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Abstract

In this paper we give a mathematical statement of a differential spatial monopoly
wherein transactions are facilitated by a freight transportation network that is based
on an underlying graph. The monopolist has a presence at every node, and freight
services are available for paths connecting stipulated origin-destination (OD) pairs.
The monopolist produces a single homogeneous product that may be manufactured
and inventoried, as well as sold, at every node. The dynamics take the form of or-
dinary differential equations that describe flow conservation. We present the neces-
sary conditions of the monopolist’s optimal control problem and observe their inter-
pretation is that marginal revenue equals marginal cost at each node for each instant
of continuous time. Existence of an optimal solution to the monopolist’s problem
is proven and a numerical example solved using two algorithms: one implemented
in discrete time and the other in continuous time.

Keywords Spatial monopoly - Network monopoly - Differential game

1 Introduction

In this paper, we consider a differential spatial monopoly involving multiple sales,
production, and inventory facilities located at the nodes of a transportation network
based on a graph, where A4 is the set of arcs and A/ is the set of nodes. The monopo-
list we study has a presence at spatially separated consumption sites (nodes) of a
network economy for which the consumption sites are connected by a freight trans-
portation network. The monopolist produces a single homogeneous product that is
sold in a conventional retail setting at the consumption sites. In our presentation, for
simplicity of notation, we assume every node is a consumption/production/inventory
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site.! That is to say, the monopolist has the ability to not only produce and price but
also to position, reposition, and hold inventory at all nodes of the transportation net-
work. The market for freight services is assumed to be perfectly competive because
freight agents are numerous in that they serve many other clients competing in mar-
kets unrelated to the monopolist’s output market; thus, the monopolist is a price taker
in the market for freight services needed to transport its goods between nodes, but it
is not a price taker in the markets that sell its output. In fact, the monopolist sets the
allowed consumption levels of its output to its advantage, so that, via market-specific
(node-specific) demand functions, it is setting prices for its output. These allocations
of output to consumption are intrinsic to the dynamic monopolist we model within
the network economy of our interest.

The time scale is long enough for the monopolist to use inventory-based strategies,
but short enough that relocation or expansion/contraction of the monopolist’s pres-
ence cannot occur. We refer to a monopoly possessing the aforementioned features
as a differential multiplant monopoly on a freight network (DMMEFN). It was first
formulated by Friesz (2010) under the assumption of separable variable costs, which
is relaxed herein. Friesz (2010) provided neither an analysis/interpretation of neces-
sary conditions nor a proof of existence, both of which are included in this paper for
the first time. We also comment that the DMMFN is crudely similar to the model
suggest by Dasci and Laporte (2004), which emphasizes travel to stores to purchase
consumer goods.

In general, the scholarly literature on dynamic (differential) monopoly is not an
energetic field of inquiry at the present, with most papers having appeared roughly
20 to 40 years ago. Among these Gul et al. (1986) is notable for being significantly
mathematical and highly cited, although it does not address spatial or network con-
siderations. More recent works dealing with monopoly in a spatial and/or network
context include Bensaid and Lesne (1996), Lambertini and Orsini (2007); Zaker
(2012), Bensaid and Lesne (1996); and Li (2021).

2 Monopoly in a Network Economy

We imagine a network based on an underlying graph that connects each production
node i to each consumption node j by at least one path p € P;;, where P;; is the
set of paths connecting origin-destination (OD) pair (i, j). A path is comprised of a
sequence of arcs for which freight services are available at a fixed tariff 7i; for ship-
ment rates Sij of the monopolist’s single homogeneous output between OD pair (3, j).
The following identity applies:

PEP;;

where h,, is the departure rate for path p and )V is the set of all OD pairs, while Si;
is the departure rate for shipments between (i, j) € W. As already stated, the firm of

