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Abstract—We consider channel coding for discrete memoryless
channels (DMCs) with a novel cost constraint that constrains both
the mean and the variance of the cost of the codewords. We
show that the maximum (asymptotically) achievable rate under
the new cost formulation is equal to the capacity-cost function; in
particular, the strong converse holds. We further characterize the
optimal second-order coding rate of these cost-constrained codes;
in particular, the optimal second-order coding rate is finite. We
then show that the second-order coding performance is strictly
improved with feedback using a new variation of timid/bold
coding, significantly broadening the applicability of timid/bold
coding schemes from unconstrained compound-dispersion chan-
nels to all cost-constrained channels. Equivalent results on the
minimum average probability of error are also given.

I. INTRODUCTION

In practice, channel coding is subject to various cost con-

straints which limit the amount of resources that can be used

for transmission. Such constraints may arise out of concern

for interference with other terminals or, especially in the

case of mobile devices, power consumption. With a cost

constraint present, the role of capacity is replaced by the

capacity-cost function [1, Theorem 6.11]. We focus on discrete

memoryless channels (DMCs) with a cost function denoted by

c(·). One common cost constraint called the almost-sure (a.s.)

cost constraint [2], [3] bounds the time-average cost of the

channel input Xn over all messages, realizations of any side

randomness, channel noise (if there is feedback), etc.:

1

n

n
∑

i=1

c(Xi) ≤ Γ a.s. (1)

On the other hand, the expected cost constraint bounds the

sum-cost in the average sense:

1

n

n
∑

i=1

E[c(Xi)] ≤ Γ. (2)

These two cost constraints are also called short-term and long-

term power constraints, respectively, in certain contexts [4].

With an almost-sure cost constraint, the strong converse holds.

With an expected cost constraint, the strong converse ceases to

hold [5, Theorem 77]. Accordingly, past work on second-order

coding rates with cost constraints ([2], [6]) has focused on

the almost-sure constraint. The second-order coding rate ([7],

[2], [8], [9], [10]) quantifies the O(n−1/2) convergence to the

capacity-cost function (or to the capacity in the unconstrained

case). Under the a.s. cost formulation, the optimal second-

order coding rate (SOCR) is known [2, Theorem 3].

One of the lessons of information-theoretic studies of chan-

nel coding is that the various codewords should appear to be

selected randomly and independent and identically distributed

(i.i.d.) according to P ∗, where P ∗ is a capacity-cost-achieving

input distribution. The idea of generating codewords in an i.i.d.

fashion is so natural and ubiquitous that it is notable that it is

actually impermissible under (1).

More seriously, one incurs a performance loss by prohibiting

the use of i.i.d.-generated codewords in second-order cod-

ing rate (SOCR) analyses. Consider the problem with ideal

feedback from the output of the channel to the encoder. For

channels without cost constraints, it is known that feedback

can improve the SOCR for compound-dispersion channels [7].

Specifically, suppose a channel W (·|·) has two capacity-

achieving input distributions P ∗
1 and P ∗

2 such that

VarP∗

1
◦W

(

log
W (Y |X)

P ∗
1W (Y )

)

< VarP∗

2
◦W

(

log
W (Y |X)

P ∗
2W (Y )

)

,

(3)

where P ∗
i ◦W denotes the joint distribution over inputs and

outputs induced by the distributions P ∗
i and W (·|·), and

P ∗
i W denotes the marginal distribution of the induced output.

While codewords drawn from P ∗
1 and P ∗

2 have the same

mean information-carrying ability by virtue of P ∗
1 and P ∗

2

both being capacity-achieving, codewords drawn from P ∗
2 are

more variable as a consequence of (3). Thus, the encoder can

employ codewords drawn from P ∗
1 (“timid”) so long as the

transmission is proceeding well and from P ∗
2 (“bold”) if an

error appears likely. This is referred to as timid/bold coding.

One limitation of the above idea is that the channel must

be compound-dispersion. In particular, the capacity-achieving

input distribution for W (·|·) cannot be unique. In fact, for

simple-dispersion channels for which (3) does not hold, feed-

back does not improve the SOCR [7, Theorem 3].

