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Abstract
In this paper we give a mathematical statement of a differential spatial monopoly 
wherein transactions are facilitated by a freight transportation network that is based 
on an underlying graph. The monopolist has a presence at every node, and freight 
services are available for paths connecting stipulated origin-destination (OD) pairs. 
The monopolist produces a single homogeneous product that may be manufactured 
and inventoried, as well as sold, at every node. The dynamics take the form of or-
dinary differential equations that describe flow conservation. We present the neces-
sary conditions of the monopolist’s optimal control problem and observe their inter-
pretation is that marginal revenue equals marginal cost at each node for each instant 
of continuous time. Existence of an optimal solution to the monopolist’s problem 
is proven and a numerical example solved using two algorithms: one implemented 
in discrete time and the other in continuous time. 

Keywords  Spatial monopoly · Network monopoly · Differential game

1  Introduction

In this paper, we consider a differential spatial monopoly involving multiple sales, 
production, and inventory facilities located at the nodes of a transportation network 
based on a graph, where A  is the set of arcs and N  is the set of nodes. The monopo-
list we study has a presence at spatially separated consumption sites (nodes) of a 
network economy for which the consumption sites are connected by a freight trans-
portation network. The monopolist produces a single homogeneous product that is 
sold in a conventional retail setting at the consumption sites. In our presentation, for 
simplicity of notation, we assume every node is a consumption/production/inventory 
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site.1 That is to say, the monopolist has the ability to not only produce and price but 
also to position, reposition, and hold inventory at all nodes of the transportation net-
work. The market for freight services is assumed to be perfectly competive because 
freight agents are numerous in that they serve many other clients competing in mar-
kets unrelated to the monopolist’s output market; thus, the monopolist is a price taker 
in the market for freight services needed to transport its goods between nodes, but it 
is not a price taker in the markets that sell its output. In fact, the monopolist sets the 
allowed consumption levels of its output to its advantage, so that, via market-specific 
(node-specific) demand functions, it is setting prices for its output. These allocations 
of output to consumption are intrinsic to the dynamic monopolist we model within 
the network economy of our interest.

The time scale is long enough for the monopolist to use inventory-based strategies, 
but short enough that relocation or expansion/contraction of the monopolist’s pres-
ence cannot occur. We refer to a monopoly possessing the aforementioned features 
as a differential multiplant monopoly on a freight network (DMMFN). It was first 
formulated by Friesz (2010) under the assumption of separable variable costs, which 
is relaxed herein. Friesz (2010) provided neither an analysis/interpretation of neces-
sary conditions nor a proof of existence, both of which are included in this paper for 
the first time. We also comment that the DMMFN is crudely similar to the model 
suggest by Dasci and Laporte (2004), which emphasizes travel to stores to purchase 
consumer goods.

In general, the scholarly literature on dynamic (differential) monopoly is not an 
energetic field of inquiry at the present, with most papers having appeared roughly 
20 to 40 years ago. Among these Gul et al. (1986) is notable for being significantly 
mathematical and highly cited, although it does not address spatial or network con-
siderations. More recent works dealing with monopoly in a spatial and/or network 
context include  Bensaid and Lesne (1996), Lambertini and Orsini (2007); Zaker 
(2012), Bensaid and Lesne (1996); and Li (2021).

2  Monopoly in a Network Economy

We imagine a network based on an underlying graph that connects each production 
node i to each consumption node j by at least one path p ∈ Pij , where Pij  is the 
set of paths connecting origin-destination (OD) pair (i, j). A path is comprised of a 
sequence of arcs for which freight services are available at a fixed tariff rij  for ship-
ment rates sij  of the monopolist’s single homogeneous output between OD pair (i, j).  
The following identity applies:

	
sij =

∑

p∈Pij

hp ∀ (i, j) ∈ W � (1)

where hp  is the departure rate for path p and W  is the set of all OD pairs, while sij  
is the departure rate for shipments between (i, j) ∈ W . As already stated, the firm of 

1 This assumption may easily be relaxed.
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interest has a presence at all the nodes of a transportation network, for which there 
are paths used by shipping agents to satisfy the monopolist’s demands for freight 
services. Time is denoted by the scalar t ∈ �1

+, fixed initial time by t0 ∈ �1
+, fixed 

final time by tf ∈ �1
++, with t0 < tf  so that t ∈ [t0, tf ] ⊂ �1

+. There are three sets 
important to articulating our formulation of differential spatial monopoly; these are 
as follow: A  for directed arcs, N  for nodes and W  for origin-destination (OD) 
pairs. Subsets of these sets are formed as is meaningful by using the subscript i for 
a specific node and ij for a specific OD pair (i, j).Our perspective, in that we are 
concerned with inventory and shipping decisions, has much in common with the 
logistics and supply chain literature but is without concern about the arrival times of 
shipments; rather, we assume all dispatched shipments ultimately reach their destina-
tions and backorders are allowed in the form of negative inventories and virtual OD 
flows that become real when either output and/or positive inventory allows. Explicit 
delays of goods enroute can be accomodated using the more complicated mathemati-
cal apparatus developed in Friesz and Lin (2024a) and its application to differential 
spatial monopoly is the subject of separate manuscripts (Friesz and Lin 2024b, c). 
One may additionally expand the network detail in the model presented herein to 
reflect shipping routes (paths) in detail. The routing of goods as well as the transport 
costs incurred in meeting product demand would serve to make the connection to 
logistics and supply chains complete, since routing is always a logistical consider-
ation. Moreover, by using a bilevel formulation one could design any desired aspects 
of a logistical network in light of commodity prices (as determined by our model of 
monopoly) and their fluctuations, thereby providing valuable strategic insight. How-
ever, these refinements and extensions are not within the scope of the present paper.