!'This assumption may easily be relaxed.
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interest has a presence at all the nodes of a transportation network, for which there
are paths used by shipping agents to satisfy the monopolist’s demands for freight
services. Time is denoted by the scalar ¢ € R, fixed initial time by ¢, € R, fixed
final time by ¢, € R}, with ty <1 so that ¢ € [to, ¢;] C R}. There are three sets
important to articulating our formulation of differential spatial monopoly; these are
as follow: A for directed arcs, A/ for nodes and )V for origin-destination (OD)
pairs. Subsets of these sets are formed as is meaningful by using the subscript i for
a specific node and jj for a specific OD pair (i, j).Our perspective, in that we are
concerned with inventory and shipping decisions, has much in common with the
logistics and supply chain literature but is without concern about the arrival times of
shipments; rather, we assume all dispatched shipments ultimately reach their destina-
tions and backorders are allowed in the form of negative inventories and virtual OD
flows that become real when either output and/or positive inventory allows. Explicit
delays of goods enroute can be accomodated using the more complicated mathemati-
cal apparatus developed in Friesz and Lin (2024a) and its application to differential
spatial monopoly is the subject of separate manuscripts (Friesz and Lin 2024b, c).
One may additionally expand the network detail in the model presented herein to
reflect shipping routes (paths) in detail. The routing of goods as well as the transport
costs incurred in meeting product demand would serve to make the connection to
logistics and supply chains complete, since routing is always a logistical consider-
ation. Moreover, by using a bilevel formulation one could design any desired aspects
of a logistical network in light of commodity prices (as determined by our model of
monopoly) and their fluctuations, thereby providing valuable strategic insight. How-
ever, these refinements and extensions are not within the scope of the present paper.

The firm controls production output rates expressed as a vector g, allocations of
output to meet demand (consumption) expressed as a vector ¢, and shipping patterns
expressed as a vector s. Inventories / are a vector of state variables determined by the
controls. That is:

ce (L2[to, ts])™ )
g€ (L [to, t))™ 3)
s € (L [to, /)" 4
I(e.q.s): (L fto, )™ x (L2 [t )™ x (L2 [t 1)
w ©)
— (M [to, tf])
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766 T. L. Friesz

where L? [t, t/] is the space of square-integrable functions and H' [ty, ¢/] is a Sobo-
lev space for the real interval [¢y, t;] € R..

3 The Network Monopoly’s Extremal Problem

Let us define the inverse demand for our single good at node i € N to be ; (¢, t)
where ¢; is the consumption rate and

c(t)=(ci(t):i€N) (6)

The firm has the objective of maximizing net profit expressed as revenue less cost
and taking the form of an operator acting on production rates, shipment patterns and
consumption rates. For simplicity we imagine that the monopolist operates at every
node and that every node is a market for the firm’s output. That is, the firm’s net profit
is

Jo(c,q,8) = /tf e Pt {Z mi (¢ t) e — Vg, t)

ieN
— Z Tij Sijg — Z d)i([’iat) dt (7)

(i.5)ew ieN
where p € R! is a constant nominal rate of discount, 7ij is the fixed exogenous
freight rate (tariff) charged per unit of flow Sij for OD pair (i,5) € W,
1/J2' : Hl [t(), tf] — 7‘[1 [t(], tf]

is the firm’s separable inventory cost at node i, and I; is the inventory/backorder
volume at node i. Furthermore, ¥(q, f) is the monopolist’s cost of production as a
function of the vector g of outputs at its nodal locations:

Vig,t) : (L2 [to, t/])™ x RL — H'[to, ¢/]

Output at node 7 € N will subsequently be denoted by ¢i. In Eq. 7, ¢; is the rate of
consumption at node i. Our formulation is based on inverse demand functions:

T (Cz',t) : LQ [t(], tf] X %i — Hl [t(),tf]

Note that J(c, g, s) is a functional that is completely determined by the controls
(¢, q,s). The first term of the functional J(c, ¢, s) in expression Eq. 7 is the monopo-
list’s total revenue; the second term is the monopolist’s cost of production; the third
term is its shipping cost; and the last term is its inventory or backorder cost.We also
impose the terminal time inventory constraints
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Lt)=K, YieN (8)

where the K; € R, are exogenous. All consumption, production and shipping con-
trol variables are non-negative and bounded from above. That is

C>c>0 ©)

Q>q>0 (10)

S>5>0 (11)
where

Ce %‘f‘

Qe §R\F\

S e

are known constant vectors. Constraints Egs. 9, 10 and 11 are recognized as pure con-
trol constraints, while Eq. 8 are terminal conditions for the state space variables.The
inventory dynamics, expressing simple flow conservation, obey

al; .
i qL+ Z Z sij—¢ YieN (12)
(da)ew J:(i,5)EW
Lit) =1 VYieN (14)

where every I € R! | and every Iz.f € R! , are exogenous. We will view the vector
of inventories as the the following operator:

Heao=md = gr 3 5o ¥ -

J:(j)ew Ji(i.)ew
Li(to) = I, I; (ty) = K;,Vi € N'}(15)

where we have assumed that the dynamics have solutions for all feasible controls.
Thus, the monopolist solves the following optimal control problem:
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768 T. L. Friesz

tf
max Jy(c,q,s) = / e mi(c,t)e; — Vig,t
o(c, g, 8) 5 [ > milest) (g:1)

ieN
— Z Tij Sij — Z wl(IJ dt (16)

