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Functional Covering of Point Processes

Nirmal V. Shende

Abstract—We introduce a new distortion measure for point
processes called functional-covering distortion. It is inspired
by intensity theory and is related to both the covering of
point processes and logarithmic-loss distortion. We obtain the
distortion-rate function with feedforward under this distor-
tion measure for a large class of point processes. For Poisson
processes, the rate-distortion function is obtained under a gen-
eral condition called constrained functional-covering distortion,
of which both covering and functional-covering are special
cases. Also for Poisson processes, we characterize the rate-
distortion region for a two-encoder CEO problem and show that
feedforward does not enlarge this region.

Index Terms—CEO problem, lossy compression, point process,
Poisson process, rate-distortion.

I. INTRODUCTION

HE CLASSICAL theory of compression [2] focuses
Ton discrete-time, sequential sources. The theory is thus
well-suited to text, audio, speech, genomic data, and the
like. Continuous-time signals are typically handled by reduc-
ing to discrete-time via projection onto a countable basis.
Multi-dimensional extensions enable application to images and
video.

Point processes model a distinct data type that appears in
diverse domains such as neuroscience [3], [4], [5], [6], [7], [8],
communication networks [9], [10], [11], imaging [12], [13],
blockchains [14], [15], [16], [17], and photonics [18], [19],
[20], [21], [22]. Formally, a point process can be viewed as a
random counting measure on some space of interest [23], or if
the space is a real line, a random counting function; we shall
adopt the latter view. Informally, it may be viewed as simply
a random collection of points representing epochs in time or
points in space.

Compression of point processes emerges naturally in sev-
eral of the above domains. Sub-cranial implants need to
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communicate the timing of neural firings to a monitoring
station over a wireless link that is low-rate because it must
traverse the skull [24], [25]. In network flow correlation anal-
ysis, one cross-correlates packet timings from different links in
the network [11]; this requires communication of the packet
timings from one place to another. Compressing point pro-
cess realizations in 3-D (also known as point clouds) arises in
computer vision [26], [27], [28], and so on.

Various specialized approaches have been developed for
compressing point processes, and in particular for measuring
distortion. One natural approach is for the compressed repre-
sentation to itself be a point-process realization [29], [30],
[31], [32], [33], [34]. More relevant to the present paper,
Lapidoth et al. [35] introduced a covering distortion mea-
sure, where the reconstruction of a point process on [0, T]
is a subset ¥ of [0, T] that must contain all the points, and
the distortion is the Lebesgue measure of the covering set (see
also Shen et al. [36]).

If we encode the subset ¥ as an indicator function

. 1 ifte¥
Y:
, {0

otherwise,

then ¥, =0 guarantees that no point occurred at time ¢ while
¥; = 1 indicates that a point may have occurred at ¢. More
generally, ¥, could take many values and encode the relative
belief that there is a point at 7. Inspired by this observa-
tion, and the notion of logarithmic-loss distortion [37], [38],
we consider the following formulation. For a realization of a
counting (or point) process yg = :te[0,T)D G.e., y; is
integer-valued, non-decreasing, and has unit jumps) and a non-
negative reconstruction j;g , we define the functional-covering
distortion as

d(%9.9) éf

0

)

T T
Yedt — / IOg()A’t) dyr. (2)
0

This is related to the covering distortion measure in the fol-
lowing sense. If we impose that y, € {0, 1}, then (2) reduces
to the covering distortion measure. Yet it is natural to consider
the distortion in (2) without such a restriction, or with a more
general set of allowable values for y;. In fact, there are advan-
tages to not restricting jzg to the set {0, 1}. Consider a remote
source setting where the encoder cannot access the point-
process source directly, but instead observes a thinned version
in which some of the points in the source point process are
deleted randomly. Then, in case of the covering distortion the
reconstruction can only be the entire interval [0, T] (i.e., y; =
1,t € [0,T]). On the other hand, under functional-covering
distortion the problem has a nontrivial solution.

This idea is related to the intensity of a point process.
Heuristically, given a random variable M, the intensity of
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a point process represented by a counting function YOT is a
nonnegative process Fg such that P(Y; — Y;—a = 1|M, Y(’)*A)
~ TI';A (see Definition 2 for the precise statement). Now
consider a discretized version of (2), written in a way that
reflects the randomness of the source Y;:

[T/A]
Z (Jeah = (Yea — Ye—1)a) log($ea))- (3)
=1
Fix ¢, and consider selecting yya given the message M and
the history of the source {YkA}ﬁ;} in order to minimize

EI:)A%AA — (Yea — Ye-1)a) 10g(5’2A)’M, {YkA}i;i} 4
Defining I'ga via
P<Ym —Yu-na = 1‘M, {YkA}i;}) =TaA, )

and assuming P(Y¢a — Yo—1) o > 1|M, {YkA}i;i) is negligi-
ble, then (4) is approximately

Jea — TeaAlog(ea). (6)

which is minimized by the choice ;o = T'ya. Similarly, if
Yyea may depend on M but not on the past of the source pro-
cess, then the optimal choice of Jya is P(Yea — Yo—1) A =
1|M)/A. For technical reasons this is not an intensity, how-
ever [39, Definition D7, p. 27]. Either way, we see that (2)
encourages the decoder to output a process that describes the
relative likelihood of a point at each instant of time.

