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Abstract—We consider channel coding for discrete memoryless
channels (DMCs) with a novel cost constraint that constrains both
the mean and the variance of the cost of the codewords. We
show that the maximum (asymptotically) achievable rate under
the new cost formulation is equal to the capacity-cost function; in
particular, the strong converse holds. We further characterize the
optimal second-order coding rate of these cost-constrained codes;
in particular, the optimal second-order coding rate is finite. We
then show that the second-order coding performance is strictly
improved with feedback using a new variation of timid/bold
coding, significantly broadening the applicability of timid/bold
coding schemes from unconstrained compound-dispersion chan-
nels to all cost-constrained channels. Equivalent results on the
minimum average probability of error are also given.

I. INTRODUCTION

In practice, channel coding is subject to various cost con-
straints which limit the amount of resources that can be used
for transmission. Such constraints may arise out of concern
for interference with other terminals or, especially in the
case of mobile devices, power consumption. With a cost
constraint present, the role of capacity is replaced by the
capacity-cost function [1, Theorem 6.11]. We focus on discrete
memoryless channels (DMCs) with a cost function denoted by
¢(+). One common cost constraint called the almost-sure (a.s.)
cost constraint [2], [3] bounds the time-average cost of the
channel input X™ over all messages, realizations of any side
randomness, channel noise (if there is feedback), etc.:

1 D (X)) <T as. (1)
n i=1

On the other hand, the expected cost constraint bounds the
sum-cost in the average sense:

% D E[e(X)] <T. 2)

These two cost constraints are also called short-term and long-
term power constraints, respectively, in certain contexts [4].
With an almost-sure cost constraint, the strong converse holds.
With an expected cost constraint, the strong converse ceases to
hold [5, Theorem 77]. Accordingly, past work on second-order
coding rates with cost constraints ([2], [6]) has focused on
the almost-sure constraint. The second-order coding rate ([7],
[2], [8], [9], [10]) quantifies the O(n~1/2) convergence to the
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capacity-cost function (or to the capacity in the unconstrained
case). Under the a.s. cost formulation, the optimal second-
order coding rate (SOCR) is known [2, Theorem 3].

One of the lessons of information-theoretic studies of chan-
nel coding is that the various codewords should appear to be
selected randomly and independent and identically distributed
(i.i.d.) according to P*, where P* is a capacity-cost-achieving
input distribution. The idea of generating codewords in an i.i.d.
fashion is so natural and ubiquitous that it is notable that it is
actually impermissible under (1).

More seriously, one incurs a performance loss by prohibiting
the use of i.i.d.-generated codewords in second-order cod-
ing rate (SOCR) analyses. Consider the problem with ideal
feedback from the output of the channel to the encoder. For
channels without cost constraints, it is known that feedback
can improve the SOCR for compound-dispersion channels [7].
Specifically, suppose a channel W(-|-) has two capacity-
achieving input distributions P and P such that

W(YIX)>
PEW(Y) (’3)

where P o W denotes the joint distribution over inputs and

outputs induced by the distributions P* and W(:|-), and
P7W denotes the marginal distribution of the induced output.
While codewords drawn from P} and P; have the same
mean information-carrying ability by virtue of P and P
both being capacity-achieving, codewords drawn from Ps are
more variable as a consequence of (3). Thus, the encoder can
employ codewords drawn from P (“timid”) so long as the
transmission is proceeding well and from P35 (“bold”) if an
error appears likely. This is referred to as timid/bold coding.

One limitation of the above idea is that the channel must
be compound-dispersion. In particular, the capacity-achieving
input distribution for W (:|-) cannot be unique. In fact, for
simple-dispersion channels for which (3) does not hold, feed-
back does not improve the SOCR [7, Theorem 3].