(i,j)ew ieN

dl; ‘

g q,+ Z Z sij—c YieN (17)
(J.)ew Jiij)ew
Lit)=1" VieN (18)
Lt)=K YieN (19)
(c,q,8) €Q (20)
where

Q={c,q,s:(9),(10),(11)} 21

In the event the state operator is used to rewrite Egs. 16-20, we obtain this infinite-
dimensional mathematical progamming formulation of the monopolist’s problem:

tf
max Jy(c, ¢, 8) = / e [Z mi (e, t) e — Vg, t)

to ieN

= Y = Y willieq,9) | dt (22)

(i,)eW ieN
(c,q,8) €Q (23)
This infinite-dimensional mathematical programming form of the problem is useful

for the study of the continuous time algorithms for the application studied herein,
especially convergence, as documented in Friesz (2010).

4 First Look at Necessary Conditions
In this section we are concerned with the technical chore of expressing the necessary

conditions for an optimal solution of the monopolist’s optimal control problem. After
the necessay conditions have been stated, we will turn to the task of giving them an
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economic interpretation for certain special cases, as well as the general case. We
begin this process by articulating the Hamiltonian for the monopolist’s optimal con-
trol problem; the relevant Hamiltonian is the following:

HU = €7ﬂt Z T (Ci N If) C; — V(q, t)— Z Tij Sij — Z %(1)

ieN (i,j)eEW ieN

+ Z )\ q; + Z Z Sij — Ci
ieN J:(ji)ew J:(i,5)EW

+ ) i e L () — K]
1eN

+ Z [ai (—Ci) + B (Cl‘ — CL)}
eN

+ Z [vi (=qi) + G (@i — Q)]
ieN

+ Z 771] 91] + fij <92j Sm)] (24)
(i,5)eW

where )\; is the adjoint variable associated with each of the state dynamics Eq. 12, for
all 4 € N. The adjoint variables obey the adjoint equations and associated terminal-
time conditions known as the transversality conditions; these are

dv  0Hy ow(l)
&= oL = ol Vie N (25)

)\ (t/) (U 67',}[’f [L (t/) — K7] = ef""fvi Vi € N (26)

3}
01, (ty)
The maximum principle requires that the Hamiltonian be maximized with respect

to the control variables. As such the following Kuhn-Tucker conditions, including
complementary slackness for control constraints apply:

0H, omi(ci,t) ¢

— P S W S= j 2
9, e o, Ai—a;+8i=0 VieN 27)
6, <Ci — C,) =0 6, >0 ¢ — Ci <0 Vie N (29)
H ,
0 0:—e_pta‘/(q,ﬂ-‘r)\,j—’}/,;-i-Q:O Vie N (30)
9q; 9q;
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Y%gi =0 %>0 ¢>0 VieN (31)
Gl —Q)=0 (20 ¢—-Q;<0 VieN (32)

OHo _  _p . . y P ; i S(id
asz_j——e T+ AN =N =+ =0 YieN, jeEN:(i,j)eW (33)
NiiSi; =0 m; >0 s;>0 V(i,j)eW (34)
pij (sij —Si) =0 p; >0 s, —S85;<0 VY(i,j) eW (35)

In the above, the ; and the §3; are dual variables for the lower and upper bounds on
the consumption rates ¢;, respectively. Similarly, the Vi and the ¢; are dual variables
for the lower and upper bounds on the production rates ¢i. Moreover, the 7i; and the
Hij are dual variables for the lower and upper bounds on the shipment rates S;.To
understand the form of Eq. 33, consider the expression

My = Z Ai Z Sji — Z Sij | s (36)

ieN 7:(j,i))ew j:(i,5)EW

which allows the Hamiltonian to be restated as

Hy= My+e™ Zm (¢i t)ei— Vg, t)— Z Tij Sij — Z i(1;)

ieN (i,7)eEW ieN
+ D v e K = L)
ieN
+ Z o (—Ci) + B (Ci - Cz)
ieN
+3 I (=) + G (g — Q)]
ieN
+ 3 g (=sig) + g (s — Sig)] 37)
(i.5)eW

Note that M, itself may be restated as

A{U = Z )\z' Z Sji — Z Sij (38)

ieN Ji(Gi)ew Ji(i.4)ew
=D > Nsim Y, D Ay (39)
ieN j:(j,i)ew ieN j:(i,j)eEw
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=D D Asim DL D Asy (40)

JEN i:(i,f)ew €N j:(ij)ew

In deriving Eq. 40, we have taken into account that there are no free indices in M,
so we are free to swap i and j, as has been done in the first term of Eq. 40. It is then
clear that

OM,
Osp

=N—-X V(k1)ew 41)
from which Eq. 33 follows immediately.