The firm controls production output rates expressed as a vector q, allocations of 
output to meet demand (consumption) expressed as a vector c, and shipping patterns 
expressed as a vector s. Inventories I are a vector of state variables determined by the 
controls. That is:

	 c ∈
(
L2 [t0, tf ]

)|N | � (2)

	 q ∈
(
L2 [t0, tf ]

)|N | � (3)

	 s ∈
(
L2 [t0, tf ]

)|W| � (4)

	

I (c, q, s) :
(
L2 [t0, tf ]

)|N | ×
(
L2 [t0, tf ]

)|N | ×
(
L2 [t0, tf ]

)|W|

−→
(
H1 [t0, tf ]

)|N | � (5)
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where L2 [t0, tf ] is the space of square-integrable functions and H1 [t0, tf ] is a Sobo-
lev space for the real interval [t0, tf ] ∈ �1

+.

3  The Network Monopoly’s Extremal Problem

Let us define the inverse demand for our single good at node i ∈ N  to be πi (c, t) 
where ci  is the consumption rate and

	 c (t) = (ci (t) : i ∈ N )� (6)

The firm has the objective of maximizing net profit expressed as revenue less cost 
and taking the form of an operator acting on production rates, shipment patterns and 
consumption rates. For simplicity we imagine that the monopolist operates at every 
node and that every node is a market for the firm’s output. That is, the firm’s net profit 
is

	

J0(c, q, s) =

∫ tf

t0

e−ρt

{
∑

i∈N
πi (ci , t) ci − V (q, t)

−
∑

(i,j)∈W

rij sij −
∑

i∈N
ψi(Ii, t)




 dt

�
(7)

where ρ ∈ �1
++ is a constant nominal rate of discount, rij  is the fixed exogenous 

freight rate (tariff) charged per unit of flow sij  for OD pair (i, j) ∈ W ,

	 ψi : H1 [t0, tf ] −→ H1 [t0, tf ]

is the firm’s separable inventory cost at node i, and Ii  is the inventory/backorder 
volume at node i. Furthermore, V(q,  t) is the monopolist’s cost of production as a 
function of the vector q of outputs at its nodal locations:

	 V (q, t) :
(
L2 [t0, tf ]

)|N | × �1
+ −→ H1 [t0, tf ]

Output at node i ∈ N  will subsequently be denoted by qi . In Eq. 7, ci  is the rate of 
consumption at node i. Our formulation is based on inverse demand functions:

	 πi (ci, t) : L
2 [t0, tf ]× �1

+ −→ H1 [t0, tf ]

Note that J(c,  q,  s) is a functional that is completely determined by the controls 
(c, q, s). The first term of the functional J(c, q, s) in expression Eq. 7 is the monopo-
list’s total revenue; the second term is the monopolist’s cost of production; the third 
term is its shipping cost; and the last term is its inventory or backorder cost.We also 
impose the terminal time inventory constraints

1 3

766



Differential Multiplant Monopoly on a Freight Network

	 Ii (tf ) = Ki ∀ i ∈ N � (8)

where the Ki ∈ �1
++  are exogenous. All consumption, production and shipping con-

trol variables are non-negative and bounded from above. That is

	 C ≥ c ≥ 0� (9)

	 Q ≥ q ≥ 0� (10)

	 S ≥ s ≥ 0� (11)

where

	

C ∈ �|F|
++

Q ∈ �|F|
++

S ∈ �|W|
++

are known constant vectors. Constraints Eqs. 9, 10 and 11 are recognized as pure con-
trol constraints, while Eq. 8 are terminal conditions for the state space variables.The 
inventory dynamics, expressing simple flow conservation, obey

	

dIi
dt

= qi +
∑

j:(j,i)∈W

sji −
∑

j:(i,j)∈W

sij − ci ∀ i ∈ N � (12)

	 Ii (t0) = I0i ∀ i ∈ N � (13)

	 Ii (tf ) = Ifi ∀i ∈ N � (14)

where every I0i ∈ �1
++ and every Ifi ∈ �1

++ are exogenous. We will view the vector 
of inventories as the the following operator:

	

I (c, q, s) = arg





dIi
dt

= qi +
∑

j:(j,i)∈W

sji −
∑

j:(i,j)∈W

sij − ci

Ii (t0) = I0i , Ii (tf ) = Ki, ∀i ∈ N
}

�

(15)

where we have assumed that the dynamics have solutions for all feasible controls. 
Thus, the monopolist solves the following optimal control problem:
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max J0(c, q, s) =

∫ tf

t0

[
e−ρt

∑

i∈N
πi (ci , t) ci − V (q, t)

−
∑

(i,j)∈W

rij sij −
∑

i∈N
ψi(Ii)



 dt

�
(16)

	

dIi
dt

= qi +
∑

j:(j,i)∈W

sji −
∑

j:(i,j)∈W

sij − ci ∀i ∈ N � (17)

