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ABSTRACT
Predicting the effects of climate change on plant disease is critical for protecting ecosystems and food production. Here, we show 
how disease pressure responds to short-term weather, historical climate and weather anomalies by compiling a global database 
(4339 plant–disease populations) of disease prevalence in both agricultural and wild plant systems. We hypothesised that weather 
and climate would play a larger role in disease in wild versus agricultural plant populations, which the results supported. In wild 
systems, disease prevalence peaked when the temperature was 2.7°C warmer than the historical average for the same time of 
year. We also found evidence of a negative interactive effect between weather anomalies and climate in wild systems, consistent 
with the idea that climate maladaptation can be an important driver of disease outbreaks. Temperature and precipitation had rel-
atively little explanatory power in agricultural systems, though we observed a significant positive effect of current temperature. 
These results indicate that disease pressure in wild plants is sensitive to nonlinear effects of weather, weather anomalies and 
their interaction with historical climate. In contrast, warmer temperatures drove risks for agricultural plant disease outbreaks 
within the temperature range examined regardless of historical climate, suggesting vulnerability to ongoing climate change.

1   |   Introduction

Infectious disease outbreaks cause massive losses in crop yields 
(Savary et al. 2019), threaten food security (Ristaino et al. 2021) 
and imperil wild plants (Dudney et  al.  2021). Plant–disease 
systems are highly sensitive to environmental effects (Garrett 
et al. 2006; Kocmánková et al. 2009), and as the world experi-
ences rapid change, understanding how plant–disease systems 

will respond to novel weather caused by anthropogenic climate 
forcing is critical (Burdon and Zhan 2020; Miller et al. 2022).

Multiple aspects of the climate (i.e., temperature, rainfall and 
drought and CO2) can each affect plant–disease systems in var-
ious ways, including impacts on plant and pathogen distribu-
tions, pathogen transmission, vector biology, host resistance, 
pathogen virulence and host–pathogen evolutionary processes 
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(reviewed in Coakley, Scherm, and Chakraborty 1999; Garrett 
et al. 2006; Singh et al. 2023). Despite increasing research, it 
still remains difficult to predict how future climate change 
will impact these complex systems (Burdon and Zhan  2020; 
Elad and Pertot  2014; Jiranek et al.  2023; Laine 2023; Singh 
et al. 2023). Additionally, beyond the effects of the current cli-
mate that hosts and pathogens experience, it is possible that 
changes in disease pressure will reflect both plant and patho-
gen responses to ongoing climate change and the legacy of 
historical conditions to which both organisms are adapted. To 
better anticipate and mitigate climate change–plant disease 
effects and their implications for global food security, plant 
biodiversity and conservation and ecosystem management, 
we can examine how current weather and its change rela-
tive to historical climate have together shaped plant disease 
around the world.

Temperature is well known to affect various biological rates of 
both hosts and disease-causing agents (i.e., pathogens, parasites 
and pests), often leading to large impacts on the overall levels 
of disease in a system (Harvell et al. 2002). Organism thermal 
performance curves (TPCs) are typically unimodal with an in-
termediate optimal temperature before decreasing sharply ap-
proaching a critical thermal maximum (Angilletta 2009; Dell, 
Pawar, and Savage  2011). Whether warming will lead to in-
creased or decreased disease in a system thus depends on how 
a change in temperature affects key host rates (e.g., growth rate 
and defence pathways) relative to its effects on parasite rates 
(e.g., transmission rate and replication rate) (Molnár et al. 2013). 
Beyond the effects of temperature per se, temperature anoma-
lies—deviations from historical averages—may distinctly affect 
plant disease by taking organisms away from the temperatures 
to which they are adapted. Like other thermal responses, im-
pacts of anomalies may also be nonlinear. However, responses 
to temperature anomalies are less well understood, a critical re-
search gap as anomalous weather becomes more common with 
climate change (IPCC 2023).

One theory that aims to explain temperature effects on disease 
is the thermal mismatch hypothesis, which posits that non-
optimal temperatures reduce parasite performance less than 
host performance, resulting in a relative benefit to parasites 
(Cohen et al. 2017, 2020). A proposed mechanism for this ‘ther-
mal mismatch’ is that, on average, small-bodied organisms such 
as parasites have functionally wider thermal breadths (i.e., the 
range of temperatures at which an organism has strong perfor-
mance) than larger bodied organisms (Rohr et al. 2018), possi-
bly due to faster acclimation or adaptation. One prediction that 
follows is that plant populations adapted to cooler climates may 
experience greater disease pressure in warm weather, and that 
warm-adapted populations may conversely experience greater 
outbreaks in cooler weather. The thermal mismatch hypothesis 
therefore predicts a negative interaction between historical (cli-
mate) and current (weather) temperature effects on disease due 
to the smaller parasites performing relatively better at abnormal 
temperatures compared to their larger bodied hosts. Support for 
the thermal mismatch hypothesis comes from observations that 
animal populations adapted to cold climates experience larger 
disease outbreaks under unusually warm weather, while ani-
mals adapted to warm climates experience more disease under 
cold weather (Cohen et al. 2020).