4.1 Interpreting the Necessary Conditions for a Special Case

To gain insight into the necessary conditions, we consider the special case of no bind-

ing nonnegativity constraints and no binding upper bound constraints on the control
variales (c, ¢, s). That is, we stipulate

C c 0
Ql>1qg]>1|01, (42)
S s 0

which, by virtue of the complementary slackness conditions Egs. 28, 31, and 34,
requires the following:

O[,Zﬂ,z’)/,zc,:() Vie N (43)
nij=pi; =0 VieN,jeNand (i,j) e W (44)

It then follows from the Kuhn-Tucker identities Eq. 27, 30, and 33 that

0Ty (45)
8Ci
otV a<;1 D_\ vien (46)
—e i+ N =N =0 VieN,jEN:(i,j)eW 47)

From Egs. 45 and 46, we see immediately that marginal revenue equals marginal
cost, in present value terms, at each node where the firm operates:
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(97'(,,' (Cz‘ 5 t) C; B 67[}75(9‘/ (q s t)

=t
MR, =e ac, 94

=MC, VieN (48)

It is clear from Eq. 48 that the monopolist’s total marginal revenue equals total mar-
ginal cost across all nodes, again in present value terms:

_ omi (e, ) _ aV (q,t)
_ t i\Ci, i t ) _
MR=¢e" Z 9o =eF Z = MC (49)
ieN ieN
We also note that Eq. 47 may be restated as
)\j :)\i+€7pt7”i‘j Vi EN,j ENZ (Z,]) ew (50)
Because of Eq. 46, this last expression is equivalent to

MC;=MCi+e Pryy VieN,jeN:(i,j)eW (51)

Expression Eq. 51 is most easily understood by recognizing that e *'r;; is the mar-
ginal transportion cost for OD pair (i, j), whose transportion cost is e *r;;s;; in
present value. It then becomes apparent that Eq. 47, because of its equivalence to Eq.
51, is a statement that the marginal cost of production at the destination (j) will equal
the marginal cost of production at the origin (i) plus the marginal cost of delivery to
the destination (j) when transportation expenses are given consideration; as such, Eq.
51 is a condition of spatial equilibrium among the monopolist’s spatially separated
production facilities. Clearly, Egs. 48 and 51 may be expressed in current value terms
upon multiplication by exp(pt):

MR; = MC; VieN (52)
MC;=MCi+r; VieN,jeN:(i,j)eW (53)
where the overbar denotes current value.
4.2 Understanding the Necessary Conditions for General Circumstances
Again we appeal to the Kuhn-Tucker identities to gain an interpretation of the neces-

sary conditions for general circumstances. In particular, Egs. 27, 30, and 33 may be
casily restated as

E)m (C, .,t

>C’f:Ai—ai+@- Vie N (54)
8@
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0%8(5715):)\1__%+Q Vie N (55)

Ai+1ij =N — M+ g ViEN,jGNZ(i,j>EW (56)

The entities @, Vi, and 7ij are multipliers associated with nonnegativity and will be
nonzero only when the rates ¢i, ¢i, and Sij are respectively zero. They are the non-
negative shadow prices associated with each nonnegativity constraint. These shadow
prices are governed by the complementary slackness conditions Egs. 28, 31, and 34.
As such, when ¢; = 0 the marginal cost M C; is potentially less than when ¢; > 0.
Analogous statements may be made for vanishing production rates and vanishing
shipping rates.The entities 5;, (;, and Mij are shadow prices associated with upper
bounds and may be nonzero only when ¢; = C;, (; = @, and p;; = Sjj, respec-
tively. As such, when ¢; = C; the marginal cost M C; is potentially greater than when
¢; < C;. Analogous statements may be made about production rates at their upper
bounds as well as shipping rates at their upper bounds. These observations along with
those of the preceding paragraph make the right-hand sides of expressions Eqs. 54-
56 effective marginal values that have been adjusted by the relevant shadow prices.