The recent work [11] studied the feedback improvement of
SOCR with a cost constraint. The cost constraint in [11] was
intermediate between an almost-sure cost constraint and an
expected cost constraint. With the intermediate cost constraint,
[11] showed that the timid/bold feedback scheme can improve

WY X)
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the SOCR for DMCs even if the capacity-cost-achieving

distribution is unique, thus broadening the scope of timid/bold

coding beyond [7]. Specifically, let P* denote a capacity-cost-

achieving input distribution for the DMC W (+|-), which might

well be unique. By the law of total variance, the n-length form

of the variance in (3) can be written as
W (Y™ Xxm) W (Y™ Xxm)
Var | log ———= | =E | Var | log ———= | X"
ar ( og W) ar | log W)
W(yn')(n)

Var ( E [log ———> (X" | . 4

+ ar( [og P “4)

If the channel input X™ is constant-composition, i.e., drawn

uniformly from a fixed type class associated with a distribution
that is close to P*, then the quantity
W(Y"™|Xm)
P*W(Yn)
is a.s. constant and the second term in (4) is zero. In contrast,
if X™ is ii.d. according to P*, then the second term in (4)
is order-n (see [11, Lemma 2]). The first term, in contrast,
is approximately the same between the two cases. Thus both
timid and bold signaling mechanisms can be created from P*
alone, depending on whether one uses constant-composition
or i.i.d. codewords. Yet, this observation cannot be applied
under the prevailing a.s. cost formulation for second-order rate
analysis because i.i.d. codewords are impermissible under the
a.s. constraint in (1).

By formulating an intermediate cost constraint that al-
lows both ii.d. and constant-composition channel inputs,
[11] showed a strict improvement of SOCR with feedback.
However, relaxing the a.s. cost constraint to permit i.i.d.
codewords should be approached cautiously, as the expected
cost constraint from (2), which similarly accommodates i.i.d.
codewords, also admits signaling schemes characterized by a
highly non-ergodic power usage, leading to the absence of
a strong converse. Furthermore, the achievable SOCR with
feedback in [11, Theorem 1] is only shown to exceed the
optimal SOCR of the almost-sure cost constraint [2] without
feedback. Hence, it is also not clear in [11] how much of
the demonstrated improvement in SOCR is due to feedback
and how much of it is due to relaxing the almost-sure cost
constraint.

In this paper, we introduce a new (I', V) cost constraint
which constrains both the mean and the variance of the
codewords:

E [log

X"] S)

E lzn: C(Xi)‘| <nl (6)
Var <z": c(Xi)> <nV. @)

The (T, V') cost constraint is a natural strengthening of the
expected cost constraint via a second-moment constraint. The
idea is that we want power to be consumed at a limited rate
but also in a predictable fashion, both to ensure a gradual
consumption of energy and so that the transmitted signal is

sufficiently ergodic that it can be treated as noise by other ter-
minals (which mitigates the negative impact of interference).
Note that (7) ensures that ¢(X;) satisfies the weak law of large
numbers as n — 00.

With an additional variance constraint in (I', V') channel
codes for DMCs, the strong converse holds. Our new cost
constraint also admits a finite second-order converse. We give
matching achievability and converse results characterizing the
optimal SOCR in terms of a function of I" and V', which takes
the form

inf E [®(IT)], ©)

where ®(-) is the standard Gaussian CDF and the infimum is
over all random variables II with an appropriately constrained
expectation and variance. We characterize the solution to the
optimization problem in (8) as well as the properties of a
function K(r, V') which is equal to (8) with the expectation
and variance constrained by r and V, respectively.

After establishing the optimal coding second-order coding
performance under the (T, V') constraint, we show that this
performance is strictly improved with feedback. Our feedback
scheme is a new variant of timid/bold coding which requires
neither multiple capacity-cost-achieving distributions as in [7]
nor i.i.d. codewords as in [11]. The latter feature is useful be-
cause, although the (T, V') cost constraint allows i.i.d. channel
inputs with a bounded variance V' > 0, it does not admit i.i.d.
P* codewords for small values of V. Nevertheless, the (I, V)
code with feedback shows a strict SOCR improvement for all
values of V' > (. Therefore, a more foundational advantage of
the (T', V) cost constraint is allowing a nonzero variance of the
cost of the channel input around the cost point I', while still
sufficiently regulating power consumption to ensure a finite
second-order coding rate.

