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ABSTRACT

Predicting the effects of climate change on plant disease is critical for protecting ecosystems and food production. Here, we show
how disease pressure responds to short-term weather, historical climate and weather anomalies by compiling a global database
(4339 plant-disease populations) of disease prevalence in both agricultural and wild plant systems. We hypothesised that weather
and climate would play a larger role in disease in wild versus agricultural plant populations, which the results supported. In wild
systems, disease prevalence peaked when the temperature was 2.7°C warmer than the historical average for the same time of
year. We also found evidence of a negative interactive effect between weather anomalies and climate in wild systems, consistent
with the idea that climate maladaptation can be an important driver of disease outbreaks. Temperature and precipitation had rel-
atively little explanatory power in agricultural systems, though we observed a significant positive effect of current temperature.
These results indicate that disease pressure in wild plants is sensitive to nonlinear effects of weather, weather anomalies and
their interaction with historical climate. In contrast, warmer temperatures drove risks for agricultural plant disease outbreaks
within the temperature range examined regardless of historical climate, suggesting vulnerability to ongoing climate change.

1 | Introduction will respond to novel weather caused by anthropogenic climate
forcing is critical (Burdon and Zhan 2020; Miller et al. 2022).

Infectious disease outbreaks cause massive losses in crop yields

(Savary et al. 2019), threaten food security (Ristaino et al. 2021)
and imperil wild plants (Dudney et al. 2021). Plant-disease
systems are highly sensitive to environmental effects (Garrett
et al. 2006; Kocmankova et al. 2009), and as the world experi-
ences rapid change, understanding how plant-disease systems

Multiple aspects of the climate (i.e., temperature, rainfall and
drought and CO,) can each affect plant-disease systems in var-
ious ways, including impacts on plant and pathogen distribu-
tions, pathogen transmission, vector biology, host resistance,
pathogen virulence and host-pathogen evolutionary processes
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(reviewed in Coakley, Scherm, and Chakraborty 1999; Garrett
et al. 2006; Singh et al. 2023). Despite increasing research, it
still remains difficult to predict how future climate change
will impact these complex systems (Burdon and Zhan 2020;
Elad and Pertot 2014; Jiranek et al. 2023; Laine 2023; Singh
et al. 2023). Additionally, beyond the effects of the current cli-
mate that hosts and pathogens experience, it is possible that
changes in disease pressure will reflect both plant and patho-
gen responses to ongoing climate change and the legacy of
historical conditions to which both organisms are adapted. To
better anticipate and mitigate climate change-plant disease
effects and their implications for global food security, plant
biodiversity and conservation and ecosystem management,
we can examine how current weather and its change rela-
tive to historical climate have together shaped plant disease
around the world.

Temperature is well known to affect various biological rates of
both hosts and disease-causing agents (i.e., pathogens, parasites
and pests), often leading to large impacts on the overall levels
of disease in a system (Harvell et al. 2002). Organism thermal
performance curves (TPCs) are typically unimodal with an in-
termediate optimal temperature before decreasing sharply ap-
proaching a critical thermal maximum (Angilletta 2009; Dell,
Pawar, and Savage 2011). Whether warming will lead to in-
creased or decreased disease in a system thus depends on how
a change in temperature affects key host rates (e.g., growth rate
and defence pathways) relative to its effects on parasite rates
(e.g., transmission rate and replication rate) (Molnar et al. 2013).
Beyond the effects of temperature per se, temperature anoma-
lies—deviations from historical averages—may distinctly affect
plant disease by taking organisms away from the temperatures
to which they are adapted. Like other thermal responses, im-
pacts of anomalies may also be nonlinear. However, responses
to temperature anomalies are less well understood, a critical re-
search gap as anomalous weather becomes more common with
climate change (IPCC 2023).

One theory that aims to explain temperature effects on disease
is the thermal mismatch hypothesis, which posits that non-
optimal temperatures reduce parasite performance less than
host performance, resulting in a relative benefit to parasites
(Cohen et al. 2017, 2020). A proposed mechanism for this ‘ther-
mal mismatch’ is that, on average, small-bodied organisms such
as parasites have functionally wider thermal breadths (i.e., the
range of temperatures at which an organism has strong perfor-
mance) than larger bodied organisms (Rohr et al. 2018), possi-
bly due to faster acclimation or adaptation. One prediction that
follows is that plant populations adapted to cooler climates may
experience greater disease pressure in warm weather, and that
warm-adapted populations may conversely experience greater
outbreaks in cooler weather. The thermal mismatch hypothesis
therefore predicts a negative interaction between historical (cli-
mate) and current (weather) temperature effects on disease due
to the smaller parasites performing relatively better at abnormal
temperatures compared to their larger bodied hosts. Support for
the thermal mismatch hypothesis comes from observations that
animal populations adapted to cold climates experience larger
disease outbreaks under unusually warm weather, while ani-
mals adapted to warm climates experience more disease under
cold weather (Cohen et al. 2020).