4.3 The Adjoint Equations

The adjoint variables must obey the adjoint equations and the transversality condi-
tions, as is well known for optimal control problems with a terminal-time constraint?:

d  0Hy
= or =0 VieN (57)
o)
A(ty) = o1 =v YieN (58)
= A\ (t;) = v;, a constant Vi € N (59)

If we assume that inventory holding and backorder costs are zero (or fixed), then a
significant simplification results; namely

o) ,
o = 0 VieN
and the adjoint variables obey
d\i  OHy )
&~ ol =0 VieN (60)
)\z’ (tj) =V; Vi EN (61)

2See, for example, Friesz (2010).
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implying that

A (t) = v;, a constant Vi € N, t € [to, t/] (62)

4.4 Characterizing Shipping Rates via the Maximum Principle

Based on Eq. 41, the Hamiltonian H,; may be expressed as

Hy = Z (—T‘r,[j + A =N =i+ ,u,;j) Sij
1EN JEN:(i,j)eEW

+e Z mi(ciyt) e — Vilg,t) — Z villi)

ieEN ieEN
+ Z v [Kz — [i (t/t)]
ieN
+ 3 lai(—a) + Bilei — C)]
ieN
+ 3 i (=) + G (g — Qi) (63)
ieN

In light of Eq. 63, the maximum principle of optimal control requires, for all
(i, ) € W, that the shipping rates obey

Siof =i A = A= 1+ g >0
= 0 if —Ti; + )\j — X — Mij + iy <0 (64)

!
oMM G e A= N — i iy =0

SU

for all 4 € AV and j € N such that(s,j) € W. Of special interest is that, if

=7y + Aj — X — ni; + pi; = 0 occurs only for a finite number of instants of time,
then there is no notion of a singular control *}“gul‘“ If there is a dense arc of time for
which —r; +A; — Ay — ny; + pi; = 0, a singular control must be determinined. The
absence or presence of singular controls may be confirmed by numerical solution
techniques. We note that, due to Eq. 64, the following holds:

d d\, d\, 0H, 0H,
=T+ A= Ai — i )= — = - =
dt( Tij A i ) dt dt oI, oI, 0 (65)

Let us assume that inventory holding and backordering costs are quadratic in own
inventory, which is expressed as

i) = (L (1), (66)
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where the L; € §R1+ for all € N are known constants. Then, from Eq. 65, we have
the following:

0Hy O0H, L;
ol; ol; ' I L’ (67)

Thus, we conclude singular shipping rates necessitate constant proportionality of
associated inventory levels for a dense arc of time. If that proportionality does not
arise, singular shipping rates cannot occur. This is borne out by the numerical exam-
ple presented in Section 6.

5 Existence

We rely on a result from Clarke (2013) to establish the existence of a solution to the
spatial monopolist’s problem.

5.1 Technical Background

Let us consider the following abstract optimal control problem:

min J (u) =¥ {x (to),x (tfﬂ + /t ! fo(z,u,t)dt (68)
CZ =go(z,t) + Z gj (z(t),t) u () ae. (69)
u(t) eU(t) ae. (70)

(@(t), 1) €Q Vteltoty], (x(t),z(ty) € E (71

Clarke (2013) proves the following existence theorem® for formulation Egs. 68-71:

Theorem 1 [Clarke (2013)] If the following regularity conditions are satisfied and
there is at least one admissible solution for which J(u) is finite, then there exists an
optimal solution to Egs. 68-71:

(a) Each 9j for 7 =0,1,...,m is measurable in t, continuous in x, and has linear
growth. That is, there exists a constant B such that

3See, in particular, Theorem 23.11 on page 481.
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(z,t) € @ =g, (=, 0)] < B(1+[x]) (72)

where |z| is the Eucliden norm of z;
(b) For almost every t, the set U (t) is closed and convex;
(c) The sets E and Q are closed, and V |x (1)) ,x gf 1) | is lower semicontinuous;
(d) The integrand fo(x, u,t) is Lebesgue-Borel (LB) measurable* in t and (x,u), as

well as lower semicontinuous in (x,u). Furthermore, the integrand f; (z,-,t) is
convex for each (x,t) € Q, and there is a constant Wo such that

(x,t) € Quue U(t)= fo(x,u,t) > wpy; (73)

(e) The projection onto E denoted as
{a € R": (a,b) € E for some b € "} (74)

is bounded; and
(f) There exists K (t) such that

u € U (t) = |Ju|| < Ky(t) for almost every ¢ (75)

