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Functional Covering of Point Processes
Nirmal V. Shende and Aaron B. Wagner , Fellow, IEEE

Abstract—We introduce a new distortion measure for point
processes called functional-covering distortion. It is inspired
by intensity theory and is related to both the covering of
point processes and logarithmic-loss distortion. We obtain the
distortion-rate function with feedforward under this distor-
tion measure for a large class of point processes. For Poisson
processes, the rate-distortion function is obtained under a gen-
eral condition called constrained functional-covering distortion,
of which both covering and functional-covering are special
cases. Also for Poisson processes, we characterize the rate-
distortion region for a two-encoder CEO problem and show that
feedforward does not enlarge this region.

Index Terms—CEO problem, lossy compression, point process,
Poisson process, rate-distortion.

I. INTRODUCTION

T
HE CLASSICAL theory of compression [2] focuses

on discrete-time, sequential sources. The theory is thus

well-suited to text, audio, speech, genomic data, and the

like. Continuous-time signals are typically handled by reduc-

ing to discrete-time via projection onto a countable basis.

Multi-dimensional extensions enable application to images and

video.

Point processes model a distinct data type that appears in

diverse domains such as neuroscience [3], [4], [5], [6], [7], [8],

communication networks [9], [10], [11], imaging [12], [13],

blockchains [14], [15], [16], [17], and photonics [18], [19],

[20], [21], [22]. Formally, a point process can be viewed as a

random counting measure on some space of interest [23], or if

the space is a real line, a random counting function; we shall

adopt the latter view. Informally, it may be viewed as simply

a random collection of points representing epochs in time or

points in space.

Compression of point processes emerges naturally in sev-

eral of the above domains. Sub-cranial implants need to
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communicate the timing of neural firings to a monitoring

station over a wireless link that is low-rate because it must

traverse the skull [24], [25]. In network flow correlation anal-

ysis, one cross-correlates packet timings from different links in

the network [11]; this requires communication of the packet

timings from one place to another. Compressing point pro-

cess realizations in 3-D (also known as point clouds) arises in

computer vision [26], [27], [28], and so on.

Various specialized approaches have been developed for

compressing point processes, and in particular for measuring

distortion. One natural approach is for the compressed repre-

sentation to itself be a point-process realization [29], [30],

[31], [32], [33], [34]. More relevant to the present paper,

Lapidoth et al. [35] introduced a covering distortion mea-

sure, where the reconstruction of a point process on [0, T]

is a subset Ŷ of [0, T] that must contain all the points, and

the distortion is the Lebesgue measure of the covering set (see

also Shen et al. [36]).

If we encode the subset Ŷ as an indicator function

Ŷt =

{

1 if t ∈ Ŷ

0 otherwise,
(1)

then Ŷt = 0 guarantees that no point occurred at time t while

Ŷt = 1 indicates that a point may have occurred at t. More

generally, Ŷt could take many values and encode the relative

belief that there is a point at t. Inspired by this observa-

tion, and the notion of logarithmic-loss distortion [37], [38],

we consider the following formulation. For a realization of a

counting (or point) process yT
0 = (yt : t ∈ [0, T]) (i.e., yt is

integer-valued, non-decreasing, and has unit jumps) and a non-

negative reconstruction ŷT
0 , we define the functional-covering

distortion as

d
(

ŷT
0 , yT

0

)

�

∫ T

0

ŷt dt −

∫ T

0

log
(

ŷt

)

dyt. (2)

This is related to the covering distortion measure in the fol-

lowing sense. If we impose that ŷt ∈ {0, 1}, then (2) reduces

to the covering distortion measure. Yet it is natural to consider

the distortion in (2) without such a restriction, or with a more

general set of allowable values for ŷt. In fact, there are advan-

tages to not restricting ŷT
0 to the set {0, 1}. Consider a remote

source setting where the encoder cannot access the point-

process source directly, but instead observes a thinned version

in which some of the points in the source point process are

deleted randomly. Then, in case of the covering distortion the

reconstruction can only be the entire interval [0, T] (i.e., ŷt =

1, t ∈ [0, T]). On the other hand, under functional-covering

distortion the problem has a nontrivial solution.

This idea is related to the intensity of a point process.

Heuristically, given a random variable M, the intensity of
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a point process represented by a counting function YT
0 is a

nonnegative process ŴT
0 such that P(Yt − Yt−� = 1|M, Y t−�

0 )

≈ Ŵt� (see Definition 2 for the precise statement). Now

consider a discretized version of (2), written in a way that

reflects the randomness of the source Yt:

⌊T/�⌋
∑

ℓ=1

(

ŷℓ�� −
(

Yℓ� − Y(ℓ−1)�

)

log
(

ŷℓ�

))

. (3)

Fix ℓ, and consider selecting ŷℓ� given the message M and

the history of the source {Yk�}ℓ−1
k=1 in order to minimize

E

[

ŷℓ�� −
(

Yℓ� − Y(ℓ−1)�

)

log
(

ŷℓ�

)

∣

∣

∣
M, {Yk�}ℓ−1

k=1

]

. (4)

Defining Ŵℓ� via

P
(

Yℓ� − Y(ℓ−1)� = 1

∣

∣

∣
M, {Yk�}ℓ−1

k=1

)

= Ŵℓ��, (5)

and assuming P(Yℓ� − Y(ℓ−1) � > 1|M, {Yk�}ℓ−1
k=1) is negligi-

ble, then (4) is approximately

ŷℓ�� − Ŵℓ�� log
(

ŷℓ�

)

, (6)

which is minimized by the choice ŷℓ� = Ŵℓ�. Similarly, if

ŷℓ� may depend on M but not on the past of the source pro-

cess, then the optimal choice of ŷℓ� is P(Yℓ� − Y(ℓ−1) � =

1|M)/�. For technical reasons this is not an intensity, how-

ever [39, Definition D7, p. 27]. Either way, we see that (2)

encourages the decoder to output a process that describes the

relative likelihood of a point at each instant of time.

The relation between the functional-covering distortion

measure and logarithmic-loss [37], [38] is as follows. Recall

that in the context of a memoryless source over a finite alpha-

bet X , the logarithmic-loss distortion measure involves the

decoder, given the message M = m, outputting a probability

distribution p̂i(y) for each source symbol Yi in the sequence.

The distortion over a block of size n is then

1

n

n
∑

i=1

log
1

p̂i(Yi)
, (7)

the expectation of which is a sum of cross-entropies and is

minimized by the choice p̂i(y) = P(Yi = y|M = m). With

this choice, the expected distortion is 1
n

∑n
i=1 H(Yi|M) and

the distortion-rate function is simply

max(H(Y) − R, 0). (8)

If the source has memory, then the distortion-rate function

generalizes to max(H({Y}) − R, 0), where H({Y}) is the

entropy rate of the source, if the decoder is permitted to out-

put a conditional distribution p̂i(yi|yi−1, . . . , y1) for each i.