	 Ii (t0) = I0i ∀i ∈ N � (18)

	 Ii (tf ) = Ki ∀i ∈ N � (19)

	 (c, q, s) ∈ Ω� (20)

where

	 Ω ≡ {c, q, s : (9), (10), (11)} � (21)

In the event the state operator is used to rewrite Eqs. 16-20, we obtain this infinite-
dimensional mathematical progamming formulation of the monopolist’s problem:

	

max J0(c, q, s) =

∫ tf

t0

e−ρt

[
∑

i∈N
πi (ci , t) ci − V (q, t)

−
∑

(i,j)∈W

rij sij −
∑

i∈N
ψi(Ii(c, q, s))



 dt �(22)

	 (c, q, s) ∈ Ω� (23)

This infinite-dimensional mathematical programming form of the problem is useful 
for the study of the continuous time algorithms for the application studied herein, 
especially convergence, as documented in Friesz (2010).

4  First Look at Necessary Conditions

In this section we are concerned with the technical chore of expressing the necessary 
conditions for an optimal solution of the monopolist’s optimal control problem. After 
the necessay conditions have been stated, we will turn to the task of giving them an 
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economic interpretation for certain special cases, as well as the general case. We 
begin this process by articulating the Hamiltonian for the monopolist’s optimal con-
trol problem; the relevant Hamiltonian is the following:

	

H0 = e−ρt




∑

i∈N
πi (ci , t) ci − V (q, t)−

∑

(i,j)∈W

rij sij −
∑

i∈N
ψi(Ii)





+
∑

i∈N
λi



qi +
∑

j:(j,i)∈W

sji −
∑

j:(i,j)∈W

sij − ci





+
∑

i∈N
νi · e−ρtf [Ii (tf )−Ki]

+
∑

i∈N
[αi (−ci) + βi (ci − Ci)]

+
∑

i∈N
[γi (−qi) + ζi (qi −Qi)]

+
∑

(i,j)∈W

[ηij (−sij) + µij (sij − Sij)]

�

(24)

where λi  is the adjoint variable associated with each of the state dynamics Eq. 12, for 
all i ∈ N . The adjoint variables obey the adjoint equations and associated terminal-
time conditions known as the transversality conditions; these are

	
dλi

dt
= −∂H0

∂Ii
=

∂ψi(Ii)

∂Ii
∀i ∈ N � (25)

	
λi (tf ) =

∂

∂Ii (tf )
vi · e−ρtf [Ii (tf )−Ki] = e−ρtfvi ∀i ∈ N � (26)

The maximum principle requires that the Hamiltonian be maximized with respect 
to the control variables. As such the following Kuhn-Tucker conditions, including 
complementary slackness for control constraints apply:

	
∂H0

∂ci
= e−ρt ∂πi (ci , t) ci

∂ci
− λi − αi + βi = 0 ∀i ∈ N � (27)

	 αici = 0 αi ≥ 0 ci ≥ 0 ∀i ∈ N � (28)

	 βi (ci − Ci) = 0 βi ≥ 0 ci − Ci ≤ 0 ∀i ∈ N � (29)

	
∂H0

∂qi
= −e−ρt ∂V (q , t)

∂qi
+ λi − γi + ζi = 0 ∀i ∈ N � (30)
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	 γiqi = 0 γi ≥ 0 qi ≥ 0 ∀i ∈ N � (31)

	 ζi (qi −Qi) = 0 ζi ≥ 0 qi −Qi ≤ 0 ∀i ∈ N � (32)

	

∂H0

∂sij
= −e−ρt rij + λj − λi − ηij + µij = 0 ∀i ∈ N , j ∈ N : (i, j) ∈ W � (33)

	 ηijsij = 0 ηij ≥ 0 sij ≥ 0 ∀ (i, j) ∈ W � (34)

	 µij (sij − Sij) = 0 µij ≥ 0 sij − Sij ≤ 0 ∀ (i, j) ∈ W � (35)

In the above, the αi  and the βi  are dual variables for the lower and upper bounds on 
the consumption rates ci , respectively. Similarly, the γi  and the ζi  are dual variables 
for the lower and upper bounds on the production rates qi . Moreover, the ηij  and the 
µij  are dual variables for the lower and upper bounds on the shipment rates si .To 
understand the form of Eq. 33, consider the expression

	
M0 ≡

∑

i∈N
λi




∑

j:(j,i)∈W

sji −
∑

j:(i,j)∈W

sij



 , � (36)

which allows the Hamiltonian to be restated as

	

H0 = M0 + e−ρt




∑

i∈N
πi (ci , t) ci − V (q, t)−

∑

(i,j)∈W

rij sij −
∑

i∈N
ψi(Ii)





+
∑

i∈N
νi · e−ρtf [Ki − Ii (tf )]

+
∑

i∈N
αi (−ci) + βi (ci − Ci)

+
∑

i∈N
[γi (−qi) + ζi (qi −Qi)]

+
∑

(i,j)∈W

[ηij (−sij) + µij (sij − Sij)]

�

(37)

Note that M0 itself may be restated as

	
M0 =

∑

i∈N
λi




∑

j:(j,i)∈W

sji −
∑

j:(i,j)∈W

sij



 � (38)

	
=
∑

i∈N

∑

j:(j,i)∈W

λi sji −
∑

i∈N

∑

j:(i,j)∈W

λisij � (39)
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=

∑

j∈N

∑

i:(i,j)∈W

λj sij −
∑

i∈N

∑

j:(i,j)∈W

λisij � (40)

In deriving Eq. 40, we have taken into account that there are no free indices in M0, 
so we are free to swap i and j, as has been done in the first term of Eq. 40. It is then 
clear that

	
∂M0

∂skl
= λl − λk ∀ (k, l) ∈ W � (41)

from which Eq. 33 follows immediately.

