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Abstract—Deep reinforcement learning (DRL) has achieved
remarkable success in diverse areas, including gaming Al, scientific
simulations, and large-scale (HPC) system scheduling. DRL
training, which involves a trial-and-error process, demands
considerable time and computational resources. To overcome
this challenge, distributed DRL algorithms and frameworks have
been developed to expedite training by leveraging large-scale
resources. However, existing distributed DRL solutions rely on
synchronous learning with serverful infrastructures, suffering
from low training efficiency and overwhelming training costs.

This paper proposes Stellaris, the first to introduce a generic
asynchronous learning paradigm for distributed DRL training
with serverless computing. We devise an importance sampling
truncation technique to stabilize DRL training and develop a
staleness-aware gradient aggregation method tailored to the
dynamic staleness in asynchronous serverless DRL training.
Experiments on AWS EC2 regular testbeds and HPC clusters
show that Stellaris outperforms existing state-of-the-art DRL
baselines by achieving 2.2x higher rewards (i.e., training quality)
and reducing 41% training costs.

I. INTRODUCTION

The deep reinforcement learning (DRL) demonstrates notable
success across diverse domains such as gaming Al [9, 39, 69,
741, robotics [12, 86], scientific simulations [33, 68, 76], and
large-scale (HPC) system scheduling [49, 56, 80, 81]. The
training process of a DRL agent entails iterative experimenta-
tion, demanding significant time and computational resources.
Consequently, distributed DRL algorithms and infrastructures
have been proposed extensively to expedite training through
the utilization of large-scale resources. Common routines for
reducing the operational cost of distributed training infrastruc-
ture include offloading training tasks to HPC clusters [3, 40]
and renting virtual machine (VM) servers from Infrastructure-
as-a-Service (IaaS) cloud providers [16, 45].

Despite the immense potential of DRL, existing large-scale
clusters often suffer from low efficiency and sub-optimal
resource utilization when running distributed DRL algorithms.
We identify three main pain points hindering the effectiveness
of DRL in current large-scale distributed training. First, the
timing of policy updates poses a significant challenge due to
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Async. Scalable On-&Off- Server-

Framework .

Learners  Actors policy less
Ray RLIib [43] X X v X
MSRL [85] X X v X
SEED RL [17] X X v X
SRL [46] X X v X
PQL [41] X X X X
MinionsRL [79] X v X v
Stellaris+x v v v v

TABLE I: Summary of DRL training frameworks.
indicates integration with Stellaris.

the dynamic staleness inherent in the distributed setting, leading
to slowed training and decelerated convergence [15, 82, 84].
Second, distributed DRL tasks exhibit dynamic demands for
volumes of computing resources. Determining the appropriate
system resources to allocate for distributed reinforcement
learning (RL) tasks remains a complex issue, thus often
resulting in low cost-efficiency and sub-optimal resource utiliza-
tion [46]. Third, distributed DRL demands dynamic volumes
of trajectory data during training [79] while existing fixed
trajectory sampling strategies cannot meet the requirements,
further impeding the training process.

Existing solutions for distributed DRL training largely rely
on the Actor-learner architecture [16, 17, 45, 46, 79], where
actors interact with the environment to collect trajectories
(training data) and learners train an optimal policy based on
the data to maximize rewards. However, they fail to fill the
above gaps due to missing necessary features. We are the
first to design an efficient and robust asynchronous learning
paradigm with serverless computing to address the ignored
gaps in distributed DRL training.

In this paper, we propose Stellaris, a generic asynchronous
learning paradigm to accelerate DRL training with serverless
computing. Table I compares the features of Stellaris with
state-of-the-art solutions. Stellaris supports both serverful and
serverless training infrastructures as well as on- and off-
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Fig. 1: Actor-learner architectures for distributed DRL training solutions, including (a) synchronous actors + synchronous
learners, (b) asynchronous actors + synchronous learners, (c) synchronous actors + single learner, and (d) our Stellaris:

synchronous/asynchronous actors + asynchronous learners.
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Fig. 2: Training performance (a) and cost (b) of running
asynchronous serverless DRL training.

policy DRL algorithms. We leverage the agile scalability and
fine-grained allocation of serverless computing to meet the
dynamic and transient resource demands in distributed DRL.
To accommodate the dynamic volumes of trajectory data, we
devise a novel importance sampling truncation technique to
stabilize the training process. We also develop a staleness-aware
gradient aggregation method tailored to addressing the dynamic
staleness in distributed DRL training. The main contributions
of this paper are summarized as follows:

o« We design Stellaris, a generic asynchronous learning
paradigm in serverless computing architecture for acceler-
ating distributed DRL training.

« We devise an importance sampling truncation technique
to stabilize DRL training in the asynchronous learning
setting.

« We develop a staleness-aware gradient aggregation method
to trade-off between policy update speed and convergence,
hence accelerating the training process.

o We evaluate the Stellaris prototype by integrating with
state-of-the-art (SOTA) DRL algorithms and frameworks
on AWS EC2 regular testbeds and HPC clusters with
16 GPUs and 960 CPU cores. Extensive experiments
with Mujoco and Atari benchmarks show that Stellaris
improves the final reward (i.e., training quality) by up to
2.2x and reduces the training cost by up to 41%.

II. BACKGROUND AND MOTIVATION
A. Distributed DRL

DRL aims to optimize a policy 7 parameterized with 6 by
maximizing the expected return. The DRL agent learns to

— 1))

23 S a

p 82 @4 210+

S 206 B8 Sl | 1

®© E = YL

g 0 Lsmms Rema ﬁ@m EEI @« 2 4 6 8
oy (b) # of learners

o

< ag NA g;. =21+

§ % RN S /= Asyne- sync
"ﬁ 0 HNE { 2 )4 x P ne AL
= 8 16 24 32 0 0 40
D (a) # of actors (c) Wall clock time (s)

Fig. 3: Characterizations of asynchronous learners in
serverless DRL training, including (a) dynamic learner
orchestration, (b) dynamic staleness, and (c) unstable policy
updates.

maximize the cumulative reward J(7) := E;ur | Ztho viry],
where 7 is a trajectory, r; is the reward at timestep ¢, and ~y
is the discount factor. The policy 7 is updated via policy
gradients [72], VgJ(mg) = E;[Vglogmg(as|se)As(selar)],
where A; is the advantage function.