Mathematically, this is equivalent to having the decoder out-

put an unconditional distribution p̂i(yi) but giving the decoder

feedforward [40], [41], [42], [43], [44], [45] information, i.e.,

providing the decoder with Y1, . . . , Yi−1 before it outputs the

marginal distribution p̂i(yi).

To see the connection to the functional-covering distortion

measure, recall that discrete entropy can be expressed in terms

of the relative entropy against the uniform distribution, and

log
1

p̂(Yi)
(9)

can be viewed as, up to an additive constant, the log-likelihood

ratio between the uniform distribution and p̂(Yi). For the case

of point processes, the role of the uniform distribution may be

played by a unit-rate Poisson process. Heuristically, consider a

point process {Yt} in which Ŷt� describes the probability of a

point in the interval [t, t+�] given the strict past {Ys}s<t. Then

the log-likelihood ratio of a unit-rate Poisson process against

the source evaluated on a realization YT
0 is approximately

log

⎛

⎜

⎝

⌊T/�⌋
∏

ℓ=1

((

1 − Ŷ(ℓ−1)��

)

�

)1{Yℓ�>Y(ℓ−1)�}
e−�

(

Ŷ(ℓ−1)��

)1{Yℓ�>Y(ℓ−1)�}(
1 − Ŷ(ℓ−1)��

)

⎞

⎟

⎠

=

⌊T/�⌋
∑

ℓ=1

−� − 1
{

Yℓ� > Y(ℓ−1)�

}

log
(

Ŷ(ℓ−1)�

)

− 1
{

Yℓ� = Y(ℓ−1)�

}

log
(

1 − Ŷ(ℓ−1)��

)

(10)

≈

⌊T/�⌋
∑

ℓ=1

−� − 1
{

Yℓ� > Y(ℓ−1)�

}

log
(

Ŷ(ℓ−1)�

)

+ Ŷ(ℓ−1)��1
{

Yℓ� = Y(ℓ−1)�

}

(11)

≈

∫ T

0

(

Ŷt − 1
)

dt −

∫ T

0

log
(

Ŷt

)

dYt, (12)

which differs from (2) only by the constant term −T . This

argument can be made rigorous via Girsanov’s theorem for

point processes [39, Ch. VI, Ths. T2–T4]. Specifically, if the

reconstruction ŷT
0 is assumed to be bounded then it can be used

to define a probability measure on the space of point-processes

(N T
0 ,FN) via the following Radon-Nikodym derivative,

dPŷT
0

dP0

(

yT
0

)

= exp

(∫ T

0

log
(

ŷt

)

dyt −

∫ T

0

(

ŷt − 1
)

dt

)

, (13)

where P0 is the measure under which YT
0 is a Poisson process

with unit rate. Then the intensity of YT
0 under this measure

is ŷT
0 [39, Ch. VI, Ths. T2–T4] and the functional-covering

distortion is related to the above Radon-Nikodym derivative as

d
(

ŷT
0 , yT

0

)

= − log

(

dPŷT
0

dP0

(

yT
0

)

)

+ T. (14)

Thus an alternative view of the functional-covering dis-

tortion measure is that the reconstruction ŷt describes a

distribution over the source realizations and (2) is simply the

log-loss distortion measure. Note, however, that since ŷt�

describes the probability of a point in [t, t + �] given the

history of the source process, either the decoder effectively

needs feedforward, as in the above discussion on intensity, or

the distribution induced by ŷT
0 needs to be such that the source

is conditionally Poisson, i.e., memoryless, given ŷT
0 . Regarding

the former case, note that the concept of feedforward is some-

what subtle in continuous time; mathematically, it amounts to

assuming that ŷT
0 is predictable [39, Definition D4, p. 8] with

respect to the message and the history of the source process.

In the latter case, the functional-covering distortion measure is

an affine function of the negative log-likelihood of a Poisson

channel with input ŷT
0 and output yT

0 , analogous to the way
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Fig. 1. Poisson CEO Problem.

Hamming distance is an affine function of the negative log-

likelihood of a binary symmetric channel and squared error is

an affine function of the negative log-likelihood of a Gaussian

channel.

We shall consider both the feedforward and memoryless

approaches. For any arbitrary source with an intensity, we

show in Theorem 4 and Corollary 1 that if the decoder has

feedforward information then the rate-distortion function is

linear as in (8). For the case of a Poisson process source,

in Theorem 5 we determine the rate-distortion tradeoff with

the added restriction that for some given set A, we have

ŷt ∈ A for all t. We find that this tradeoff is unaffected by

the presence of feedforward. Taking A = {0, 1} recovers the

result of Lapidoth et al. [35, Th. 1] for the covering distortion

measure (Corollary 3) and taking A = [0,∞) recovers the

unconstrained case.

Recall that the covering distortion measure yields a trivial

rate-distortion tradeoff in the remote-source setting in which

the encoder observes a thinned version of the source. Here

we determine the rate-distortion function under the functional-

covering distortion measure for a Poisson source that is

observed after thinning and superposition with an indepen-

dent Poisson process. We find that the rate-distortion function

is not degenerate. In fact, in Theorem 6 we solve the more gen-

eral two-encoder CEO problem (see Fig. 1), again finding that

the rate-distortion function is unaffected by feedforward. It is

notable that our scheme for the CEO problem does not require

binning (cf. [46, Sec. 15.4]). A result for the CEO problem

without thinning and with the covering distortion measure was

earlier obtained by Wang [47].

To prove these results, we establish various technical tools

that are useful for characterizing mutual information involving

continuous-time point processes. Theorem 1 provides a general

formula for computing mutual information in terms of inten-

sities; it subsumes existing formulae for mutual informations

involving doubly stochastic Poisson processes [48], [49], [50]

and queueing processes [51] as special cases. We also prove

two strong data processing inequalities. Theorem 2 provides a

strong data processing inequality for Poisson processes under

superposition, which complements the strong data process-

ing inequality for Poisson processes under thinning due to

Wang [47]. We also provide a self-contained proof of Wang’s

theorem in Theorem 3. These results may have independent use.

The remainder of the paper is organized as follows.

Section II introduces the necessary notation and contains

the mutual information identities and inequalities. Section III

defines the functional covering distortion measure precisely

and contains point-to-point results for general sources.

Section IV contains point-to-point results for Poisson sources,

and Section V contains results for the CEO problem. Many

of the proofs and auxiliary results are contained in the

supplementary material.

II. POINT PROCESSES, INTENSITIES,

AND MUTUAL INFORMATION

Our treatment follows Brémaud [39], to which the reader is

referred for additional background. We consider a probability

space (�,F , P) on which all stochastic processes considered

here are defined. For a finite T > 0, let (Ft : t ∈ [0, T]) be an

increasing family of σ -fields with FT ⊆ F . We will assume

that the given filtration (Ft : t ∈ [0, T]), P, and F satisfy the

“usual conditions” [39, Ch. III, p. 75]: F is complete with

respect to P, Ft is right continuous, and F0 contains all the

P-null sets of Ft. Stochastic processes are denoted as ŶT
0 =

(Ŷt : 0 ≤ t ≤ T). The process XT
0 is said to be adapted to

the history (Ft : t ∈ [0, T]) if Xt is Ft-measurable for all

t ∈ [0, T]. The internal history recorded by the process XT
0 is

denoted by FX
t = (σ (Xs) : s ∈ [0, t]), where σ(A) denotes the

σ -field generated by A.