The relation between the functional-covering distortion
measure and logarithmic-loss [37], [38] is as follows. Recall
that in the context of a memoryless source over a finite alpha-
bet X, the logarithmic-loss distortion measure involves the
decoder, given the message M = m, outputting a probability
distribution p;(y) for each source symbol ¥; in the sequence.
The distortion over a block of size n is then

—Z gA(Y) (7)

the expectation of which is a sum of cross-entropies and is
minimized by the choice p;(y) = P(Y; = y|M = m). With
this choice, the expected distortion is Zl { H(Y;IM) and
the distortion-rate function is simply

max(H(Y) — R, 0). (8)

If the source has memory, then the distortion-rate function
generalizes to max(H({Y}) — R,0), where H({Y}) is the
entropy rate of the source, if the decoder is permitted to out-
put a conditional distribution p;(y;|yi—1,...,y1) for each i.
Mathematically, this is equivalent to having the decoder out-
put an unconditional distribution p;(y;) but giving the decoder
feedforward [40], [41], [42], [43], [44], [45] information, i.e.,
providing the decoder with Yq, ..., Y;—1 before it outputs the
marginal distribution p;(y;).

To see the connection to the functional-covering distortion
measure, recall that discrete entropy can be expressed in terms
of the relative entropy against the uniform distribution, and

1
1 9
°¢ 5 ®

can be viewed as, up to an additive constant, the log-likelihood
ratio between the uniform distribution and p(Y;). For the case
of point processes, the role of the uniform distribution may be
played by a unit-rate Poisson process. Heuristically, consider a
point process {Y;} in which Y,A describes the probability of a
point in the interval [¢, £+ A] given the strict past {¥}s<;. Then
the log-likelihood ratio of a unit-rate Poisson process against
the source evaluated on a realization YOT is approximately

LT/A]

log l—[

=1 (17(2—1)AA

N 11YeA>Y—
<<1 3 Y((fl)AA)A) {Yea>Ye I)A}e_A

)1{Y£A>Y(K—I)A}<

1 - f/(e-l)AA)

[T/A]
= Z —A —1{Yir > Y(e—l)A}log(Y(e—l)A>
=1
—I{YgA =Y(g_1)A}10g(1—?(g_1)AA) (10)
LT/A]
A Z —A —1{Y¢n > Y(e—l)A}IOg(Y(e—l)A>
=1
+ f/(z—l)AAl{Ym = Ye-na} (11)
T, T .
~ / (Yt - 1)dr—/ log(YI)dY,, (12)
0 0

which differs from (2) only by the constant term —7. This
argument can be made rigorous via Girsanov’s theorem for
point processes [39, Ch. VI, Ths. T2-T4]. Specifically, if the
reconstruction % is assumed to be bounded then it can be used
to define a probability measure on the space of point-processes
(NOT, FV) via the following Radon-Nikodym derivative,

dPA

T T
o (yO)—eXP< / log () dy; — / (9,—1)dt>, (13)
0 0

where Py is the measure under which Y/ is a Poisson process
with unit rate. Then the intensity of Y(% under this measure
is yg [39, Ch. VI, Ths. T2-T4] and the functional-covering
distortion is related to the above Radon-Nikodym derivative as

dP.r

a.00) = e S0 ) 7.

Thus an alternative view of the functional-covering dis-
tortion measure is that the reconstruction y, describes a
distribution over the source realizations and (2) is simply the
log-loss distortion measure. Note, however, that since y,A
describes the probability of a point in [z, + A] given the
history of the source process, either the decoder effectively
needs feedforward, as in the above discussion on intensity, or
the distribution induced by ¥ yo needs to be such that the source
is conditionally Poisson, i.e., memoryless, given y0 Regarding
the former case, note that the concept of feedforward is some-
what subtle in continuous time; mathematically, it amounts to
assuming that f)g is predictable [39, Definition D4, p. 8] with
respect to the message and the history of the source process.
In the latter case, the functional-covering distortion measure is
an affine function of the negative log-likelihood of a Poisson
channel with input )Azg and output yg , analogous to the way

(14)
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NPT ~ Poiss(u")

NPT ~ Poiss(u®)

Fig. 1. Poisson CEO Problem.

Hamming distance is an affine function of the negative log-
likelihood of a binary symmetric channel and squared error is
an affine function of the negative log-likelihood of a Gaussian
channel.

We shall consider both the feedforward and memoryless
approaches. For any arbitrary source with an intensity, we
show in Theorem 4 and Corollary 1 that if the decoder has
feedforward information then the rate-distortion function is
linear as in (8). For the case of a Poisson process source,
in Theorem 5 we determine the rate-distortion tradeoff with
the added restriction that for some given set A, we have
v+ € A for all . We find that this tradeoff is unaffected by
the presence of feedforward. Taking A = {0, 1} recovers the
result of Lapidoth et al. [35, Th. 1] for the covering distortion
measure (Corollary 3) and taking .4 = [0, co) recovers the
unconstrained case.

Recall that the covering distortion measure yields a trivial
rate-distortion tradeoff in the remote-source setting in which
the encoder observes a thinned version of the source. Here
we determine the rate-distortion function under the functional-
covering distortion measure for a Poisson source that is
observed after thinning and superposition with an indepen-
dent Poisson process. We find that the rate-distortion function
is not degenerate. In fact, in Theorem 6 we solve the more gen-
eral two-encoder CEO problem (see Fig. 1), again finding that
the rate-distortion function is unaffected by feedforward. It is
notable that our scheme for the CEO problem does not require
binning (cf. [46, Sec. 15.4]). A result for the CEO problem
without thinning and with the covering distortion measure was
earlier obtained by Wang [47].

