tion. To achieve the same acceleration performance as I!(
"#$I!%&’, more containers are created proactively for pre-
loading. Shown in Fig. 11, the container and GPU memory
consumption of I!"#$I!%&’+* are nearly identical to those
of corresponding baselines alone. That’s because I!"#$I!(
%&’ only reuses the idle container created by the baseline
method and does not proactively create new containers. Con-
sequently, I!"#$I!%&’ does not incur additional resource

Av
er

ag
e 

la
te

nc
y 

(m
s)

0

1k

2k

3k

4k

ResNet18
ResNet50

ResNet152
AlexNet

GoogleNet
InceptionV3

VGG19
Bert

Av
er

ag
e 

la
te

nc
y 

(m
s)

0

1k

2k

3k

4k

ResNet18
ResNet50

ResNet152
AlexNet

GoogleNet
InceptionV3

VGG19
Bert

InstaInfer+Histogram
InstaInfer+Pagurus

InstaInfer+FaaSCache
Histogram

Pagurus
FaaSCache

OpenWhisk

0

2000

4000

ResNet18 ResNet50ResNet152 AlexNet GoogleNetInceptionV3 VGG19 Bert

InstaInfer+Histogram
InstaInfer+Pagurus

InstaInfer+FaaSCache
Histogram

Pagurus
FaaSCache

OpenWhisk

0

2000

4000

ResNet18 ResNet50ResNet152 AlexNet GoogleNetInceptionV3 VGG19 Bert

Predictable (CoV < 1)

Normal (1 < CoV < 4)

Bursty (CoV > 4)

Av
er

ag
e 

la
te

nc
y 

(m
s)

0

1k

2k

3k

4k

ResNet18
ResNet50

ResNet152
AlexNet

GoogleNet
InceptionV3

VGG19
Bert

Figure 13: Average E2E latency of I!"#$I!%&’+* and
other baselines running on the multi-node cluster.

costs. In contrast, to achieve comparable acceleration per-
formance, OpenWhisk Pre-loading creates more containers
than I!"#$I!%&’, resulting in at most 2.4→ the memory cost
and 2→ the GPU cost compared to I!"#$I!%&’.

Then we evaluate the monetary cost of running the above
4-hour workload using Azure Function pricing model [2].
Fig. 12 shows that the monetary cost of I!"#$I!%&’+* is
nearly identical to that of the corresponding baseline alone.
Although Azure Premium Plan achieves lower E2E latency
for several functions according to Fig. 7 than I!"#$I!%&’, its
expense is 20 times higher than other methods.

7.6 Multi-Node Evaluation
We evaluate the scalability of I!"#$I!%&’ by conduct-

ing experiments on the multi-node cluster. We evaluate the
E2E latency using the same benchmarks, metrics, baselines,
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and workloads from Sec. 7.3. Fig. 13 shows that integrat-
ing I!"#$I!%&’ with baselines reduces up to 87% E2E la-
tency. The performance evaluated on the multi-node cluster
is similar to the results observed from the single-node clus-
ter. This consistency suggests that I!"#$I!%&’ e"ciently
maintains low loading latency for a variety of workloads
in a distributed cluster. Table 2 details the average E2E la-
tency, warming+loading latency, speedup, and pre-load rate
for each baseline. The data shows I!"#$I!%&’+* consistently
outperforms existing baselines across all the metrics.

7.7 Comparisons with Snapshot Methods
To mitigate cold start, some approaches [8, 80] capture

the function’s complete state as a snapshot and store the
snapshot on disk. ForML inference functions, as the snapshot
can store the state after loading the libraries and model, it
can also address eliminating the loading delay. Thus, we
conduct an evaluation between I!"#$I!%&’ and REAP [80],
a snapshot-based serverless method.
We evaluated the E2E latency of three benchmark ML

inference functions with small (ResNet18), medium (Incep-
tion_v3), large (Bert-Base) models respectively in I!"#$I!(
%&’, REAP, and vanilla OpenWhisk in the same setup. Fig. 14
shows REAP outperforms OpenWhisk. I!"#$I!%&’ further
enhances execution by 1.5 to 2.5→ over REAP.
The reason for I!"#$I!%&’ outperforming REAP is that

I!"#$I!%&’ does not need to load and restore the snapshot
from disk to memory. As REAP’s snapshots are all stored
in disks, when a request arrives, a snapshot must be read
into memory and restored to process, introducing additional
latency. Based on the experiment result, the latency is high
for inference functions (300–600ms) due to the large size
of model and library !les. In contrast, I!"#$I!%&’ keeps
functions in memory and achieves negligible latency (5–14
ms in Sec. 7.12).
7.8 Large-Scale Evaluation
To further evaluate the performance of I!"#$I!%&’ in a
more realistic scenario, we extend the workload to 1000 func-
tions on the multi-node cluster. According to Azure[72], the

Table 3: Average E2E latency in large-scale evaluation.

Method (Speedup →)
Avg. E2E (ms)

(Speedup →)
Warm + Load (ms)

I!"#$I!%&’+Pagurus 1482 (2.49) 1184 (2.86)
Pagurus 3201 (1.15) 2896 (1.17)
OpenWhisk 3695 (N/A) 3397 (N/A)

Table 4: Comparison of di"erent prediction meth-
ods under varying workloads, metrics including pre-
loading rate (%) and speedup (→).