A process XT
0 is called (Ft : t ∈ [0, T])-predictable if X0 is

F0-measurable and the mapping (t, ω) → Xt(ω) defined from
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(0, T)×� into R (the set of real numbers) is measurable with

respect to the σ -field over (0, T) × � generated by rectangles

of the form

(s, t] × A; 0 < s ≤ t ≤ T, A ∈ Fs. (15)

For two measurable spaces (�1,F1) and (�2,F2), the prod-

uct space is denoted by (�1 × �2,F1 ⊗ F2). We say that

A ⇄ B ⇄ C forms a Markov chain under measure P if A

and C are conditionally independent given B under P. The

notation P ≪ Q indicates that the probability measure P is

absolutely continuous with respect to the measure Q. The

indicator function for the event E is denoted by 1{E}. All log-

arithms and exponentiations are base e. The superscripts (x)+

and (x)− denote the positive (max(x, 0)) and the negative part

(− min(x, 0)) of x respectively. The ceiling of x is denoted

by ⌈x⌉. Throughout this paper we adopt the convention that

0 log(0) = 0, exp(log(0)) = 0, and 00 = 1.

Definition 1: We use φ(x) to denote x log(x).

Let N T
0 denote the set of counting realizations (or point-

process realizations) on [0, T], i.e., if NT
0 ∈ N T

0 , then for

t ∈ [0, T], Nt ∈ N (the set of nonnegative integers), is right

continuous, and has unit increasing jumps with N0 = 0. Let

FN be the σ -field generated by the open sets of N T
0 when

endowed with the Skorohod topology [52, Sec. 12].

Definition 2: If NT
0 is a counting process adapted to the his-

tory (Ft : t ∈ [0, T]), then NT
0 is said to have (P,Ft : t ∈

[0, T])-intensity ŴT
0 = (Ŵt : t ∈ [0, T]), where ŴT

0 is a

nonnegative measurable process if

• ŴT
0 is (Ft : t ∈ [0, T])-predictable,

•
∫ T

0 Ŵt dt < ∞, P-a.s.,

• and for all nonnegative (Ft : t ∈ [0, T])-predictable

processes CT
0

1:

E

[∫ T

0

Cs dNs

]

= E

[∫ T

0

CsŴs ds

]

. (16)

When it is clear from the context, we will drop the probability

measure P from the notation and say NT
0 has (Ft : t ∈ [0, T])-

intensity ŴT
0 .

Definition 3: A point process YT
0 is said to be a Poisson

process with rate λ if its (FY
t : t ∈ [0, T])-intensity is (λ : t ∈

[0, T]).

The above definition can be shown to imply the usual defini-

tion of a Poisson process [39, Th. T4, Ch. II, p. 25] and vice

versa [39, Sec. 2, Ch. II, p. 23].

Definition 4: P
YT

0

0 denotes the distribution of a point process

YT
0 (on the space (N T

0 ,FN)) under which YT
0 is a Poisson

process with unit rate.

The following theorem allows us to express the mutual

information involving point processes with intensity and other

random variables in terms of the intensity functions. The proof

of the theorem is similar to the proof of [50, Th. 1]. See

Appendix A in the supplementary material for a review of how

mutual information is defined for general ensembles such as

point processes.

1Throughout, the limits of the Lebesgue-Stieltjes integral
∫ b

a should be

interpreted as
∫

(a,b].

Theorem 1: Let YT
0 be a point process with (FY

t : t ∈

[0, T])-intensity 
T
0 such that

E

[∫ T

0

|φ(
t)| dt

]

< ∞, (17)

and let M be a measurable mapping on the given probability

space satisfying I(M; YT
0 ) < ∞. Then there exists a process

ŴT
0 such that ŴT

0 is the (Gt = σ(M, Y t
0) : t ∈ [0, T])-intensity

of YT
0 and

I
(

M; YT
0

)

= E

[∫ T

0

φ(Ŵt) − φ(
t) dt

]

. (18)

See Appendix C in the supplementary material for the proof.

To understand this result intuitively, let h(YT
0 ) denote the

negative relative entropy of the process YT
0 against the unit-

rate Poisson process, and define h(YT
0 |M) similarly. Then we

expect to have I(M; YT
0 ) = h(YT

0 ) − h(YT
0 |M). But from (13)

in the introduction

h
(

YT
0

)

= E

[∫ T

0

(
t − 1)dt −

∫ T

0

log(
t)dYt

]

(19)

=

∫ T

0

(E[
t] − 1)dt −

∫ T

0

E[φ(
t)]dt, (20)

where (20) follows because E[
∫ T

0 log(
t)dYt] =

E[
∫ T

0 log(
t)
tdt] = E[
∫ T

0 φ(
t)dt]. Similarly, we have

h
(

YT
0 |M

)

=

∫ T

0

(E[Ŵt] − 1)dt −

∫ T

0

E[φ(Ŵt)]dt, (21)

Subtracting (21) from (20) gives (18).

We shall require two strong data processing inequalities, one

for superposition and one for thinning. These will be used in

the proofs of our coding theorems.

Theorem 2: Let YT
0 be a Poisson process with rate λ, M

be such that I(M; YT
0 ) < ∞, and ŴT

0 be the (σ (M; Y t
0) : t ∈

[0, T])-intensity of YT
0 . Suppose ZT

0 is obtained by adding an

independent (of YT
0 and M) Poisson process with rate µ to YT

0 .

Then,

I
(

M; YT
0

)

= E

[∫ T

0

φ(Ŵt) − φ(λ) dt

]

(22)

I
(

M; ZT
0

)

≤ E

[∫ T

0

φ(Ŵt + µ) − φ(λ + µ) dt

]

. (23)

Proof: Since M ⇆ YT
0 ⇆ ZT

0 forms a Markov chain, the

data processing inequality gives I(M; ZT
0 ) ≤ I(M; YT

0 ) < ∞.

Applying Theorem 1 and using the uniqueness of

intensities,

I
(

M; YT
0

)

= E

[∫ T

0

φ(Ŵt) − φ(λ) dt

]

and (24)

I
(

M; ZT
0

)

= E

[∫ T

0

φ

(

Ŵ̂t

)

− φ

(

λ̂t

)

dt

]

, (25)

where Ŵ̂T
0 and λ̂T

0 are the (σ (M; Zt
0) : t ∈ [0, T]) and

(FZ
t : t ∈ [0, T])-intensities of ZT

0 . Due to the uniqueness

of the intensities and Lemma 10, we get for each t ∈ [0, T],
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Ŵ̂t = E[Ŵt|M, Zt−
0 ] + µ, and λ̂t = λ + µ. Substituting this

in (25) and applying Jensen’s inequality yields

I
(

M; ZT
0

)

= E

[∫ T

0

φ
(

E
[

Ŵt|M, Zt−
0

]

+ µ
)

− φ(λ + µ) dt

]

(26)

≤ E

[∫ T

0

φ(Ŵt + µ) − φ(λ + µ) dt

]

. (27)

Definition 5: A point process ZT
0 is said to be obtained

from p-thinning of a point process YT
0 , if each point in YT

0

is deleted with probability p, independent of all other points

and deletions.