Plants are inherently sensitive to environmental conditions, in-
cluding average climate and interannual variations in weather.
In addition, climatic effects beyond temperature affect plant
diseases, including water availability (Laine 2023; Veldsquez,
Castroverde, and He 2018). Moisture levels have long been
known to regulate plant infections (Colhoun 1973), and both
drought and extreme high precipitation levels could increase
disease in different contexts. Indeed, drought can increase
physiological stress and therefore vulnerability to pathogen at-
tack (Ramegowda and Senthil-Kumar 2015) (but this relation-
ship can be nuanced: see Desprez-Loustau et al. 2006; Garrett
et al. 2006), while precipitation, including extreme precipitation,
can increase the spread of certain plant parasites (McElrone
et al. 2010; Salinari et al. 2006) and wash away contact pesti-
cides (Chakraborty and Newton 2011). Here, we provide one of
the first tests of the thermal mismatch hypothesis in plants and
extend the theory to also consider whether plant and parasite
adaptation to historical precipitation levels mediates effects of
short-term rainfall and moisture on disease.

Importantly, weather—disease dynamics in agricultural systems
may differ from those in wild systems. First, wild plants should
generally be adapted to local climates while agricultural plants
have been moved around the planet for centuries (Hufford,
Berny Mier y Teran, and Gepts 2019), often experiencing arti-
ficial selection for high yields across broad environmental con-
ditions. Second, extreme weather and disease pressure are often
mitigated in agricultural systems (e.g., through irrigation, shad-
ing, or pesticide application) but not in wild systems. Together,
these factors suggest that in contrast to wild plants, the histori-
cal climate where agricultural plants are currently grown may
not be as predictive of their sensitivity to disease under novel
weather, and that, in general, agricultural systems may be less
prone to the effects of precipitation and temperature compared
to wild systems.

To study the potentially nonlinear and interactive effects of
weather, weather anomalies and historical climate, including
both temperature and precipitation, we assembled an exten-
sive population-level database of plant disease prevalence in
wild and agricultural systems from the literature (n=4339
plant populations) and then paired georeferenced climate and
weather data with each observed population. We used this novel
database to test our predictions that: (1) contemporaneous (i.e.,
current during the disease survey) weather, weather anomalies
and historical climate affect plant disease prevalence; (2) these
weather and climate effects are stronger in wild than agricul-
tural systems; and (3) that in warm or wet climates, disease is
more likely when weather is abnormally cool or dry, and vice
versa (i.e., thermal/precipitation mismatch) in wild but not ag-
ricultural systems.

2 | Materials and Methods

2.1 | Database Construction: Literature Search
for Plant Disease Surveys

We conducted a systematic literature review of published plant
disease surveys to compile a global, spatiotemporal database of
plant disease prevalence (number of infected plants/number of
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plants sampled). We searched the Web of Science via Stanford
University Library in February 2021 using combinations of
the search terms parasit*, survey*, disease* pest* pathogen*,
damage*, vir¥, plant¥ crop*, tree*, forest¥, prevalence*, inci-
dence*, percent* and proportion*, which returned 1800 studies
(see Supporting Information for full search string). Because we
found that certain geographic regions—most notably, South
America, Central America and the Malay Archipelago—were
underrepresented, we conducted additional searches in Web of
Science using combinations of the search terms above with the
names of each country in these regions and screened an addi-
tional 582 non-mutually exclusive studies.

We screened abstracts as including potentially relevant data or
not, using the criteria defined below. We then read each study
scored as having potentially relevant data and determined if the
study included information on: (1) an approximate location or
latitude/longitude coordinates, (2) month(s) and year in which
the survey took place (up to a maximum of six consecutive
months), (3) identity of plant host and disease-causing agent, (4)
sample size of the population survey and (5) either disease prev-
alence (number of infected plants/number of total plants sur-
veyed) or the number of infected samples. Studies also had to (6)
use randomly selected samples to calculate prevalence, (7) occur
outdoors (i.e., not in a glasshouse) and (8) be conducting a sur-
vey of current infections; in other words, not only survey insect
or pathogen damage to a plant, which could have occurred in
the past, but instead survey active infestations or infections. The
location and time that the survey took place (to month) were re-
quired so that we could match each population observation with
appropriate weather and climate data, and we restricted the data
to surveys of a maximum length of six consecutive months so
that the period was short enough to reflect the contemporane-
ous weather that each system experienced. Identity of the plant
host and disease-causing agent and population sample size and
sampled prevalence were necessary to run the subsequent bino-
mial mixed effects analysis. Using these strict screening crite-
ria resulted in a rejection rate of approximately 95% of the 2382
studies screened, as most studies were missing at least one piece
of required information. If information was partly present, we
attempted to contact the corresponding authors via email to ob-
tain the missing information. Studies included in our analyses
are listed in Table S1.