Workload Poisson Histogram RF ARIMA

Predictable 67 (2.93) 61 (2.65) 50 (1.86) 62 (2.67)
Normal 56 (2.32) 51 (1.93) 47 (1.75) 51 (1.94)
Bursty 42 (1.58) 46 (1.79) 43 (1.59) 40 (1.5)

top 18.6% functions make up 99.6% calls. Thus, we selected
50 often-used functions’ traces, 150 ones with a once-per-
minute call rate, and 800 rarely-called ones. All functions
are created based on the eight benchmark models. We give
each function a unique identi!er (such as ResNet50-1, â&’,
ResNet50-125) to create 125 di#erent functions that run the
same model. Since I!"#$I!%&’ treats the function code as
black-box, all functions created are uniquely di#erent.
We evaluate the E2E and warming+loading latency of

InstaInfer+Pagurus, Pagurus, and vanilla OpenWhisk using
the same workload. The result is shown in Table 3. Besides,
we evaluate the pre-loading rate of I!"#$I!%&’. For the 50
functions that are frequently invoked, the pre-load rate is
73%. For the 150 less-frequently invoked functions, the pre-
load rate is 28%. For the 800 rarely invoked functions, the
pre-load rate is less than 1%. Thus, I!"#$I!%&’ can e#ectively
pre-load the frequently invoked functions and accelerate the
workload in large-scale scenarios.

7.9 Prediction Performance Evaluation
To evaluate the robustness of I!"#$I!%&’, we choose four
prediction models: Poisson distribution, Histogram policy-
based prediction [72], Random Forests (RF)[15], and Auto-
Regressive IntegratedMovingAverage (ARIMA)modeling[14].
Each model is used to decide when to load and o$oad a
function. We randomly select 200 function traces from pre-
dictable, normal, and bursty workloads, respectively. As
shown in Table 4, Poisson achieves the best performance
in predictable and normal workloads, whereas Histogram
performs best in bursty workloads. I!"#$I!%&’ pre-loads
over 40% functions and speeds up workloads by over 1.5→.

7.10 Ablation Study
We conduct an ablation experiment on the single-node clus-
ter to evaluate the e#ectiveness of the Proactive Pre-Loader
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Figure 15: The CDF of E2E latency for ablation of I!(
"#$I!%&’+* and baselines.

and Pre-Loading Scheduler. Three variants of I!"#$I!%&’
are evaluated and compared with Histogram Policy, Pagurus,
and FaaSCache:
• I!"#$I!%&’_NP: I!"#$I!%&’ without the Proactive Pre-
Loader. This variant lacks the Proactive Pre-Loader, so it
does not predict the arrival probabilities of the function.
Thus, this variant never determines pre-loading and o#-
loading proactively, only reacting to container creation,
container removal, and invocation arrival.

• I!"#$I!%&’_NS: I!"#$I!%&’ without the Scheduler. This
variant cannot make optimal assignments and dynamically
schedule loading and unloading. For I!"#$I!%&’_NS, a
function is only pre-loaded under two situations: 1) when
receiving the pre-load message from the Proactive Pre-
Loader and 2) when a container is idle, its corresponding
function will be loaded (i.e., one-to-one mapping).

• I!"#$I!%&’_NPS: I!"#$I!%&’ without either the Proac-
tive Pre-Loader or Scheduler. Each container only pre-
loads its own function’s libraries and models.
Fig. 15 shows the CDF of E2E inference latency under 2-

hour “Normal” traces randomly selected from Azure. Regard-
less of the pre-warming method used, I!"#$I!%&’ always
outperforms other variants due to its full utilization of both
the Proactive Pre-Loader and Scheduler. The synergy be-
tween these two components ensures the maximum loading
latency reduction despite dynamic changes in invocation
pattern and the number of idle containers.

On average, I!"#$I!%&’ accelerates the workload by 1.16-
1.28→, 1.21-1.49→, and 1.48-1.73→ when compared with I!(
"#$I!%&’-NP, I!"#$I!%&’-NS, and I!"#$I!%&’-NPS.

7.11 Sensitivity Analysis
We conduct an experiment to evaluate the impact of two
I!"#$I!%&’ hyper-parameters: 𝑀load, which decides when
to load libraries and models, and the size of the Proactive
Pre-Loader’s sliding window, used to adapt to recent invoca-
tion changes. Fig. 16 shows their impact on the average E2E
latency of a workload from Azure Trace.
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Figure 16: The average E2E latency with di"erent 𝑀load
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As observed, the performance of I!"#$I!%&’ is not sensi-
tive to the size of the Proactive Pre-Loader’s sliding window.
Meanwhile, we observed that the value of 𝑀load converges to
0.06. Furthermore, the optimal value of 𝑀load is not a#ected
by the sliding window size. Although a lower 𝑀load means
loading a model earlier, leading to a higher hit rate for future
invocations. However, pre-loading a function too early risks
wasting the available resources, which might be utilized for
loading other functions, leading to a sub-optimal acceler-
ation. We set I!"#$I!%&’’s 𝑀load to be 0.06 to achieve the
optimal acceleration.