Plants are inherently sensitive to environmental conditions, in-
cluding average climate and interannual variations in weather. 
In addition, climatic effects beyond temperature affect plant 
diseases, including water availability (Laine  2023; Velásquez, 
Castroverde, and He  2018). Moisture levels have long been 
known to regulate plant infections (Colhoun  1973), and both 
drought and extreme high precipitation levels could increase 
disease in different contexts. Indeed, drought can increase 
physiological stress and therefore vulnerability to pathogen at-
tack (Ramegowda and Senthil-Kumar 2015) (but this relation-
ship can be nuanced: see Desprez-Loustau et al. 2006; Garrett 
et al. 2006), while precipitation, including extreme precipitation, 
can increase the spread of certain plant parasites (McElrone 
et al.  2010; Salinari et al.  2006) and wash away contact pesti-
cides (Chakraborty and Newton 2011). Here, we provide one of 
the first tests of the thermal mismatch hypothesis in plants and 
extend the theory to also consider whether plant and parasite 
adaptation to historical precipitation levels mediates effects of 
short-term rainfall and moisture on disease.

Importantly, weather–disease dynamics in agricultural systems 
may differ from those in wild systems. First, wild plants should 
generally be adapted to local climates while agricultural plants 
have been moved around the planet for centuries (Hufford, 
Berny Mier y Teran, and Gepts 2019), often experiencing arti-
ficial selection for high yields across broad environmental con-
ditions. Second, extreme weather and disease pressure are often 
mitigated in agricultural systems (e.g., through irrigation, shad-
ing, or pesticide application) but not in wild systems. Together, 
these factors suggest that in contrast to wild plants, the histori-
cal climate where agricultural plants are currently grown may 
not be as predictive of their sensitivity to disease under novel 
weather, and that, in general, agricultural systems may be less 
prone to the effects of precipitation and temperature compared 
to wild systems.

To study the potentially nonlinear and interactive effects of 
weather, weather anomalies and historical climate, including 
both temperature and precipitation, we assembled an exten-
sive population-level database of plant disease prevalence in 
wild and agricultural systems from the literature (n = 4339 
plant populations) and then paired georeferenced climate and 
weather data with each observed population. We used this novel 
database to test our predictions that: (1) contemporaneous (i.e., 
current during the disease survey) weather, weather anomalies 
and historical climate affect plant disease prevalence; (2) these 
weather and climate effects are stronger in wild than agricul-
tural systems; and (3) that in warm or wet climates, disease is 
more likely when weather is abnormally cool or dry, and vice 
versa (i.e., thermal/precipitation mismatch) in wild but not ag-
ricultural systems.

2   |   Materials and Methods

2.1   |   Database Construction: Literature Search 
for Plant Disease Surveys

We conducted a systematic literature review of published plant 
disease surveys to compile a global, spatiotemporal database of 
plant disease prevalence (number of infected plants/number of 
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plants sampled). We searched the Web of Science via Stanford 
University Library in February 2021 using combinations of 
the search terms parasit*, survey*, disease*, pest*, pathogen*, 
damage*, vir*, plant*, crop*, tree*, forest*, prevalence*, inci-
dence*, percent* and proportion*, which returned 1800 studies 
(see Supporting Information for full search string). Because we 
found that certain geographic regions—most notably, South 
America, Central America and the Malay Archipelago—were 
underrepresented, we conducted additional searches in Web of 
Science using combinations of the search terms above with the 
names of each country in these regions and screened an addi-
tional 582 non-mutually exclusive studies.

We screened abstracts as including potentially relevant data or 
not, using the criteria defined below. We then read each study 
scored as having potentially relevant data and determined if the 
study included information on: (1) an approximate location or 
latitude/longitude coordinates, (2) month(s) and year in which 
the survey took place (up to a maximum of six consecutive 
months), (3) identity of plant host and disease-causing agent, (4) 
sample size of the population survey and (5) either disease prev-
alence (number of infected plants/number of total plants sur-
veyed) or the number of infected samples. Studies also had to (6) 
use randomly selected samples to calculate prevalence, (7) occur 
outdoors (i.e., not in a glasshouse) and (8) be conducting a sur-
vey of current infections; in other words, not only survey insect 
or pathogen damage to a plant, which could have occurred in 
the past, but instead survey active infestations or infections. The 
location and time that the survey took place (to month) were re-
quired so that we could match each population observation with 
appropriate weather and climate data, and we restricted the data 
to surveys of a maximum length of six consecutive months so 
that the period was short enough to reflect the contemporane-
ous weather that each system experienced. Identity of the plant 
host and disease-causing agent and population sample size and 
sampled prevalence were necessary to run the subsequent bino-
mial mixed effects analysis. Using these strict screening crite-
ria resulted in a rejection rate of approximately 95% of the 2382 
studies screened, as most studies were missing at least one piece 
of required information. If information was partly present, we 
attempted to contact the corresponding authors via email to ob-
tain the missing information. Studies included in our analyses 
are listed in Table S1.