To prove these results, we establish various technical tools
that are useful for characterizing mutual information involving
continuous-time point processes. Theorem 1 provides a general
formula for computing mutual information in terms of inten-
sities; it subsumes existing formulae for mutual informations
involving doubly stochastic Poisson processes [48], [49], [50]

R
MD
Enc. 1 >
AT
Dec. —Y,
M
Enc. 2 >
e

and queueing processes [S1] as special cases. We also prove
two strong data processing inequalities. Theorem 2 provides a
strong data processing inequality for Poisson processes under
superposition, which complements the strong data process-
ing inequality for Poisson processes under thinning due to
Wang [47]. We also provide a self-contained proof of Wang’s
theorem in Theorem 3. These results may have independent use.

The remainder of the paper is organized as follows.
Section II introduces the necessary notation and contains
the mutual information identities and inequalities. Section III
defines the functional covering distortion measure precisely
and contains point-to-point results for general sources.
Section IV contains point-to-point results for Poisson sources,
and Section V contains results for the CEO problem. Many
of the proofs and auxiliary results are contained in the
supplementary material.

II. POINT PROCESSES, INTENSITIES,
AND MUTUAL INFORMATION

Our treatment follows Brémaud [39], to which the reader is
referred for additional background. We consider a probability
space (€2, F, P) on which all stochastic processes considered
here are defined. For a finite T > 0, let (F; : t € [0, T]) be an
increasing family of o-fields with Fr € F. We will assume
that the given filtration (F; : t € [0, T]), P, and F satisfy the
“usual conditions” [39, Ch. III, p. 75]: F is complete with
respect to P, F; is right continuous, and JFy contains all the
P-null sets of F;. Stochastic processes are denoted as f/OT =
(f/, : 0 <t < T). The process Xg is said to be adapted to
the history (F; : t € [0,T]) if X, is F;-measurable for all
t € [0, T]. The internal history recorded by the process Xg is
denoted by ]-',X = (6 (Xs) : s € [0, 1]), where o (A) denotes the
o-field generated by A.

A process Xg is called (F; : t € [0, T])-predictable if Xy is
Fo-measurable and the mapping (¢, ) — X;(w) defined from

Authorized licensed use limited to: Cornell University Library. Downloaded on April 27,2025 at 18:23:47 UTC from IEEE Xplore. Restrictions apply.



690 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 3, NO. 4, DECEMBER 2022

(0, T) x 2 into R (the set of real numbers) is measurable with
respect to the o-field over (0, T) x 2 generated by rectangles
of the form

(s,t] xA; O<s<t<T, AeclkF,. (15)

For two measurable spaces (21, F1) and (2, F2), the prod-
uct space is denoted by (2] x 27, F; ® F»). We say that
A 2 B & C forms a Markov chain under measure P if A
and C are conditionally independent given B under P. The
notation P « Q indicates that the probability measure P is
absolutely continuous with respect to the measure Q. The
indicator function for the event E is denoted by 1{E}. All log-
arithms and exponentiations are base e. The superscripts (x)"
and (x)~ denote the positive (max(x, 0)) and the negative part
(—min(x, 0)) of x respectively. The ceiling of x is denoted
by [x]. Throughout this paper we adopt the convention that
0log(0) = 0, exp(log(0)) = 0, and 0% =1.

Definition 1: We use ¢ (x) to denote xlog(x).

Let T denote the set of counting realizations (or point-
process reallzatlons) on [0, T], ie., if NT € N T then for
t € [0,T], N; € N (the set of nonnegatlve 1ntegers) is right
continuous, and has unit increasing jumps with No = 0. Let
&V be the o-field generated by the open sets of N()T when
endowed with the Skorohod topology [52, Sec. 12].

Definition 2: If NT is a counting process adapted to the h1s—
tory (F; : t € [0, T]) then Ng is said to have (P, .7-", :

[0, T)-intensity F = (I : t € [0,T]), where F is a
nonnegative measurable process if

. Fg is (F; : t € [0, T])-predictable,

. fOT I';dt < oo, P-as.,

o and for all nonnegative (F; : ¢t

processes Cg I

E[AT Cst{| = ]E|:/0T Cstds:|.

When it is clear from the context, we will drop the probability
measure P from the notation and say NT has (F; : t € [0, T])-
intensity FT

Deﬁnmon 3: A point process YOT is said to be a Poisson
process with rate A if its (]—"Y t € [0, T])-intensity is (A : t €
[0, T]).
The above definition can be shown to imply the usual defini-
tion of a Poisson process [39, Th. T4, Ch. II, p. 25] and vice
versa [39, Sec. 2, Ch II, p. 23].

Definition 4: P denotes the distribution of a point process
Yl (on the space (NJ,3Y)) under which YJ is a Poisson
process with unit rate.

The following theorem allows us to express the mutual
information involving point processes with intensity and other
random variables in terms of the intensity functions. The proof
of the theorem is similar to the proof of [50, Th. 1]. See
Appendix A in the supplementary material for a review of how
mutual information is defined for general ensembles such as
point processes.

€ [0, T])-predictable

(16)

lThroughout, the limits of the Lebesgue-Stieltjes integral /(f’ should be
interpreted as f< abl

Theorem 1: Let Y be a point process with (F) : ¢ €
[0, T])-intensity A such that

T
E[/ |¢(Az)|dt} <0
0

and let M be a measurable mapping on the given probability
space satisfying I(M; YOT ) < oo. Then there exists a process
Il such that I'l is the (G, = o(M, Y}) : t € [0, T])-intensity

of YOT and
[/ ¢(D)—¢(A)dt}

See Appendix C in the supplementary material for the proof.
To understand this result intuitively, let A(Y; Ty denote the
negative relative entropy of the process Y, " against the unit-
rate Poisson process, and define h(YT|M) s1m11arly Then we
expect to have I(M; Y]) = h(Y]) — h(YT|M) But from (13)
in the introduction

T T
h(YOT)zE[/ (A,—l)dt—f log(A,)le] (19)
0 0

T T
=/0 (E[At]_l)dt_/o E[¢(Anldr,  (20)

a7

1(M; Y]) (18)

where (20) follows because E[ fOTlog(A,)dY[] =
E[ [, log(A)Adt] = E[ [, ¢(A,)dr]. Similarly, we have

T T
h(YOT|M)=/O (E[Ft]—l)dt—/o E[¢(T)ld:, (1)

Subtracting (21) from (20) gives (18).