Extracted data for each disease survey included host and par-
asite taxonomic information, the month(s) in which the sur-
vey occurred, plant sample size and disease prevalence and
survey location information. If the study did not include taxo-
nomic information, we searched the colloquial name and used
the Integrated Taxonomic Information System to retrieve it.
Disease-causing agent was categorised as virus, bacteria, eu-
karyotic parasite or pest, where eukaryotic parasites included
fungal and oomycete parasites and pests were larger organisms
(insects, nematodes or mites) in which active prevalence was
calculated (i.e., not only recording signs of past herbivory). We
recorded latitude and longitude if provided by the study, and if
this information was not provided, we extracted approximate
latitude and longitude from Google Maps for the centroid of the
named location(s) of the survey. Additionally, we recorded the
approximate spatial scale over which a survey occurred by using
the ruler tool in Google Maps along with information provided

by each study (e.g., ‘survey occurred throughout X county’) to
measure the average distance across the survey range, with a
minimum distance cutoff of 1km. Median distance across the
dataset was 10km, and the maximum distance was 500km.

2.2 | Database Construction: Climate
and Weather Data

We paired each observation of plant disease prevalence with the
climate re-analysis data extracted using Google Earth Engine
(Gorelick et al. 2017). First, we specified circular buffers around
the centre coordinates of each observation with diameter equal
to the approximate spatial distance of the survey (minimum:
1km; median: 10km; and maximum: 500km). We then ex-
tracted temperature and precipitation (weather) data from the
ERAS5-land monthly averaged dataset (Sabater 2019) for the lo-
cation and month(s) in which each prevalence survey occurred
and calculated the mean temperature and mean daily precipi-
tation over the months of the survey period (hereby referred to
as contemporaneous temperature and contemporaneous precip-
itation). Next, we extracted the monthly historical average tem-
perature and precipitation (30-year averages from 1960 to 1990)
from WorldClim Climatology V1 (Hijmans et al. 2005) for the
same months in which each survey took place (i.e., if a survey
occurred from April to May 2002, we extracted average 30-year
temperature and precipitation for April-May in that location).
Finally, we extracted historical annual average temperature and
precipitation data (30-year averages from 1960 to 1990) for the
location of each observation from the WorldClim BIO Variables
dataset (Hijmans et al. 2005). We italicised monthly and annual
to highlight the distinction in time periods between these two
historical averages. These weather and climate data were sep-
arately extracted and recorded for each surveyed population in
each study (i.e., each observation in our database) and are calcu-
lated as the per-pixel average across all pixels within the study
area. Observations were excluded from the analysis if any of
these climate variables were unavailable for that location.

Our database captured the strong positive correlation between
the monthly historical temperature and contemporaneous tem-
perature (r=0.928) and the monthly historical precipitation and
contemporaneous precipitation (r=0.687) (Figure S1). We used
these data to calculate new features: Temperature anomalies
(contemporaneous temperature—monthly historical tempera-
ture) and precipitation anomalies (contemporaneous precip-
itation—monthly historical precipitation), which reflect the
conditions that the plant-disease systems experienced during
the disease survey relative to what would be typical at that time
in that location. Temperature anomalies were weakly correlated
with contemporaneous temperature (r=0.220), while precipita-
tion anomalies were positively correlated with contemporane-
ous precipitation (r=0.706) (Figure S1). No strong correlations
were detected between any temperature metrics with any pre-
cipitation metrics (Figure S1). To reduce the potential for large
outlier effects, we excluded the bottom 2.5% and top 2.5% of data
points with respect to contemporaneous temperature, historical
annual temperature, contemporaneous precipitation and histor-
ical annual precipitation. The distribution of climatic variables,
separated by parasite type, is shown for agricultural and wild
systems in Figures S2 and S3, respectively.
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2.3 | Analyses

With the goal of comparing how contemporaneous weather,
annual historical climate, anomalous weather and their interac-
tions affected wild versus agricultural plant disease systems, we
fit a series of models separately to each type of system. Because
temperature and precipitation variables were uncorrelated
(Figure S1), we chose to fit the temperature and precipitation
models separately, which allowed us to reduce model complex-
ity and to avoid comparing too large a number of alternative
models.