Extracted data for each disease survey included host and par-
asite taxonomic information, the month(s) in which the sur-
vey occurred, plant sample size and disease prevalence and 
survey location information. If the study did not include taxo-
nomic information, we searched the colloquial name and used 
the Integrated Taxonomic Information System to retrieve it. 
Disease-causing agent was categorised as virus, bacteria, eu-
karyotic parasite or pest, where eukaryotic parasites included 
fungal and oomycete parasites and pests were larger organisms 
(insects, nematodes or mites) in which active prevalence was 
calculated (i.e., not only recording signs of past herbivory). We 
recorded latitude and longitude if provided by the study, and if 
this information was not provided, we extracted approximate 
latitude and longitude from Google Maps for the centroid of the 
named location(s) of the survey. Additionally, we recorded the 
approximate spatial scale over which a survey occurred by using 
the ruler tool in Google Maps along with information provided 

by each study (e.g., ‘survey occurred throughout X county’) to 
measure the average distance across the survey range, with a 
minimum distance cutoff of 1 km. Median distance across the 
dataset was 10 km, and the maximum distance was 500 km.

2.2   |   Database Construction: Climate 
and Weather Data

We paired each observation of plant disease prevalence with the 
climate re-analysis data extracted using Google Earth Engine 
(Gorelick et al. 2017). First, we specified circular buffers around 
the centre coordinates of each observation with diameter equal 
to the approximate spatial distance of the survey (minimum: 
1 km; median: 10 km; and maximum: 500 km). We then ex-
tracted temperature and precipitation (weather) data from the 
ERA5-land monthly averaged dataset (Sabater 2019) for the lo-
cation and month(s) in which each prevalence survey occurred 
and calculated the mean temperature and mean daily precipi-
tation over the months of the survey period (hereby referred to 
as contemporaneous temperature and contemporaneous precip-
itation). Next, we extracted the monthly historical average tem-
perature and precipitation (30-year averages from 1960 to 1990) 
from WorldClim Climatology V1 (Hijmans et al. 2005) for the 
same months in which each survey took place (i.e., if a survey 
occurred from April to May 2002, we extracted average 30-year 
temperature and precipitation for April–May in that location). 
Finally, we extracted historical annual average temperature and 
precipitation data (30-year averages from 1960 to 1990) for the 
location of each observation from the WorldClim BIO Variables 
dataset (Hijmans et al. 2005). We italicised monthly and annual 
to highlight the distinction in time periods between these two 
historical averages. These weather and climate data were sep-
arately extracted and recorded for each surveyed population in 
each study (i.e., each observation in our database) and are calcu-
lated as the per-pixel average across all pixels within the study 
area. Observations were excluded from the analysis if any of 
these climate variables were unavailable for that location.

Our database captured the strong positive correlation between 
the monthly historical temperature and contemporaneous tem-
perature (r = 0.928) and the monthly historical precipitation and 
contemporaneous precipitation (r = 0.687) (Figure S1). We used 
these data to calculate new features: Temperature anomalies 
(contemporaneous temperature—monthly historical tempera-
ture) and precipitation anomalies (contemporaneous precip-
itation—monthly historical precipitation), which reflect the 
conditions that the plant–disease systems experienced during 
the disease survey relative to what would be typical at that time 
in that location. Temperature anomalies were weakly correlated 
with contemporaneous temperature (r = 0.220), while precipita-
tion anomalies were positively correlated with contemporane-
ous precipitation (r = 0.706) (Figure S1). No strong correlations 
were detected between any temperature metrics with any pre-
cipitation metrics (Figure S1). To reduce the potential for large 
outlier effects, we excluded the bottom 2.5% and top 2.5% of data 
points with respect to contemporaneous temperature, historical 
annual temperature, contemporaneous precipitation and histor-
ical annual precipitation. The distribution of climatic variables, 
separated by parasite type, is shown for agricultural and wild 
systems in Figures S2 and S3, respectively.
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2.3   |   Analyses

With the goal of comparing how contemporaneous weather, 
annual historical climate, anomalous weather and their interac-
tions affected wild versus agricultural plant disease systems, we 
fit a series of models separately to each type of system. Because 
temperature and precipitation variables were uncorrelated 
(Figure  S1), we chose to fit the temperature and precipitation 
models separately, which allowed us to reduce model complex-
ity and to avoid comparing too large a number of alternative 
models.

For both temperature and precipitation, we fit nine alternative 
models for both wild and agricultural systems (Tables S2 and 
S3). All models were fitted as binomial mixed-effects models 
using the glmmTMB function from the glmmTMB package v. 
1.1.8 (Brooks et al. 2017) in R (R Core Team 2023). For each 
model, the response variable was disease prevalence (number 
of infected plants/number of plants sampled), and the unit of 
observation was the plant population (n = 3776 observations 
in agricultural systems, n = 623 observations in wild systems). 
The binomial model accounts for the number of trials (i.e., 
the sample size or the number of plants that were surveyed in 
each population for disease prevalence) and is thus a form of 
weighted regression. Because multiple observations can arise 
from a single study, every model included a study ID random 
effect to avoid pseudoreplication and a random effect for host 
plant order to control for non-independence across host phy-
logeny. We used Akaike information criterion (AIC) to com-
pare the model performance. For the best performing models 
and for models presented in any of the figures, we analysed 
the multicollinearity of variables using the performance pack-
age v. 0.11.0 (Lüdecke et  al.  2021) and report these results 
in Tables S12–S17. Plots and tables were created using the R 
packages ggplot2 v. 3.4.4 (Wickham  2016), ggbreak v. 0.1.2 
(Xu et al. 2021), grid (R Core Team 2023), patchwork v. 1.2.0 
(Pedersen  2024), writexl v. 1.5.0 (Ooms  2024), kableExtra v. 
1.4.0 (Zhu 2024), viridis v. 0.6.5 (Garnier et al. 2024) and cor-
rplot v. 0.92 (Wei and Simko  2021), and the packages dplyr 
v. 1.1.4 (Wickham et  al.  2023) and broom.mixed v. 0.2.9.5 
(Bolker and Robinson 2024) were used for data manipulation 
and model assessment, respectively.