We shall require two strong data processing inequalities, one
for superposition and one for thinning. These will be used in
the proofs of our coding theorems.

Theorem 2: Let Y be a Poisson process with rate A, M
be such that I(M; Y]) < oo, and FT be the (o (M; Y}) :

[0, T])-intensity of YT Suppose Z! is obtained by addmg an
independent (of YT and M) P01sson process with rate u to YT

Then,
[/ T — () dt}

I(M;ZOT)SE[/ ¢(FI+M)—¢(A+M)dt]. 23)
0

I(M; Y)) (22)

Proof: Since M S YOT = Zg forms a Markov chain, the
data processing inequality gives I(M; Zg ) < I(M, YOT ) < o0.
Applying Theorem 1 and wusing the uniqueness of
intensities,

T
1(M; Y{):E[ / ¢>(F,)—¢(A)dt] and (24)
0

1(M; Z8) = E[/0T¢(ft) - o(i) dt],

where f‘g and ig are the (6(M;Z)) : t € [0,T]) and
(]-"tZ : t € [0, T])-intensities of Zg . Due to the uniqueness
of the intensities and Lemma 10, we get for each ¢ € [0, T],

(25)
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[y = E[[YIM,Z 1+ p, and A, = A + . Substituting this
in (25) and applying Jensen’s inequality yields

T
I(M; Z) = E[/O P(E[THM, Z{ ]+ 1) —p(h + 1) dt}
(26)

T
< E[/O B(T 4+ 1) —¢(k+u)dt]. @n
|

Definition 5: A point process Zg is said to be obtained
from p-thinning of a point process Y/, if each point in YOT
is deleted with probability p, independent of all other points
and deletions.

The following theorem was first proven by Wang [47].
We provide a self-contained proof that uses Theorem 1 and
Lemma 11.

Theorem 3: Let YOT be a Poisson process with rate A, and
M be such that I(M; YOT ) < oo. Let Zg be obtained from
p-thinning of YOT such that the thinning operation is indepen-
dent of M. Then

I(M; Z{) < (1 = pI(M; Y). (28)

Proof: The data processing inequality gives (M, Zg ) <

I(M; YOT ) < co. Applying Theorem 1,

T
I(M;Y]) = E[/O &) —p(h) dt:|, (29)

and

(30)

1(M; 20) = E[/()Tqb(f‘,) _ ¢>(X,) dt],

where Fg and )»g (respectively f‘g and ):g ) are the
(oM Y)) : t € [0,T]) and (o(Y)) : t € [0, T])-intensities
(respectively (o(M; Zp) : ¢t € [0,T]) and (o(Z) : t € [0, T])-
intensities) of YOT (respectively ZOT ). Due to the uniqueness of
the intensities and Lemma 11, we can take for each r € [0, T7,

€29
(32)

i = (1 - p)E[TiIM, Z; ]
A= (1 —=pa.

Noting that ¢ (1 —p)x) = (1—p)é (x) +x¢ (1 —p), (30) yields

I(M;Z{) = (1 - pE :/0T¢(IE[F,|M, Z5 )=o) dt:
+¢(1—p)E|:/OTF,—Adt] (33)
=(1-pE :fOqu(E[mM, Z5 )=o) dt: (34)
<a-pe| [ Lo — 90 a (35)
= (1 =p)I(M: Yy), (36)

where for (34) we have used the fact that E[ fOT I'ydt] =
E[ fOT 1dY,) =E[ fOT A dt], and for (35) we have used Jensen’s
inequality. |

691

ITI. FUNCTIONAL COVERING OF POINT PROCESSES

In this section, we will consider general point processes
and obtain the rate-distortion function under the functional-
covering distortion when feedforward is present. More general
results are obtained for Poisson processes in the next sections.

Definition 6: Given a point process yg e NI, and a
nonnegative function j)g , the functional-covering distortion d
is

T T
d(%5. o) = /O $rdt /0 log(3r) dy, (37)
whenever the expression on the right is well-defined.

We will allow the reconstruction function IA/OT to depend on
YOT as well as the message, constrained via predictability. In
particular, we will call f’OT an allowable reconstruction with
feedforward if it is nonnegative and (U(Y(’)) :t € [0,T])-
predictable. Let 3>()T rr denote the set of all j/g processes which
are allowable reconstructions with feedforward.

Definition 7: A (T, R, D) code with feedforward consists of
an encoder f

foNI = {1, ..., ..., [exp(RT)]} (38)
and a decoder g
g {l ..., Texp®RD)} x N{ — Ve (39)
satisfying
T A
]E|:/ Y; dti| < 00 (40)
0
and the distortion constraint
Lo o1
]E[?d(YO : YO)} <D. (41)

We will call the encoder’s output M = f (YOT ) the message and
the decoder’s output f/OT the reconstruction.

Definition 8: The minimum achievable distortion with feed-
forward at rate R and blocklength T is

Di(R, T) £ inf{D : there exists a (7, R, D) code (42)
with feedforward}. (43)

Definition 9: The distortion-rate function with feedfor-
ward is

Dp(R) £ limsup D} (R, T).