The recent work [11] studied the feedback improvement of

SOCR with a cost constraint. The cost constraint in [11] was

intermediate between an almost-sure cost constraint and an

expected cost constraint. With the intermediate cost constraint,

[11] showed that the timid/bold feedback scheme can improve
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the SOCR for DMCs even if the capacity-cost-achieving

distribution is unique, thus broadening the scope of timid/bold

coding beyond [7]. Specifically, let P ∗ denote a capacity-cost-

achieving input distribution for the DMC W (·|·), which might

well be unique. By the law of total variance, the n-length form

of the variance in (3) can be written as

Var

(

log
W (Y n|Xn)

P ∗W (Y n)

)

= E

[

Var

(

log
W (Y n|Xn)

P ∗W (Y n)

∣

∣

∣

∣

Xn

)]

+ Var

(

E

[

log
W (Y n|Xn)

P ∗W (Y n)

∣

∣

∣

∣

Xn

])

. (4)

If the channel input Xn is constant-composition, i.e., drawn

uniformly from a fixed type class associated with a distribution

that is close to P ∗, then the quantity

E

[

log
W (Y n|Xn)

P ∗W (Y n)

∣

∣

∣

∣

Xn

]

(5)

is a.s. constant and the second term in (4) is zero. In contrast,

if Xn is i.i.d. according to P ∗, then the second term in (4)

is order-n (see [11, Lemma 2]). The first term, in contrast,

is approximately the same between the two cases. Thus both

timid and bold signaling mechanisms can be created from P ∗

alone, depending on whether one uses constant-composition

or i.i.d. codewords. Yet, this observation cannot be applied

under the prevailing a.s. cost formulation for second-order rate

analysis because i.i.d. codewords are impermissible under the

a.s. constraint in (1).

By formulating an intermediate cost constraint that al-

lows both i.i.d. and constant-composition channel inputs,

[11] showed a strict improvement of SOCR with feedback.

However, relaxing the a.s. cost constraint to permit i.i.d.

codewords should be approached cautiously, as the expected

cost constraint from (2), which similarly accommodates i.i.d.

codewords, also admits signaling schemes characterized by a

highly non-ergodic power usage, leading to the absence of

a strong converse. Furthermore, the achievable SOCR with

feedback in [11, Theorem 1] is only shown to exceed the

optimal SOCR of the almost-sure cost constraint [2] without

feedback. Hence, it is also not clear in [11] how much of

the demonstrated improvement in SOCR is due to feedback

and how much of it is due to relaxing the almost-sure cost

constraint.

In this paper, we introduce a new (Γ, V ) cost constraint

which constrains both the mean and the variance of the

codewords:

E

[

n
∑

i=1

c(Xi)

]

≤ nΓ (6)

Var

(

n
∑

i=1

c(Xi)

)

≤ nV. (7)

The (Γ, V ) cost constraint is a natural strengthening of the

expected cost constraint via a second-moment constraint. The

idea is that we want power to be consumed at a limited rate

but also in a predictable fashion, both to ensure a gradual

consumption of energy and so that the transmitted signal is

sufficiently ergodic that it can be treated as noise by other ter-

minals (which mitigates the negative impact of interference).

Note that (7) ensures that c(Xi) satisfies the weak law of large

numbers as n → ∞.

With an additional variance constraint in (Γ, V ) channel

codes for DMCs, the strong converse holds. Our new cost

constraint also admits a finite second-order converse. We give

matching achievability and converse results characterizing the

optimal SOCR in terms of a function of Γ and V , which takes

the form

inf
Π

E [Φ(Π)] , (8)

where Φ(·) is the standard Gaussian CDF and the infimum is

over all random variables Π with an appropriately constrained

expectation and variance. We characterize the solution to the

optimization problem in (8) as well as the properties of a

function K(r, V ) which is equal to (8) with the expectation

and variance constrained by r and V , respectively.

After establishing the optimal coding second-order coding

performance under the (Γ, V ) constraint, we show that this

performance is strictly improved with feedback. Our feedback

scheme is a new variant of timid/bold coding which requires

neither multiple capacity-cost-achieving distributions as in [7]

nor i.i.d. codewords as in [11]. The latter feature is useful be-

cause, although the (Γ, V ) cost constraint allows i.i.d. channel

inputs with a bounded variance V > 0, it does not admit i.i.d.