Here, we describe the models used for investigating temperature 
effects. Model 1 (the null model) included study ID and plant 
order random effects as described above, a fixed effect for par-
asite type and no fixed effects for temperature. These random 
effects and the fixed effect of parasite type are included in all 
models below. Model 2 included fixed effects for contemporane-
ous temperature (average temperature during the survey), tem-
perature anomaly (contemporaneous temperature—monthly 
historical temperature) and annual historical temperature. 
Model 3 was intended to test for the presence of a thermal mis-
match and therefore included an interaction between monthly 
historical temperature and temperature anomaly, linear ef-
fects of both of these terms and a linear effect of annual his-
torical temperature. Models 4–6 included the same fixed effects 
as model 2, plus an additional quadratic effect of temperature 
anomaly, contemporaneous temperature or annual historical 
temperature, respectively. Models 7–9 included a linear and 
quadratic effect of temperature anomaly, plus fixed effects for 

either contemporaneous temperature (7), annual historical tem-
perature (8) or neither of those terms (9). These same nine tem-
perature models were fitted separately to the data from wild and 
agricultural systems. The nine precipitation models that were 
fitted in wild and agricultural systems are analogous to the tem-
perature models described above, with contemporaneous daily 
precipitation, daily precipitation anomaly and annual historical 
daily precipitation substituted in for the temperature terms. We 
note that daily precipitation in millimetres is the unit at which 
precipitation was measured, but that these data are reported 
by the climate data providers as an average value across the 
month(s) of interest.

Although temperature and precipitation variables were largely 
uncorrelated (Figure  S1), we wanted to explore whether the 
model results from our best performing temperature and pre-
cipitation models changed when accounting for the other vari-
ables. We therefore analysed two combined models: One for 
each wild and agricultural systems which combined the vari-
ables from the best-fit temperature model with variables from 
the best-fit precipitation model. For all models, spatial correla-
tion structures were not explicitly accounted for, as they can-
not be included as random effects in a binomial mixed-effects 
model because this type of model does not include a parame-
ter that solely defines the variance (Cohen et al. 2019b). Two 
studies (Abbate and Antonovics 2014; Prendeville et al. 2012) 
constituted a large portion (n = 259 combined) of the 623 ob-
servations in wild systems. We therefore repeated our model 
fitting and model comparison for wild systems while remov-
ing the observations from these two studies to test if our re-
sults were robust to their absence.

3   |   Results

Our complete database comprised 4339 population-level obser-
vations of infectious disease prevalence (number of plants in-
fected/number of plants surveyed) in plants. The data span four 
broad types of disease-causing agents (Figure 1a), 28 host plant 
orders (Figure 1b) and six continents in the time period 1984–
2019 (3776 agricultural plant populations from 90 studies and 
623 wild plant populations from 16 studies; Figure 2; Table S1). 
Various transmission modes were reported in the studies, in-
cluding vector-borne, seed-borne, water-borne, wind-borne and 
soil-borne transmission.

In wild systems, contemporaneous temperature, historical 
annual temperature and temperature anomalies were each 
important in explaining variation in disease prevalence 
(Table S2). Specifically, the best model for wild systems (based 
on AIC) included each of these as predictors alongside an 
additional quadratic effect of temperature anomalies, with 
the fixed effects explaining 33% of the variance and the en-
tire model explaining 93% (Table S2; Model 4). The quadratic 
temperature anomaly effect was concave-down, peaking at 
2.7°C (Figure 3a), contemporaneous temperature had a nega-
tive effect (Figure 3b) and annual average temperature had a 
strong negative effect (Figure 3c). The model that included an 
interaction between monthly historical temperature and tem-
perature anomalies (model 3), used to explore possible ther-
mal mismatches, was not the most parsimonious but revealed 
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a significant, negative interaction between these terms, sup-
portive of a thermal mismatch.

In contrast, in agricultural systems, the maximum amount of 
variance that any of the temperature models explained was just 
5%, little more than the 4% explained by the null model that 
only included a fixed effect of parasite type (Table S2). The best 

model by AIC included all temperature predictors with an inter-
action between monthly historical temperature and temperature 
anomaly; however, this was not supportive of a thermal mis-
match effect, as the estimated interaction between these predic-
tors was positive (i.e., larger anomalies at higher temperatures 
led to higher disease prevalence). Because none of these tem-
perature models explained significant variance in the data, we 

FIGURE 1    |    Pathogen, parasite and host lineages. (a) Number of survey observations by type of disease-causing agent across agricultural (blue) 
and wild (green) systems. ‘Parasite’ represents eukaryotic parasites. (b) Number of survey observations by host plant order across agricultural and 
wild systems.