T—o00

(44)

The minimum achievable rate at distortion D and blocklength
T with feedforward R}.(D, T) and the rate-distortion function
with feedforward Rr(D) can be defined similarly.

For most point processes, D;?(R, T) can be characterized via
the following theorem.

Theorem 4: Let YOT be a point process with (}}Y it e
[0, T'])-intensity Ag such that

T
EU |¢(A,)|dt] < oo.
0

T
B(r)) & iE[/ A — d(Ay) dt],
T Lo

45)
Let

(46)
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and

St £ P(Yr=0) < 1. 47)

Then D (R, T) satisfies

2(g)

Remark 1: Per (20), B (YOT ) can be interpreted as an entropy
rate of the source. Compare (8).
Proof:
Achievability: Recall that since Al is the (F} : ¢t €
[0, T])- intensity of YI, it is (FY : t € [0, T])-predictable,
and E[ fo |¢(A,)|dt < oo implies E[ fo A dtf] < oo. If the
decoder outputs AO, this leads to distortion

1 T T
—E|:/ Ay dt—/ log(Ay) dY,i| 49)
T LJo 0

1 T
—E[/ A — p(Ay) dt:|
T Lo
= &(¥]).

Thus D},(0,T) < B (YOT ), and the upper bound in the statement
of the theorem holds at R = 0.

Now consider the case R > 0. Fix T > 0 and let
J = Jexp(RT)]. If Yr = 0, then the encoder sends index

M = 1. Otherwise, let ® denote the first arrival instant of
the observed point process YO: From Lemma 5, we have that

1 1
~R-= <DpR,T) < E(Y))— (1 -8R+ T (48)

TE[a(A]. ¥])] =

(50)

(D

PYo <L P, i . Since under POO, YOT is a Poisson process with

unit rate, it holds that P (©® =1tYr > 0) =0 for any fixed
te[0,T]. ThlsgwesusP(@_t Yr > 0) =0 for ¢t € [0, T].
Thus conditioned on the event Y7 > 0, ® has a continuous
distribution function Fg. The encoder computes Fg(®) which
is uniformly distributed over [0, 1], which the encoder suitably
quantizes to obtain an M which is uniform in {2, ..., J}. From
Theorem 1, there exists a (o (M, Y(t)) t € [0, T])-predictable
process FT which is the (O‘(M Y(t)) t € [0, T])-intensity
of Y. We note that E[fo I, dt] = E[ fo A,dt] < oo, and
from Theorem 1, E[ fo log(T';) dY;] < oo. Hence

1 1 T T
?E[d(rg, Y&)]:;E[/ Ftdt—/ log(l"t)le] (52)
0 0

is well-defined. The decoder outputs FOT as its reconstruction.
Then we have

1 1
7HM) = — (67 log(8r) + (1 = d7) log(l — 7))

1-367
+ (log(J — 1))

(53)
> Lo og - 1)) (54)
> —L log(J/ exp(1)) (55)
zﬂ—hm—%, (56)

where for (54), we have used the bound —é§7log(ér) — (1 —
ér)log(l — 87) > 0; for (55), we have used the inequality

J—1>J/exp(l) when J > 2; and for (56), we used the fact
that RT < log(J).
H(M) also satisfies

1 1

— e . T
FHO) = TI(M, Yy) (57)

1 T 1 T
?]E[fo log(Ft)dY,]—?]E[/o (/)(A,)dt}, (58)

where, for (57) we have used Lemma 2; for (58) we have used
Theorem 1. The average distortion can be bounded as follows:

1 I
—E[d(Tg. ¥g)] = —E

(59)

T
/ Iy dt —log(Ty) dY,:|
0

1 T 1 r

) (60)

1 r 1 T
= ?E _/0 A; dt] — ?E[/O log(F,) dY{I

(61)
_ gl TA dt lH(M) (62)
T /0 ! ] T
1 T
- —E[/ d(Ay) dt} (63)
T Lo
1 T
< —E[ f Ar— $(AD dr} (64)
T LJo
1
— (1 -8R+ T (65)
1
=E(¥)) - — DR+ =, (66)

where, for (60), we have used the fact that E[ fOT log
(I't) dYy] < oo due to Theorem 1; for (61), we used the equal-
ity E[ [ T,dfl = E[ ] A,dr]; for (63), we used (58); and
for (65), we used (56).

Thus we have shown the existence of a (T, R, D) code with
feedforward such that D = B (YOT) —(1=67)R+ % This gives
the upper bound on D}(R, T).

Converse: For the given (T, R, D) code with feedforward,
let J = [exp(RT)]. Then J < exp(RT) + 1 < exp(RT + 1).
Thus we have

1 1 1
R+ e —log(J) > H(M) —I(M YY), (67)

where the last equahty follows because of Lemma 2.

Since I(M; YOT ) < o0, we conclude from Theorem 1
that there exists a process Fg such that T’ OT is the (F; =
o(M,Y}) : t €0, T])-intensity of ¥} and

T
[/ ¢>(Fz)dt] [/o ¢(Az)dt]- (68)
Hence from (67)

R>]E[/T r dt}—]E[/T A dt]—] 69)
z 7 0¢(r) T O¢(z) ;-(

Let f’()T denote the decoder’s output. The distortion constraint
D satisfies

D> z8fa(i%.17)]

1(M; YE)

(70)
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1 T . T R
- ?E[/o ¥,dt —/O 1og(Y,) dYt:| 1)
1 T, N

where in the last line we have used Lemma 12.
Using the inequality ulog(v) < ¢(u) — u + v, and noting
that the individual terms have finite expectations,