The proofs of the main lemmas and theorems are given in
the longer version of this paper [12].

II. PRELIMINARIES

Let A and B be finite input and output alphabets, re-
spectively, of a DMC. Let P(A) be the set of probability
distributions on A. We will use W to denote the DMC. Let
Pn(A) be the set of n-types on A. For a given t € P, (A),
T';(t) denotes the type class. For a given P € P(A), Po W
denotes the joint distribution on .4 x 53 induced by P and W,
and PW denotes the corresponding marginal distribution on
B.

The cost function is denoted by ¢(-) where ¢ : A — [0, ciax]
and cpax > 0 is a constant. Let I’y = minge 4 ¢(a). For ' >
Ty, the capacity-cost function is defined as

¢(P)<T
where c(P) := ) . 4 P(a)c(a). Let I'* denote the smallest
I’ such that the capacity-cost function C(I') is equal to
the unconstrained capacity C. We assume I'* > I'y and
I’ € (T'y,I'™*) throughout the paper. We will also assume that
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the capacity-cost-achieving distribution for cost I' is unique.
We will use P* to denote the unique solution to (9). For
the application to feedback communication, this is the most
interesting case, since if P* is not unique, the timid/bold
scheme of [7] is already applicable. This assumption also has
precedent in the literature (e.g., [6]), because it affords certain
technical simplifications (e.g., [12, Lemma 10]). Note that we
do not assume uniqueness for costs IV = T

We define the output distribution @Q* := P*W and
dispersion V(I') := > ., P*(a)vs. A channel input
X" ~ Unif(T%(t)) drawn uniformly from a type class ¢
is called a constant-composition (cc) input. We will denote
by Q°° the output distribution induced by the input X™ ~
Unif(T7%([P*],)) through the DMC W.

With a blocklength n and a fixed rate R > 0, let M =
{1,...,[exp(nR)]} denote the message set.

Definition 1: An (n,R) code for a DMC consists of an
encoder f which, for each message m € M, chooses an input
X™ = f(m) € A", and a decoder g which maps the output
Y™ to m € M. The code (f, g) is random if f or g is random.

Definition 2: An (n, R) code with ideal feedback for a DMC
consists of an encoder f which, at each time instant & (1 <
k < n) and for each message m € M, chooses an input
z, = f(m, 21 y*~1) € A, and a decoder g which maps
the output y™ to i € M. The code (f,g) is random if f or
g is random.

As noted in the introduction, we consider a cost constraint
that restricts both the mean and the variance of the codewords
by some I' € (I'y,I'*) and V' > 0, respectively.

Definition 3: An (n, R,T', V) code for a DMC is an (n, R)
code such that E[Y"" | ¢(X;)] < nIand Var (3, ¢(X;)) <
nV, where the message M ~ Unif(M) has a uniform
distribution over the message set M.

Definition 4: An (n, R,T', V) code with ideal feedback for
a DMC is an (n,R) code with ideal feedback such that
E[D" , e(X;)] < nl and Var (31, ¢(X;)) < nV, where
the message M ~ Unif(M) has a uniform distribution over
the message set M.

We consider optimum coding performance for (n, R, T, V')
codes defined in Definitions 3 and 4. Given € € (0, 1), define

M (n,e,T,V) := max{[exp(nR)] : Popp(n, R, T, V) < ¢},

where Peg(n, R, T, V) denotes the minimum average error
probability attainable by any (n, R, T, V') code with feedback.
Similarly, define

M*(n,e,T',V) := max{[exp(nR)] : P.(n,R,T,V) < ¢},

where Pe(n, R,I',V) denotes the minimum average error
probability attainable by any (n, R, T, V') code without feed-
back. For (n, R,T', V') codes for DMCs defined in Definition 3,
the following (achievability) bound on the second-order coding
rate can be obtained by using the coding scheme from [2,
Theorem 3]:

log M*(n,e,T,V) —nC(T
vn

lim inf
n— oo

> /V(I)d!