The following theorem was first proven by Wang [47].

We provide a self-contained proof that uses Theorem 1 and

Lemma 11.

Theorem 3: Let YT
0 be a Poisson process with rate λ, and

M be such that I(M; YT
0 ) < ∞. Let ZT

0 be obtained from

p-thinning of YT
0 such that the thinning operation is indepen-

dent of M. Then

I
(

M; ZT
0

)

≤ (1 − p)I
(

M; YT
0

)

. (28)

Proof: The data processing inequality gives I(M; ZT
0 ) ≤

I(M; YT
0 ) < ∞. Applying Theorem 1,

I
(

M; YT
0

)

= E

[∫ T

0

φ(Ŵt) − φ(λ) dt

]

, (29)

and

I
(

M; ZT
0

)

= E

[∫ T

0

φ

(

Ŵ̂t

)

− φ

(

λ̂t

)

dt

]

, (30)

where ŴT
0 and λT

0 (respectively Ŵ̂T
0 and λ̂T

0 ) are the

(σ (M; Y t
0) : t ∈ [0, T]) and (σ (Y t

0) : t ∈ [0, T])-intensities

(respectively (σ (M; Zt
0) : t ∈ [0, T]) and (σ (Zt

0) : t ∈ [0, T])-

intensities) of YT
0 (respectively ZT

0 ). Due to the uniqueness of

the intensities and Lemma 11, we can take for each t ∈ [0, T],

Ŵ̂t = (1 − p)E
[

Ŵt|M, Zt−
0

]

(31)

λ̂t = (1 − p)λ. (32)

Noting that φ((1−p)x) = (1−p)φ(x)+xφ(1−p), (30) yields

I
(

M; ZT
0

)

= (1 − p)E

[∫ T

0

φ
(

E
[

Ŵt|M, Zt−
0

])

− φ(λ) dt

]

+ φ(1 − p)E

[∫ T

0

Ŵt − λ dt

]

(33)

= (1 − p)E

[∫ T

0

φ
(

E
[

Ŵt|M, Zt−
0

])

− φ(λ) dt

]

(34)

≤ (1 − p)E

[∫ T

0

φ(Ŵt) − φ(λ) dt

]

(35)

= (1 − p)I
(

M; YT
0

)

, (36)

where for (34) we have used the fact that E[
∫ T

0 Ŵt dt] =

E[
∫ T

0 1 dYt] = E[
∫ T

0 λ dt], and for (35) we have used Jensen’s

inequality.

III. FUNCTIONAL COVERING OF POINT PROCESSES

In this section, we will consider general point processes

and obtain the rate-distortion function under the functional-

covering distortion when feedforward is present. More general

results are obtained for Poisson processes in the next sections.

Definition 6: Given a point process yT
0 ∈ N T

0 , and a

nonnegative function ŷT
0 , the functional-covering distortion d

is

d
(

ŷT
0 , yT

0

)

�

∫ T

0

ŷt dt −

∫ T

0

log
(

ŷt

)

dyt, (37)

whenever the expression on the right is well-defined.

We will allow the reconstruction function ŶT
0 to depend on

YT
0 as well as the message, constrained via predictability. In

particular, we will call ŶT
0 an allowable reconstruction with

feedforward if it is nonnegative and (σ (Y t
0) : t ∈ [0, T])-

predictable. Let ŶT
0,FF denote the set of all ŷT

0 processes which

are allowable reconstructions with feedforward.

Definition 7: A (T, R, D) code with feedforward consists of

an encoder f

f : N T
0 → {1, . . . , . . . , ⌈exp(RT)⌉} (38)

and a decoder g

g : {1, . . . , ⌈exp(RT)⌉} × N T
0 → ŶT

0,FF (39)

satisfying

E

[∫ T

0

Ŷt dt

]

< ∞ (40)

and the distortion constraint

E

[

1

T
d
(

ŶT
0 , YT

0

)

]

≤ D. (41)

We will call the encoder’s output M = f (YT
0 ) the message and

the decoder’s output ŶT
0 the reconstruction.

Definition 8: The minimum achievable distortion with feed-

forward at rate R and blocklength T is

D∗
F(R, T) � inf{D : there exists a (T, R, D) code (42)

with feedforward}. (43)

Definition 9: The distortion-rate function with feedfor-

ward is

DF(R) � lim sup
T→∞

D∗
F(R, T). (44)

The minimum achievable rate at distortion D and blocklength

T with feedforward R∗
F(D, T) and the rate-distortion function

with feedforward RF(D) can be defined similarly.

For most point processes, D∗
F(R, T) can be characterized via

the following theorem.

Theorem 4: Let YT
0 be a point process with (FY

t : t ∈

[0, T])-intensity 
T
0 such that

E

[∫ T

0

|φ(
t)| dt

]

< ∞. (45)

Let

�
(

YT
0

)

�
1

T
E

[∫ T

0


t − φ(
t) dt

]

, (46)
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and

δT � P(YT = 0) < 1. (47)

Then D∗
F(R, T) satisfies

�
(

YT
0

)

− R −
1

T
≤ D∗

F(R, T) ≤ �
(

YT
0

)

− (1 − δT)R +
1

T
. (48)

Remark 1: Per (20), �(YT
0 ) can be interpreted as an entropy

rate of the source. Compare (8).

Proof:

Achievability: Recall that since 
T
0 is the (FY

t : t ∈

[0, T])-intensity of YT
0 , it is (FY

t : t ∈ [0, T])-predictable,

and E[
∫ T

0 |φ(
t)| dt] < ∞ implies E[
∫ T

0 
t dt] < ∞. If the

decoder outputs 
T
0 , this leads to distortion

1

T
E
[

d
(


T
0 , YT

0

)]

=
1

T
E

[∫ T

0


t dt −

∫ T

0

log(
t) dYt

]

(49)

=
1

T
E

[∫ T

0


t − φ(
t) dt

]

(50)

= �
(

YT
0

)

. (51)

Thus D∗
F(0, T) ≤ �(YT

0 ), and the upper bound in the statement

of the theorem holds at R = 0.

Now consider the case R > 0. Fix T > 0 and let

J = ⌈exp(RT)⌉. If YT = 0, then the encoder sends index

M = 1. Otherwise, let 
 denote the first arrival instant of

the observed point process YT
0 . From Lemma 5, we have that

PYT
0 ≪ P

YT
0

0 . Since under P
YT

0

0 , YT
0 is a Poisson process with

unit rate, it holds that P
YT

0

0 (
 = t, YT > 0) = 0 for any fixed

t ∈ [0, T]. This gives us P(
 = t, YT > 0) = 0 for t ∈ [0, T].