T . T .
]E[/ log(Y,)F,dti| < JE[/ (T — T, + Y,dt] (73)
0 0
T T
0 0
T A
+E[/ Y; dt].
0
From (72) and (69), we deduce
1 r 1 r
R+D > —EU ¢(Ft)dti| - —EU ¢(At)dt}
T Lo T Lo

+1E/Tf/dt 1]E/Tl (f/)dY :
—_— _— — 0 —_ —
T 0 ! T 0 e\ ! T

(74)

(75)
> 1E[/Tr dt}—lE[ T¢>(A)dt]—l (76)
o I T | o ! T
> lE[/TA,dz]—lE[ T¢(A,)dz:|—l (77
-1 L T Lo T
= E(YOT)—%, (78)

where, for (76) we have used (74); and for (77) we used the
fact that E[ f)| Tydr] = E[ f;| dY,] = E[ i A,dr]. Hence we
have shown that for any (7, R, D) code with feedforward,
D > E(YOT) — R — 1/T. This gives us the lower bound on
Di(R, T) |

Corollary 1: Let YOT be a point process with (]—",Y it e
[0, T'])-intensity Ag such that

« ELfy [$(A)dr] < o0

« E(Y) 2 limsupy_, o LE[ fy Ar—¢(Ap)dr] is finite

. limT_mo P(YT = 0) =0.
Then

Dr(R) = 2(Y) — R. (79)

Proof: The corollary follows from the definition Dr(R) =
limsupy_, oo D3(R, T) and from the bounds on Dy (R,T) in
the Theorem 4. |

Applying the above corollary to a Poisson process with rate
A > 0, we get that Dp(R) = A—Alog(A) —R. As we will see in
the next section, this distortion-rate function can be achieved
without feedforward.

IV. CONSTRAINED FUNCTIONAL-COVERING
OF POISSON PROCESSES

In this and the next section we focus on Poisson processes.
Let yOT denote the set of all functions f)g that are nonnegative
and left-continuous with right-limits. We assume that we are

693

given a set A € R, with at least one positive element. We
will constrain the reconstruction function IA/OT to take values in
A, so that for all 7 € [0, T], ¥, € A.

Definition 10: A (T, R, D) code consists of an encoder f

foNE = {1, ..., [exp(RT)T} (80)
and a decoder g
g {l.....[exp(®RD)1} — Vi (81)
satisfying
A T A
0
and the distortion constraint
1 N
?E[d(yg, vf)] =p. (83)

As before, we will call the encoder’s output M = f(YOT )
the message and the decoder’s output )A/OT = g(M) the
reconstruction.

Definition 11: A rate-distortion vector (R, D) is said to be
achievable if for any € > 0, there exists a sequence of
(T, R+ €, D+ ¢) codes such that lim,,_, o T;, = 00.

Definition 12: The rate-distortion region SRCDZ is the set of
all achievable rate-distortion vectors (R, D).

The rate-distortion region ‘.R”DZ’F for a Poisson source with
feedforward is defined analogously, except that a code is
defined via Definition 7 with the addendum that we require
¥, € A for all 1.

Theorem 5: The rate-distortion region for the constrained
functional-covering of a Poisson process with rate A > 0 is
given by

#oh = noF = mo, (84)
where SR® is the convex hull of the union of sets of rate-
distortion vectors (R, D) such that

R>1 u (ﬂk)
> 1) Bilog

— (85)
k=1 Ok

4 AB
D> ZakwA(—">, (86)

(074

k=1
where
W4 (1) £ inf v — ulog(v) (87)
veA

with the convention that OW(0/0) = 0, and [ozk]i=1 and
[,Bk]é=1 are probability vectors over {l1,2,3,4} satisfying
o =0= B =0.
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Proof:
Achievability: Let

(88)

(89)

We will show achievability using a (T, R + €, D + €) code
without feedforward. We will use discretization and results
from the rate-distortion theory for discrete memoryless sources
(DMS). Define a binary-valued discrete-time process ()_’j:j €
{1,...,n}) as follows. If there are one or more arrivals in
the interval ((j — 1)A,jA] of the process Y[, then set I_/J
to 1, otherwise set it equal to zero. Sinc_e YO? is a Poisson
process with rate A, the components of (Y; : j € {I,...,n})
are independent and identically distributed with P(Y = 1) =
1 — exp(—AA). Consider the following “test”’-channel for
ke{l,2,3,4},

PO =KV =1) =
P(U = kY =0) = a.

(90)
oD

Define the discretized distortion function

a(5.5) 25~ logA(y)l{y =1} jeAje(0.1). O

The reconstruction Y (k) is taken as a v € A satisfying

A A
) (-

€

——1o < -,

o g(V)>' 4
where such a v exists due to the definition of W 4. We recall
that if oy = 0 then B = 0, and hence P(U = k)_:_O for such
a k. The scaling of the mutual information I(U; Y) and the

distortion function d(Y, Y) with respect to A is given by the

93)

following lemma. |
Lemma 1:
(D7)
lim ——~ =R 94
A—0 A
lim E[Ez(?, Y)] <p+<. (95)
A—0 4
Proof: Please see the supplementary material. |
Let
A 2
2 tog(¥()|. 9
« kef}?%‘,’_%,q’ og(Y (k) (96)
Y(k)>0

Due to [53, Th. 9.3.2, p. 455], for a given A > 0, € >0, and
all sufficiently large n, there exists an encoder f and a decoder
g such that

o7
(98)

foyjefl,...on)—>(1,...,L}

A

(... L) > (Yj:je{l,...,n})

satisfying

1 Sy -
~log(L) = 1(U;Y) +e (99)

E %jéa(%,,f,.) <E[a(¥.7)]+& oo

Given the above setup, the encoder f upon observing YOT
obtains the binary-valued discrete time process (¥; : j €
{1,...,n}), and sends M = f(Y; : j € {1,...,n}) to the
decoder. The decoder outputs the reconstruction IA/OT as

n

7,23 vi{re (G- DAjA]} rel0.7].
j=1

(101)