Actor-learner architectures are one of the most performant
and efficient large-scale approaches to enable distributed DRL
training [16, 17, 24, 27, 35, 45, 77]. Fig. 1 illustrates the
actor-learner architecture for existing DRL training solutions.
In actor-learner, an agent is divided into two sub-modules, i.e.,
one learner and multiple actors. Each training round consists
of two steps: 1) each actor interacts with a copy of the same
environment under the guidance of a policy and submits the
sampled data to the learner, and 2) the centralized learner
computes gradients using the sampled data, updates its policy,
and synchronizes the new policy to multiple actors. Though
training with synchronous actors is more stable [20], recent
solutions have shifted to asynchronous actors due to higher
sampling efficiency [16, 17, 45]. However, serverful distributed
DRL solutions—training with virtual or physical servers—are
expensive due to unavoidable idle resources and low resource
utilization [79].

B. Serverless DRL Training

Emerged as a new cloud computing diagram, serverless
computing has been wildly adopted for designing cost-efficient
distributed Machine Learning (ML) training systems [10,
21, 23]. A recent work, MinionsRL [79], first attempted to
build a serverless DRL training framework by packaging the



learner and actors as serverless functions. Though MinionsRL
provides cheaper and faster training with dynamic scaling
using serverless actors, the centralized learner becomes a
critical bottleneck of large-scale DRL training for two reasons:
1) MinionsRL only considers single-learner training, which
unavoidably slows down the gradient computation and policy
update for a large number of trajectories, and 2) MinionsRL is
designed for training synchronous DRL algorithms only, which
cannot be directly applied to asynchronous DRL training.

C. Benefits of Asynchronous Serverless Learners

Asynchronous learning in distributed ML training has been
extensively studied [25, 83, 84]. Due to the instability of
DRL training, existing distributed DRL solutions either employ
synchronous learners [43, 46, 85] (Fig. 1(a) and (b)) or even use

centralized learner [16, 17, 45, 79] (Fig. 1(c)) for stable training.

Asynchrony in distributed DRL usually limits to actors, which
has been focused by many works [16, 17, 45, 50, 64]. However,
we argue that asynchronous learners can significantly benefit
serverless DRL training with a realistic example. We run the
popular Proximal Policy Optimization (PPO) algorithms [66]

with Ray RLIib [43] in the MuJoCo [73] Hopper environment.

To show the benefits of asynchronous learning and serverless
computing, we disable each component and create two variants
for comparison. Each baseline is configured with 128 actors and
four learners (experimental setup in §VIII-A), where each actor
samples 1,024 timesteps and the original synchronous learners
are replaced with asynchronous ones for comparison. Fig. 2(a)
and (b) show the episodic rewards and training costs of running
the baselines. The results demonstrate that asynchronous
learning and serverless computing jointly improve distributed
DRL training to deliver superior training performance while
reducing training costs.

D. Barriers for Asynchronous Serverless Learners

Despite the potential merits, directly shifting existing
serverful multi-learners schemes or asynchronous learning
to serverless DRL training raises three challenging problems:
Dynamic learner orchestration. Multi-learners are commonly
supported and implemented by popular DRL algorithms [16,
45] and DRL training frameworks [26, 43, 85], due to the
need to utilize multiple GPUs for data parallelism. However,
existing multi-learner schemes all assume a fixed number
of serverful learners pre-allocated before the training begins.
Due to dynamic actor scaling, simply integrating serverful
multi-learner schemes into serverless DRL training cannot
achieve both fast learning time and high GPU utilization at the
same time. Fig. 3(a) shows the total learning time and GPU
utilization of different numbers of learners (2, 4, 6, and 8)
and actors (8, 16, 24, and 32) for running PPO in the Hopper
environment. Increasing learners reduces the total learning time
at large volumes of actors while wasting GPU resources at
small volumes. Therefore, multi-learner allocation should be
scalable and dynamic to achieve efficient learning for serverless
DRL training.

Dynamic staleness. When multiple learners compute gradients
for policy updates asynchronously, some gradients can be stale
due to missing policy aggregation, which are picked up in the
later rounds. Stale gradients are proven to damage the training
performance, prolong the convergence rate, and even diverge the
learning process [15]. A line of research [25, 83, 84] proposes
to bound the staleness in such asynchronous learning to trade-
off between synchronization delay and learning efficiency.
However, existing approaches assume that the number of
workers (i.e., learners) is fixed, leading to sub-optimal staleness
bounds in the dynamic learner setting. Fig. 3(b) shows
the probability density function (PDF) of staleness values
that occurred when running PPO with different numbers of
asynchronous learners in the Hopper environment. The staleness
values gradually increase as the number of learners grows.
Based on the observation, staleness bounds should be adaptive
for an optimal dynamic learner design.

Unstable policy updates. Importance sampling is commonly
employed to stabilize policy updates in DRL algorithms [16,
45, 66]. Existing synchronous learner schemes copy the same
policy to each learner before computing gradients, where
policy updates are clipped based on the importance sampling
ratio between the policy and trajectories sampled by actors.
However, each learner holds a unique policy and computes
gradients individually in the asynchronous learner setting.
Existing importance sampling methods fail to mitigate unstable
policy updates in asynchronous learner policy aggregation.
Fig. 3(c) shows the Kullback-Leibler (KL) divergence between
policies searched iteratively when running PPO in the Hopper
environment. Intuitively, a larger KL divergence between two
policies indicates a wilder update. Asynchronous learners
introduce significantly larger policy updates than synchronous
learners, which are generally considered to be the reason for
drastic performance drops in DRL training [34, 71]. To integrate
asynchronous learners into serverless DRL training, we must
restrict large policy updates brought by asynchrony to deliver
stable training.

III. OBJECTIVES AND CHALLENGES

Based on the analysis and observations from §1I, we carefully
craft Stellaris to achieve three goals:

Accelerating distributed DRL. We aim to improve the
efficiency and effectiveness of training algorithms for DRL
tasks. We design novel asynchronous learning techniques in
Stellaris to achieve faster convergence rates with minimal
modifications on DRL algorithm deployment.

Stabilizing DRL training. Asynchronous distributed DRL
training involves multiple learners, each with a unique policy.
Sampling trajectories for asynchronous learners introduces the
cross-learner policy drift (§V-A), leading to unstable training,
performance variance, and undesired increases in training costs.
Hence, we must stabilize training in Stellaris to deliver robust
training performance and cost.