FIGURE 2    |    Global database of plant disease spanning geography, weather and climate. Records of plant disease prevalence in agricultural (cir-
cle) and wild (diamond) populations (4339 total observations). Point colour represents the average contemporaneous temperature during the disease 
survey for each location (°C).
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show (Figure 3d–f) the model fits for model 4—the best model 
for wild systems that includes a quadratic effect of temperature 
anomalies—for agricultural systems to allow a visual compari-
son of the same model in both system types. Here, we see a small 
concave-down anomaly effect peaking at −0.37°C (Figure 3d), a 
positive effect of contemporaneous temperature on prevalence 
(Figure 3e) and a little meaningful effect of annual average tem-
perature (Figure 3f).

As found for temperature, precipitation explained additional 
variation in wild systems but had little explanatory power in ag-
ricultural systems (Table S3). The best precipitation model for 
wild systems included the monthly historical precipitation by 
precipitation anomaly interaction that was negative, evidence for 
a precipitation mismatch in wild systems (Figure 4). This model, 
which also included linear effects of monthly historical, annual 
historical and precipitation anomalies, explained an additional 
14% of the variance compared to the null model, with the over-
all model including random effects explaining 83% of the vari-
ance in disease in wild plant systems. The various precipitation 
models did not meaningfully explain any additional variance 
in agricultural systems (Table  S3), and a visual investigation 

of model fits shows little to no effect of precipitation anomalies 
(Figure  4a), contemporaneous precipitation (Figure  4b) or an-
nual historical precipitation in agricultural systems (Figure 4c). 
In both wild and agricultural systems, respective versions of 
model 3 revealed significant negative interactions between 
monthly historical precipitation and precipitation anomalies, 
suggestive of a precipitation mismatch. However, this model ex-
plained little variation in the data compared to the null model 
in agricultural systems (Table S3). Model outputs (coefficients, 
p-values, etc.) are reported for each of the four best performing 
models for temperature in wild systems (Table S4), temperature 
in agricultural systems (Table S5), precipitation in wild systems 
(Table S6) and precipitation in agricultural systems (Table S7).

Repeating the wild system model comparisons while remov-
ing the two studies with a large number of observations led to 
the same best model being selected for temperature (Table S8). 
However, one key result changed: We estimated a significant, 
positive effect of contemporaneous temperature in wild systems, 
contrasting with the significant negative effect estimated with 
the full complement of data (Figure 3b; Table S4). For precipita-
tion, the top two models switched order in terms of AIC, though 

FIGURE 3    |    Estimated effects of temperature anomalies (a, d), contemporaneous temperature (b, e) and annual average temperature (c, f) on 
disease prevalence in wild (a–c; green symbols) and agricultural (d–f; blue symbols) systems. Effects for both types of systems are estimated from 
model 4 (Table S2), which includes linear effects of contemporaneous temperature and annual average temperature, as well as linear and quadrat-
ic effects of temperature anomalies. Shaded regions represent 95% confidence intervals; circles represent model partial residuals. Partial residuals 
are calculated as model errors plus the model-estimated relationship between the variable and prevalence. Temperature anomalies are calculated 
as contemporaneous temperature—monthly historical temperature, and contemporaneous temperature represents the mean temperature over the 
months of the survey period.
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the precipitation mismatch model still explained the most vari-
ation (Table S9).

Finally, we analysed models for both the wild and agricultural 
systems which combined the variables from the best-fit tem-
perature model with variables from the best-fit precipitation 
model. For wild systems, we found no qualitative (and little 
quantitative) change in our estimates for the effects of historical 
temperature, temperature anomalies, monthly historical precip-
itation, precipitation anomalies or the precipitation mismatch 
(Table S10). The only variable that was qualitatively different in 
the combined model was contemporaneous temperature, which 
was estimated as having no significant effect. For agricultural 
systems, we found no qualitative change in our estimates for the 
effects of monthly historic temperature, temperature anomalies, 
thermal mismatches, contemporaneous precipitation or precip-
itation anomalies (Table S11). The small but significant positive 

and negative respective effects of annual average temperature 
and annual historical precipitation found in the separate best-fit 
models were both replaced by non-significant estimates in the 
combined model.

4   |   Discussion

We revealed strong effects of weather and climate in wild plant 
disease systems, compared to relatively weak effects in agri-
cultural systems, aligning with our hypothesis. Specifically, 
alternative temperature and precipitation models that included 
various combinations of linear and nonlinear effects of contem-
poraneous weather, historical climate and anomalous weather 
explained substantial variation in disease prevalence in wild 
systems, while none of these models explained noteworthy vari-
ation in agricultural systems (Tables S2 and S3).