) (10)

for ¢ € (0,1), where the right-hand side of (10) is the
optimal SOCR associated with an almost-sure cost constraint,
assuming a unique capacity-cost-achieving distribution P* at
cost I'. It is easy to see that a constant-composition code
with a fixed type class satisfies the (I', V') cost constraint.
While constant-composition codes hit the optimal second-
order coding rate with an almost-sure cost constraint, such
codes are not necessarily optimal with the new (I', V') cost
constraint.

Definition 5: A controller is a function F' :
P(A).
We shall sometimes write F'(-|z¥,y*) for F(z*,y*)(-). The
design of random feedback codes (f,g) can be directly re-
lated to the design of controllers [7], [11]. Specifically, any
controller F' satisfying

zn:c(Xi)] < nI" and Var (Zn: C(Xi)> <nV (11)

i=1 =1

(A x B)* —

E

can be used to construct an (n,R,I',V) code with ideal
feedback.

Lemma 1 ([7, Lemma 14]): For any I € (T'y,T'*) and V >
0, a controller F' satisfying (11), and any n, 6 and R,

Pegy(n, R,T,V)

R S A -0 (12
P _R+®+e . (12)

where (X", Y™) have the joint distribution specified by

(FoW)(x ﬁ

and F'W denotes the marginal distribution of Y. Further-

more, if for some « and e,
W(y"™|Xxm)
FW(Yn)

k—l)

(Ek|$ Y W(yk|$k)7

1
limsup (F o W) ( log
n

n—oo

<o) + jﬁ) <e
(13)

then the controller F' gives rise to an achievable second-order
coding rate of «, i.e.,

log Mi(n,e,T, V) —
vn

Similar results to (12), (13) and (14) hold for Ps(n, R,T, V)
and M*(n,e,I',V) in the non-feedback case by replacing
controllers F' by distributions P € P(A").

Remark 1: Lemma 1 is a starting point to prove achievability
results both with feedback (Theorem 3) and without feedback
(Theorem 2).

Lemma 2: Consider a channel W with cost constraint
(T, V) € (Ty,I') x (0, 00), where (I, V') maps to some subset
Pr.v(A™) C P(A™) of distributions. Consider a random non-
feedback (n, R) code with minimum average error probability
at most € € (0,1) such that the codewords are distributed

nC(T)

lim inf > . (14)
n— oo
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according to some P € Pr y(A"). Then for every n,p > 0
and € € (0,1),

sup

ﬁG'Pr,v(.A")
+
— Wy xm
inf (PoW) (E](YL)) >p>> ] (15)

qEP(B™)

Remark 2: Lemma 2 serves as a starting point to prove
converse results. Different variants of the converse in Lemma
2 can be found in [13, Theorem 27], [14, (42)] and [7, Lemma
15]. A feedback version of Lemma 2 can be proved and stated
by replacing P in (15) by controllers F' such that the marginal
distribution of X™ induced by F o W lies in Pr y (A™).

loglexp(nR)] < logp — log [(1 —€—

IIT. MAIN RESULTS

Definition 6: The function £ : R x (0,00) — (0,1) is
defined as

K(r,V):= iIﬁfE[q)(H)], (16)

where the infimum is over all random variables II satisfying
E[II] > r and Var(II) < V.
Lemma 3: The function /C(r, V') satisfies the following three
properties:
1) The infimum in (16) is a minimum, and there exists
a minimizer which is a discrete probability distribution
with at most 3 point masses;
2) K(r,V) is a strictly increasing function w.r.t. r (for a
fixed V);
3) K(r,V) is (jointly) continuous in (r, V).
Corollary 1: An equivalent definition of the function C :
R x (0,00) — (0,1) is

K(r,V)= min E[e(I).
E[d]=r
Var(IT) <V

[supp(IT)|<3

Define

* = max T : ! CI*V €
e SO

The matching converse (Theorem 1) and achievability (Theo-
rem 2) results establish r* as the optimal second-order coding
rate of DMCs with the (T, V') cost constraint. The maximum
on the right-hand side of (17) is well-defined. In fact, we have
the following general result.