Optimizing cost-efficiency. Unlike ML, distributed DRL
training requires recurrent interactions between learners, actors,
and RL environments, often leading to numerous trial-and-error
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Fig. 4: Stellaris’s workflow.

and high training cost [21, 79]. Utilizing serverless computing
immensely enlarges the design space of learner orchestration
for optimizing cost-efficiency. Stellaris should provide cost-
efficient learner function management while maintaining high-
performant training.

We must address the three following challenges to achieve
the above objectives:

How to deal with staleness in asynchronous distributed
training with serverless learners? Staleness in traditional
asynchronous parameter-server learning [25, 83, 84] assumes a
fixed number of participants (i.e., learners). However, Stellaris’s
serverless learners are event-driven and on-demand, spawned
and terminated by needs. Gradient aggregation and policy
update in Stellaris can involve a varying number of learners,
thus leaving a chaotic environment with dynamic staleness that
extensively slows down the training process.

How to stabilize policy updates with multiple asyn-
chronous learners? In Stellaris, each learner keeps a unique
policy and asynchronously computes gradients. Though learner
policies clip their importance sampling ratios and guarantee
conservative updates locally, they lack a global view to prevent
cross-learner divergence in the aggregation phase, leading to
unstable training performance.

How to orchestrate serverless learners to achieve minimal
training cost while preserving training performance? In-
troducing serverless computing to distributed DRL extensively
complexifies the design space of asynchronous learning in
Stellaris. We should carefully orchestrate serverless functions
to achieve minimal training cost and high resource utilization
while maintaining training performance.

IV. SYSTEM OVERVIEW

Stellaris is a generic asynchronous learning paradigm for
accelerating DRL training with serverless computing. Fig. 4
shows Stellaris’s workflow. Stellaris has four major compo-
nents to enable efficient asynchronous DRL with serverless
computing: 1) Parameter Function controls the staleness and
aggregates the gradients with staleness-awareness, 2) Learner
Function computes the gradients based on the sampled
trajectory batch, 3) Actors interact with RL environments

to collect trajectories for training, and 4) Distributed Cache
(referred as “the Cache”) is an in-memory key-value data buffer
(e.g., Redis) that stores the intermediate results from previous
components, such as trajectories, gradients, and policy models.
We introduce Stellaris’s workflow in three steps:
Step @: Importance sampling driven trajectory collection.
In DRL, trajectories are the training data collected from the
actor-environment interactions for training and updating the
RL policy. Before sampling, each actor pulls the latest policy
model from the Cache to update its own policy. After the
actor policy is updated, the actor uses the new policy to
interact with an RL environment and sample trajectories from
the policy. Once complete, each actor submits trajectories
as sample batches back to the Cache for input to learner
functions. Stellaris supports both serverful and serverless actors
for trajectory collection. However, actor policies may not align
with learner policies in the asynchronous setting, multiple
learners working asynchronously further exacerbate the policy
drift issue [16, 45]. We leverage the importance sampling
technique to prioritize trajectories based on actor-learner policy
differences and truncate the importance sampling ratios to
address the cross-learner policy drift (§V-A).
Step @: On-demand gradient calculation. Stellaris invokes
an appropriate number of serverless learner functions according
to the demands to calculate gradients cost-efficiently. Whenever
there are new sample batches available in the Cache, Stellaris
invokes a set of learner functions concurrently to learn from
the trajectories and produce gradients. The function inputs
are the IDs of trajectory samples and policies, specifying
the keys to query corresponding sample trajectory batches
and policy models from the Cache. Each learner function
pulls the latest policy model, fetches the sample batch for
gradient calculation, and submits computed gradients back
to the Cache for aggregation. Unlike synchronous learners
in existing distributed DRL solutions [16, 26, 43, 79, 85],
Stellaris’s event-driven serverless learners are naturally suitable
for asynchronous learning.
Step @: Staleness-aware gradient aggregation. We design
a serverless Parameter Function to achieve staleness-aware
gradient aggregation. Stellaris determines whether to invoke
the Parameter Function based on the trade-off between policy
update speed and convergence rate. We devise a gradient
aggregation rule that makes adaptive aggregation decisions
to balance between the two goals (§V-C). Upon invocation, we
feed the gradient IDs as input to the Parameter Function so that
it can retrieve the gradient values from the Cache. Then, the
Parameter Function calls the backward propagation to update
a new policy and sends the new policy model to the Cache for
future learners and actors to use.

V. Stellaris’S DESIGN

A. Importance Sampling Truncated Trajectory Processing

Suffering from high variance and large policy updates [19],
DRL training often experiences sudden performance drops,
leading to unstable training performance. Differences between
two policies mgr and 7y are commonly measured using



importance sampling ratio [32, 48, 66, 78]. Recall that 7(a|s)
is the probability of taking action a in state s via policy 7. The
importance sampling ratio R is defined as the difference of
action distributions generated by two policies given the same

states:

.= Tolals) )

mo(als)

which we abbreviate as %’ for simplicity. Intuitively, a
larger importance sampling ratio indicates two policies conflict
more with each other. The importance sampling ratio can
potentially explode if a newly updated policy 7y, is too far
from the previous one 7y, which is shown to result in drastic
performance drop in DRL training both empirically [48, 63, 66]
and theoretically [34, 71]. To alleviate the unstable training,
existing DRL methods [16, 45, 48, 63, 66, 78] wildly applied
importance sampling [30] to reduce variance and restrict policy
updates.

Though existing importance sampling methods effectively
restrict the policy updates for synchronous learners, they fail to
stabilize the training in Stellaris’s asynchronous multi-learner
setting. Let {mg,,...,mp,} denote the group of n learner
policies that participate in the gradient aggregation phase and
1o denote the actor policy that samples trajectories for updating
policies. Existing importance sampling methods [16, 45, 66]
in DRL assume all learners synchronize their policies (i.e.,
T = mp, = ... = Ty, ) before computing gradients. In this
case, one only needs to bound the importance sampling ratio
between learner and actor policies (i.e.,
from sampling out of learners’ policy distribution. However,
in Stellaris, each learner may hold a unique policy (i.e.,
g, 7 ... 7 mp, ) due to asynchronous learning. When the zth
learner only calculates its local importance s
any unbounded cross-learner importance sampling ratios within
{2, Doizy Mita Ton1 can still risk being explosive

Heo Ho Ho Ko
and thus incurring policy drift.

Fig. 5(a) shows an example of cross-learner policy drift.
When Learner 2 computes its local importance sampling ratio
:—f, it ignores the other learner (Learner 2) that also contributes
to the policy update. As a result, ’;—? may still explode and
hinder the training if no cross-learner truncation is applied.