For both temperature and precipitation, we fit nine alternative
models for both wild and agricultural systems (Tables S2 and
S3). All models were fitted as binomial mixed-effects models
using the glmmTMB function from the glmmTMB package v.
1.1.8 (Brooks et al. 2017) in R (R Core Team 2023). For each
model, the response variable was disease prevalence (number
of infected plants/number of plants sampled), and the unit of
observation was the plant population (n=3776 observations
in agricultural systems, n =623 observations in wild systems).
The binomial model accounts for the number of trials (i.e.,
the sample size or the number of plants that were surveyed in
each population for disease prevalence) and is thus a form of
weighted regression. Because multiple observations can arise
from a single study, every model included a study ID random
effect to avoid pseudoreplication and a random effect for host
plant order to control for non-independence across host phy-
logeny. We used Akaike information criterion (AIC) to com-
pare the model performance. For the best performing models
and for models presented in any of the figures, we analysed
the multicollinearity of variables using the performance pack-
age v. 0.11.0 (Liidecke et al. 2021) and report these results
in Tables S12-S17. Plots and tables were created using the R
packages ggplot2 v. 3.4.4 (Wickham 2016), ggbreak v. 0.1.2
(Xu et al. 2021), grid (R Core Team 2023), patchwork v. 1.2.0
(Pedersen 2024), writex] v. 1.5.0 (Ooms 2024), kableExtra v.
1.4.0 (Zhu 2024), viridis v. 0.6.5 (Garnier et al. 2024) and cor-
rplot v. 0.92 (Wei and Simko 2021), and the packages dplyr
v. 1.1.4 (Wickham et al. 2023) and broom.mixed v. 0.2.9.5
(Bolker and Robinson 2024) were used for data manipulation
and model assessment, respectively.

Here, we describe the models used for investigating temperature
effects. Model 1 (the null model) included study ID and plant
order random effects as described above, a fixed effect for par-
asite type and no fixed effects for temperature. These random
effects and the fixed effect of parasite type are included in all
models below. Model 2 included fixed effects for contemporane-
ous temperature (average temperature during the survey), tem-
perature anomaly (contemporaneous temperature—monthly
historical temperature) and annual historical temperature.
Model 3 was intended to test for the presence of a thermal mis-
match and therefore included an interaction between monthly
historical temperature and temperature anomaly, linear ef-
fects of both of these terms and a linear effect of annual his-
torical temperature. Models 4-6 included the same fixed effects
as model 2, plus an additional quadratic effect of temperature
anomaly, contemporaneous temperature or annual historical
temperature, respectively. Models 7-9 included a linear and
quadratic effect of temperature anomaly, plus fixed effects for

either contemporaneous temperature (7), annual historical tem-
perature (8) or neither of those terms (9). These same nine tem-
perature models were fitted separately to the data from wild and
agricultural systems. The nine precipitation models that were
fitted in wild and agricultural systems are analogous to the tem-
perature models described above, with contemporaneous daily
precipitation, daily precipitation anomaly and annual historical
daily precipitation substituted in for the temperature terms. We
note that daily precipitation in millimetres is the unit at which
precipitation was measured, but that these data are reported
by the climate data providers as an average value across the
month(s) of interest.

Although temperature and precipitation variables were largely
uncorrelated (Figure S1), we wanted to explore whether the
model results from our best performing temperature and pre-
cipitation models changed when accounting for the other vari-
ables. We therefore analysed two combined models: One for
each wild and agricultural systems which combined the vari-
ables from the best-fit temperature model with variables from
the best-fit precipitation model. For all models, spatial correla-
tion structures were not explicitly accounted for, as they can-
not be included as random effects in a binomial mixed-effects
model because this type of model does not include a parame-
ter that solely defines the variance (Cohen et al. 2019b). Two
studies (Abbate and Antonovics 2014; Prendeville et al. 2012)
constituted a large portion (n =259 combined) of the 623 ob-
servations in wild systems. We therefore repeated our model
fitting and model comparison for wild systems while remov-
ing the observations from these two studies to test if our re-
sults were robust to their absence.

3 | Results

Our complete database comprised 4339 population-level obser-
vations of infectious disease prevalence (number of plants in-
fected/number of plants surveyed) in plants. The data span four
broad types of disease-causing agents (Figure 1a), 28 host plant
orders (Figure 1b) and six continents in the time period 1984-
2019 (3776 agricultural plant populations from 90 studies and
623 wild plant populations from 16 studies; Figure 2; Table S1).
Various transmission modes were reported in the studies, in-
cluding vector-borne, seed-borne, water-borne, wind-borne and
soil-borne transmission.

In wild systems, contemporaneous temperature, historical
annual temperature and temperature anomalies were each
important in explaining variation in disease prevalence
(Table S2). Specifically, the best model for wild systems (based
on AIC) included each of these as predictors alongside an
additional quadratic effect of temperature anomalies, with
the fixed effects explaining 33% of the variance and the en-
tire model explaining 93% (Table S2; Model 4). The quadratic
temperature anomaly effect was concave-down, peaking at
2.7°C (Figure 3a), contemporaneous temperature had a nega-
tive effect (Figure 3b) and annual average temperature had a
strong negative effect (Figure 3c). The model that included an
interaction between monthly historical temperature and tem-
perature anomalies (model 3), used to explore possible ther-
mal mismatches, was not the most parsimonious but revealed
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a significant, negative interaction between these terms, sup-
portive of a thermal mismatch.