Lemma 4: For any V > 0 and 0 < € < 1, the supremum,

sup{r' e R: K(r',V) <€}, (18)

is achieved. Furthermore, the maximum, call it r*, satisfies
K@ V) =e

Having denoted the optimal SOCR of (n, R,T",V) codes
by r* in (17), it is insightful to compare (17) with the
optimal SOCR of previous cost constraints, such as almost-
sure constraint and expected cost constraint.

o Almost-sure constraint (¢(X™) < T' almost surely):
Recall that 7, := /V(I')®1(e) is the optimal SOCR
associated with an a.s. cost constraint!. We note that r* >
V'V (I)®1(e) with equality if a minimizing probability
r* c’(1)2v

Vyva' v
mass. One indeed has r* = /V()®~(e) for V = 0.
While the a.s. cost constraint is not, strictly speaking,
equivalent to the (I', V) cost constraint with V' = 0, one
nevertheless obtains r»* = r,, for V = 0 because in
practice, optimal schemes for the case V' = 0 satisfy the
a.s. cost constraint.

o Expected cost constraint (E[c(X™)] < T):

This is a special case of (I',V) cost constraint with
V = oo. As mentioned in the Introduction, the strong
converse does not hold with an expected cost constraint
so the optimal SOCR in this case can be considered to
be infinite. One therefore expects r* — oo as V' — oo.
This is indeed the case and it suffices to show that
K(r,00) = 0 for all values of r. Since K(r,c0) is non-
decreasing in r, fix an arbitrarily large value of r > 0.
Then for any € > 0, we can choose m sufficiently large so
that for p =1—1/m, 7 = —v/logm and my = %,
we have pm + (1 — p)me = r and

K(r,00) < p@(m1) + (1 — p)@(m2)
< —W£¢(W1)+1—p§ €.

distribution in C

has only one point

A. Non-Feedback Converse

Theorem 1:
Fix an arbitrary € € (0,1). Consider a channel W with cost
constraint (I', V') € (I'g, I'*) x (0, 00) such that P* is unique
and V(T') > 0. Then
log M* rv)-— r
ey BN (e DY) —nC(T) _

n—00 \/ﬁ -
Alternatively, for R = C(T") + T

/ 2
limiane(n,R,F,V)>IC< r_ ) V).

Proof Outline: The starting point will be the result in
Lemma 2, where Pr y(A™) is set equal to the set of dis-
tributions P such that the channel input X" ~ P satisfies
E[>, e(X;)] < nland Var (3, ¢(X;)) < nV. Choosing
p = exp (nC(T') + /nr) in Lemma 2 and a suitable choice
of ¢ in (15), we upper bound

P

= S%p y;n P(z™W (log W > nC(T) + \/ﬁr>
o [ (1,

S Sup Ep [1 <I>< T < ” ; (Xz)>

lassuming a unique capacity-cost-achieving distribution.
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! vmﬂ

where the infimum is over random variables II satisfying
E[1I] > r and Var(Il) < SOV [emma 3 is then

=1 - inf E[®(ID)], (19)

= V(D)
used in (19), giving rise to the K-function. In view of (15),
the converse is given by the maximum value of r in (19) for
which the value of K-function is at most e.