Therefore, we propose to truncate the importance sampling
ratios of asynchronous learners with a global view during
Stellaris’s policy aggregation. This global importance sampling
truncation further reduces the variance and enforces reasonable
policy updates. Specifically, when computing gradients using
trajectories sampled by some actor policy pyg, the global im-
portance sampling ratio R’ should be truncated by the minimal
learner-actor policy ratio observed during the aggregation
phase:

R’ := min |m1n | p), i€{1,...,n}, 2)

where p is the clip threshold similar to existing importance
sampling clipping methods [16, 45]. Intuitively, when any cross-
learner ratio 7;9; action distribution changes significantly, we
can risk sampling trajectories outside that distribution. The
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Fig. 5: (a) Importance sampling truncation. (b) Staleness-
aware gradient aggregation.

truncation in Eq. (2) pulls the large importance sampling ratio
back to p. Hence, we can easily integrate existing importance
sampling-clipped policy gradient objectives [32] with our
truncation, which is extended as

VJ(mg) = E; [ETWW [mm |m1n ‘ p At”

We further prove that importance sampling truncation in Eq. (2)
holds a lower bound on the monotonic reward improvement
(§VI-B), which theoretically guarantees Stellaris’s training
performance gains.

B. On-Demand Gradient Calculation with Serverless Learners

Stellaris manages the learner functions in an extremely dy-
namic environment and must address three problems that hinder
learning efficiency: 1) Data transmission overhead between
CPUs and GPUs, 2) Launch and terminate learner functions
on-demand, and 3) Data passing overhead between serverless
learners. We carefully design the following components of
Stellaris to achieve efficient learner orchestration by tackling
the three problems.

GPU data loader is a lightweight daemon program that
pre-loads trajectories from the Distributed Cache to GPUs.
Similar to serverless function pre-warming [22, 61, 62, 67]
that decouples the loading and execution of function codes, our
data loader also decouples the trajectory loading and learning
of learners. The data loader monitors trajectories in the Cache,
batches accumulated trajectories, and pre-loads the batches to
GPU memory. After the trajectories are loaded in GPUs, we
export a pointer that points to the GPU memory slot for learners’
fast access. We use Python multi-threading to parallelize the
long-running data loader to improve loading throughput.

Learner schemes determine when to invoke a learner
function and how they transmit data in Stellaris. When the
data loader indicates available trajectories, we immediately
initialize a learner function by passing two parameters: the
latest policy weights of the parameter learner and trajectory
pointers produced by the data loader. The learner function
then initializes the policy model to compute gradients on the
given trajectories in GPU memory. When a learner function
completes the gradient computation, it submits the gradients



back to the Cache and then terminates if no more trajectory
pointers are provided.

Hierarchical data passing employs three communication
methods to achieve efficient messaging in Stellaris: 1) shared
memory for learner functions that are located in the same
physical server to exchange gradients and access trajectories,
2) remote procedure call (RPC) for learners’ remote com-
munication, and 3) Distributed Cache as external storage for
persisting trajectories. We combine these three techniques to
jointly improve Stellaris’s communication efficiency.

C. Staleness-Aware Gradient Aggregation

We propose a staleness-aware gradient aggregation method
to control the dynamic staleness in the serverless learning
environment. Unlike the immediate aggregation in traditional
asynchronous learning, Stellaris delays the gradient aggregation
to enforce a strictly controlled bound on staleness. Specifically,
Stellaris keeps monitoring the Cache for any newly computed
gradients. Whenever new gradients are available in the Cache,
Stellaris fetches the gradients to its local gradient queue while
delaying the aggregation. Every gradient enqueue triggers
Stellaris to evaluate the average staleness 0 of the queue. We
allow Stellaris to aggregate the gradients from its queue only
if the average staleness is below a certain threshold .

Fig. 5(b) shows the staleness-aware gradient aggregation in
Stellaris. If the staleness of current gradients (submitted by
Learners 1 and 2) is over a certain threshold, Stellaris delays
the next gradient aggregation until new gradients (from Learner
3) arrive to decrease the average staleness below the threshold.

Instead of enforcing a static bound on staleness as existing
methods [25, 82], we propose to dynamically configure
Stellaris’s staleness threshold in real-time. Concretely, we
temporarily disable the threshold at the first training round to
obtain the maximum staleness d,,,x in a pure asynchronous
environment. For the following training rounds, we set the
staleness threshold [ at round k given by

Br = dmax x d¥, d € (0, 1], 3

where d is the exponential factor that decays through training
rounds. Intuitively, Stellaris relaxes the staleness threshold
in the early rounds to obtain more gradient computations,
because the gradients can be admitted to aggregate frequently,
hence accelerating the training. In the later rounds, Stellaris
gradually narrows the staleness threshold to slow down gradient
aggregation and enforce less staled policy updates for stable
convergence and better generalization. Note that the decay
factor d is a knob for adjusting between synchronous and
asynchronous learning. d = 0 removes the threshold and forces
the parameter function to synchronize all learners, whereas
d =1 allows a pure asynchronous setting.

We also leverage the staleness d,, . to modulate the learning
rate « per-gradient basis. For a gradient g. with staleness d.,
the learning rate «. tailored to g. is given by

if 6. > 0, “4)

Qe =

a0

(e}

where «q is the original learning rate obtained from the
optimizer (e.g., SGD, Adam, or RMSProp) and v € Z3
is a non-negative root factor that avoids diminishing policy
updates. Putting Eq. (3) and Eq. (4) together, we can summarize
Stellaris’s gradient aggregation and policy update as

INE c = ec — Yo,
Z {}/(Tg ,j +1 g

where j € [0, ¢] is the clock of gradient g; ; within H.. We
further theoretically show that Stellaris’s gradient aggregation
does not affect the convergence property of DRL algorithms
with existing optimizers (§VI-A).

VI. ANALYSIS
A. Convergence Analysis

We show that Stellaris’s gradient aggregation does not affect
the convergence property of existing optimizers using the SGD
optimizer as an example. We prove that Stellaris achieves a
convergence rate of O(LT), where T is the total number of
policy update steps, that recovers the original convergence rate
of SGD optimizer [42, 82].

Theorem 1. Let Cy and C5 be certain positive constants
depending on the objective J(0). With common assump-
tions (unbiased gradients, bounded variance, and Lipschitz-
smooth) [15, 37, 42, 84], we achieve a convergence rate of
1 X

=S E(IvIEIP) <2/ 20
t=1

Tb

where b is the mini-batch size used by each learner function
to produce gradients.