7.12 Scalability and Overhead
To evaluate the scalability of I!"#$I!%&’, I!"#$I!%&’ + Pagu-
rus is given increasingly heavier workloads, varying from
10 to 180 requests per minute. The performance is shown in
Fig. 17. I!"#$I!%&’ consistently outperforms Pagurus across
di#erent scales. Then we evaluate the performance of I!(
"#$I!%&’ against other baselines under constrained resource
budgets by varying the container pool’s size. As Fig. 18 shows,
I!"#$I!%&’ consistently outperforms other baselines under
di#erent memory budgets, showing stronger robustness.
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Next, we report the latency and resource overhead of each
component. The Proactive Pre-Loader introduces less than
3ms additional latency under the heaviest workload. The
Intra-Container Manager introduces 2ms to 11ms latency
overhead, which is caused by the memory preemption of
clearing the memory of other pre-loading processes when
invocation arrives. This latency varies based on the memory
footprint of the to-be-o$oaded function. As the scheduler’s
pre-loading & o#-loading decision is asynchronous with
serving the invocation, it does not cause latency overhead.
Compared with the saved latency (1500-5000ms), the addi-
tional latency (5ms-14ms) is negligible. The overhead will be
lower when handling fewer invocations.
Under the heaviest workload, the Proactive Pre-Loader

consumes less than 0.3 CPU core and 72MB memory; the
scheduler consumes 0.3 CPU core and 135MB memory; the
Intra-Container Manager consumes 0.1 CPU core and 9MB
memory. The overall resource overhead of all I!"#$I!%&’’s
components is negligible compared to the workloads.

8 Related Work
Serverless inference. Motivated by serverless computing’s
%exibility and cost-e"ciency, a few studies proposed to en-
able ML inference via serverless computing [6, 20, 25, 35,
36, 38, 40, 46, 50, 89]. However, they ignore the ML artifacts
loading latency, which extensively in%ates the E2E latency.
Some works improve inference functions’ throughput by
dynamically batching requests [5, 84, 91], which is orthogo-
nal to I!"#$I!%&’. I!"#$I!%&’’s Proactive Pre-Loader treats
the batched requests as a single call and forwards them to
a container. AsyFunc [63] mitigates bursts by pre-loading
resource-intensive layers of a model while reusing others
from a warmed container, dependent on the availability of
warmed containers. Thus, it does not address the cold start
problem. Moreover, it targets model loading overhead, which
is only 52% of ML artifact loading time as observed in Fig. 1,
leaving half of the overall latency sub-optimal. Tetris [46]
and Optimus [35] share identical layers across models to
address model loading bottlenecks but ignore library loading
and GPU transfer overheads. Their e#ectiveness depends on
layer similarity, limiting universality across diverse models.
In contrast, I!"#$I!%&’ accelerates any model.
Cold-start mitigation. Many studies attempt to address
cold-start issues, which can be classi!ed into four major
categories: 1) Pre-warming [13, 16–18, 30, 32, 48, 49, 55, 61,
67, 68, 72, 77] that predictively pre-warms container in ad-
vance [13, 18, 32, 55, 72, 77] and keeps them warmed [16, 17,
30, 48, 49, 61, 67, 68, 72]. 2) Virtualization Refactoring [3, 8,
24, 31, 69, 73, 75] that use new virtualization technique to ac-
celerate warming. 3) Container Sharing [4, 26, 48, 51, 59, 71]
that shares container among functions. 4) Snapshot based

methods [8, 17, 24, 69, 80, 82] that stores snapshots of func-
tions. Among them, pre-warming, virtualization refactoring,
and container sharing focus on container-level speedup for
general functions, overlooking the unique loading stage for
ML inference functions. Snapshot methods capture infer-
ence function states, including loaded libraries and models.
However, these snapshot !les are large, containing extensive
model and library data, leading to a 100â&(1000ms startup
overhead as shown in our evaluation (Fig. 14) and the REAP
experiment results [80]. Furthermore, these techniques rely
on Linux’s memorymapping mechanism and are not compat-
ible with GPUs due to di"culties in capturing and restoring
separate GPU memory and contexts.
Pre-loading in serverless. Some works [7, 37, 52] allow
user-de!ned pre-loading primitives when starting a new in-
stance. Azure warmup trigger [52] pre-loads the user-de!ned
primitives during instance scaling. However, it only works
out during scaling up, failing to tackle the cold start problem.
For pre-warmed containers, the trigger does not pre-load
components. AWS Lambda static initialization [7] allows
components that execute only once during the !rst invoca-
tion to speed up subsequent operations. However, for the !rst
invocation, even if the container has been created, the com-
ponents cannot be pre-loaded. [37] enables executing user-
de!ned primitives once a container is pre-warmed. However,
as a naive pre-loading approach, it falls short of achieving
optimal performance due to underutilized idle space. Fur-
thermore, none of these methods is compatible with GPUs.
Function data caching. Some studies [43, 56, 64] cache
ephemeral data of functions in local storage or cloud server,
while others [65, 81] keep data in containers. Pheromone [88]
uses multiple cache mechanisms based on developers’ con-
!guration. I!"#$I!%&’ focuses on pre-loading libraries and
models into memory, which is orthogonal to these data
caching techniques.

9 Conclusion
This paper proposed I!"#$I!%&’, a pre-loading technique
for serverless inference that alleviates the ML artifacts load-
ing overhead of ML inference functions by opportunistically
pre-loading their libraries and models rather than popular
cold-start mitigation approaches. I!"#$I!%&’ comprises a
Proactive Pre-Loader to estimate when to load each func-
tion, a Pre-Loading Scheduler to assign to-be-loaded func-
tions to suitable idle containers and GPUs, and an Intra-
Container Manager for controlling the loading & o#-loading
of each function. Extensive experiments with real-world
traces showed that I!"#$I!%&’ reduces startup latency by
up to 93% and accelerates the overall workload 8→.