Thus conditioned on the event YT > 0, 
 has a continuous

distribution function F
. The encoder computes F
(
) which

is uniformly distributed over [0, 1], which the encoder suitably

quantizes to obtain an M which is uniform in {2, . . . , J}. From

Theorem 1, there exists a (σ (M, Y t
0) : t ∈ [0, T])-predictable

process ŴT
0 which is the (σ (M, Y t

0) : t ∈ [0, T])-intensity

of YT
0 . We note that E[

∫ T

0 Ŵt dt] = E[
∫ T

0 
t dt] < ∞, and

from Theorem 1, E[
∫ T

0 log(Ŵt) dYt] < ∞. Hence

1

T
E
[

d
(

ŴT
0 , YT

0

)]

=
1

T
E

[∫ T

0

Ŵt dt −

∫ T

0

log(Ŵt) dYt

]

(52)

is well-defined. The decoder outputs ŴT
0 as its reconstruction.

Then we have

1

T
H(M) = −

1

T
(δT log(δT) + (1 − δT) log(1 − δT))

+
1 − δT

T
(log(J − 1)) (53)

≥
1 − δT

T
(log(J − 1)) (54)

≥
1 − δT

T
log(J/ exp(1)) (55)

≥ (1 − δT)R −
1

T
, (56)

where for (54), we have used the bound −δT log(δT) − (1 −

δT) log(1 − δT) ≥ 0; for (55), we have used the inequality

J − 1 ≥ J/ exp(1) when J ≥ 2; and for (56), we used the fact

that RT ≤ log(J).

H(M) also satisfies

1

T
H(M) =

1

T
I
(

M; YT
0

)

(57)

=
1

T
E

[∫ T

0

log(Ŵt) dYt

]

−
1

T
E

[∫ T

0

φ(
t) dt

]

, (58)

where, for (57) we have used Lemma 2; for (58) we have used

Theorem 1. The average distortion can be bounded as follows:

1

T
E
[

d
(

ŴT
0 , YT

0

)]

=
1

T
E

[∫ T

0

Ŵt dt − log(Ŵt) dYt

]

(59)

=
1

T
E

[∫ T

0

Ŵt dt

]

−
1

T
E

[∫ T

0

log(Ŵt) dYt

]

(60)

=
1

T
E

[∫ T

0


t dt

]

−
1

T
E

[∫ T

0

log(Ŵt) dYt

]

(61)

=
1

T
E

[∫ T

0


t dt

]

−
1

T
H(M) (62)

−
1

T
E

[∫ T

0

φ(
t) dt

]

(63)

≤
1

T
E

[∫ T

0


t − φ(
t) dt

]

(64)

− (1 − δT)R +
1

T
(65)

= �
(

YT
0

)

− (1 − δT)R +
1

T
, (66)

where, for (60), we have used the fact that E[
∫ T

0 log

(Ŵt) dYt] < ∞ due to Theorem 1; for (61), we used the equal-

ity E[
∫ T

0 Ŵt dt] = E[
∫ T

0 
t dt]; for (63), we used (58); and

for (65), we used (56).

Thus we have shown the existence of a (T, R, D) code with

feedforward such that D = �(YT
0 )− (1−δT)R+ 1

T
. This gives

the upper bound on D∗
F(R, T).

Converse: For the given (T, R, D) code with feedforward,

let J = ⌈exp(RT)⌉. Then J ≤ exp(RT) + 1 ≤ exp(RT + 1).

Thus we have

R +
1

T
≥

1

T
log(J) ≥

1

T
H(M) =

1

T
I
(

M; YT
0

)

, (67)

where the last equality follows because of Lemma 2.

Since I(M; YT
0 ) < ∞, we conclude from Theorem 1

that there exists a process ŴT
0 such that ŴT

0 is the (Ft =

σ(M, Y t
0) : t ∈ [0, T])-intensity of YT

0 and

I
(

M; YT
0

)

= E

[∫ T

0

φ(Ŵt) dt

]

− E

[∫ T

0

φ(
t) dt

]

. (68)

Hence from (67)

R ≥
1

T
E

[∫ T

0

φ(Ŵt) dt

]

−
1

T
E

[∫ T

0

φ(
t) dt

]

−
1

T
. (69)

Let ŶT
0 denote the decoder’s output. The distortion constraint

D satisfies

D ≥
1

T
E

[

d
(

ŶT
0 , YT

0

)]

(70)
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=
1

T
E

[∫ T

0

Ŷt dt −

∫ T

0

log
(

Ŷt

)

dYt

]

(71)

=
1

T
E

[∫ T

0

Ŷt − log
(

Ŷt

)

Ŵt dt

]

, (72)

where in the last line we have used Lemma 12.

Using the inequality u log(v) ≤ φ(u) − u + v, and noting

that the individual terms have finite expectations,

E

[∫ T

0

log
(

Ŷt

)

Ŵt dt

]

≤ E

[∫ T

0

φ(Ŵt) − Ŵt + Ŷt dt

]

(73)

= E

[∫ T

0

φ(Ŵt) dt

]

− E

[∫ T

0

Ŵt dt

]

+ E

[∫ T

0

Ŷt dt

]

. (74)

From (72) and (69), we deduce

R + D ≥
1

T
E

[∫ T

0

φ(Ŵt) dt

]

−
1

T
E

[∫ T

0

φ(
t) dt

]

+
1

T
E

[∫ T

0

Ŷt dt

]

−
1

T
E

[∫ T

0

log
(

Ŷt

)

dYt

]

−
1

T

(75)

≥
1

T
E

[∫ T

0

Ŵt dt

]

−
1

T
E

[∫ T

0

φ(
t) dt

]

−
1

T
(76)

≥
1

T
E

[∫ T

0


t dt

]

−
1

T
E

[∫ T

0

φ(
t) dt

]

−
1

T
(77)

= �
(

YT
0

)

−
1

T
, (78)

where, for (76) we have used (74); and for (77) we used the

fact that E[
∫ T

0 Ŵt dt] = E[
∫ T

0 dYt] = E[
∫ T

0 
t dt]. Hence we

have shown that for any (T, R, D) code with feedforward,

D ≥ �(YT
0 ) − R − 1/T . This gives us the lower bound on

D∗
F(R, T)

Corollary 1: Let YT
0 be a point process with (FY

t : t ∈

[0, T])-intensity 
T
0 such that

• E[
∫ T

0 |φ(
t)| dt] < ∞

• �̄(Y) � lim supT→∞
1
T
E[
∫ T

0 
t − φ(
t) dt] is finite

• limT→∞ P(YT = 0) = 0.

Then

DF(R) = �̄(Y) − R. (79)

Proof: The corollary follows from the definition DF(R) =

lim supT→∞ D∗
F(R, T) and from the bounds on D∗

F(R, T) in

the Theorem 4.