4.1  Interpreting the Necessary Conditions for a Special Case

To gain insight into the necessary conditions, we consider the special case of no bind-
ing nonnegativity constraints and no binding upper bound constraints on the control 
variales (c, q, s). That is, we stipulate

	




C

Q

S



 >




c

q

s



 >




0

0

0



 , � (42)

which, by virtue of the complementary slackness conditions Eqs. 28, 31, and 34, 
requires the following:

	 αi = βi = γi = ζi = 0 ∀i ∈ N � (43)

	 ηij = µij = 0 ∀i ∈ N , j ∈ N and (i, j) ∈ W � (44)

It then follows from the Kuhn-Tucker identities Eq. 27, 30, and 33 that

	
e−ρt∂πi (ci , t) ci

∂ci
= λi ∀i ∈ N � (45)

	
e−ρt∂V (q , t)

∂qi
= λi ∀i ∈ N � (46)

	 −e−ρtrij + λj − λi = 0 ∀i ∈ N , j ∈ N : (i, j) ∈ W � (47)

From Eqs. 45 and 46, we see immediately that marginal revenue equals marginal 
cost, in present value terms, at each node where the firm operates:
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MRi ≡ e−ρt∂πi (ci , t) ci

∂ci
= e−ρt∂V (q , t)

∂qi
≡ MCi ∀i ∈ N � (48)

It is clear from Eq. 48 that the monopolist’s total marginal revenue equals total mar-
ginal cost across all nodes, again in present value terms:

	
MR ≡ e−ρt

∑

i∈N

∂πi (ci , t) ci
∂ci

= e−ρt
∑

i∈N

∂V (q , t)

∂qi
≡ MC � (49)

We also note that Eq. 47 may be restated as

	 λj = λi + e−ρtrij ∀i ∈ N , j ∈ N : (i, j) ∈ W � (50)

Because of Eq. 46, this last expression is equivalent to

	 MCj = MCi + e−ρtrij ∀i ∈ N , j ∈ N : (i, j) ∈ W � (51)

Expression Eq. 51 is most easily understood by recognizing that e−ρtrij  is the mar-
ginal transportion cost for OD pair (i, j), whose transportion cost is e−ρtrijsij  in 
present value. It then becomes apparent that Eq. 47, because of its equivalence to Eq. 
51, is a statement that the marginal cost of production at the destination (j) will equal 
the marginal cost of production at the origin (i) plus the marginal cost of delivery to 
the destination (j) when transportation expenses are given consideration; as such, Eq. 
51 is a condition of spatial equilibrium among the monopolist’s spatially separated 
production facilities. Clearly, Eqs. 48 and 51 may be expressed in current value terms 
upon multiplication by exp(ρt):

	 MRi = MCi ∀i ∈ N � (52)

	 MC j = MCi + rij ∀i ∈ N , j ∈ N : (i, j) ∈ W � (53)

where the overbar denotes current value.

4.2  Understanding the Necessary Conditions for General Circumstances

Again we appeal to the Kuhn-Tucker identities to gain an interpretation of the neces-
sary conditions for general circumstances. In particular, Eqs. 27, 30, and 33 may be 
easily restated as

	
∂πi (ci , t) ci

∂ci
= λi − αi + βi ∀i ∈ N � (54)
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∂Vi (q , t)

∂qi
= λi − γi + ζi ∀i ∈ N � (55)

	 λi + rij = λj − ηij + µij ∀i ∈ N , j ∈ N : (i, j) ∈ W � (56)

The entities αi , γi , and ηij  are multipliers associated with nonnegativity and will be 
nonzero only when the rates ci , qi , and sij  are respectively zero. They are the non-
negative shadow prices associated with each nonnegativity constraint. These shadow 
prices are governed by the complementary slackness conditions Eqs. 28, 31, and 34. 
As such, when ci = 0  the marginal cost MCi  is potentially less than when ci > 0.  
Analogous statements may be made for vanishing production rates and vanishing 
shipping rates.The entities βi , ζi , and µij  are shadow prices associated with upper 
bounds and may be nonzero only when ci = Ci , ζi = Qi , and µij = Sij , respec-
tively. As such, when ci = Ci  the marginal cost MCi  is potentially greater than when 
ci < Ci . Analogous statements may be made about production rates at their upper 
bounds as well as shipping rates at their upper bounds. These observations along with 
those of the preceding paragraph make the right-hand sides of expressions Eqs. 54- 
56 effective marginal values that have been adjusted by the relevant shadow prices.