FIGURE 4    |    Estimated effects of precipitation anomalies (a, d), monthly historical precipitation (b, e) and annual average precipitation (c, f) on 
disease prevalence in wild (a–c; green symbols) and agricultural (d–f; blue symbols) systems. Effects for both types of systems are estimated from 
model 3 (Table S3), which includes linear effects of precipitation anomalies, monthly historical precipitation and annual average precipitation, as 
well as an interaction between precipitation anomalies and monthly historical precipitation. Shaded regions represent 95% confidence intervals; 
points represent model partial residuals. The effects of this interaction are shown with the different estimated effects in panels (a, b) (wild) and (d, 
e) (agricultural). The solid lines show the effects of the variable when the interacting variable is set to the 90% quantile in the data, while the dashed 
lines show the effect of the variable when the interacting variable is set to the 10% quantile in the data. We note that the estimated effects (solid and 
dashed lines) extend across all data in the x-axis, and therefore beyond the 10% and 90% quantiles. Model partial residuals associated with each of 
these two scenarios are represented by either squares (low or negative interacting variable) or triangles (high or positive interacting variable). Model 
partial residuals are represented by circles in panels c and f where there are no interacting variables. Partial residuals are calculated as model errors 
plus the model-estimated relationship between the variable and prevalence. Precipitation anomalies are calculated as contemporaneous precipita-
tion—monthly historical precipitation.
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We found a clear signal for the nonlinear effect of tempera-
ture anomalies in wild systems, which showed that disease 
prevalence increased with temperature anomalies up to 2.7°C 
warmer than the historical average for the study period. 
Disease prevalence decreased with contemporaneous tem-
perature in wild systems, but this effect was noisy with wide 
confidence intervals, and reversed in direction when two large 
studies were excluded from the analyses. Moreover, contempo-
raneous temperature was estimated as having no significant 
effect in either direction when accounting for both precipita-
tion and temperature variables in a combined model, together 
suggesting no strong evidence of an effect of contemporaneous 
temperature alone. There was also a large, negative effect of 
historical annual average temperature (Figure  3c); however, 
we caution the interpretation of this result, as this metric is 
an average measure of historical year-long climate and thus 
captures biogeographic patterns and differences in parasite 
type in the dataset rather than necessarily any mechanistic 
effects of year-round temperature. Although the parasite type 
was controlled for in the model, the wild contemporaneous 
temperature and annual historical temperature results may 
be partly mediated by uneven distributions of parasite types 
across these two variables (Figure  S3). Specifically, in our 
wild dataset, systems with viral parasites tended to occur at 
warmer annual and monthly historical and contemporaneous 
temperatures compared to systems with eukaryotic parasites 
(Figure S3). This pattern does not necessarily reflect the true 
distribution of these parasite types and is more likely mainly 
caused by two influential studies in our wild dataset that had 
relatively large sample sizes: Prendeville et al. (2012) include 
155 viral observations in relatively warm southern USA, while 
Abbate and Antonovics (2014) include 104 eukaryotic parasite 
observations in the relatively cold French Alps. The distribu-
tion of parasite types was not biased in any direction across 
the temperature anomaly variable (Figure  S3) or any of the 
agricultural climatic variables (Figure S2).

We found some evidence for the thermal mismatch hypothesis 
in wild systems, in which the effects of temperature anomalies 
were larger in locations with historically colder temperatures in 
those same months and vice versa. This interactive effect was 
consistent with the idea that climate maladaptation is an im-
portant driver of disease outbreaks and parallels findings in an-
imal systems (Cohen et al. 2017, 2019a, 2020). At the same time, 
however, a model that included nonlinear effects of temperature 
anomalies alongside contemporaneous and annual average tem-
peratures outperformed this interactive model. Additionally, the 
aforementioned bias in distribution of eukaryotic versus viral 
parasites across climate zones could have led to similar patterns 
if certain parasite types respond to temperature differently. We 
did not seek to fit more complex models by combining quadratic 
terms with interactions between climatic predictors and parasite 
types because that would have resulted in relatively small sam-
ple sizes in each of these categories across climate and weather. 
While we did not find conclusive support for an effect of ther-
mal mismatches in wild plant systems, our results suggest that 
only considering the temperature (or precipitation) that a wild 
plant–disease system is currently experiencing may be insuffi-
cient for understanding disease pressure. Instead, researchers 
of wild plant systems may need to also consider both nonlin-
ear effects of temperature anomalies and possibly interactions 

between these anomalies and their current weather or historical 
climates.

In agricultural systems, models with temperature predictors ex-
plained little additional variation compared to the null model 
without temperature predictors (Table  S2). However, the tem-
perature models were still more parsimonious than the null, 
and the top two models showed significant positive effects of 
monthly historical temperature and contemporaneous tem-
perature, respectively (Figure  3). There was also a significant 
effect of temperature anomalies, though this was mediated by 
an interaction with monthly historical temperature in the best 
model. This result, combined with the weak effects of annual 
historical temperature, suggests that warmer contemporane-
ous temperature leads to higher disease in agricultural systems 
in general. This effect may be explained by agricultural plant 
populations typically having comparatively short evolutionary 
histories in their present-day locations relative to wild systems. 
Additionally, they are frequently artificially selected for traits 
that enhance crop production and other human-preferred char-
acteristics (Yamasaki, Wright, and McMullen  2007), includ-
ing for disease resistance in light of climate change (Chapman 
et al. 2012). We note, however, that crop and forestry species and 
subspecies varieties are in part chosen based on their ability to 
grow and produce under a certain climate (Aitken et al. 2008), 
and gene flow from wild relatives can increase local crop genetic 
diversity (Hufford, Berny Mier y Teran, and Gepts 2019).