Applying the above corollary to a Poisson process with rate

λ > 0, we get that DF(R) = λ−λ log(λ)−R. As we will see in

the next section, this distortion-rate function can be achieved

without feedforward.

IV. CONSTRAINED FUNCTIONAL-COVERING

OF POISSON PROCESSES

In this and the next section we focus on Poisson processes.

Let ŶT
0 denote the set of all functions ŷT

0 that are nonnegative

and left-continuous with right-limits. We assume that we are

given a set A ∈ R+ with at least one positive element. We

will constrain the reconstruction function ŶT
0 to take values in

A, so that for all t ∈ [0, T], Ŷt ∈ A.

Definition 10: A (T, R, D) code consists of an encoder f

f : N T
0 → {1, . . . , ⌈exp(RT)⌉} (80)

and a decoder g

g : {1, . . . , ⌈exp(RT)⌉} → ŶT
0 (81)

satisfying

Ŷt ∈ A, E

[∫ T

0

Ŷt dt

]

< ∞ (82)

and the distortion constraint

1

T
E

[

d
(

ŶT
0 , YT

0

)]

≤ D. (83)

As before, we will call the encoder’s output M = f (YT
0 )

the message and the decoder’s output ŶT
0 = g(M) the

reconstruction.

Definition 11: A rate-distortion vector (R, D) is said to be

achievable if for any ǫ > 0, there exists a sequence of

(Tn, R + ǫ, D + ǫ) codes such that limn→∞ Tn = ∞.

Definition 12: The rate-distortion region RDP
A

is the set of

all achievable rate-distortion vectors (R, D).

The rate-distortion region RD
P,F
A

for a Poisson source with

feedforward is defined analogously, except that a code is

defined via Definition 7 with the addendum that we require

Ŷt ∈ A for all t.

Theorem 5: The rate-distortion region for the constrained

functional-covering of a Poisson process with rate λ > 0 is

given by

RDP
A

= RD
P,F
A

= RD, (84)

where RD is the convex hull of the union of sets of rate-

distortion vectors (R, D) such that

R ≥ λ

4
∑

k=1

βk log

(

βk

αk

)

(85)

D ≥

4
∑

k=1

αk�A

(

λβk

αk

)

, (86)

where

�A(u) � inf
v∈A

v − u log(v) (87)

with the convention that 0�(0/0) = 0, and [αk]4
k=1 and

[βk]4
k=1 are probability vectors over {1, 2, 3, 4} satisfying

αk = 0 ⇒ βk = 0.
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Proof:

Achievability: Let

R � λ

4
∑

k=1

βk log

(

βk

αk

)

(88)

D �

4
∑

k=1

αk�A

(

λβk

αk

)

. (89)

We will show achievability using a (T, R + ǫ, D + ǫ) code

without feedforward. We will use discretization and results

from the rate-distortion theory for discrete memoryless sources

(DMS). Define a binary-valued discrete-time process (Ȳj:j ∈

{1, . . . , n}) as follows. If there are one or more arrivals in

the interval ((j − 1)�, j�] of the process YT
0 , then set Ȳj

to 1, otherwise set it equal to zero. Since YT
0 is a Poisson

process with rate λ, the components of (Ȳj : j ∈ {1, . . . , n})

are independent and identically distributed with P(Ȳ = 1) =

1 − exp(−λ�). Consider the following “test”-channel for

k ∈ {1, 2, 3, 4},

P
(

Ū = k|Ȳ = 1
)

= βk (90)

P
(

Ū = k|Ȳ = 0
)

= αk. (91)

Define the discretized distortion function

d̄
(

ˆ̄y, ȳ
)

� ˆ̄y −
log
(

ˆ̄y
)

�
1{ȳ = 1} ˆ̄y ∈ A, ȳ ∈ {0, 1}. (92)

The reconstruction ˆ̄Y(k) is taken as a v ∈ A satisfying

∣

∣

∣

∣

�A

(

λβk

αk

)

−

(

v −
λβk

αk

log(v)

)
∣

∣

∣

∣

≤
ǫ

4
, (93)

where such a v exists due to the definition of �A. We recall

that if αk = 0 then βk = 0, and hence P(Ū = k) = 0 for such

a k. The scaling of the mutual information I(Ū; Ȳ) and the

distortion function d̄( ˆ̄Y, Ȳ) with respect to � is given by the

following lemma.

Lemma 1:

lim
�→0

I
(

Ū; Ȳ
)

�
= R (94)

lim
�→0

E

[

d̄
(

ˆ̄Y, Ȳ
)]

≤ D +
ǫ

4
. (95)

Proof: Please see the supplementary material.

Let

κ � max
k∈{1,2,3,4}

ˆ̄Y(k)>0

∣

∣

∣
log
(

ˆ̄Y(k)
)
∣

∣

∣
. (96)

Due to [53, Th. 9.3.2, p. 455], for a given � > 0, ǭ > 0, and

all sufficiently large n, there exists an encoder f̄ and a decoder

ḡ such that

f̄ :
(

Ȳj : j ∈ {1, . . . , n}
)

→ {1, . . . , L} (97)

ḡ : {1, . . . , L} →
(

ˆ̄Yj : j ∈ {1, . . . , n}
)

(98)

satisfying

1

n
log(L) ≤ I

(

Ū; Ȳ
)

+ ǭ (99)

E

⎡

⎣

1

n

n
∑

j=1

d̄
(

ˆ̄Yj, Ȳj

)

⎤

⎦ ≤ E

[

d̄
(

ˆ̄Y, Ȳ
)]

+ ǭ. (100)

Given the above setup, the encoder f upon observing YT
0

obtains the binary-valued discrete time process (Ȳj : j ∈

{1, . . . , n}), and sends M = f̄ (Ȳj : j ∈ {1, . . . , n}) to the

decoder. The decoder outputs the reconstruction ŶT
0 as

Ŷt �

n
∑

j=1

ˆ̄Yj1
{

t ∈ ((j − 1)�, j�
]}

t ∈ [0, T]. (101)

Let ¯̄Yj denote the actual number of arrivals of YT
0 in an interval

((j − 1)�, j�]. Then d̄ is related to the original distortion

function via the above reconstruction as follows:

1

T
d
(

ŶT
0 ; YT

0

)

=
1

T

∫ T

0

Ŷt dt −
1

T

∫ T

0

log
(

Ŷt

)

dYt (102)

=
1

n

n
∑

j=1

ˆ̄Yj −
1

T

n
∑

j=1

log
(

ˆ̄Yj

)

¯̄Yj (103)

=
1

n

n
∑

j=1

ˆ̄Yj −
1

n�

n
∑

j=1

log
(

ˆ̄Yj

)

Ȳj

−
1

T

n
∑

j=1

log
(

ˆ̄Yj

)(

¯̄Yj − 1
)

1
{

¯̄Yj > 1
}

(104)

=
1

n

n
∑

j=1

d̄
(

ˆ̄Yj, Ȳj

)

−
1

T

n
∑

j=1

log
(

ˆ̄Yj

)(

¯̄Yj − 1
)

1
{

¯̄Yj > 1
}

(105)

≤
1

n

n
∑

j=1

d̄
(

ˆ̄Yj, Ȳj

)

+
κ

T

n
∑

j=1

(

¯̄Yj − 1
)

1
{

¯̄Yj > 1
}

(106)

≤
1

n

n
∑

j=1

d̄
(

ˆ̄Yj, Ȳj

)

+
κ

T

n
∑

j=1

¯̄Yj1
{

¯̄Yj > 1
}

, (107)

where for (106), we have used the definition of κ in (96),

since ¯̄Yj > 1 implies Ȳj = 1 which implies ˆ̄Yj > 0 in order

for d̄( ˆ̄Yj, 1) < ∞, which occurs a.s. since E[d̄( ˆ̄Y, Ȳ)] < ∞ so

long as � is sufficiently small.