In contrast, in agricultural systems, the maximum amount of
variance that any of the temperature models explained was just
5%, little more than the 4% explained by the null model that
only included a fixed effect of parasite type (Table S2). The best

model by AIC included all temperature predictors with an inter-
action between monthly historical temperature and temperature
anomaly; however, this was not supportive of a thermal mis-
match effect, as the estimated interaction between these predic-
tors was positive (i.e., larger anomalies at higher temperatures
led to higher disease prevalence). Because none of these tem-
perature models explained significant variance in the data, we
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show (Figure 3d-f) the model fits for model 4—the best model
for wild systems that includes a quadratic effect of temperature
anomalies—for agricultural systems to allow a visual compari-
son of the same model in both system types. Here, we see a small
concave-down anomaly effect peaking at —0.37°C (Figure 3d), a
positive effect of contemporaneous temperature on prevalence
(Figure 3e) and a little meaningful effect of annual average tem-
perature (Figure 3f).

As found for temperature, precipitation explained additional
variation in wild systems but had little explanatory power in ag-
ricultural systems (Table S3). The best precipitation model for
wild systems included the monthly historical precipitation by
precipitation anomaly interaction that was negative, evidence for
a precipitation mismatch in wild systems (Figure 4). This model,
which also included linear effects of monthly historical, annual
historical and precipitation anomalies, explained an additional
14% of the variance compared to the null model, with the over-
all model including random effects explaining 83% of the vari-
ance in disease in wild plant systems. The various precipitation
models did not meaningfully explain any additional variance
in agricultural systems (Table S3), and a visual investigation

of model fits shows little to no effect of precipitation anomalies
(Figure 4a), contemporaneous precipitation (Figure 4b) or an-
nual historical precipitation in agricultural systems (Figure 4c).
In both wild and agricultural systems, respective versions of
model 3 revealed significant negative interactions between
monthly historical precipitation and precipitation anomalies,
suggestive of a precipitation mismatch. However, this model ex-
plained little variation in the data compared to the null model
in agricultural systems (Table S3). Model outputs (coefficients,
p-values, etc.) are reported for each of the four best performing
models for temperature in wild systems (Table S4), temperature
in agricultural systems (Table S5), precipitation in wild systems
(Table S6) and precipitation in agricultural systems (Table S7).

Repeating the wild system model comparisons while remov-
ing the two studies with a large number of observations led to
the same best model being selected for temperature (Table S8).
However, one key result changed: We estimated a significant,
positive effect of contemporaneous temperature in wild systems,
contrasting with the significant negative effect estimated with
the full complement of data (Figure 3b; Table S4). For precipita-
tion, the top two models switched order in terms of AIC, though
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the precipitation mismatch model still explained the most vari-
ation (Table S9).

Finally, we analysed models for both the wild and agricultural
systems which combined the variables from the best-fit tem-
perature model with variables from the best-fit precipitation
model. For wild systems, we found no qualitative (and little
quantitative) change in our estimates for the effects of historical
temperature, temperature anomalies, monthly historical precip-
itation, precipitation anomalies or the precipitation mismatch
(Table S10). The only variable that was qualitatively different in
the combined model was contemporaneous temperature, which
was estimated as having no significant effect. For agricultural
systems, we found no qualitative change in our estimates for the
effects of monthly historic temperature, temperature anomalies,
thermal mismatches, contemporaneous precipitation or precip-
itation anomalies (Table S11). The small but significant positive

and negative respective effects of annual average temperature
and annual historical precipitation found in the separate best-fit
models were both replaced by non-significant estimates in the
combined model.