We hypothesised that the agricultural systems would generally 
be less adapted to and sensitive to local climatic conditions than 
wild populations because selection for human-preferred char-
acteristics may not be directly aligned with adaptation to local 
climate (Mourtzinis, Specht, and Conley 2019). The absence of 
evidence for thermal mismatches in agricultural systems sup-
ports this hypothesis. Instead, warm temperatures increased 
disease prevalence on average across all agricultural systems, 
and these increases were slightly larger for agricultural plants 
grown in warm climates compared to those grown in cooler cli-
mates (indicated by the positive interaction between anomalies 
and monthly historical temperature in best-fit model 3; Tables S2 
and S5). It is possible that differences in agricultural mechani-
sation (e.g., access to tractors; Daum and Birner 2020) underpin 
some biogeographic differences in the response of agricultural 
disease to weather variation. While we did not have fine-grained 
data to explore the potential effects of these factors here, it could 
be beneficial to incorporate socioeconomic data into future 
work that seeks to make more local-scale predictions of climate 
effects on agricultural disease.

Considering potential nonlinearities of host and parasite thermal 
performance from a more mechanistic standpoint may be benefi-
cial in both wild and agricultural systems. Mechanistically link-
ing host thermal performance curves (TPCs) to parasite TPCs in 
mathematical disease models can successfully predict how tem-
perature will impact disease systems (Kirk et al. 2020; Mordecai 
et al. 2017; Shocket et al. 2018). Indeed, this approach has shown 
that warming in a marine crab–barnacle host–parasite system 
led to local parasite extinction due to the host thermal optimum 
occurring at a warmer temperature than that of the parasite 
(Gehman, Hall, and Byers 2018). It is plausible that a number 
of plant–disease systems would follow the typical unimodal 
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pattern in which warming leads to increased disease up to a cer-
tain temperature but then depresses disease as the temperature 
warms beyond the thermal limits of the parasite. To test the gen-
erality of this pattern, however, researchers will need to system-
atically collect performance data at a range of temperatures for 
different plant hosts, plant parasites and plant–disease combina-
tions. These data could both parameterize nonlinear mechanis-
tic models to predict disease across temperature, as well as test 
the underlying assumptions of the thermal mismatch hypothe-
sis that most parasites have wider thermal breadths than their 
hosts. Some of these temperature-dependent data are already 
being collected: Chaloner, Gurr, and Bebber  (2021) used data 
from 80 fungal and oomycete crop pathogens to show that po-
tential crop yield gains in the future may be offset by increased 
disease risk under climate change. Eventually, even more com-
plex experiments may allow researchers to parameterize mech-
anistic models of how temperature anomalies affect a disease 
system: For example, a factorial design in which key rates (e.g., 
parasite growth rate and host mortality rate) are measured at 
different exposure temperatures for plants and parasites that 
have been adapted to different temperatures. Until these data 
are comprehensively collected across more types of disease sys-
tems, studies such as ours can provide general insights into how 
we may expect temperature to affect different broad groups of 
plant–disease systems.

The effects of precipitation unsurprisingly differed from those 
of temperature; however, one general finding was shared: pre-
cipitation effects were far more influential in wild systems 
compared to agricultural systems. Overall, precipitation effects 
were weaker than temperature effects, a result that has previ-
ously been shown experimentally for foliar fungal diseases in 
a wild alpine meadow system (Liu et al. 2019). In wild systems, 
precipitation effects did not explain as much variance in the 
data compared to temperature, with the precipitation fixed ef-
fects in the top model explaining 14% more variance than the 
null model compared to 22% for the temperature fixed effects 
(Tables  S2 and S3). The best performing model showed evi-
dence of a precipitation mismatch in wild systems, with nega-
tive effects of precipitation anomalies on disease in plants that 
typically experience high precipitation, but positive effects of 
anomalies for plants that typically experience low precipitation. 
This suggests that wild plants in historically wet areas will be 
more susceptible to disease under drought conditions, while 
wild plants from dry areas are more susceptible during periods 
of anomalously high rainfall. There are various plausible mech-
anisms for this, from direct impacts of water availability on 
pathogens (Desprez-Loustau et al. 2006) to effects of drought on 
plant defence (Bostock, Pye, and Roubtsova 2014). Mechanistic 
models connecting precipitation and plant–pathogen systems 
have successfully predicted the distribution of these pathogens 
(Thompson, Levin, and Rodriguez-Iturbe 2013), and collecting 
water availability–performance curves across more host–para-
site systems to then link them via mechanisms including para-
site dispersal, within-host growth, host defence, host physiology 
and phenology would help to parse how precipitation and pre-
cipitation anomalies impact more disease systems from different 
climatic zones.

In agricultural systems, precipitation variables explained little 
variation despite nominally performing better than the null 

model (Table S3) and revealed no strong relationships with dis-
ease pressure (Figure 4). This does not mean that precipitation 
does not affect disease in any agricultural systems but that at 
least in this cross-system dataset, the signal of precipitation ef-
fects was too weak or heterogeneous to detect. One plausible 
explanation for this is that farmer intervention can dramati-
cally impact the amount of water available to a plant–parasite 
system; for instance, some of the agricultural systems are likely 
irrigated, dampening variation in water availability due to rain-
fall, while other systems would not have benefitted from any 
irrigation or could even be drained by ditch systems to reduce 
saturated conditions. Because interventions like irrigation are 
not accounted for in our dataset, our measures of precipitation 
in agricultural systems may not accurately reflect the amount 
of water the systems experienced, leading to no signal being de-
tected in the data.