4.3  The Adjoint Equations

The adjoint variables must obey the adjoint equations and the transversality condi-
tions, as is well known for optimal control problems with a terminal-time constraint2:

	
dλi

dt
= −∂H0

∂Ii
= 0 ∀i ∈ N � (57)

	
λ (tf ) =

∂ψi(Ii)

∂Ii
= vi ∀i ∈ N � (58)

	 =⇒ λi (tf ) = vi, a constant ∀i ∈ N � (59)

If we assume that inventory holding and backorder costs are zero (or fixed), then a 
significant simplification results; namely

	
∂ψi(Ii)

∂Ii
= 0 ∀i ∈ N

and the adjoint variables obey

	
dλi

dt
= −∂H0

∂Ii
= 0 ∀i ∈ N � (60)

	 λi (tf ) = vi ∀i ∈ N � (61)

2 See, for example, Friesz (2010).
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implying that

	 λi (t) = vi, a constant ∀i ∈ N , t ∈ [t0, tf ]� (62)

4.4  Characterizing Shipping Rates via the Maximum Principle

Based on Eq. 41, the Hamiltonian H0 may be expressed as

	

H0 =
∑

i∈N ,j∈N :(i,j)∈W

(−rij + λj − λi − ηij + µij) sij

+ e−ρt
∑

i∈N
πi (ci , t) ci − Vi(q, t)−

∑

i∈N
ψi(Ii)

+
∑

i∈N
νi [Ki − Ii (tf )]

+
∑

i∈N
[αi (−ci) + βi (ci − Ci)]

+
∑

i∈N
[γi (−qi) + ζi (qi −Qi)]

�

(63)

In light of Eq. 63, the maximum principle of optimal control requires, for all 
(i, j) ∈ W , that the shipping rates obey

	

sij =






Si if −rij + λj − λi − ηij + µij > 0

0 if −rij + λj − λi − ηij + µij < 0

ssingularij if −rij + λj − λi − ηij + µij = 0
� (64)

for all i ∈ N  and j ∈ N  such that(i, j) ∈ W . Of special interest is that, if 
−rij + λj − λi − ηij + µij = 0  occurs only for a finite number of instants of time, 
then there is no notion of a singular control ssingular

ij . If there is a dense arc of time for 
which −rij + λj − λi − ηij + µij = 0 , a singular control must be determinined. The 
absence or presence of singular controls may be confirmed by numerical solution 
techniques. We note that, due to Eq. 64, the following holds:

	

d

dt
(−rij + λj − λi − ηij + µij) =

dλj

dt
− dλi

dt
=

∂H0

∂Ii
− ∂H0

∂Ij
= 0 � (65)

Let us assume that inventory holding and backordering costs are quadratic in own 
inventory, which is expressed as

	
ψi(Ii) =

1

2
Li (Ii)

2 ,� (66)
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where the Li ∈ �1
+  for all i ∈ N  are known constants. Then, from Eq. 65, we have 

the following:

	

∂H0

∂Ii
− ∂H0

∂Ij
= LiIi − LjIj = 0 =⇒ Ii =

Lj

Li
Ij � (67)

Thus, we conclude singular shipping rates necessitate constant proportionality of 
associated inventory levels for a dense arc of time. If that proportionality does not 
arise, singular shipping rates cannot occur. This is borne out by the numerical exam-
ple presented in Section 6.

5  Existence

We rely on a result from Clarke (2013) to establish the existence of a solution to the 
spatial monopolist’s problem.

5.1  Technical Background

Let us consider the following abstract optimal control problem:

	
min J (u) = Ψ

[
x (t0) , x

(
t
f

)]
+

∫ tf

t0

f0 (x, u, t)dt � (68)

	

dx

dt
= g0 (x, t) +

m∑

j=1

gj (x (t) , t)u
j (t) a.e.� (69)

	 u (t) ∈ U (t) a.e.� (70)

	 (x (t) , t) ∈ Q ∀t ∈ [t0, tf ] , (x (t0) , x (tf )) ∈ E � (71)

Clarke (2013) proves the following existence theorem3 for formulation Eqs. 68-71:

Theorem 1  [Clarke (2013)] If the following regularity conditions are satisfied and 
there is at least one admissible solution for which J(u) is finite, then there exists an 
optimal solution to Eqs. 68-71: 

(a)	 Each gj  for j = 0, 1, . . . , m  is measurable in t, continuous in x, and has linear 
growth. That is, there exists a constant B such that

3 See, in particular, Theorem 23.11 on page 481.
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	 (x, t) ∈ Q =⇒ |gj (x, t)| ≤ B (1 + |x|)� (72)

where  |x|  is the Eucliden norm of x ;

(b)	 For almost every t, the set U (t) is closed and convex;
(c)	 The sets E and Q are closed, and Ψ

[
x (t0) , x

(
t
f

)]
 is lower semicontinuous;

(d)	 The integrand f0(x, u, t) is Lebesgue-Borel (LB) measurable4 in t and (x, u), as 
well as lower semicontinuous in (x, u). Furthermore, the integrand f0 (x, ·, t) is 
convex for each (x, t) ∈ Q , and there is a constant ω0 such that 

	 (x, t) ∈ Q, u ∈ U (t) =⇒ f0 (x, u, t) ≥ ω0;� (73)

(e)	 The projection onto E denoted as

	 {a ∈ �n : (a, b) ∈ E for some b ∈ �n} � (74)

is bounded; and
(f)	 There exists K0 (t) such that 

	 u ∈ U (t) =⇒ ‖u‖ ≤ K0 (t) for almost every t � (75)