We import Theorem 1 from [82] with some simplifications,
which gives the original convergence rate with arbitrary
staleness. Stellaris enforces a strict threshold on the mean
of staleness [y at any round k. Thus, we can take the bounded
average staleness as a constant and reduce the convergence
rate to an order of O( r) to achieve a near-linear speedup.

B. Reward Improvement Lower Bound

We prove that Stellaris’s importance sampling truncation
has a lower bound on monotonic reward improvement. Recall
that J(m) denotes the cumulative rewards achieved by rolling
out policy .

Theorem 2. For any learner policies w; within learner group
{m1,..., 7™} and an actor policy p1, with importance sampling
truncation in Eq. (2), the following reward improvement lower
bound holds:
ve™in/21log p
J(m) = J(p) =2 ——F———5—,
' (1-1)2

where the constant €"=max; |Eqr[A"]|, v is the discount
factor, and p is the importance sampling truncation threshold
in Eq. (2), respectively.



Proof. We refer to the Corollary 1 from Achiam et al. [2].
Given a learner policy 7; and actor policy u, Theorem 2 can
be derived as

J(mi) = (1)
1 2y€mi
> — - .
> 0B [ T Drv(mln. )
1 2y [Drr(m
> g [-2E KL(WHM)}’ ©
L=yt 1-9 2
1 [ e mi(als)
=—FFE |- 2) m;(als)log },
= | 1—M; (o sy
)
1 T ye
S e A R e DL DI
_ _yenv2logp
(L=

where Dpy (m;||n) and Dy (m;]|p) are the Total Variation
(TV) and KL divergence between action distributions of m;
and p, respectively. Eq. 5 follows the Corollary 1 from Achiam
et al. [2]. We then replace TV divergence with KL divergence
in Eq. 6 by Pinsker’s inequality [14], i.e., Dry (m||lp) <

%ﬂllﬂ) . From Eq. 7 to Eq. 8, we apply our importance

sampling truncation and its clip threshold p in Eq. 2. Finally,
we can reach the form of Theorem 2. O

VII. IMPLEMENTATION

Stellaris is designed to be a generic asynchronous learn-
ing paradigm for accelerating distributed DRL training with
serverless computing. For concreteness, we describe its im-
plementation in the context of AWS EC2 instances [6]. We
implement Stellaris with 5K lines of Python, which is open-
sourced!. We describe the detailed implementation of Stellaris’s
components and features below.

Serverless parameter and learner function. Due to the
lack of serverless GPUs in existing serverless platforms [4, 7,
8, 18, 29, 52], we implement our own serverless container
cluster using AWS EC2 accelerated instances with GPU
accelerators for parameter and learner functions. On each
instance, we use Docker container [47], which is used by many
open-source serverless frameworks [4, 13, 52], to implement
serverless containers. We use NVIDIA container runtime [51]
to enable GPU support for serverless functions. The core
logic of the parameter and learner function is implemented
using PyTorch [54], including the neural networks of the
policy model, staleness-aware gradient aggregation, and the
importance sampling truncation process. The dependencies of
the functions are installed and packaged as Docker container
images for fast deployment. Before training DRL tasks,
Stellaris profiles information about the execution time and
resource demand of the parameter and learner functions with
the task to run. The profiled information is collected by Stellaris

Thttps://github.com/IntelliSys-Lab/Stellaris-SC24

TABLE II: Neural network architecture used in DRL
training.

Task Layer Activation  Size
MuJoCo  Fully-connect Tanh 2 x 256
16, 8 x 8
Atari Convolutional ReLU 32,4 x 4
256, 11 x 11

TABLE III: PPO’s and IMPACT’s hyperparameters.

Parameter PPO IMPACT
Learning rate 0.00005 0.0005
Discount factor (7y) 0.99 0.99
Batch size (Mujoco) 4096 4096
Batch size (Atari) 256 256
Clip parameter 0.3 0.4
KL coefficient 0.2 1.0
KL target 0.01 0.01
Entropy coefficient 0.0 0.01
Value function coefficient 1.0 1.0
Target update frequency N/A 1.0

in actual training. We pre-warm the containers prior to the
invocations of the functions based on estimated completion
time and keep the containers alive for ten minutes (as the same
in OpenWhisk) to further reduce the function startup overhead.

Actors. For baselines with serverful actors [43, 45], we use
AWS EC2 compute instances as the backend. We use the Python
multiprocessing library to implement and run concurrent actors
for sampling trajectories. For serverless actors, we follow the
methodology described in [79] and use Docker containers to
implement actor functions on EC2 instances.

Distributed cache. We use Redis [59], an in-memory key-
value cache, to implement the distributed cache in Stellaris.
The Redis instance resides on the EC2 instances that holds
serverless containers and provides high-performant communica-
tions between different system components. Upon completing
sampling, actors serialize the trajectories using Pickle [55] and
submit the serialized sample batch to Redis. Learner functions
then deserialize trajectories and fetch latest policy model
weights from Redis to compute gradients. After calculation, the
gradients are also serialized and sent to Redis. The parameter
function picks up the gradients, performs the aggregation, and
sends the updated policy weights back to Redis.

VIII. EVALUATION
A. Experimental Setup

Testbeds. We deploy all baselines and Stellaris to a cluster
of AWS EC2 VMs, including two p3.2xlarge and one
c6a.32xlarge for regular experiments. The cluster contains
two NVIDIA V100 GPUs, 32 GB GPU memory, 128 AMD
EPYC 7R13 CPU cores, and 317 GB CPU memory for
training DRL tasks. We also evaluate Stellaris’s scalability
and large-scale deployment on a simulated HPC cluster with
singularity containers [38]. The HPC cluster contains two


https://github.com/IntelliSys-Lab/Stellaris-SC24
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Fig. 6: Stellaris accelerates PPO training.