SoCC ’24, November 20–22, 2024, Redmond, WA, USA Yifan Sui, Hanfei Yu, Yitao Hu, Jianxun Li, and Hao Wang

Acknowledgments
We thank our shepherd Dr. Qian Li and anonymous review-
ers for their valuable feedback. The work of Yifan Sui and
Jianxun Li was supported in part by National Natural Sci-
ence Foundation of China under grant 61673265. The work
of Hanfei Yu and Hao Wang was supported in part by NSF
2153502, 2403247, 2403398, and the AWS Cloud Credit for
Research program. Any opinions, !ndings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily re%ect the views of the
funding agencies.

References
[1] 2023. Alexa Skills - Serverless Applications Lens. https:

//docs.aws.amazon.com/wellarchitected/latest/serverless-
applications-lens/alexa-skills.html. Accessed: 2024-07-07.

[2] 2024. Pricing - Microsoft Azure Function. https://azure.microsoft.com/
en-us/pricing/details/functions/. Accessed: 2024-07-12.

[3] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony
Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.
Firecracker: Lightweight Virtualization for Serverless Applications.
In Proc. the USENIX Symposium on Networked Systems Design and
Implementation (NSDI).

[4] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus
Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. {SAND}:
Towards {High-Performance} Serverless Computing. In Proc. 2018
Usenix Annual Technical Conference (USENIX ATC). 923–935.

[5] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. 2020.
Batch: Machine Learning Inference Serving on Serverless Platforms
With Adaptive Batching. In Proc. International Conference for High
Performance Computing, Networking, Storage and Analysis (SC). IEEE,
1–15.

[6] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. 2022.
Optimizing Inference Serving on Serverless Platforms. Proc. the VLDB
Endowment 15, 10 (2022).

[7] Amazon Web Services. 2023. Optimizing static initialization - AWS
Lambda. https://docs.aws.amazon.com/lambda/latest/operatorguide/
static-initialization.html Accessed on: 2024-06-12.

[8] Lixiang Ao, George Porter, and Geo#rey M Voelker. 2022. FaaSnap:
FaaS Made Fast Using Snapshot-Based VMs. In Proc. the Seventeenth
European Conference on Computer Systems (EuroSys).

[9] Apache OpenWhisk. [n.d.]. [n. d.]. https://openwhisk.apache.org.
[10] AWS Lambda. 2024. Con!gure Lambda function memory. https://docs.

aws.amazon.com/lambda/latest/dg/con!guration-memory.html/. Ac-
cessed: 2024-07-07.

[11] Azure Samples. 2024. Serverless AI Chat with RAG using
LangChain.js. https://learn.microsoft.com/en-us/samples/azure-
samples/serverless-chat-langchainjs/serverless-chat-langchainjs/. Ac-
cessed: 2024-07-07.

[12] Amotz Bar-Noy, Richard E Ladner, and Tami Tamir. 2008. Optimal delay
for media-on-demand with pre-loading and pre-bu#ering. Theoretical
Computer Science 399, 1-2 (2008), 3–11.

[13] Vivek M Bhasi, Jashwant Raj Gunasekaran, Prashanth Thinakaran,
Cyan Subhra Mishra, Mahmut Taylan Kandemir, and Chita Das. 2021.
Kraken: Adaptive Container Provisioning for Deploying Dynamic
DAGs in Serverless Platforms. In Proc. the ACM Symposium on Cloud
Computing (SoCC).

[14] George EP Box and David A Pierce. 1970. Distribution of residual
autocorrelations in autoregressive-integrated moving average time

series models. Journal of the American statistical Association 65, 332
(1970), 1509–1526.

[15] Leo Breiman. 2001. Random forests. Machine learning 45 (2001), 5–32.
[16] Marc Brooker, Mike Danilov, Chris Greenwood, and Phil Piwonka.

2023. On-demand Container Loading in {AWS} Lambda. In Proc. 2023
USENIX Annual Technical Conference (USENIX ATC). 315–328.

[17] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger,
and Jonathan Appavoo. 2020. SEUSS: Skip Redundant Paths to Make
Serverless Fast. In Proc. the Fifteenth European Conference on Computer
Systems (EuroSys). 1–15.

[18] Xinquan Cai, Qianlong Sang, Chuang Hu, Yili Gong, Kun Suo, Xiaobo
Zhou, and Dazhao Cheng. 2024. Incendio: Priority-Based Scheduling
for Alleviating Cold Start in Serverless Computing. IEEE Trans. Comput.
73, 7 (2024), 1780–1794.

[19] Bill Cheswick. 1992. An Evening with Berferd in which a cracker is
Lured, Endured, and Studied. In Proc. Winter USENIX Conference, San
Francisco. 20–24.

[20] Junguk Cho, Diman Zad Tootaghaj, Lianjie Cao, and Puneet Sharma.
2022. Sla-driven ML Inference Framework for Clouds with Heteroge-
neous Accelerators. Proc. Machine Learning and Systems (MLSys) 4
(2022), 20–32.

[21] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Pod-
stawski, and Torsten Hoe%er. 2021. Sebs: A Serverless Benchmark
Suite for Function-as-a-Service Computing. In Proc. the 22nd Interna-
tional Middleware Conference (Middleware). 64–78.

[22] NVIDIA Corporation. 2024. NVIDIA Multi-Process Service. Software
available from NVIDIA. https://docs.nvidia.com/deploy/mps/index.
html Accessed: 2024-05-30.

[23] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2018. Bert: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. arXiv preprint arXiv:1810.04805 (2018).

[24] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang
Qin, Qixuan Wu, and Haibo Chen. 2020. Catalyzer: Sub-millisecond
Startup for Serverless Computing with Initialization-less Booting. In
Proc. the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS). 467–481.