Let ¥; denote the actual number of arrivals of ¥{ in an interval
(G — DA, jA]. Then d is related to the original distortion
function via the above reconstruction as follows:

T T
%d(?g; YOT) = %/0 ¥ dr — %/O 1og(ff,) ay, (102)
n n n R _
=23 h - 2> oa(B), (103)

=1 =1
1 s 1 n AN
= 20 g 2 oe(1),
j=1 j=1
1 < NG =
—?Zlog(l_/j>(l_/j—l)l{l_/j>l} (104)
1

IA
S|
U
—
<
S
S~———"
+
NI=
=
e
[
—_
SN—"
==
e,
<n
\%
—_

A
S |
QU
—
§“<
I
N—"
+
NI =
<
=
e,
-
\
—
-
~
p—
S
33
N

where for (106), we have used the definition of « in (96),
since ?J > 1 implies }_’j = 1 which implies }_]L > 0 in order
for c_l(l_/j, 1) < oo, which occurs a.s. since E[d(Y, ¥)] < 00 so
long as A is sufficiently small.

Hence taking expectations, we get

E[ a(74. Yg):| <E ;Za(f/,,?]) (108)
o

+«E %éyjl{, -1} (109)

< E[a(¥.7)] (110)
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+«E %Xn:f{,l{f/jﬂ} +é (a1
=1
:E[d(f/ )]+K(x Aexp(—rA)) + &

(112)
< E[EI(?, Y)] AA FE,

(113)
where, for (111), we have used (100); for (112) we note that
E[I?jl{l_/j > 1}] = AA—AAexp(—AA); and for (113), we have
used the inequality 1 — u < exp(—u).

Moreover using (100),
10:7) &

1
?log(L) = + N (114)

Now given the rate-distortion vector (R, D) and € > 0, first
choose A < 1 sufficiently small so that

1
—log(L) <
nAog()_

1(0: 7) c
A §R+Z (115)

_/a €
E[d(Y, Y)] =D+ (116)
KA2A < % (117)

Then let € = Ae/4, and choose a sufficiently large n so
that (100) is satisfied. From (113) and (114) we conclude that
a sequence of (T, R + €, D + €) code exists with 7,, = nA
and T,, —> o0 as n — oQ.

Converse: We will prove the converse when feedforward
is present. For the given (T, R 4 €, D + €) code with feedfor-
ward, let M denote the encoder’s output. Since I(M; YOT ) < o0,
we conclude from Theorem 1 that there exists a process F()T
such that Fg is the (F; = o (M, Y(’)):t € [0, T])-intensity of

Y and
1(M; YY) [ / ¢(F,)dt:| ToH(A).

(118)

We also have

L1 ¥T) = SHOM) < L log(Texp(R + T)]) (119)
YT T 1
<R+e+ 7" (120)
This gives
R > lE[/T¢(F,)dt:| —gb(k)—e—l. (121)
- T 0 T

Let ?()T denote the decoder’s output. The distortion constraint
D satisfies

D lE:d<A0T, v5)] - e

1 r T,\ T
=?E/O Ytdt—/o log( )dY,}—e (123)

v

(122)

1 T, N

= ?E_/O -1, log(Yt> dt:| - (124)
1 r pT

> —E / mf v — T log(v) dt] (125)
T 0 veA
1 r pT

==K / W4Ty dti| — €, (126)
T LJo
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where, for (124) we have used Lemma 12; and for (126), we
have used the definition of W 4. Defining S to be uniformly
distributed on [0, T], and independent of all other random
variables we have

1
R = E[p(T9)] — () —€ — T
D = E[WA(Ts)] —e.

(127)
(128)

Now we use Carathéodory’s theorem [54, Th. 17.1]. There
exist nonnegative [nk];::l and [ak];{‘zl, such that 2221 o =1

and
4
Elp(Ts)] = Y axp(ne) (129)
k=1
4
E[WA(T)] =) axWa(mi) (130)
k=1

E[l's] = (131)

4
Z axnk = A,
where in the last line we have used the fact that since FT
is the (o(M, Y]) : t € [0, T))-intensity of Y], IE[/O Iy dt] =
E[Y7] = TA. Now define

A OkNk

A=

We note that gy = 0 if oy = 0, and 22:1 Br = 1. Substituting
the above definitions in (127) and (128), we obtain

(132)

4
1
R> (Z gy log(n) — /\IOg(/\)> —e— (133)

T
k=1

= ,\(Z Br log( >l{ak > 0} — log(k)> —e— % (134)
_ By 1
_)\éﬁklog<a—k> € T

Likewise,

(135)

. Mk
D> Zak\IJA<—> —€ (136)
k=1 K

Since € is arbitrary and 7 can be made arbitrarily large,
we obtain the rate-distortion region in the statement of the
theorem. |

If we do not place any restrictions on \A, i.e., if A is the set
of all nonnegative reals, then we obtain the functional-covering
distortion.

Corollary 2 (Functional Covering of Poisson Processes):
The rate-distortion function for functional-covering distortion
is given by Rrc(D) = (A — Alog(X) — D)*.