B. Non-Feedback Achievability

Theorem 2: Fix an arbitrary e € (0,1). Consider a channel
W with cost constraint (I', V') € (I'g,I'*) x (0, 00) such that
P* is unique and V(T") > 0. Then

log M*(n,e,T,V) —nC(T)
Vvn
Alternatively, for R = C(T") +

lim inf > r*,
n— oo

r_
vn’

/
limsup P. (n, R,T,V) <IC< ! C()V>.

n—oo \/ F V

Remark 3: We prove Theorem 2 under a slightly stricter
cost formulation given by

max E[¢(X;)] <T and Var (Z c(X,»)> <nV, (20)
1=1

1<i<n

which trivially implies the original cost formulation,

Zn:c(Xi)] < nI" and Var <§: c(Xq;)> <nV. (21)

E

i=1 i=1

Despite the restriction, we obtain a matching lower bound in
Theorem 2 to the upper bound in Theorem 1. This means that
the distinction between (20) and (21) is immaterial as far as
the optimal SOCR is concerned.

Proof Outline: The achievability scheme makes use of
the solution (a three-point probability distribution) to the
r* c'(D)*v
va' V)
the minimizing probability distribution P with three point
masses is mapped to three different cost values I'y,T'> and
I's. The cost values are in turn mapped to three types 74,75
and T3, each type T} being close to a capacity-cost-achieving
distribution for cost I';. Subsequently, we use a random coding
scheme where the codewords are drawn randomly from one
of the three type classes with the probability weights of Pr.

The analysis of constant composition codes, i.e., codes that
generate random codewords uniformly from a fixed type class,
is complicated by the fact that the induced output distribution
is Q°¢ instead of Q*, the former of which does not factorize
into a product over the output sequence. In other words, the
channel output is not i.i.d. The third part of [12, Lemma 5]
bounding the ratio of Q°° and Q* is then helpful for such
analysis. Specifically, it is helpful in effecting a change of
measure from Q°¢ to Q*, although it cannot be directly applied

optimization problem in K . Specifically,

because the induced output distribution itself is a mixture of
three "Q““’s".

C. Feedback Improves the SOCR

Theorem 3: Fix an arbitrary e € (0, 1). Consider a channel
W with cost constraint (I', V') € (I'g,I'*) x (0, 00) such that
P* is unique and V(I") > 0. Then

log M (n, e, V) — nC(T)

hnrr_l> 1orgf T > rr.
Alternatively, for R = C(T") + T
c'(r)?

limsup P, (n, R, T, V) <IC< "

NI ) 22)

Remark 4: An explicit expression for the improvement in
error probability in (22) is provided in [12, (118)] in terms of
an optimizable design parameter .

Proof Outline: We consider a random feedback code in
which feedback is only used once halfway through the
transmission. Recall from the discussion in the Introduction
Section, specifically from (3) - (5), that timid and bold
channel input distributions are associated with low and high
variance, respectively, of the information density. During the
first half, the distribution of the channel input is similar to the
distribution used in the non-feedback achievability scheme (as
described in the proof outline for Theorem 2). To reiterate, it
is a mixture distribution of the three type classes emanating
from a minimizing three-point probability distribution in

!
o o VY (23)
Vv V(D)

Using feedback at ¢t = n/2, the encoder determines whether
the information density evaluated at (z"/2,y"/2) is above
some suitable threshold. If it is, then the channel input for the
second half is chosen to be constant-composition over only one
type class with cost I'; otherwise, the channel input is chosen
to retain the mixture distribution of the three type classes over
the whole blocklength. Since the mixture distribution of three
type classes has a greater spread around the cost point I" than
the constant-composition distribution over a single type class,
the former can be considered a bold distribution and the latter
a timid distribution. Hence, if the transmission has proceeded
well, the encoder switches to a timid distribution.

One caveat in the timid/bold scheme described above is
that the mixture distribution could be a constant-composition
code over only one type class. This is the case when the
minimizing probability distribution in (23) is a single-point
mass distribution. In this case, we use a constant-composition
code over one type class during the first half, which is a
timid distribution. Since V' > 0, we can construct an arbitrary
mixture distribution of two type classes with costs I'y < T’
and I's > I'" to form a bold distribution, which can be used in
the second half if the information density at ¢ = n/2 is below
some suitable threshold. Indeed, this also leads to an SOCR
improvement.
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