p3.1l6xlarge instances with 16 NVIDIA V100 GPUs and
five hpc7a. 96x1large instances with 960 AMD EPYC 9R14
CPU cores”. We use the V100 GPUs to execute parameter and
learner functions and the remaining CPU cores to host actors.
Cost model. Following the methodology of existing re-
search [60], we charge each serverless function invocation
based on the function resource size and invocation latency. The
price unit is dollar-per-resource-second, calculated by dividing
the cost per second from AWS EC2 instances by the maximum
capacity of concurrent running learner functions allowed per
VM. For instance, if we limit the capacity of learner functions
to four per VM, the cost of a function invocation with a V100
GPU is computed by dividing the price of p3.2xlarge by
four and then multiplied by its execution time. Similar to
existing serverless platforms [7, 8, 18, 29], we exclude the
cost of container pre-warming and keep-alive services.
Workloads. Six popular environments from OpenAl Gym
are used to evaluate Stellaris and SOTA baselines, includ-
ing three continuous-action MuJoCo environments (Hopper,
Humanoid, and Walker2d) and three discrete-action Atari
environments (Spacelnvaders, Qbert, and Gravitar). Table II
characterizes the policy networks used in our evaluation. For
three MuJoCo environments, the policy network consists of
two fully-connected layers of 256 hidden units with Tanh
activation. For three Atari environments, the policy network
consists of three convolutional layers of 8 x8, 4x4, and 11x11

2We use AWS services in the US East 2 region. The hourly unit prices for
p3.2xlarge, cba.32xlarge, p3.16xlarge, and hpc7a.9%6xlarge
are $3.06, $4.896, $24.48, and $7.2, respectively.
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Fig. 8: Stellaris reduces training costs of PPO, IMPACT,
RLIib, and MinionsRL. Grey bars represent the time spent
on the learner, and the rest indicate time spent on actors.

kernel sizes with ReLU activation, respectively. The input
sampled from Atari games is a stack of three 84 x84 images.
In both cases, the critic networks share the same architecture
as the policy networks.

Stellaris’s setting. We set the maximum capacity of learner
functions to be four per V100 GPU and allocate one actor per
CPU core. The exponential decay factor d in Eq. 3 is set to 0.96
when evaluating Stellaris. The learning rate smoothness factor
v in Eq. 4 is set to 3. The importance sampling truncation
threshold p in Eq. 2 is set to 1.0. We further evaluate the
parameter sensitivity in §VIII-E.
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Fig. 9: Stellaris improves RLIib tasks in time efficiency.

B. Overall Performance

1) Integrating with DRL Algorithms: We evaluate how Stel-
laris boosts SOTA DRL algorithms. Specifically, we integrate
Stellaris with two algorithms, one on-policy and one off-policy:
1) PPO [66] is the most famous on-policy DRL algorithm that
has been employed in extensive applications [9, 12, 56, 57].
We implement a standard distributed PPO with Generalized
Advantage Estimation (GAE) [65] and surrogate objective
clipping [66]. 2) IMPACT [45] is a SOTA off-policy algorithm.
IMPACT itself builds on a long list of improvements over
PPO and combines various tricks for asynchronous training,
such as V-trace importance sampling [16] and the surrogate
target network [44]. We use PPO and IMPACT as baselines
and integrate them with Stellaris for comparison. Table III
describes the hyperparameter settings of PPO and IMPACT
used in the evaluation. We employ the same hyperparameter
settings from tuned examples in RLIib [43]. Both PPO and
IMPACT training use Adam optimizer [36]. We train each
algorithm for 50 rounds in six environments. The results are
averaged over ten repeated experiments, each with a different
random seed.

Training efficiency. Figs. 6 and 7 show the episodic rewards
through training in six environments for PPO and IMPACT,
respectively. IMPALA completes training faster than PPO in
most of the environments due to the advantage of being off-
policy. Stellaris outperforms the vanilla PPO and IMPACT by
training faster in both statistical efficiency and wall clock time.
Compared to PPO and IMPACT, Stellaris improves the final
reward by up to 2.2x and 1.3 x, respectively.
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Fig. 10: Stellaris improves MinionsRL tasks in time

efficiency.

Training cost. Fig. 8 shows the training costs of the
two vanilla baselines and variants integrated with Stellaris.
Compared to original PPO and IMPACT, Stellaris reduces
training costs by up to 31% and 30%, respectively.

2) Integrating with DRL Frameworks: We also evaluate how
Stellaris improves SOTA DRL frameworks. Two popular DRL
frameworks are integrated with Stellaris in the evaluation:
1) Ray RLIib [43] is an open-source industrial-grade RL
library with a comprehensive implementation of algorithms. For
integration, we implement the logic of our asynchronous server-
less earner functions inside RLIlib’s default learner group. 2)
MinionsRL [79] is a state-of-the-art DRL training framework
that also leverages serverless computing. MinionsRL employs
a DRL-based actor scheduler to dynamically scale serverless
actors, which tries to solve the scheduling problem via black-
box optimization. We keep MinionsRL’s serverless actors
while replacing its synchronous learners with our asynchronous
serverless learner functions. We run PPO with two frameworks
in six environments using the same experimental setting in
§VIII-B1.

Training efficiency. Figs. 9 and 10 show the episodic
rewards through training in six environments for RLIib and
MinionsRL, respectively. In both frameworks, we observe
similar improvements with Stellaris. Stellaris accelerates PPO
training in two frameworks by improving both statistical and
training efficiency. Compared to the RLlib and MinionsRL,
Stellaris improves the final reward by up to 1.3x and 1.6X,
respectively.
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Training cost. Fig. 8 shows the training costs of the two
frameworks and variants integrated with Stellaris. Compared
to RLIlib and MinionsRL, Stellaris reduces training costs by
up to 38% and 41%, respectively.

C. Ablation Study

We verify the effectiveness of two key designs: staleness-
aware gradient aggregation and importance sampling truncation,
by training PPO in the Hopper environment using the same
experimental setting described in §VIII-B.

To evaluate the gradient aggregation, we compare Stellaris
with three baselines: 1) Softsync [82] delays the aggregation
until receiving a certain number of gradients to control staleness.
2) Stale Synchronous Parallel (SSP) [25] pauses fast learners
to make slow ones to keep up, thus reducing staleness. 3)
Pure asynchronous is a baseline without any controls on
the staleness. We implement the above gradient aggregation
methods in Stellaris while keeping the use of serverless
computing for a fair comparison. Fig. 11(a) shows the episodic
reward for the four baselines. Though pure asynchronous
baseline trains faster than others, it fails to provide satisfactory
rewards due to slow convergence. Stellaris outperforms other
baselines by achieving the best cumulative reward.

We also compare Stellaris with a variant of itself by disabling
the importance sampling truncation. Fig. 11(b) reports the
training performance of Stellaris and its variant. Without the
truncation, Stellaris experiences unstable training and perfor-
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Fig. 14: Latency breakdown of six environments with
Stellaris’s one-round training.

mance oscillation. The result demonstrates that importance
sampling truncation is necessary to stabilize Stellaris training.