5.2  Existence of an Optimal Solution

Let us restate the monopolist’s problem Eqs. 16-20 as a minimization problem:

	
min J0(c, q, s) =

∫ tf

t0

e−ρt



V (q, t) +
∑

(i,j)∈W

rij sij +
∑

i∈N
ψi(Ii)−

∑

i∈N
πi (ci , t) ci



 dt �(76)

	

dIi
dt

= qi +
∑

j:(j,i)∈W

sji −
∑

j:(i,j)∈W

sij − ci ∀i ∈ N � (77)

	 Ii (t0) = I0i ∀i ∈ N � (78)

	 Ii (tf ) = Ki ∀i ∈ N � (79)

	 (c, q, s) ∈ Ω� (80)

4 Definition 6.33 of Clarke (2013) defines LB measurability.
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We will use Theorem 1 to establish existence for Eqs. 76-80:

Theorem 2  Existence of an optimal solution (c∗, q∗, s∗) ∈ Ω  for the monopolist. We 
stipulate: 

(i)	 |1n| ≤ B (1 + |I |) for the linear growth condition;
(ii)	 U = Ω;
(iii)	(I (t0) , I (tf )) ∈ E = Nr (I0) with r defined by Eq. 82 for φ ≥ 1;
(iv)	V (q, t) is LB measurable, lower semicontinuous, and convex;
(v)	 Ψ

[
x
(
t
f

)]
=

∑
i∈N νi · e−ρtf [Ki − Ii (tf )];

(vi)	each ψi(Ii)  is LB measurable, lower semicontinuous, and convex;
(vii) each −πi (ci , t) ci  is LB measurable, lower semicontinuous, and concave; and
(viii)f0 (I, c, q, s, t) ≥ −

∑
i∈N πi

(
c0i , t

)
c0i = ω0 If there is at least one admissible 

solution of Eqs. 76-80, then there is an optimal solution to the monopolist’s opti-
mal control problem Eqs. 76-80.

Proof  When the restated monopolist’s problem Eqs. 76-80 is considered from the 
perspective of Theorem 1, the following observations may be made:

(a′): To apply Clarke’s result to our problem, we take g0 (x, t) = 0 . We also take

	 ui = (ci, qi, sji, sij : j ∈ N )

so that each  gj  will be a vector comprised of ±1  and 0  entries in order  to repli-
cate the monopolist’s state (inventory) dynamics. Because, each of the monopolist’s 
control variables are bounded from above and below, inventories will be finite for 
all t ∈ [t0, tf ]; let Imin

i  represent the minimal inventory for each i ∈ N  of the monop-
olist’s problem. We select B  such that

	

|1n| ≤ B

(
1 +

√
[
Imin
1

]2
+ . . . +

[
Imin
|N |

]2
)

⇒ |1n| ≤ B

(
1 +

√
[I1 (t)]

2 + . . . +
[
I|N | (t)

]2
)� (81)

where  1n  is a vector with n  entries, all of which are 1, with  |1n| =
√
n  being its 

Euclidean norm. Naturally,  n = 2 |N |+ |W| ,  the number of control  variables 
available to the monopolist. Since each gj , as noted above, will contain some 0 
entries,  |gj (x, t)| ≤ |1n| . From (1) we have immediately the linear growth property.

(b′): Our set of control constraints U ≡ Ω is defined by expression Eq. 21. By obser-
vation Ω is closed and convex.

(c′): We note there are no state-space constraints (Q is vacuous). Moreover, Ii (t0) and 
Ii(tf ) are fixed for all i ∈ N . Hence, 

	 (I (t0) , I (tf )) ∈ E ≡ Br [I (t0)]
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where E ≡ Br [I (t0)] is a closed ball centered at I (t0) with radius r. That radius is 
determined by 

	 r = φ

√
[I1 (tf )− I1 (t0)]

2 + . . .+
[
I|N | (tf )− I|N | (t0)

]2 � (82)

where φ ≥ 1. We also note that the terminal cost 

	
Ψ
[
x
(
t
f

)]
=

∑

i∈N
νi · e−ρtf [Ki − Ii (tf )]� (83)

arises from pricing out the terminal inventory constraints using the dual variables 
vi  for all i ∈ N , as reflected in the Hamiltonian Eq. 24. By observation Eq. 83 is 
Ψ
[
I
(
t
f

)]
, continuous in Ii (tf ) , and has no dependence on any initial inventory 

level Ii (t0). Since Ψ
[
I
(
t
f

)]
 is continuous, it is lower semicontinuous.

(d′): Since the costs of production, shipping, and inventory holding are positive, it is 
clear that the integrand of Eq. 76 obeys 

	

f0 (I, c, q, s, t) ≡ V (q, t) +
∑

(i,j)∈W

rij sij +
∑

i∈N
ψi(Ii)

−
∑

i∈N
πi ( ci , t) ci ≥ −

∑

i∈N
πi ( ci , t) ci ≥

−
∑

i∈N
πi
(
c0i , t

)
c0i ≡ ω0, a constant,

� (84)

where c0 =
(
c0i : i ∈ N

)
 is the global minimizer of −

∑
i∈N πi ( ci , t) ci  subject to 

Ci ≥ ci ≥ 0 for all i ∈ N . This demonstrates the inequality 

	 f0 (x, u, t) ≥ ω0� (85)

required for the application of Theorem 1. Moreover, the integrand f0(x, u, t) will 
be Lebesgue-Borel measurable in t and (x, u) = (I, c, q, s), as well as lower semi-
continuous in (x, u) = (I, c, q, s), if we make these quite mild assumptions: V (q, t),  
along with ψi(Ii)  and πi ( ci, t) ci  for all i ∈ N , are individually LB measurable and 
lower semicontinuous. The convexity of f0 (I, ·, ·, ·, t) is assured by assuming the 
ψi(Ii)  are convex for each i ∈ N .