[25] Vojislav Dukic, Rodrigo Bruno, Ankit Singla, and Gustavo Alonso.
2020. Photons: Lambdas on a Diet. In Proc. the 11th ACM Symposium
on Cloud Computing (SoCC). 45–59.

[26] Tarek Elgamal. 2018. Costless: Optimizing Cost of Serverless Com-
puting Through Function Fusion and Placement. In 2018 IEEE/ACM
Symposium on Edge Computing (SEC).

[27] Jonatan Enes, Roberto R Expósito, and Juan Touriño. 2020. Real-
time resource scaling platform for big data workloads on serverless
environments. Future Generation Computer Systems 105 (2020), 361–
379.

[28] Yao Fu, Leyang Xue, Yeqi Huang, Andrei-Octavian Brabete, Dmitrii
Ustiugov, Yuvraj Patel, and Luo Mai. 2024. ServerlessLLM: Locality-
Enhanced Serverless Inference for Large Language Models. arXiv
preprint arXiv:2401.14351 (2024).

[29] Alexander Fuerst. 2021. GitHub—aFuerst/openwhisk-caching. https:
//github.com/aFuerst/openwhisk-caching. [Accessed 26-10-2023].

[30] Alexander Fuerst and Prateek Sharma. 2021. FaasCache: keeping
serverless computing alive with greedy-dual caching. In Proc. the 26th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 386–400.

[31] Google. 2018. gVisor. https://gvisor.dev/.
[32] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Nachiappan Chi-

dambaram, Mahmut T Kandemir, and Chita R Das. 2020. Fifer: Tackling
Underutilization in the Serverless Era. In The 21st International Mid-
dleware Conference (Middleware).

https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/alexa-skills.html
https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/alexa-skills.html
https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/alexa-skills.html
https://azure.microsoft.com/en-us/pricing/details/functions/
https://azure.microsoft.com/en-us/pricing/details/functions/
https://docs.aws.amazon.com/lambda/latest/operatorguide/static-initialization.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/static-initialization.html
https://openwhisk.apache.org
https://docs.aws.amazon.com/lambda/latest/dg/configuration-memory.html/
https://docs.aws.amazon.com/lambda/latest/dg/configuration-memory.html/
https://learn.microsoft.com/en-us/samples/azure-samples/serverless-chat-langchainjs/serverless-chat-langchainjs/
https://learn.microsoft.com/en-us/samples/azure-samples/serverless-chat-langchainjs/serverless-chat-langchainjs/
https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html
https://github.com/aFuerst/openwhisk-caching
https://github.com/aFuerst/openwhisk-caching
https://gvisor.dev/


Pre-Warming is Not Enough: Accelerating Serverless Inference With Opportunistic Pre-Loading SoCC ’24, November 20–22, 2024, Redmond, WA, USA

[33] Ajay K Gupta and Udai Shanker. 2020. OMCPR: Optimal mobility
aware cache data pre-fetching and replacement policy using spatial
K-anonymity for LBS. Wireless Personal Communications 114, 2 (2020),
949–973.

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
Residual Learning for Image Recognition. In Proc. the IEEE conference
on computer vision and pattern recognition (CVPR). 770–778.

[35] Zicong Hong, Jian Lin, Song Guo, Sifu Luo, Wuhui Chen, Roger Wat-
tenhofer, and Yue Yu. 2024. Optimus: Warming Serverless ML Infer-
ence via Inter-Function Model Transformation. In Proc. the Nineteenth
European Conference on Computer Systems (EuroSys). 1039â&(1053.

[36] Haichuan Hu, Fangming Liu, Qiangyu Pei, Yongjie Yuan, Zichen Xu,
and LinWang. 2024. 𝑃Grapher: A Resource-E"cient Serverless System
for GNN Serving through Graph Sharing. In ACM on Web Conference
2024 (WWW). 2826â&(2835.

[37] Erika Hunho#, Shazal Irshad, Vijay Thurimella, Ali Tariq, and Eric
Rozner. 2021. Proactive Serverless Function Resource Management.
In Proc. the 2020 Sixth International Workshop on Serverless Computing
(WoSC). 61â&(66.

[38] Jananie Jarachanthan, Li Chen, Fei Xu, and Bo Li. 2021. Amps-inf:
Automatic Model Partitioning for Serverless Inference with Cost E"-
ciency. In Proc. the 50th International Conference on Parallel Processing
(ICPP). 1–12.

[39] Cheng Ji, Riwei Pan, Li-Pin Chang, Liang Shi, Zongwei Zhu, Yu Liang,
Tei-Wei Kuo, and Chun Jason Xue. 2020. Inspection and characteriza-
tion of app !le usage in mobile devices. ACM Transactions on Storage
16, 4 (2020), 1–25.

[40] Jiawei Jiang, Shaoduo Gan, Yue Liu, Fanlin Wang, Gustavo Alonso,
Ana Klimovic, Ankit Singla, WentaoWu, and Ce Zhang. 2021. Towards
Demystifying Serverless Machine Learning Training. In Proc. the 2021
International Conference on Management of Data (SIGMOD). 857–871.

[41] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl
Krauth, Neeraja Yadwadkar, et al. 2019. Cloud Programming Sim-
pli!ed: A Berkeley View on Serverless Computing. arXiv preprint
arXiv:1902.03383 (2019).

[42] Poul-Henning Kamp and Robert NM Watson. 2000. Jails: Con!ning
the omnipotent root. In Proceedings of the 2nd International SANE
Conference, Vol. 43. 116.