4 | Discussion

We revealed strong effects of weather and climate in wild plant
disease systems, compared to relatively weak effects in agri-
cultural systems, aligning with our hypothesis. Specifically,
alternative temperature and precipitation models that included
various combinations of linear and nonlinear effects of contem-
poraneous weather, historical climate and anomalous weather
explained substantial variation in disease prevalence in wild
systems, while none of these models explained noteworthy vari-
ation in agricultural systems (Tables S2 and S3).
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We found a clear signal for the nonlinear effect of tempera-
ture anomalies in wild systems, which showed that disease
prevalence increased with temperature anomalies up to 2.7°C
warmer than the historical average for the study period.
Disease prevalence decreased with contemporaneous tem-
perature in wild systems, but this effect was noisy with wide
confidence intervals, and reversed in direction when two large
studies were excluded from the analyses. Moreover, contempo-
raneous temperature was estimated as having no significant
effect in either direction when accounting for both precipita-
tion and temperature variables in a combined model, together
suggesting no strong evidence of an effect of contemporaneous
temperature alone. There was also a large, negative effect of
historical annual average temperature (Figure 3c); however,
we caution the interpretation of this result, as this metric is
an average measure of historical year-long climate and thus
captures biogeographic patterns and differences in parasite
type in the dataset rather than necessarily any mechanistic
effects of year-round temperature. Although the parasite type
was controlled for in the model, the wild contemporaneous
temperature and annual historical temperature results may
be partly mediated by uneven distributions of parasite types
across these two variables (Figure S3). Specifically, in our
wild dataset, systems with viral parasites tended to occur at
warmer annual and monthly historical and contemporaneous
temperatures compared to systems with eukaryotic parasites
(Figure S3). This pattern does not necessarily reflect the true
distribution of these parasite types and is more likely mainly
caused by two influential studies in our wild dataset that had
relatively large sample sizes: Prendeville et al. (2012) include
155 viral observations in relatively warm southern USA, while
Abbate and Antonovics (2014) include 104 eukaryotic parasite
observations in the relatively cold French Alps. The distribu-
tion of parasite types was not biased in any direction across
the temperature anomaly variable (Figure S3) or any of the
agricultural climatic variables (Figure S2).

We found some evidence for the thermal mismatch hypothesis
in wild systems, in which the effects of temperature anomalies
were larger in locations with historically colder temperatures in
those same months and vice versa. This interactive effect was
consistent with the idea that climate maladaptation is an im-
portant driver of disease outbreaks and parallels findings in an-
imal systems (Cohen et al. 2017, 2019a, 2020). At the same time,
however, a model that included nonlinear effects of temperature
anomalies alongside contemporaneous and annual average tem-
peratures outperformed this interactive model. Additionally, the
aforementioned bias in distribution of eukaryotic versus viral
parasites across climate zones could have led to similar patterns
if certain parasite types respond to temperature differently. We
did not seek to fit more complex models by combining quadratic
terms with interactions between climatic predictors and parasite
types because that would have resulted in relatively small sam-
ple sizes in each of these categories across climate and weather.
While we did not find conclusive support for an effect of ther-
mal mismatches in wild plant systems, our results suggest that
only considering the temperature (or precipitation) that a wild
plant-disease system is currently experiencing may be insuffi-
cient for understanding disease pressure. Instead, researchers
of wild plant systems may need to also consider both nonlin-
ear effects of temperature anomalies and possibly interactions

between these anomalies and their current weather or historical
climates.

In agricultural systems, models with temperature predictors ex-
plained little additional variation compared to the null model
without temperature predictors (Table S2). However, the tem-
perature models were still more parsimonious than the null,
and the top two models showed significant positive effects of
monthly historical temperature and contemporaneous tem-
perature, respectively (Figure 3). There was also a significant
effect of temperature anomalies, though this was mediated by
an interaction with monthly historical temperature in the best
model. This result, combined with the weak effects of annual
historical temperature, suggests that warmer contemporane-
ous temperature leads to higher disease in agricultural systems
in general. This effect may be explained by agricultural plant
populations typically having comparatively short evolutionary
histories in their present-day locations relative to wild systems.
Additionally, they are frequently artificially selected for traits
that enhance crop production and other human-preferred char-
acteristics (Yamasaki, Wright, and McMullen 2007), includ-
ing for disease resistance in light of climate change (Chapman
et al. 2012). We note, however, that crop and forestry species and
subspecies varieties are in part chosen based on their ability to
grow and produce under a certain climate (Aitken et al. 2008),
and gene flow from wild relatives can increase local crop genetic
diversity (Hufford, Berny Mier y Teran, and Gepts 2019).

We hypothesised that the agricultural systems would generally
be less adapted to and sensitive to local climatic conditions than
wild populations because selection for human-preferred char-
acteristics may not be directly aligned with adaptation to local
climate (Mourtzinis, Specht, and Conley 2019). The absence of
evidence for thermal mismatches in agricultural systems sup-
ports this hypothesis. Instead, warm temperatures increased
disease prevalence on average across all agricultural systems,
and these increases were slightly larger for agricultural plants
grown in warm climates compared to those grown in cooler cli-
mates (indicated by the positive interaction between anomalies
and monthly historical temperature in best-fit model 3; Tables S2
and S5). It is possible that differences in agricultural mechani-
sation (e.g., access to tractors; Daum and Birner 2020) underpin
some biogeographic differences in the response of agricultural
disease to weather variation. While we did not have fine-grained
data to explore the potential effects of these factors here, it could
be beneficial to incorporate socioeconomic data into future
work that seeks to make more local-scale predictions of climate
effects on agricultural disease.