Hence taking expectations, we get

E

[

1

T
d
(

ŶT
0 , YT

0

)

]

≤ E

⎡

⎣

1

n

n
∑

j=1

d̄
(

ˆ̄Yj, Ȳj

)

⎤

⎦ (108)

+ κE

⎡

⎣

1

T

n
∑

j=1

¯̄Yj1
{

¯̄Yj > 1
}

⎤

⎦ (109)

≤ E

[

d̄
(

ˆ̄Y, Ȳ
)]

(110)
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+ κE

⎡

⎣

1

T

n
∑

j=1

¯̄Yj1
{

¯̄Yj > 1
}

⎤

⎦+ ǭ (111)

= E

[

d̄
(

ˆ̄Y, Ȳ
)]

+ κ(λ − λ exp(−λ�)) + ǭ

(112)

≤ E

[

d̄
(

ˆ̄Y, Ȳ
)]

+ κλ2� + ǭ, (113)

where, for (111), we have used (100); for (112) we note that

E[ ¯̄Yj1{ ¯̄Yj > 1}] = λ�−λ� exp(−λ�); and for (113), we have

used the inequality 1 − u ≤ exp(−u).

Moreover using (100),

1

T
log(L) =

1

n�
log(L) ≤

I
(

Ū; Ȳ
)

�
+

ǭ

�
. (114)

Now given the rate-distortion vector (R, D) and ǫ > 0, first

choose � < 1 sufficiently small so that

I
(

Ū; Ȳ
)

�
≤ R +

ǫ

4
(115)

E

[

d̄
(

ˆ̄Y, Ȳ
)]

≤ D +
ǫ

2
(116)

κλ2� ≤
ǫ

2
. (117)

Then let ǭ = �ǫ/4, and choose a sufficiently large n so

that (100) is satisfied. From (113) and (114) we conclude that

a sequence of (Tn, R + ǫ, D + ǫ) code exists with Tn = n�

and Tn → ∞ as n → ∞.

Converse: We will prove the converse when feedforward

is present. For the given (T, R + ǫ, D + ǫ) code with feedfor-

ward, let M denote the encoder’s output. Since I(M; YT
0 ) < ∞,

we conclude from Theorem 1 that there exists a process ŴT
0

such that ŴT
0 is the (Ft = σ(M, Y t

0):t ∈ [0, T])-intensity of

YT
0 and

I
(

M; YT
0

)

= E

[∫ T

0

φ(Ŵt) dt

]

− Tφ(λ). (118)

We also have

1

T
I
(

M; YT
0

)

=
1

T
H(M) ≤

1

T
log(⌈exp((R + ǫ)T)⌉) (119)

≤ R + ǫ +
1

T
. (120)

This gives

R ≥
1

T
E

[∫ T

0

φ(Ŵt) dt

]

− φ(λ) − ǫ −
1

T
. (121)

Let ŶT
0 denote the decoder’s output. The distortion constraint

D satisfies

D ≥
1

T
E

[

d
(

ŶT
0 , YT

0

)]

− ǫ (122)

=
1

T
E

[∫ T

0

Ŷt dt −

∫ T

0

log
(

Ŷt

)

dYt

]

− ǫ (123)

=
1

T
E

[∫ T

0

Ŷt − Ŵt log
(

Ŷt

)

dt

]

− ǫ (124)

≥
1

T
E

[∫ T

0

inf
v∈A

v − Ŵt log(v) dt

]

− ǫ (125)

=
1

T
E

[∫ T

0

�A(Ŵt) dt

]

− ǫ, (126)

where, for (124) we have used Lemma 12; and for (126), we

have used the definition of �A. Defining S to be uniformly

distributed on [0, T], and independent of all other random

variables we have

R ≥ E[φ(ŴS)] − φ(λ) − ǫ −
1

T
(127)

D ≥ E[�A(ŴS)] − ǫ. (128)

Now we use Carathéodory’s theorem [54, Th. 17.1]. There

exist nonnegative [ηk]4
k=1 and [αk]4

k=1, such that
∑4

k=1 αk = 1

and

E[φ(ŴS)] =

4
∑

k=1

αkφ(ηk) (129)

E[�A(ŴS)] =

4
∑

k=1

αk�A(ηk) (130)

E[ŴS] =

4
∑

k=1

αkηk = λ, (131)

where in the last line we have used the fact that since ŴT
0

is the (σ (M, YT
0 ) : t ∈ [0, T])-intensity of YT

0 , E[
∫ T

0 Ŵt dt] =

E[YT ] = Tλ. Now define

βk �
αkηk

λ
. (132)

We note that βk = 0 if αk = 0, and
∑4

k=1 βk = 1. Substituting

the above definitions in (127) and (128), we obtain

R ≥

(

4
∑

k=1

αkηk log(ηk) − λ log(λ)

)

− ǫ −
1

T
(133)

= λ

(

4
∑

k=1

βk log

(

βkλ

αk

)

1{αk > 0} − log(λ)

)

− ǫ −
1

T
(134)

= λ

4
∑

k=1

βk log

(

βk

αk

)

− ǫ −
1

T
. (135)

Likewise,

D ≥

4
∑

k=1

αk�A

(

λβk

αk

)

− ǫ. (136)

Since ǫ is arbitrary and T can be made arbitrarily large,

we obtain the rate-distortion region in the statement of the

theorem.

If we do not place any restrictions on A, i.e., if A is the set

of all nonnegative reals, then we obtain the functional-covering

distortion.

Corollary 2 (Functional Covering of Poisson Processes):

The rate-distortion function for functional-covering distortion

is given by RFC(D) = (λ − λ log(λ) − D)+.

Proof: For the functional-covering distortion, A is the set

of nonnegative reals. Hence

�A(u) = inf
v≥0

v − u log(v) = u − u log(u). (137)

For any achievable (R, D) we have

R ≥ λ
∑4

k=1 βk log
(

βk

αk

)

, (138)
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and

D ≥

4
∑

k=1

αk�A

(

λβk

αk

)

(139)

=

4
∑

k=1

αk

(

λβk

αk

−
λβk

αk

log

(

λβk

αk

))

(140)

= λ − λ log(λ) − λ

4
∑

k=1

βk log

(

βk

αk

)

. (141)

Hence

R + D ≥ λ − λ log(λ), (142)

and this is achieved by [αk]4
k=1 and [βk]4

k=1 that yield equality

in (138).