5.2 Existence of an Optimal Solution

Let us restate the monopolist’s problem Egs. 16-20 as a minimization problem:

tf
min Jy(c, ¢, 8) = /

to

ot [V(q, O+ > rgsi+ > L) = Y mile,t)cl| dt (76)

(i.j)ew ieN ieN

C;? =g+ > si— Y, sj—¢ VieN (77)
J:GA)Ew Jii.)EW

Lit)=1I" VieN (78)

Lt)=K,  VieN (79)

(c,q,8) €Q (80)

4 Definition 6.33 of Clarke (2013) defines LB measurability.
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We will use Theorem 1 to establish existence for Egs. 76-80:

Theorem 2 Existence of an optimal solution (c*, ¢*, s*) € 2 for the monopolist. We
stipulate:

(i) || < B(1+ |1|) for the linear growth condition;

(i) U =Q;

(iii) (1 (to) , I (tf)) € E = N, (Iy) with r defined by Eq. 82 for ¢ > 1;

(iv) V (g, t) is LB measurable, lower semicontinuous, and convex;

W v L’f&ff?l = S e (K~ L)

(vi) each ;(1;) is LB measurable, lower semicontinuous, and convex;

(vii) each —m; (¢; ,t) ¢; is LB measurable, lower semicontinuous, and concave; and

(viti) fo (I, ¢, q,5,8) = = 3o i (0, 1) @ = wy If there is at least one admissible
solution of Egs. 76-80, then there is an optimal solution to the monopolist’s opti-
mal control problem Egs. 76-80.

Proof When the restated monopolist’s problem Eqgs. 76-80 is considered from the
perspective of Theorem 1, the following observations may be made:

(a"): To apply Clarke’s result to our problem, we take go (z,¢) = 0. We also take
u; = (¢, Gis Sjir sij  J €N)

so that each 9; will be a vector comprised of +1 and 0 entries in order to repli-
cate the monopolist’s state (inventory) dynamics. Because, each of the monopolist’s
control variables are bounded from above and below, inventories will be finite for
all t € [to, ty]; let ™" represent the minimal inventory for each i € A/ of the monop-
olist’s problem. We select B such that

< B (1 + \/[fi“i“]Q T [IMD
sl s (l i \/Hl (@ + .+ [l (t)]Q)

where 1,, is a vector with n entries, all of which are 1, with |1,| = \/n being its
Euclidean norm. Naturally, n = 2|A|+ |W)|, the number of control variables
available to the monopolist. Since each 9J;, as noted above, will contain some 0
entries, |g; (z, t)| < |1,| . From (1) we have immediately the linear growth property.

(81)

(b'): Our set of control constraints [/ = () is defined by expression Eq. 21. By obser-
vation () is closed and convex.

(c): We note there are no state-space constraints (Q is vacuous). Moreover, I; ({y) and
Ii(ty) are fixed for all i € N. Hence,

(I (to), I(ty)) € E = B, [I(to)]
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778 T. L. Friesz

where E = B, [I (t)] is a closed ball centered at I (t,) with radius . That radius is
determined by

: 2
r= ¢\/[[1 (tr) = T (to)* + ..+ [T (tf) — T (t0)] (82)
where ¢ > 1. We also note that the terminal cost

vl (t)] = 2 v e [ = Lifty) (83)

arises from pricing out the terminal inventory constraints using the dual variables
v; for all 5 € N/, as reflected in the Hamiltonian Eq. 24. By observation Eq. 83 is
];, continuous in I, (t7), and has no dependence on any initial inventory

w1 gt
level I; (t). Since W [I (t f) is continuous, it is lower semicontinuous.

(d"): Since the costs of production, shipping, and inventory holding are positive, it is
clear that the integrand of Eq. 76 obeys

foll,c,q,8,t) =V(g, t)+ Z Tij Sij + Z wi(I;)

(i,5)eEW ieN
—Zm(ci.,t)cz:z—Zm(cm)qz (84)
ieN ieN
— Z v ( c? , t) (:? = wy, a constant,

ieN

where ¢” = (¢! : i € ) is the global minimizer of — > ;.\ 7 ( ¢i,t)¢; subject to
C; > ¢; > 0 for all ; € A/. This demonstrates the inequality

Jo(z,u,t) > wo (85)

required for the application of Theorem 1. Moreover, the integrand fy(z, u, t) will
be Lebesgue-Borel measurable in ¢ and (z,u) = (I, ¢, q, s), as well as lower semi-
continuous in (x,u) = (I, ¢, g, s), if we make these quite mild assumptions: V' (g, t),
along with v;([;) and 7; ( ¢;,t) ¢; forall i € A/, are individually LB measurable and
lower semicontinuous. The convexity of fo(I,-, -, ) is assured by assuming the
¥;(I;) are convex for each i € N

(e"): By virtue of how we constructed E = B, [ (ty)], any projection onto it is
bounded.