D. Scalability on HPC cluster

We conducted a large-scale experiment on an AWS EC2
cluster with singularity containers [38] to simulate running
on HPC clusters. An RL workload developed by the Argonne
Leadership Computing Facility for HPC, PAR-RL [5], is used to
evaluate Stellaris’s performance. Due to budget limits, we only
evaluate PAR-RL with Hopper and Qbert environments. Fig. 12
presents the episodic rewards through training and total cost. In
an HPC setting, Stellaris outperforms PAR-RL by improving
the final reward by 2.4x and 1.1x while reducing training
costs by 19% and 34%, for Hopper and Qbert, respectively.

E. Sensitivity Analysis

We analyze the sensitivity of three parameters in Stellaris:
decay factor d, learning rate smoothness v, and importance
sampling threshold p. We run the same experiment in §VIII-B,
i.e., training PPO in the Hopper environment, but with different
parameter values for analysis. The results are reported in
Fig. 13. Other combinations of algorithms and environments
show similar sensitivity results.

Decay factor d. We set the decay factor to 0.96 in the
evaluation. Fig. 13(a) shows the achieved final reward and
training cost when gradually increasing the factor from 0.92
to 1.0 in the step of 0.02. When the factor increases, the final
reward cost increases while the cost decreases because Stellaris
allows higher staleness and training more asynchronously. The
final reward stops growing at 0.96.

Learning rate smooth factor v. In our evaluation, we
set the learning rate smoothness to 3. Fig. 13(b) shows the



final reward and training cost when gradually increasing the
learning rate smoothness from 1 to 4. Large staleness may
modulate the learning rate to be too small and diminish the
policy updates. By setting larger v, Stellaris allows policy
updates to be less modulated by staleness, hence keeping large
step sizes of policy updates. We observe that Stellaris achieves
optimal performance with a smooth factor of 3.

Importance sampling threshold p. Fig. 13(c) shows final
rewards and training cost of running PPO with different
importance sampling thresholds. We gradually increase the
value from 0.6 to 1.2 in the step of 0.2. With larger thresholds,
Stellaris allows the action distributions generated by actor
policy to deviate more from the learner policies, whereas small
ones keep Stellaris’s learning more conservative. The optimal
performance and minimal cost are achieved with p = 1.0.

F. Latency Breakdown and Overheads

We report the latency breakdown and overheads of parameter
and learner function in Stellaris’s one-round training. Fig. 14
characterizes the latency breakdown of six environments used
in evaluation with Stellaris’s one-round training. The latency is
measured when running PPO in the same experimental setting
as §VIII-B. The total overhead of all components incurs less
than 5% delay, which is negligible for the one-round latency
while providing accelerated training and cost-efficiency.

IX. RELATED WORK

DRL frameworks. Recently, the DRL community has devel-
oped extensive open-source training frameworks [1, 26, 28,
43, 58, 85]. Acme [26] is a research-oriented DRL frame-
work. Stable-Baselines3 [58] is developed for reliable DRL
implementation. CleanRL [28] aims to provide high-quality
single-file DRL implementations. SpinningUP [1] focuses on
educational purposes for DRL beginners. RLIib [43] provides
industry-grade DRL framework. MSRL [85] uses fragmented
dataflow graphs to execute DRL algorithms. Stellaris can be
integrated with existing DRL frameworks to further optimize
the training process.

Distributed DRL training. A3C [50] firstly introduced a
simple actor-leaner prototype. IMPALA [16] is the first off-
policy (asynchronous) actor-learner architecture with V-trace
correction. IMPACT [45] stabilized DRL training performance
by adding a surrogate target network to the actor-learner
architecture. SEED RL [17] aimed to accelerate off-policy
actor-learner architectures by shifting actor inferences to
centralized GPU servers. Most existing distributed RL so-
lutions [16, 17, 41, 45, 46, 50] are designed for serverful
architectures, thus can hardly exploit the agile scalability and
fine-grained resource provisioning of serverless computing.
MinionsRL [79] is the closest work to us, which also leverages
serverless computing to design DRL training systems. However,
MinionsRL is limited to serving on-policy algorithms and
synchronous learning. Unlike the above, Stellaris leverages
serverless computing to accelerate DRL training with an
efficient asynchronous learning paradigm.

Serverless ML training. Serverless computing has recently
attracted the ML community to design novel training frame-
works [10, 21, 31, 60, 75]. Cirrus [10] proposes a serverless
framework that simplifies end-to-end ML training. Siren [75]
designs a DRL function scheduler to automate distributed ML
training on serverless computing platforms. Jiang et al. [31]
conducts a comprehensive comparison between serverful and
serverless ML training, which indicates serverless training is
cost-efficient. Hydrozoa [21] presents a deep neural network
(DNN) training framework on top of serverless containers with
dynamic data and model parallelism. However, none of the
above studies exploits the benefits of serverless computing for
asynchronous learning in distributed DRL training.

Staleness in asynchronous training. Many studies have proved
that staled gradients (i.e., staleness) in asynchronous ML
training can degrade the training performance and delay conver-
gence [15, 42, 82, 84]. Extensive studies have been proposed to
bound the asynchrony in ML training [25, 75, 82] and federated
learning [11, 37, 53, 70]. In distributed RL training, asynchrony
usually refers to the policy lag between learners and actors,
which has been focused by many works [16, 17, 45, 50, 64].
Unlike existing works, Stellaris is the first to address the
staleness of serverless asynchronous learners in DRL.