(e′): By virtue of how we constructed E ≡ Br [I (t0)], any projection onto it is 
bounded.

(f′): We note that u ≡ (c, q, s) ∈ Ω ≡ U  is bounded for almost all t ∈ [t0, tf ] because 
Ω includes fixed bounds on all control variables. That is, there exists K0 ∈ �1

++ 
such that for 

1 3

778



Differential Multiplant Monopoly on a Freight Network

	

‖u‖ =

√√√√√
|N |∑

i=1

(ci)
2 +

|N |∑

i=1

(qi)
2 +

|W|∑

(i.j)=1

(sij)
2 ≤ K0 � (86)

for almost every t ∈ [t0, tf ].
Hence, all the conditions for the application of Theorem 1 are satisfied and exis-

tence is proven.

6  Discrete Time Approximation

We note that Eqs. 16-20 may be solved in a number of ways, although direct appeal 
to the necessary conditions is unlikely to be successful for general networks due to 
the large number variables. Furthermore, since there are no time shifts and the state 
dynamics are linear in the formulation proposed above, time discretization in con-
junction with finite dimensional mathematical programming is especially appealing. 
To this end we construct a discrete time approximation of Eqs. 16-20:

	
J(c, q, s) =

N∑

k=0

e−ρtk

{
∑

i∈N
πi [ci (tk)] ci (tk)− V [q (tk)]

	
−

∑

(i,j)∈W

rij sij (tk)−
∑

i∈N
ψi [Ii (tk)]




� (87)

	
Ii (tk)− Ii (tk−1) = qi (tk) +

∑

(j,i)∈W

sji (tk)−
∑

(i,j)∈W

sij (tk)− ci (tk) ∀ i ∈ N , ∀k ∈ [1, N ]�(88)

where we define

	 tk = t0 + k∆t

and N is the number of discretizations, defined by

	
N =

tf − t0
∆t

	 Ii (t0) = I0i ∀ i ∈ N � (89)
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Furthermore

	

ck = (ci (tk) : i ∈ N )

qk = (qi (tk) : i ∈ N )

sk = (sij (tk) : (i , j) ∈ W)

c =
(
ck : k ∈ [1, N ]

)

q =
(
qk : k ∈ [1, N ]

)

s =
(
sk : k ∈ [1, N ]

)

so that we may write

	 C ≥ c ≥ 0� (90)

	 Q ≥ q ≥ 0� (91)

	 S ≥ s ≥ 0� (92)

6.1  Numerical Example

By assuming the monopolist’s variable costs are additive and separable we are able to 
adapt the numerical example found in Friesz (2010) to the present model formuation 
for DMMFN. To that end, let us consider a network of 5 arcs and 4 nodes for which 
the single firm of interest has activities located at each node i = 1, 2, 3, 4. We assume 
that the production cost function has the form

	
V (q) =

∑

i∈N
Vi(qi)� (93)

Consumption of the firm’s output potentially occurs at every node; this consumption 
may be of local output or of imported output as the network topology permits. Table 

Table 2  Controls and states for example
Controls States
c1 c2 c3 c4 I1 I2 I3 I4
q1 q2 q3 q4
s1 s2 s3 s4 s5

Arc Name From Node To Node Shipping Variable
1 1 2 s1
2 1 3 s2
3 2 3 s3
4 2 4 s4
5 3 5 s5

Table 1  From-To Array Repre-
senting Example Network
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1 depicts the 4 node, 5 arc network of interest as a from-to array. The time interval of 
interest is [0, 10]; that is t0 = 0 and tf = 10. Before time discretization there are 13 
controls and 4 state variables associated with this example; these are listed in Table 
2. At time t0 = 0, the initial inventory at each node is

	 I1(0) = 5� (94)

	 I2(0) = 3� (95)

	

I3(0) = 2

I4(0) = 0
� (96)

In addition, we impose the condition that no backordering is allowed by any firm at 
any node at the terminal time tf = 10. That is

	 Ii(10) = 0 for i = 1, 2, 3, 4� (97)

The inventory dynamics are the following flow balance equations:	
dI1
dt = q1 − s1 − s2 − c1
dI2
dt

= q2 + s1 − s3 − s4 − c2
dI3
dt

= q3 + s2 + s3 − s5 − c3
dI4
dt

= q4 + s4 + s5 − c4

We assume the inverse demands at each node take the following form:

	
π1(c1, t) = 4(11− c1) exp

(
t

40

)
� (98)

	
π2(c2, t) = 3(11− c2) exp

(
t

30

)
� (99)

	
π3(c3, t) = 3.5(11− c3) exp

(
t

35

)
� (100)