Considering potential nonlinearities of host and parasite thermal
performance from a more mechanistic standpoint may be benefi-
cial in both wild and agricultural systems. Mechanistically link-
ing host thermal performance curves (TPCs) to parasite TPCs in
mathematical disease models can successfully predict how tem-
perature will impact disease systems (Kirk et al. 2020; Mordecai
et al. 2017; Shocket et al. 2018). Indeed, this approach has shown
that warming in a marine crab-barnacle host-parasite system
led to local parasite extinction due to the host thermal optimum
occurring at a warmer temperature than that of the parasite
(Gehman, Hall, and Byers 2018). It is plausible that a number
of plant-disease systems would follow the typical unimodal
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pattern in which warming leads to increased disease up to a cer-
tain temperature but then depresses disease as the temperature
warms beyond the thermal limits of the parasite. To test the gen-
erality of this pattern, however, researchers will need to system-
atically collect performance data at a range of temperatures for
different plant hosts, plant parasites and plant-disease combina-
tions. These data could both parameterize nonlinear mechanis-
tic models to predict disease across temperature, as well as test
the underlying assumptions of the thermal mismatch hypothe-
sis that most parasites have wider thermal breadths than their
hosts. Some of these temperature-dependent data are already
being collected: Chaloner, Gurr, and Bebber (2021) used data
from 80 fungal and oomycete crop pathogens to show that po-
tential crop yield gains in the future may be offset by increased
disease risk under climate change. Eventually, even more com-
plex experiments may allow researchers to parameterize mech-
anistic models of how temperature anomalies affect a disease
system: For example, a factorial design in which key rates (e.g.,
parasite growth rate and host mortality rate) are measured at
different exposure temperatures for plants and parasites that
have been adapted to different temperatures. Until these data
are comprehensively collected across more types of disease sys-
tems, studies such as ours can provide general insights into how
we may expect temperature to affect different broad groups of
plant-disease systems.

The effects of precipitation unsurprisingly differed from those
of temperature; however, one general finding was shared: pre-
cipitation effects were far more influential in wild systems
compared to agricultural systems. Overall, precipitation effects
were weaker than temperature effects, a result that has previ-
ously been shown experimentally for foliar fungal diseases in
a wild alpine meadow system (Liu et al. 2019). In wild systems,
precipitation effects did not explain as much variance in the
data compared to temperature, with the precipitation fixed ef-
fects in the top model explaining 14% more variance than the
null model compared to 22% for the temperature fixed effects
(Tables S2 and S3). The best performing model showed evi-
dence of a precipitation mismatch in wild systems, with nega-
tive effects of precipitation anomalies on disease in plants that
typically experience high precipitation, but positive effects of
anomalies for plants that typically experience low precipitation.
This suggests that wild plants in historically wet areas will be
more susceptible to disease under drought conditions, while
wild plants from dry areas are more susceptible during periods
of anomalously high rainfall. There are various plausible mech-
anisms for this, from direct impacts of water availability on
pathogens (Desprez-Loustau et al. 2006) to effects of drought on
plant defence (Bostock, Pye, and Roubtsova 2014). Mechanistic
models connecting precipitation and plant-pathogen systems
have successfully predicted the distribution of these pathogens
(Thompson, Levin, and Rodriguez-Iturbe 2013), and collecting
water availability-performance curves across more host-para-
site systems to then link them via mechanisms including para-
site dispersal, within-host growth, host defence, host physiology
and phenology would help to parse how precipitation and pre-
cipitation anomalies impact more disease systems from different
climatic zones.

In agricultural systems, precipitation variables explained little
variation despite nominally performing better than the null

model (Table S3) and revealed no strong relationships with dis-
ease pressure (Figure 4). This does not mean that precipitation
does not affect disease in any agricultural systems but that at
least in this cross-system dataset, the signal of precipitation ef-
fects was too weak or heterogeneous to detect. One plausible
explanation for this is that farmer intervention can dramati-
cally impact the amount of water available to a plant-parasite
system; for instance, some of the agricultural systems are likely
irrigated, dampening variation in water availability due to rain-
fall, while other systems would not have benefitted from any
irrigation or could even be drained by ditch systems to reduce
saturated conditions. Because interventions like irrigation are
not accounted for in our dataset, our measures of precipitation
in agricultural systems may not accurately reflect the amount
of water the systems experienced, leading to no signal being de-
tected in the data.