Projected effects of climate change on precipitation are more 
variable than those of temperature, with some areas likely to 
see large increases in rainfall while other areas experience sig-
nificant decreases (Collins et al. 2013). This variability suggests 
that plant disease prevalence will increase in some areas while 
decreasing in others, similar to projections for how changing 
rainfall patterns will alter distribution of human diseases such 
as malaria in West Africa (Yamana and Eltahir 2013) and chol-
era across Africa (Moore et al. 2017). Projections for how climate 
change will affect plant diseases will thus need to account for 
potential differences in how temperature and local precipitation 
patterns will change relative to each other. For instance, the 
downy mildew–grapevine system exhibits positive relationships 
between both temperature and disease and rainfall and disease 
(Salinari et al. 2006). Despite projected decreases in rainfall for 
the mildew–grapevine system's region of Italy, disease epidem-
ics are expected to increase because increases in temperature-
driven disease will more than offset any reduction due to 
decreased rainfall (Salinari et al. 2006). Future models that in-
corporate the direct and possibly interactive effects of tempera-
ture and precipitation alongside additional environmental axes 
(e.g., CO2, which can interact with temperature to regulate plant 
pest populations (Newman 2004)) are likely to exhibit increased 
predictive accuracy.

Our analysis gains strength from examining trends across mul-
tiple plant–disease systems; however, by doing so, we may mask 
important system-specific variation. Indeed, some plant–dis-
ease systems included from our systematic literature review are 
likely less appropriate for our analyses than others. For example, 
we did not have data for whether surveys of wild plant systems 
occurred in the native range for the plants, and therefore some of 
the wild plant systems may have had significantly longer periods 
to adapt to their current climate than others. Another example 
is that if a survey included a population of plants that can host 
long-term, chronic infections, it is possible these plants were in-
fected a considerable time before the survey began. In this case, 
the weather conditions during the survey would not be as in-
formative about the conditions when the plant became infected 
compared to plant systems that only exhibit infections over a 
short time. While we excluded surveyed populations that did not 
have current infections (e.g., those studies which were screened 
and included surveys showing insect or pathogen damage to a 
plant but not necessarily active infestations or infections), we 
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did not have data on prior infection status for most of the studies 
included in our analysis. Importantly, however, because we do 
not expect these studies to be biased towards warmer or colder 
weather, the inclusion of these studies may add noise to our re-
sults but should not bias them.

Though it is difficult to parse which exact biological mecha-
nisms underpin our results with many different types of host–
parasite systems included in our study, there are certain types 
of mechanisms that are likely at play. Desaint et al. (2021) have 
shown that elevated temperature impacts plant disease resis-
tance across the majority of different plant–pathogen systems 
investigated, with a variety of ways in which this can occur. For 
instance, temperature effects may alter plant development and 
metabolism (Yang et al. 2018) or plant cell physiology (Bita and 
Gerats  2013), while simultaneously increasing parasite repro-
duction rates or virulence (Desaint et al. 2021). Our temperature 
anomaly results showed that wild plants experiencing warmer 
temperatures relative to historic averages increase disease risk 
up until a maximum of 2.7°C warmer than typical, after which 
point higher temperatures will decrease disease. This suggests 
that on balance, anomalously warm temperatures up until 
2.7°C lead to key parasite rates such as reproduction or growth 
benefiting more than host rates (or, alternatively, suffering less 
costs than the hosts), while elevated temperatures past this 
level hinder the parasite more than it does the host. This type of 
overall nonlinear disease response is often seen in response to 
mean temperature in other types of host–parasite systems (e.g., 
mosquito-borne disease (Mordecai et al. 2019); water-borne dis-
ease in Daphnia (Shocket et al. 2018)), through which host and 
parasite trait responses are most important, will differ across 
plant–parasite systems. Some generalities are likely to exist: For 
example, transmission in plant–disease systems that require an 
insect vector will be strongly influenced by the thermal sensi-
tivities of that insect, while transmission in soil-borne systems 
may be somewhat buffered to changes in environmental tem-
perature. Moreover, features of broad taxonomic groups can also 
provide insights into the mechanisms underpinning climate ef-
fects on individual groups, such as evidence that fungi in soil are 
better adapted to cool temperatures than bacteria (Pietikäinen, 
Pettersson, and Bääth 2005).

Understanding how anomalous weather conditions in different 
climates mediate plant disease outbreaks is critical for antici-
pating and mitigating climate change impacts for agricultural 
and wild plant systems, which affect food security (Ristaino 
et al. 2021) and ecosystem integrity (Jiranek et al. 2023). Our 
results highlighting the impact of temperature and precipita-
tion anomalies suggest that the evolutionary history of wild 
plant–disease systems in their historical climate affects vul-
nerability to disease. Agricultural systems, which have typi-
cally had a shorter evolutionary history in their present-day 
locations, are vulnerable to pathogen outbreaks under warm 
conditions regardless of historical climate or anomalous con-
ditions, but all weather effects were relatively weaker in these 
systems. These data-driven conclusions identify general pat-
terns that may apply to understudied systems under anoma-
lous weather and climates. More broadly, our results spotlight 
the need to study potential disease outbreak effects driven by 
climate change on biodiversity in wild plant systems, effects 
which may need to be considered alongside effects of other 

global change drivers such as habitat loss simultaneously 
(Laine 2023).
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