	
π4(c4, t) = 2.5(11− c4) exp

(
t

25

)
� (101)

The individual terms of the production cost function Eq. 93 are the following:

	
V1(q1) = 2

q21
2

� (102)

	
V2(q2) = 0.7

q22
2

� (103)
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V3(q3) = 1.3

q23
2

� (104)

	
V4(q4) = 4

q24
2

� (105)

We assume the holding costs are

	
ψ1(I1) =

I21
2

� (106)

	
ψ2(I2) = 10

I22
2

� (107)

	
ψ3(I3) = 3

I23
2

� (108)

	
ψ4(I4) = 4

I24
2

� (109)

We assume that the freight tariffs for each arc are the following:

	 r1 = 5� (110)

	 r2 = 2� (111)

	 r3 = 3� (112)

	 r4 = 2� (113)

	 r5 = 4� (114)

Fig. 1  Inventory Dynamics 
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Fig. 4  Freight Flow 

Fig. 3  Consumption Rate 

Fig. 2  Production Rate 
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We impose the following upper bounds on control variables:	

C =





5

10

10

5



 , Q =





5

2

5

5



 , S =





10

10

10

10





Nonnegativity is also enforced. The individual firms’ criterion functional is easily 
stated by substitution of the above information into Eq. 87.

6.2  Solution by Discrete Time Approximation

We solve the monopolist’s problem corresponding to the details presented in Section 
6.1 using a discrete time approximation with N = 10 equal time steps. In our calcu-
lations we allowed GAMS/MINOS to solve the specific instance of Eq. 87 through 
Eq. 92 corresponding to the data we have given. The solution time for this example is 

Fig. 6  Inventory Dynamics 

Fig. 5  Price 
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Fig. 9  Freight Flow 

Fig. 8  Consumption Rate 

Fig. 7  Production Rate 
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approximately 2 cpu seconds on a Pentium® 4 single-processor computer. The results 
are presented in Figs. 1, 2, 3, 4 and 5.

6.3  Solution by Continuous Time Gradient Projection

We also solved the example using the continuous time gradient projection method, as 
presented in Friesz (2010). We calculate 40 values of the gradients and then construct 
a 6-th order polynomial approximation of each as a smooth function of time. The 
algorithm is implemented in MATLAB and the solution time for the example pre-
sented is approximately 10 cpu seconds on a Pentium® 4 single-processor computer. 
The results are shown in Figs. 6, 7, 8, 9 and 10. The gradient projection algorithm 
is articulated below in terms of the state and control vectors specific to the example 
problem:

Gradient Projection Algorithm

Step 0.	 Initialization. Set k = 0 and pick c0i (t) , q0i (t)  and s0i (t) for i = 1, 2, 3, 4.
Step 1.	 Find State Trajectory. Using current controls, solve the state initial value 

problem 

	

dI1
dt = qk1 − sk1 − sk2 − ck1 I1(0) = 5
dI2
dt

= qk2 + sk1 − sk3 − sk4 − ck2 I2(0) = 3
dI3
dt

= qk3 + sk2 + sk3 − sk5 − ck3 I3(0) = 2
dI4
dt

= qk4 + sk4 + sk5 − ck4 I4(0) = 0

and call the solution Ik1 (t) , Ik2 (t) , Ik3 (t)  and Ik4 (t).
Step 2.	 Find Adjoint Trajectory. Using current controls and states, solve the adjoint 

final value problem 

Fig. 10  Price 
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(−1) dλ1
dt = exp(−ρt)(Ik1 ) λ1(10) = vIk1 (10)

(−1) dλ2
dt

= exp(−ρt)(10Ik2 ) λ2(10) = vIk2 (10)

(−1) dλ3
dt

= exp(−ρt)(3Ik3 ) λ3(10) = vIk3 (10)

(−1) dλ4
dt

= exp(−ρt)(4Ik4 ) λ4(10) = vIk4 (10)

picking the dual variable v to enforce zero inventory at the terminal time; call the 
solution λk

1 (t) , λ
k
2 (t) , λ

k
3 (t) and λk

4 (t).
Step 3.	 Find Gradient. Using current controls, states and adjoints, calculate 

	 ∇uJ(u
k) =

∂H(Ik,uk,λk)
∂u

= ∂f0(I
k,uk)

∂u
+
(
λk
)T ∂f(Ik,uk)

∂u

where 

	
u =




ck

qk

sk





and H (I, u, λ, t) is the relevant Hamiltonian for this problem.
Step 4.	 Update and Apply Stopping Test. For a suitably small step size θk , update 

according to 

	 uk+1 = PU

[
uk − θk∇J

(
uk
)]

where PU  denotes the minimum norm projection of the vector u onto the feasible set 
U. If an appropriate stopping test is satisfied, declare 

	 u∗ (t) ≈ uk+1 (t)

Otherwise set k = k + 1  and go to Step 1.

7  Conclusions

We have shown that the version of dynamic network monopoly addressed herein 
combines explicit dynamics, nonlinearity, and computational tractability. Its solu-
tions have a marginal-revenue-equals-marginal-cost interpretation, just as one would 
intuitively expect. Moreover, we have proven solutions exist under plausible, check-
able regularity conditions. We also found the model to be highly computable, easily 
yielding numerical solutions using both discrete-time and continuous-time solution 
schemes.
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