[43] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas
Pfe#erle, and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral
Storage for Serverless Analytics. In Proc. 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI). 427–444.

[44] Alex Krizhevsky, Ilya Sutskever, and Geo#rey EHinton. 2012. Imagenet
Classi!cation with Deep Convolutional Neural Networks. Advances
in neural information processing systems (NeurIPS) 25 (2012).

[45] Kevin Lee, Vijay Rao, and William Arnold. 2019. Acceler-
ating Facebook’s Infrastructure with Application-Speci!c Hard-
ware. https://engineering.fb.com/2019/03/14/data-center-engineering/
accelerating-infrastructure/. Accessed: 2024-07-07.

[46] Jie Li, Laiping Zhao, Yanan Yang, Kunlin Zhan, and Keqiu Li. 2022.
Tetris: Memory-E"cient Serverless inference through tensor sharing.
In Proc. 2022 USENIX Annual Technical Conference (USENIX ATC).

[47] Zijun Li. [n. d.]. GitHub—lzjzx1122/Pagurus: Help Rather Than Recy-
cle: Alleviating Cold Startup in Serverless Computing Through Inter-
Function Container Sharing. https://github.com/lzjzx1122/Pagurus/
tree/master. [Accessed 26-10-2023].

[48] Zijun Li, Linsong Guo, Quan Chen, Jiagan Cheng, Chuhao Xu, Deze
Zeng, Zhuo Song, Tao Ma, Yong Yang, Chao Li, and Minyi Guo. 2022.
Help Rather Than Recycle: Alleviating Cold Startup in Serverless
Computing Through {Inter-Function} Container Sharing. In Proc. 2022
USENIX Annual Technical Conference (USENIX ATC). 69–84.

[49] Zhen Lin, Kao-Feng Hsieh, Yu Sun, Seunghee Shin, and Hui Lu. 2021.
FlashCube: Fast Provisioning of Serverless Functions with Stream-
lined Container Runtimes. In Proc. the 11th Workshop on Programming
Languages and Operating Systems (PLOS).

[50] Yushi Liu, Shixuan Sun, Zijun Li, Quan Chen, Sen Gao, Bingsheng He,
Chao Li, and Minyi Guo. 2024. FaaSGraph: Enabling Scalable, E"cient,
and Cost-E#ective Graph Processing with Serverless Computing. In
Proc. the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). 385â&(400.

[51] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Sameh El-
nikety, Somali Chaterji, and Saurabh Bagchi. 2022. {ORION} and
the Three Rights: Sizing, Bundling, and Prewarming for Serverless
{DAGs}. In 16th USENIX Symposium on Operating Systems Design and
Implementation (OSDI).

[52] Microsoft. 2023. Azure Functions warmup trigger. https://learn.
microsoft.com/en-us/azure/azure-functions/functions-bindings-
warmup?tabs=isolated-process%2Cnodejs-v4&pivots=programming-
language-python Accessed: 2024-06-12.

[53] Microsoft. 2024. Azure Functions Premium plan. https:
//learn.microsoft.com/en-us/azure/azure-functions/functions-
premium-plan?tabs=portal Accessed: 2024-07-12.

[54] Microsoft. 2024. Storage considerations for Azure Functions.
https://learn.microsoft.com/en-us/azure/azure-functions/storage-
considerations?tabs=azure-cli. Accessed: 2024-07-01.

[55] Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti,
Naren Nayak, and Vadim Sukhomlinov. 2019. Agile Cold Starts for
Scalable Serverless. In 11th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud).

[56] Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang, Lucien Ngale,
Stéphane Pouget, Josiane Kouam, Renaud Lachaize, Jinho Hwang,
Tim Wood, Daniel Hagimont, Noël De Palma, Bernabé Batchakui, and
Alain Tchana. 2021. OFC: An Opportunistic Caching System for FaaS
Platforms. In Proc. the Sixteenth European Conference on Computer
Systems (EuroSys). 228–244.

[57] Nuclio. 2024. Nuclio: Serverless Platform for Automated Data Science.
https://nuclio.io/ Accessed: 2024-07-12.

[58] NVIDIA Corporation. 2024. NVIDIA Container Toolkit. Software
available fromNVIDIA. https://github.com/NVIDIA/nvidia-container-
toolkit Accessed: 2024-05-30.

[59] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2018. SOCK:
Rapid Task Provisioning with Serverless-Optimized Containers. In
Proc. the USENIX Conference on Usenix Annual Technical Conference
(USENIX ATC).

[60] Yi Ouyang, Bin Guo, Qianru Wang, Yunji Liang, and Zhiwen Yu. 2022.
Learning dynamic app usage graph for next mobile app recommenda-
tion. IEEE Transactions on mobile Computing (2022).

[61] Li Pan, Lin Wang, Shutong Chen, and Fangming Liu. 2022. Retention-
Aware Container Caching for Serverless Edge Computing. Proc. of
IEEE Conference on Computer Communications (INFOCOM) (2022).

[62] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In Ad-
vances in Neural Information Processing Systems (NeurIPS). 8024–8035.