Projected effects of climate change on precipitation are more
variable than those of temperature, with some areas likely to
see large increases in rainfall while other areas experience sig-
nificant decreases (Collins et al. 2013). This variability suggests
that plant disease prevalence will increase in some areas while
decreasing in others, similar to projections for how changing
rainfall patterns will alter distribution of human diseases such
as malaria in West Africa (Yamana and Eltahir 2013) and chol-
era across Africa (Moore et al. 2017). Projections for how climate
change will affect plant diseases will thus need to account for
potential differences in how temperature and local precipitation
patterns will change relative to each other. For instance, the
downy mildew-grapevine system exhibits positive relationships
between both temperature and disease and rainfall and disease
(Salinari et al. 2006). Despite projected decreases in rainfall for
the mildew-grapevine system's region of Italy, disease epidem-
ics are expected to increase because increases in temperature-
driven disease will more than offset any reduction due to
decreased rainfall (Salinari et al. 2006). Future models that in-
corporate the direct and possibly interactive effects of tempera-
ture and precipitation alongside additional environmental axes
(e.g., CO,, which can interact with temperature to regulate plant
pest populations (Newman 2004)) are likely to exhibit increased
predictive accuracy.

Our analysis gains strength from examining trends across mul-
tiple plant-disease systems; however, by doing so, we may mask
important system-specific variation. Indeed, some plant-dis-
ease systems included from our systematic literature review are
likely less appropriate for our analyses than others. For example,
we did not have data for whether surveys of wild plant systems
occurred in the native range for the plants, and therefore some of
the wild plant systems may have had significantly longer periods
to adapt to their current climate than others. Another example
is that if a survey included a population of plants that can host
long-term, chronic infections, it is possible these plants were in-
fected a considerable time before the survey began. In this case,
the weather conditions during the survey would not be as in-
formative about the conditions when the plant became infected
compared to plant systems that only exhibit infections over a
short time. While we excluded surveyed populations that did not
have current infections (e.g., those studies which were screened
and included surveys showing insect or pathogen damage to a
plant but not necessarily active infestations or infections), we
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did not have data on prior infection status for most of the studies
included in our analysis. Importantly, however, because we do
not expect these studies to be biased towards warmer or colder
weather, the inclusion of these studies may add noise to our re-
sults but should not bias them.

Though it is difficult to parse which exact biological mecha-
nisms underpin our results with many different types of host-
parasite systems included in our study, there are certain types
of mechanisms that are likely at play. Desaint et al. (2021) have
shown that elevated temperature impacts plant disease resis-
tance across the majority of different plant-pathogen systems
investigated, with a variety of ways in which this can occur. For
instance, temperature effects may alter plant development and
metabolism (Yang et al. 2018) or plant cell physiology (Bita and
Gerats 2013), while simultaneously increasing parasite repro-
duction rates or virulence (Desaint et al. 2021). Our temperature
anomaly results showed that wild plants experiencing warmer
temperatures relative to historic averages increase disease risk
up until a maximum of 2.7°C warmer than typical, after which
point higher temperatures will decrease disease. This suggests
that on balance, anomalously warm temperatures up until
2.7°C lead to key parasite rates such as reproduction or growth
benefiting more than host rates (or, alternatively, suffering less
costs than the hosts), while elevated temperatures past this
level hinder the parasite more than it does the host. This type of
overall nonlinear disease response is often seen in response to
mean temperature in other types of host-parasite systems (e.g.,
mosquito-borne disease (Mordecai et al. 2019); water-borne dis-
ease in Daphnia (Shocket et al. 2018)), through which host and
parasite trait responses are most important, will differ across
plant-parasite systems. Some generalities are likely to exist: For
example, transmission in plant-disease systems that require an
insect vector will be strongly influenced by the thermal sensi-
tivities of that insect, while transmission in soil-borne systems
may be somewhat buffered to changes in environmental tem-
perature. Moreover, features of broad taxonomic groups can also
provide insights into the mechanisms underpinning climate ef-
fects on individual groups, such as evidence that fungi in soil are
better adapted to cool temperatures than bacteria (Pietikédinen,
Pettersson, and Biith 2005).

Understanding how anomalous weather conditions in different
climates mediate plant disease outbreaks is critical for antici-
pating and mitigating climate change impacts for agricultural
and wild plant systems, which affect food security (Ristaino
et al. 2021) and ecosystem integrity (Jiranek et al. 2023). Our
results highlighting the impact of temperature and precipita-
tion anomalies suggest that the evolutionary history of wild
plant-disease systems in their historical climate affects vul-
nerability to disease. Agricultural systems, which have typi-
cally had a shorter evolutionary history in their present-day
locations, are vulnerable to pathogen outbreaks under warm
conditions regardless of historical climate or anomalous con-
ditions, but all weather effects were relatively weaker in these
systems. These data-driven conclusions identify general pat-
terns that may apply to understudied systems under anoma-
lous weather and climates. More broadly, our results spotlight
the need to study potential disease outbreak effects driven by
climate change on biodiversity in wild plant systems, effects
which may need to be considered alongside effects of other

global change drivers such as habitat loss simultaneously
(Laine 2023).
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