(f): We note that u = (¢, ¢, s) € Q = U is bounded for almost all ¢ € [t, ;] because
Q) includes fixed bounds on all control variables. That is, there exists K, € R,
such that for
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IV VI Wi

lull = | > () +Z g)+ Y (si) < Ky (86)

i=1 (i-4)=1

for almost every t € [to, t/].
Hence, all the conditions for the application of Theorem 1 are satisfied and exis-
tence is proven.

6 Discrete Time Approximation

We note that Egs. 16-20 may be solved in a number of ways, although direct appeal
to the necessary conditions is unlikely to be successful for general networks due to
the large number variables. Furthermore, since there are no time shifts and the state
dynamics are linear in the formulation proposed above, time discretization in con-
junction with finite dimensional mathematical programming is especially appealing.
To this end we construct a discrete time approximation of Egs. 16-20:

C q, S — Z e Pl { Z T [Ci (tk)}cz' (tk)_ V[q@kﬂ

k=0 eN

- Z Tij Sij tk Z¢z z (87)

(i.)ew ieN

Li(te) = L (1) = qi (te) + Z sji (tk) — Z sij (b)) — i (t) Vi e NVk e [1,N](88)

(4,1)eW (i.5)eW
where we define
tr = to + kAL

and N is the number of discretizations, defined by

ty — 1o

N =
At

Lt)=1" Vie N (89)

4
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Table 1 From-To Array Repre-

Arc Name From Node To Node Shipping Variable
senting Example Network

1 1 2 S1
2 1 3 52
3 2 3 S3
4 2 4 S4
5 3 5 S5

Table 2 Controls and states for example

Controls States

C1 &) C3 Cy I 1 I 2 I 3 I 4
q1 q2 q3 q4

S1 59 S3 S4 S5

Furthermore

:<Ci<tk>i 7 GN)
¢ =(qtr):i€N)
s" = (

c=(:kell,N)
q= (qk C ke [1,N})
s=(s": ke[, N])
so that we may write
C>c>0 (90)
Q>q=>0 o1
S>s5>0 (92)

6.1 Numerical Example

By assuming the monopolist’s variable costs are additive and separable we are able to
adapt the numerical example found in Friesz (2010) to the present model formuation
for DMMFN. To that end, let us consider a network of 5 arcs and 4 nodes for which
the single firm of interest has activities located at each node ¢ = 1, 2, 3, 4. We assume
that the production cost function has the form

Vi)=Y Vila) (93)

ieN

Consumption of the firm’s output potentially occurs at every node; this consumption
may be of local output or of imported output as the network topology permits. Table
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1 depicts the 4 node, 5 arc network of interest as a from-to array. The time interval of
interest is [0, 10]; that is 5 = 0 and ¢; = 10. Before time discretization there are 13
controls and 4 state variables associated with this example; these are listed in Table
2. At time t; = 0, the initial inventory at each node is

L(0)=5 (94)
1,(0) =3 (95)
15(0) = 2

1,(0) =0 06)

In addition, we impose the condition that no backordering is allowed by any firm at
any node at the terminal time ¢y = 10. That is

L,(10)=0fori=1,2,3,4 (97)

The inventory dynamics are the following flow balance equations:
dl

dt =q1—81—85—0
(iilf =@+ —8—5—C
U =gt satsy—s5— 03
ij[; =q4+ S84+ 85— ¢4

We assume the inverse demands at each node take the following form:

milen, £) = 4(11 — e1) exp <4’50> (98)
Tolennt) = 3(11 — ¢) exp (:;o) (99)
a(ent) = 35(11 — c3) exp (3’;) (100)
(e £) = 25(11 — c) exp <2t5) (101)

The individual terms of the production cost function Eq. 93 are the following:

2

Vilar) =29 (102)
@
Valgo) = 0.7 (103)
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2
Vi(gs) =4 24
We assume the holding costs are

IQ
Ui(f) = 21

IQ

Ua(l) =107

]2

V3(l3) =3 23

I?