If take A = {0, 1}, then we recover the covering distortion

in [35, Th. 1].

Corollary 3 (Covering Distortion [35]): Therate-distortion

function for the covering distortion is given by RC(D) =

(−λ log(D))+.

Proof: For the covering distortion, A = {0, 1}. Hence

�A(u) = inf
v∈{0,1}

v − u log(v) = 1{u > 0}. (143)

Suppose (R, D) is in RD. Then

D ≥

4
∑

k=1

αk�A

(

λβk

αk

)

(144)

=

4
∑

k=1

αk1{βk > 0} (145)

=
∑

k∈B

αk, (146)

where we have defined B = {k:βk > 0}. Similarly,

R ≥ λ

4
∑

k=1

βk log

(

βk

αk

)

(147)

= λ
∑

k∈B

βk log

(

βk

αk

)

(148)

≥ λ

(

∑

k∈B

βk

)

log

(
∑

k∈B βk
∑

k∈B αk

)

(149)

= λ log

(

1
∑

k∈B αk

)

(150)

≥ (−λ log(D))+, (151)

where (149) is due to the log-sum inequality, which can be

achieved by setting α1 = min(1, D), α2 = 1 − α1, β1 = 1,

β2 = 0.

V. THE POISSON CEO PROBLEM

We now consider the distributed problem shown in Fig. 1.

Our goal is to compress YT
0 , which is a Poisson process with

rate λ > 0. Each of the two encoders observes a degraded

version of YT
0 , denoted by Y

(i),T
0 , i ∈ {1, 2}. Here YT

0 is first

p(i)-thinned to obtain Ỹ
(i),T
0 , and then an independent Poisson

process N
(i),T
0 with rate µ(i) is added to Ỹ

(i),T
0 to obtain Y

(i),T
0 .

Recall that ŶT
0 is the set of all nonnegative functions ŷT

0

which are left-continuous with right-limits, and

d
(

ŷT
0 , yT

0

)

=

∫ T

0

ŷt dt −

∫ T

0

log
(

ŷt

)

dyt. (152)

Definition 13: A (T, R(1), R(2), D) code for the Poisson

CEO problem consists of encoders f (1) and f (2),

f (1) : N T
0 →

{

1, . . . ,

⌈

exp
(

R(1)T
)⌉}

(153)

f (2) : N T
0 →

{

1, . . . ,

⌈

exp
(

R(2)T
)⌉}

, (154)

and a decoder g,

g :
{

1, . . . ,

⌈

exp
(

R(1)T
)⌉}

×
{

1, . . . ,

⌈

exp
(

R(2)T
)⌉}

→ ŶT
0 , (155)

satisfying

E

[∫ T

0

Ŷt dt

]

< ∞, (156)

and the distortion constraint

1

T
E

[

d
(

ŶT
0 , YT

0

)]

≤ D. (157)

Definition 14: A rate-distortion vector (R(1), R(2), D) is said

to be achievable for the Poisson CEO problem if for any ǫ > 0,

there exists a sequence (Tn, R(1) + ǫ, R(2) + ǫ, D + ǫ) codes

Tn → ∞.

Definition 15: The rate-distortion region for the Poisson

CEO problem RDP is the intersection of all achievable

rate-distortion vectors (R(1), R(2), D).

The rate-distortion region for the Poisson CEO problem

with feedforward, denoted by RDP
F , is defined analogously.

Note that our formulation differs from that of Wang [47] in

that it allows for thinning and we use the functional-covering

distortion measure in place of the covering distortion measure.

Theorem 6: The rate-distortion region for the Poisson CEO

problem is given by

RDP = RDP
F = RD, (158)

where RD is the convex hull of union of sets of rate-distortion

vectors (R(1), R(2), D) such that

R(1) ≥
((

1 − p(1)
)

λ + µ(1)
)

4
∑

k=1

β
(1)
k log

(

β
(1)
k

α
(1)
k

)

(159)

R(2) ≥
((

1 − p(2)
)

λ + µ(2)
)

4
∑

k=1

β
(2)
k log

(

β
(2)
k

α
(2)
k

)

(160)

D ≥ λ − φ(λ) (161)

− λ

(

4
∑

k=1

γ
(1)
k log

(

γ
(1)
k

α
(1)
k

)

+

4
∑

k=1

γ
(2)
k log

(

γ
(2)
k

α
(2)
k

))

(162)
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for some probability vectors [α
(i)
k ]4

k=1, [β
(i)
k ]4

k=1, and [γ
(i)
k ]4

k=1,

where for k ∈ {1, 2, 3, 4} and i ∈ {1, 2}

γ
(i)
k = p(i)α

(i)
k +

(

1 − p(i)
)

β
(i)
k

α
(i)
k = 0 ⇒ β

(i)
k = 0

}

if p(i) < 1 (163)

α
(i)
k = β

(i)
k = γ

(i)
k if p(i) = 1. (164)

Proof: Please see the supplementary material.

Remark 2: Note that there is no sum-rate constraint in the

rate-distortion region of the above theorem. This occurs due to

the sparsity of points in a Poisson process. After discretizing

a Poisson process with rate λ, the expected number of ones in

the resulting binary process is roughly λT , and the remaining

T/�−λT bits are zeroes. When such a sparse binary process is

sent via two independent parallel channels as in (179)-(180),

the resulting output processes are almost independent. This

implies that the encoders do not need to bin their messages in

the achievability argument.

Corollary 4 (Poisson CEO Problem Without Thinning): If

p(1) = p(2) = 0, then the rate-distortion region in Theorem 6

takes a simple form

λ

λ + µ(1)
R(1) +

λ

λ + µ(2)
R(2) + D ≥ λ − φ(λ). (165)

The above result should be compared with that of

Wang [47, (37)] for the same problem but with the covering

distortion measure.

Corollary 5 (Remote Poisson Source): Consider a scenario

where an encoder wishes to compress a Poisson process with

rate λ > 0, but observes a degraded version of it, where the

points are first erased with independent probability 1 − p and

then an independent Poisson process with rate µ is added to

it. Then the rate-distortion region (R, D) is the convex hull of

the union of all rate-distortion vectors satisfying

R ≥ ((1 − p)λ + µ)

4
∑

k=1

βk log

(

βk

αk

)

(166)

D ≥ λ − φ(λ) − λ ·

4
∑

k=1

γk log

(

γk

αk

)

, (167)

for some probability vectors [αk]4
k=1, [βk]4

k=1, and [γk]4
k=1,

where for k ∈ {1, 2, 3, 4}

γk = pαk + (1 − p)βk, αk = 0 ⇒ βk = 0. (168)
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