Proof: For the functional-covering distortion, A is the set
of nonnegative reals. Hence

WA(u) = ingv —ulog(v) = u — ulog(u). (137)
v>
For any achievable (R, D) we have
R>2Y1 B log(%), (138)
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and
Bk
D> ak\le< ) (139)
4
Eeln () o
(073 (073
= & — xlog(h) — AZ,Bklog<’3k) (141)
k=1
Hence
R+D > x—rlog(h), (142)

and this is achieved by [“k]i: | and [,Bk]2: | that yield equality
in (138). [ |
If take A = {0, 1}, then we recover the covering distortion
in [35, Th. 1].
Corollary 3 (Covering Distortion [35]): Therate-distortion
function for the covering distortion is given by Rc(D) =
(= log(D)*.

Proof: For the covering distortion, A = {0, 1}. Hence

W p(w) = inf v—ulog(v) = 1{u > 0}. (143)

vef0,1}

Suppose (R, D) is in RD. Then
4 B
D> Zak\IJA(—k) (144)
o
k:l
= Zakl{ﬂk > 0} (145)
= Zak, (146)
keB
where we have defined B = {k:8; > 0}. Similarly,
! P

R > A 1 — 147
> Z Br og(ak> (147)
—xZﬁklog< ) (148)

keB
=D 10g<2k€8 ﬂk) (149)

keB ZkEB Ok
1
= klog(—) (150)
ZkeB Yk

> (—rlog(D)*, (151)

where (149) is due to the log-sum inequality, which can be
achieved by setting oy = min(1,D), ap = 1 — ¢y, f1 = 1,
B =0. |

V. THE Poi1ssON CEO PROBLEM

We now consider the distributed problem shown in Fig. 1.
Our goal is to compress YOT , which is a Poisson process with
rate A > 0. Each of the two encoders observes a degraded
version of YOT, denoted by Yél)’T, i € {1,2}. Here YOT is first

p-thinned to obtain f/(()i)’T,
process N(()i)’T with rate 1 is added to I?(gi)’T to obtain

Recall that )%T is the set of all nonnegative functions f)g
which are left-continuous with right-limits, and

T T
d(jig,yg) 2[) f}tdt—/() IOg()AI,)dy,.

Definition 13: A (T, R(l),R(z),D) code for the Poisson
CEO problem consists of encoders f( and f®,

and then an independent Poisson
yO.T
0 -

(152)

O NI > {1, ,{exp(R“)T)” (153)
O N7 - {1, ,{exp(R@)T)”, (154)
and a decoder g,
g: [1 (exp(R(l)Tﬂ}
x {1, L {exp(R@)T)” S YT (159)
satisfying
E[/OT f’,dtj| < o0 (156)
and the distortion constraint
%E[d(f/g, Y0T>] <D. (157)

Definition 14: A rate-distortion vector (R(l), RO, D) is said
to be achievable for the Poisson CEO problem if for any € > 0,
there exists a sequence (7, RV + ¢ RD +e D+ €) codes
T, — 0.

Definition 15: The rate-distortion region for the Poisson
CEO problem RO is the intersection of all achievable
rate-distortion vectors (R, R D).

The rate-distortion region for the Poisson CEO problem
with feedforward, denoted by 9%@17,3, is defined analogously.
Note that our formulation differs from that of Wang [47] in
that it allows for thinning and we use the functional-covering
distortion measure in place of the covering distortion measure.

Theorem 6: The rate-distortion region for the Poisson CEO
problem is given by

RO = ROT = ND, (158)
where RD is the convex hull of union of sets of rate-distortion
vectors (R(l), R®, D) such that

RO > ((1 (1)>)L n u(”) Zﬂ]g)log(ﬁ’zl)) (159)
R? > ((1 _p(2)>k + M@)) kzﬁ@) 10g<ﬂ122)> (160)
D> 1—¢() (161)
D
_A(Zyk(l)log< (1)) +Z7/k(2)10g( o) ))
k=1 Y k=1 Ay
(162)
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for some probability vectors [a,&i)ﬁ:l, [ﬂ,gi)

where for k € {1,2,3,4} and i € {1, 2}
J/k(z) :p(i)a(]il)) + (1 _p?;)ﬂl?)

1 1
ap =0=8"=0

O{]Ez) — ﬂlgz) — yk(t)

1, and [y 72,

it p? <1 (163)

if p =1. (164)

Proof: Please see the supplementary material. |

Remark 2: Note that there is no sum-rate constraint in the
rate-distortion region of the above theorem. This occurs due to
the sparsity of points in a Poisson process. After discretizing
a Poisson process with rate A, the expected number of ones in
the resulting binary process is roughly AT, and the remaining
T/A—AT bits are zeroes. When such a sparse binary process is
sent via two independent parallel channels as in (179)-(180),
the resulting output processes are almost independent. This
implies that the encoders do not need to bin their messages in
the achievability argument.

Corollary 4 (Poisson CEO Problem Without Thinning): 1f
pV = p@ =0, then the rate-distortion region in Theorem 6
takes a simple form

bR + b RO +D>x—¢0). (165)
A4 pu® A4 pu@ - '

The above result should be compared with that of
Wang [47, (37)] for the same problem but with the covering
distortion measure.

Corollary 5 (Remote Poisson Source): Consider a scenario
where an encoder wishes to compress a Poisson process with
rate A > 0, but observes a degraded version of it, where the
points are first erased with independent probability 1 — p and
then an independent Poisson process with rate w is added to
it. Then the rate-distortion region (R, D) is the convex hull of
the union of all rate-distortion vectors satisfying

4
R> ((1-p)h+p) Zﬂklog<5—i>

(166)
k=1
! Yk
D>A—0d(A) — - 1 — ], 167
> A=) ;Vk0g<ak> (167)

for some probability vectors [al{_,, [Bel{_;» and [wlf_;,
where for k € {1, 2,3, 4}
o, =0= ﬂk =0.

Y = pak + (1 —p)Br, (168)
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