[63] Qiangyu Pei, Yongjie Yuan, Haichuan Hu, Qiong Chen, and Fang-
ming Liu. 2023. AsyFunc: A High-Performance and Resource-E"cient
Serverless Inference System via Asymmetric Functions. In Proc. the
ACM Symposium on Cloud Computing (SoCC). 324–340.

https://engineering.fb.com/2019/03/14/data-center-engineering/accelerating-infrastructure/
https://engineering.fb.com/2019/03/14/data-center-engineering/accelerating-infrastructure/
https://github.com/lzjzx1122/Pagurus/tree/master
https://github.com/lzjzx1122/Pagurus/tree/master
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-warmup?tabs=isolated-process%2Cnodejs-v4&pivots=programming-language-python
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-warmup?tabs=isolated-process%2Cnodejs-v4&pivots=programming-language-python
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-warmup?tabs=isolated-process%2Cnodejs-v4&pivots=programming-language-python
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-warmup?tabs=isolated-process%2Cnodejs-v4&pivots=programming-language-python
https://learn.microsoft.com/en-us/azure/azure-functions/functions-premium-plan?tabs=portal
https://learn.microsoft.com/en-us/azure/azure-functions/functions-premium-plan?tabs=portal
https://learn.microsoft.com/en-us/azure/azure-functions/functions-premium-plan?tabs=portal
https://learn.microsoft.com/en-us/azure/azure-functions/storage-considerations?tabs=azure-cli
https://learn.microsoft.com/en-us/azure/azure-functions/storage-considerations?tabs=azure-cli
https://nuclio.io/
https://github.com/NVIDIA/nvidia-container-toolkit
https://github.com/NVIDIA/nvidia-container-toolkit


SoCC ’24, November 20–22, 2024, Redmond, WA, USA Yifan Sui, Hanfei Yu, Yitao Hu, Jianxun Li, and Hao Wang

[64] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shu$ing, Fast
and Slow: Scalable Analytics on Serverless Infrastructure. In Proc. 16th
USENIX symposium on networked systems design and implementation
(NSDI). 193–206.

[65] Francisco Romero, Gohar Irfan Chaudhry, Íñigo Goiri, Pragna Gopa,
Paul Batum, Neeraja J Yadwadkar, Rodrigo Fonseca, Christos Kozyrakis,
and Ricardo Bianchini. 2021. Faa$T: A Transparent Auto-Scaling Cache
For Serverless Applications. In Proc. the ACM symposium on cloud
computing (SoCC). 122–137.

[66] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and Christos
Kozyrakis. 2021. {INFaaS}: Automated Model-less Inference Serv-
ing. In Proc. 2021 USENIX Annual Technical Conference (USENIX ATC).
397–411.

[67] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. 2022. DayDream:
Executing Dynamic Scienti!c Work%ows on Serverless Platforms with
Hot Starts. In 2022 SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis (SC).

[68] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. 2022. Icebreaker:
Warming Serverless Functions Better With Heterogeneity. In Proc. the
27th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS). 753–767.

[69] Divyanshu Saxena, Tao Ji, Arjun Singhvi, Junaid Khalid, and Aditya
Akella. 2022. Memory Deduplication for Serverless Computing with
Medes. In Proc. the Seventeenth European Conference on Computer Sys-
tems (EuroSys).

[70] Divyanshu Saxena, Tao Ji, Arjun Singhvi, Junaid Khalid, and Aditya
Akella. 2022. Memory deduplication for serverless computing with
medes. In Proc. the Seventeenth European Conference on Computer Sys-
tems (EuroSys). 714–729.

[71] Trever Schirmer, Joel Scheuner, Tobias Pfandzelter, and David
Bermbach. 2022. FUSIONIZE: Improving Serverless Application Per-
formance Through Feedback-driven Function Fusion. In 2022 IEEE
International Conference on Cloud Engineering (IC2E).

[72] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. 2020. Serverless in the wild:
Characterizing and optimizing the serverless workload at a large cloud
provider. In Proc. 2020 USENIX Annual Technical Conference (USENIX
ATC). 205–218.

[73] Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bagdasaryan,
Christina Delimitrou, Robbert Van Renesse, and HakimWeatherspoon.
2019. X-containers: Breaking Down Barriers to Improve Performance
and Isolation of Cloud-Native Containers. In Proc. the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 121–135.

[74] Umair Siddiqi, Timothy Martin, Sam Van Den Eijnden, Ahmed Shamli,
Gary Grewal, Sadiq Sait, and Shawki Areibi. 2022. Faster fpga routing
by forecasting and pre-loading congestion information. In Proc. the
2022 ACM/IEEE Workshop on Machine Learning for CAD. 15–20.

[75] Paulo Silva, Daniel Fireman, and Thiago Emmanuel Pereira. 2020.
Prebaking Functions to Warm the Serverless Cold Start. In Proc. the
21st International Middleware Conference (Middleware). 1–13.

[76] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolu-
tional Networks for Large-Scale Image Recognition. arXiv preprint
arXiv:1409.1556 (2014).

[77] Jovan Stojkovic, Tianyin Xu, Hubertus Franke, and Josep Torrellas.
2023. SpecFaaS: Accelerating Serverless Applications with Speculative
Function Execution. In Proc. 2023 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, 814–827.

[78] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. 2015. Going Deeper with Convolutions. In Proc. the IEEE

conference on computer vision and pattern recognition (CVPR). 1–9.
[79] Christian Szegedy, Vincent Vanhoucke, Sergey Io#e, Jon Shlens, and

Zbigniew Wojna. 2016. Rethinking the Inception Architecture for
Computer Vision. In Proc. the IEEE conference on computer vision and
pattern recognition (CVPR). 2818–2826.

[80] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and
Boris Grot. 2021. Benchmarking, analysis, and optimization of server-
less function snapshots. In Proc. the ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS).