X. CONCLUSION

This paper proposes Stellaris, the first work to introduce a
generic asynchronous learning paradigm for distributed DRL
training with serverless computing. Stellaris supports both
serverful and serverless training infrastructures as well as
on- and off-policy DRL algorithms. We leverage the agile
scalability and fine-grained allocation of serverless computing
for Stellaris to meet the dynamic and transient resource
demands in distributed DRL. We devise a novel importance
sampling truncation technique to stabilize the asynchronous
DRL training process. To deal with dynamic staleness, we
develop a gradient aggregation method with staleness-awareness
for accelerating DRL training and guaranteeing convergence.
We evaluate Stellaris with popular DRL algorithms and
frameworks on AWS EC2 regular testbeds and HPC clusters
with 16 GPUs and 960 CPU cores. Extensive experiments
show that Stellaris outperforms existing state-of-the-art DRL
baselines by achieving up to 2.2 higher rewards (i.e., training
quality) and reducing up to 41% training costs.
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Appendix: Artifact Description/Artifact Evaluation

Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS
A. Paper’s Main Contributions
C1  Asynchronous serverless training for distributed deep
reinforcement learning (DRL).
B. Computational Artifacts
Ay https://zenodo.org/doi/10.5281/zenodo.12589953

Artifact ID  Contributions Related
Supported Paper Elements
A, C; Figures 6-13

II. ARTIFACT IDENTIFICATION
A. Computational Artifact A,
Relation To Contributions

In our paper, we present the demo artifact A; that showcases
Stellaris. A runs the experiments by defining the environmen-
tal setup, such as datasets, hyperparameters, and evaluation
metrics. It also implements the training system components of
Stellaris on the top of Ray RLIib. C; can be evaluated and
supported by Aj.

Expected Results

By integrating Stellaris with existing distributed DRL train-
ing frameworks and algorithms, we should observe Stellaris
achieves higher training efficiency with less training costs than
the baseline.

Expected Reproduction Time (in Minutes)

The expected time to reproduce artifacts A; on a GPU
machine is 60 minutes if built from scratch and 20 minutes
by pulling the provided Docker container images.

Artifact Setup (incl. Inputs)

Hardware: Recommended hardware specifies for reproduc-
ing artifacts:
¢ Cloud platform: AWS EC2
o Minimal VM instance size: equivalent to p3.2xlarge
e Resources: one NVIDIA V100 GPU, 16 GB GPU mem-
ory, 8 CPU cores, and 61 GB memory

Software: We provide an installation script to automate
the download of all necessary dependencies to reproduce the
artifacts. If no version number is specified, the latest version
is used.

e OS version: Ubuntu 22.04

o Apt: libosmesa6-dev, libgll-mesa-glx, libglfw3, libglew-

dev, patchelf, build-essential, curl, gpg, gcc-9, gee-11,
g++-9, pkg-config, psmisc, redis-server

« Pip: torch, gymnasium==0.28.1, gymnasium[atari,accept-

rom-license]==0.28.1, ray[rllib]==2.8, mujoco, mujoco-
Py, pygame, pandas, cython<3, redis

Datasets / Inputs: We use two DRL datasets (benchmarks)
for running the experiments: Mujoco and Atari environments,
which are publicly available and accessible via the links below:

e Mujoco: https://github.com/openai/mujoco-py

o Atari: https://github.com/openai/atari-py
The two datasets can be easily installed using the Gymnasium
library at https://github.com/Farama-Foundation/Gymnasium.

Installation and Deployment: We provide an installation
script to automate the download of all dependencies needed
to reproduce the artifacts. Concretely, our artifacts require
stalling gcc and g++ compilers (both version 9 and 11)
for building the necessary system components of Stellaris.
To enable GPU support, an NVIDIA driver (version 525) is
also required. Additionally, the Bazel tool (version 7.1.1) is
required to compile the Ray RLIib framework.

Artifact Execution

Our experimental workflow contains two tasks: 77 : execut-
ing the training process, and 75: visualizing the results from
the training output. For 77, we automate the execution of
training algorithms on all baselines. 7’s output is in CSV
files for figure-plotting in 7.

Artifact Analysis (incl. Outputs)

The training output data is recorded in CSV files with
the following attributes: training round index, round duration,
number of learner functions invoked per training iteration,
episodes executed, evaluation rewards, staleness, and training
cost. Most figures in our paper can be plotted by analyzing
and extracting key metrics from the output CSV files.
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Artifact Evaluation (AE)

A. Computational Artifact Ay
Artifact Setup (incl. Inputs)
General hardware prerequisite:

o Operating systems and versions: Ubuntu 22.04

o Resource requirement: CPU > 36 cores, memory > 100
GB, disk > 50 GB, network has no requirement since it’s
a single-node demo

Chameleon Cloud prerequisite:

¢ Chameleon Cloud UC access: Instance note type must be
gpu_rtx_6000

o Chameleon Cloud image: The image must be CC-
Ubuntu22.04

Chameleon Cloud instance setup:

o Create a lease to reserve hosts: Reservations — Leases
— Hosts — Reserve Hosts — Resource Properties —
node_type — gpu_rtx_6000.

o Launch a GPU RTX 6000 instance using the image CC-
Ubuntu22.04. The image can be found by searching the
image name: Project — Compute — Images — Search
— Launch. Create a key pair if necessary.

o Assign a floating IP to your instance for login: Project —
Network — Floating IPs — Allocate IP To Project. We
refer readers to Chameleon cloud documents for instance
creation and login details.

Artifact Execution
Deployment instructions:

o Download the GitHub repository by git clone https:
//github.com/IntelliSys-Lab/Stellaris-SC24.

¢ Go to the directory Stellaris-SC24/evaluation
by cd Stellaris-SC24/evaluation.

o Install Docker container library by
./install_docker.sh.
o Install NVIDIA CUDA driver by

./install_nvidia.sh.

o Pull the Docker images directly from DockerHub by cd
docker && ./pull_docker.sh. Note that there is
a rate limit for image downloading per six hours.

o Start the container cluster using Docker Compose by
docker compose up —d.

e Run cd ../ && ./run_experiment.sh to exe-
cute the Stellaris demo. The demo experiment may take
up to 20 minutes to complete.

Alternatively, we also provide scripts that build Docker im-
ages locally by cd docker && ./build_docker.sh,
but this can take a significant amount of time if built from
scratch. Please refer to the GitHub repository for detailed
instructions.

Artifact Analysis (incl. Outputs)

When run_experiment . sh finishes, you can check the
results and figures of training efficiency and training cost under
the directory evaluation/experiment/figures.

Expected results:
o Training efficiency. There should be three figures titled

“timeline*.png”, depicting the episodic rewards achieved
by Stellaris and Ray RLIib on Hopper, Humanoid, and
Walker2d environments, respectively. The results should
match Figures 9(a), 9(b), and 9(c) in the paper that shows
Stellaris achieves higher efficiency over Ray RLIib (the
line of Stellaris is above Ray RLIib for most of the time).
Training cost. One figure titled “cost.png” will also be
generated under the directory, depicting the training cost
of Stellaris and Ray RLIib, respectively. This result
should match Figure 8, where Stellaris achieves a lower
training cost than Ray RLIib (bars of Stellaris are shorter
than Ray RLIib).
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