Py(ly) =4 24

We assume that the freight tariffs for each arc are the following:

=

(104)

(105)

(106)

(107)

(108)

(109)

(110)

(111)

(112)

(113)

(114)

——
—a—,
J—— |
_Q_I4

rHr =o
o = 2
rs = 3
rqy = 2
s = 4
Fig. 1 Inventory Dynamics 6r
54
ne
> N
L
c
2
£ 24
1k
04
-1
0 2
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Fig.2 Production Rate

Fig. 3 Consumption Rate

Fig.4 Freight Flow

Production Rate

Consumption Rate

Arc Flow

—e—0d,
—a—d,
—a—q,
——q,

Time

25

Time

—— S
—a—s,
—A—s,
——s,
S,

@ Springer



784 T. L. Friesz

Fig.5 Price
[0
S
a
Fig. 6 Inventory Dynamics 6r
—— |,
5¢ —. l2
—_— |3
4l —,
> 3
o
€
[
>
£ 24
1k
04
=1 ]
0 2 4 6 8 10

Time

We impose the following upper bounds on control variables:

5 5 10
10 2 10
¢= 10 Q= 5 9= 10
S S 10

Nonnegativity is also enforced. The individual firms’ criterion functional is easily
stated by substitution of the above information into Eq. 87.

6.2 Solution by Discrete Time Approximation
We solve the monopolist’s problem corresponding to the details presented in Section
6.1 using a discrete time approximation with N = 10 equal time steps. In our calcu-

lations we allowed GAMS/MINOS to solve the specific instance of Eq. 87 through
Eq. 92 corresponding to the data we have given. The solution time for this example is
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Fig. 7 Production Rate 6r
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Fig. 8 Consumption Rate
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Fig.9 Freight Flow
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Fig. 10 Price

Price

approximately 2 cpu seconds on a Pentium® 4 single-processor computer. The results
are presented in Figs. 1, 2, 3,4 and 5.

6.3 Solution by Continuous Time Gradient Projection

We also solved the example using the continuous time gradient projection method, as
presented in Friesz (2010). We calculate 40 values of the gradients and then construct
a 6-th order polynomial approximation of each as a smooth function of time. The
algorithm is implemented in MATLAB and the solution time for the example pre-
sented is approximately 10 cpu seconds on a Pentium® 4 single-processor computer.
The results are shown in Figs. 6, 7, 8, 9 and 10. The gradient projection algorithm
is articulated below in terms of the state and control vectors specific to the example
problem:
Gradient Projection Algorithm

Step 0. Initialization. Set % = () and pick ¢! (¢), ¢” (¢) and s (¢) for i = 1,2,3,4.
Step 1. Find State Trajectory. Using current controls, solve the state initial value

problem
dr : ; g i
e o B U
6;;2 =g +si—sy—si—c L(0)=3
’fi[* =5+ 85+ 85— 55— ) I(0) =2
dl} g ’
i = qi + sk + st — ok I4(0) =0

and call the solution I} (), I% (t), I} (t) and I} ().
Step 2. Find Adjoint Trajectory. Using current controls and states, solve the adjoint
final value problem
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(=1) % = exp(—pt)(IF) M (10) = vIf(10)
(=1) %2 = exp(—pt)(1015) As(10) = vI}(10)
(=1) % = exp(=pt)31§)  A3(10) = vI}(10)
(=1) % = exp(=pt)(4Lf)  Ma(10) = 0If(10)

picking the dual variable v to enforce zero inventory at the terminal time; call the
solution ¥ (¢), Ak (), Ak (¢) and A (2).
Step 3. Find Gradient. Using current controls, states and adjoints, calculate

By OH(IFuF ) _ 0fo(I*ub) o T of (1" u)
v“J(u ) - ou 0 ou ()\ ) ou
where
Ck‘
u=| ¢
sk

and H (I,u, A, t) is the relevant Hamiltonian for this problem.
Step 4. Update and Apply Stopping Test. For a suitably small step size 6, update
according to

1= PU [Uk - HkVJ (uk)]

where Py denotes the minimum norm projection of the vector u onto the feasible set
U. If an appropriate stopping test is satisfied, declare

u* <t) ~ uk+1 (t)

Otherwise set k = k + 1 and go to Step 1.

7 Conclusions

We have shown that the version of dynamic network monopoly addressed herein
combines explicit dynamics, nonlinearity, and computational tractability. Its solu-
tions have a marginal-revenue-equals-marginal-cost interpretation, just as one would
intuitively expect. Moreover, we have proven solutions exist under plausible, check-
able regularity conditions. We also found the model to be highly computable, easily
yielding numerical solutions using both discrete-time and continuous-time solution
schemes.
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