[81] Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar, Lukas Rupprecht,
Dimitrios Skourtis, Vasily Tarasov, Feng Yan, and Yue Cheng. 2020.
{In!niCache}: Exploiting Ephemeral Serverless Functions to Build a
{Cost-E#ective} Memory Cache. In Proc. 18th USENIX conference on
"le and storage technologies (FAST). 267–281.

[82] Kai-Ting Amy Wang, Rayson Ho, and Peng Wu. 2019. Replayable
execution optimized for page sharing for a managed runtime envi-
ronment. In Proc. the Seventeenth European Conference on Computer
Systems (EuroSys). 1–16.

[83] Xingda Wei, Fangming Lu, Tianxia Wang, Jinyu Gu, Yuhan Yang,
Rong Chen, and Haibo Chen. 2023. No Provisioned Concurrency:
Fast {RDMA-codesigned} Remote Fork for Serverless Computing. In
USENIX Symposium on Operating Systems Design and Implementation
(OSDI). 497–517.

[84] Yanan Yang, Laiping Zhao, Yiming Li, Huanyu Zhang, Jie Li, Mingyang
Zhao, Xingzhen Chen, and Keqiu Li. 2022. INFless: A Native Serverless
System for Low-Latency, High-Throughput Inference. In Proc. the 27th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 768–781.

[85] Hanfei Yu, Rohan Basu Roy, Christian Fontenot, Devesh Tiwari, Jian
Li, Hong Zhang, Hao Wang, and Seung-Jong Park. 2024. Rainbow-
Cake: Mitigating Cold-starts in Serverless with Layer-wise Container
Caching and Sharing. In Proc. the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 335–350.

[86] Hanfei Yu, Christian Fontenot, HaoWang, Jian Li, Xu Yuan, and Seung-
Jong Park. 2023. Libra: Harvesting idle resources safely and timely in
serverless clusters. In Proc. the 32nd International Symposium on High-
Performance Parallel and Distributed Computing (HPDC). 181–194.

[87] Hanfei Yu, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park. 2022.
Accelerating serverless computing by harvesting idle resources. In
Proc. the ACM Web Conference (WWW). 1741–1751.

[88] Minchen Yu, Tingjia Cao,WeiWang, and Ruichuan Chen. 2023. Follow-
ing the Data, not the Function: Rethinking Function Orchestration in
Serverless Computing. In Proc. 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI). 1489–1504.

[89] Minchen Yu, Ao Wang, Dong Chen, Haoxuan Yu, Xiaonan Luo, Zhuo-
hao Li, Wei Wang, Ruichuan Chen, Dapeng Nie, and Haoran Yang.
2023. FaaSwap: SLO-Aware, GPU-E"cient Serverless Inference via
Model Swapping. arXiv preprint arXiv:2306.03622 (2023).

[90] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu,
Pingchao Yang, Chenggang Qin, and Haibo Chen. 2020. Characteriz-
ing Serverless Platforms with Serverlessbench. In Proc. the 11th ACM
Symposium on Cloud Computing (SoCC). 30–44.

[91] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. 2019.
{MArk}: Exploiting Cloud Services for {Cost-E#ective},{SLO-
Aware} Machine Learning Inference Serving. In Proc. 2019 USENIX
Annual Technical Conference (USENIX ATC). 1049–1062.

[92] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Rodrigo Fonseca,
Sameh Elnikety, Christina Delimitrou, and Ricardo Bianchini. 2021.
Faster and Cheaper Serverless Computing on Harvested Resources. In
ACM SIGOPS 28th Symposium on Operating Systems Principles (SOSP).



Pre-Warming is Not Enough: Accelerating Serverless Inference With Opportunistic Pre-Loading SoCC ’24, November 20–22, 2024, Redmond, WA, USA

[93] Yi Zhou, Shubbhi Taneja, Chaowei Zhang, and Xiao Qin. 2018.
GreenDB: Energy-e"cient prefetching and caching in database clus-
ters. IEEE Transactions on Parallel and Distributed Systems 30, 5 (2018),
1091–1104.

[94] Zhuangzhuang Zhou, Yanqi Zhang, and Christina Delimitrou. 2022.
Aquatope: Qos-and-Uncertainty-Aware Resource Management for
Multi-Stage Serverless Work%ows. In Proc. the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). 1–14.


	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Dissecting Serverless Inference
	2.2 Container Warming vs. ML Artifact Loading
	2.3 The Necessity of Pre-loading
	2.4 Existing Solutions' Limitations
	2.5 The Opportunity of Pre-loading

	3 An Overview of InstaInfer
	3.1 Objectives & Challenges
	3.2 InstaInfer's System Architecture
	3.3 InstaInfer's Workflow

	4 Proactive Pre-Loader
	4.1 Function Invocation Prediction
	4.2 Function Pre-Loading and Offloading

	5 Pre-Loading Scheduler
	5.1 Latency-Aware Function Mapping
	5.2 Optimal Pre-loading Over Time

	6 Intra-Container Manager
	6.1 Pre-Loading Management
	6.2 Privacy & Security Guarantee

	7 Evaluation
	7.1 Implementation
	7.2 Experiment Settings
	7.3 Reducing E2E Latency
	7.4 InstaInfer GPU Evaluation
	7.5 Memory and Monetary Cost
	7.6 Multi-Node Evaluation
	7.7 Comparisons with Snapshot Methods
	7.8 Large-Scale Evaluation
	7.9 Prediction Performance Evaluation
	7.10 Ablation Study
	7.11 Sensitivity Analysis
	7.12 Scalability and Overhead

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