P ∗ codewords for small values of V . Nevertheless, the (Γ, V )
code with feedback shows a strict SOCR improvement for all

values of V > 0. Therefore, a more foundational advantage of

the (Γ, V ) cost constraint is allowing a nonzero variance of the

cost of the channel input around the cost point Γ, while still

sufficiently regulating power consumption to ensure a finite

second-order coding rate.

The proofs of the main lemmas and theorems are given in

the longer version of this paper [12].

II. PRELIMINARIES

Let A and B be finite input and output alphabets, re-

spectively, of a DMC. Let P(A) be the set of probability

distributions on A. We will use W to denote the DMC. Let

Pn(A) be the set of n-types on A. For a given t ∈ Pn(A),
Tn
A(t) denotes the type class. For a given P ∈ P(A), P ◦W

denotes the joint distribution on A×B induced by P and W ,

and PW denotes the corresponding marginal distribution on

B.

The cost function is denoted by c(·) where c : A → [0, cmax]
and cmax > 0 is a constant. Let Γ0 = mina∈A c(a). For Γ >
Γ0, the capacity-cost function is defined as

C(Γ) = max
P∈P(A)
c(P )≤Γ

I(P,W ), (9)

where c(P ) :=
∑

a∈A P (a)c(a). Let Γ∗ denote the smallest

Γ such that the capacity-cost function C(Γ) is equal to

the unconstrained capacity C. We assume Γ∗ > Γ0 and

Γ ∈ (Γ0,Γ
∗) throughout the paper. We will also assume that

511Authorized licensed use limited to: Cornell University Library. Downloaded on April 27,2025 at 18:31:21 UTC from IEEE Xplore.  Restrictions apply. 



the capacity-cost-achieving distribution for cost Γ is unique.

We will use P ∗ to denote the unique solution to (9). For

the application to feedback communication, this is the most

interesting case, since if P ∗ is not unique, the timid/bold

scheme of [7] is already applicable. This assumption also has

precedent in the literature (e.g., [6]), because it affords certain

technical simplifications (e.g., [12, Lemma 10]). Note that we

do not assume uniqueness for costs Γ′ ̸= Γ.

We define the output distribution Q∗ := P ∗W and

dispersion V (Γ) :=
∑

a∈A P ∗(a)νa. A channel input

Xn ∼ Unif(Tn
A(t)) drawn uniformly from a type class t

is called a constant-composition (cc) input. We will denote

by Qcc the output distribution induced by the input Xn ∼
Unif(Tn

A([P
∗]n)) through the DMC W .

With a blocklength n and a fixed rate R > 0, let M =
{1, . . . , ⌈exp(nR)⌉} denote the message set.

Definition 1: An (n,R) code for a DMC consists of an

encoder f which, for each message m ∈ M, chooses an input

Xn = f(m) ∈ An, and a decoder g which maps the output

Y n to m̂ ∈ M. The code (f, g) is random if f or g is random.

Definition 2: An (n,R) code with ideal feedback for a DMC

consists of an encoder f which, at each time instant k (1 ≤
k ≤ n) and for each message m ∈ M, chooses an input

xk = f(m,xk−1, yk−1) ∈ A, and a decoder g which maps

the output yn to m̂ ∈ M. The code (f, g) is random if f or

g is random.

As noted in the introduction, we consider a cost constraint

that restricts both the mean and the variance of the codewords

by some Γ ∈ (Γ0,Γ
∗) and V > 0, respectively.

Definition 3: An (n,R,Γ, V ) code for a DMC is an (n,R)
code such that E [

∑n
i=1 c(Xi)] ≤ nΓ and Var (

∑n
i=1 c(Xi)) ≤

nV , where the message M ∼ Unif(M) has a uniform

distribution over the message set M.

Definition 4: An (n,R,Γ, V ) code with ideal feedback for

a DMC is an (n,R) code with ideal feedback such that

E [
∑n

i=1 c(Xi)] ≤ nΓ and Var (
∑n

i=1 c(Xi)) ≤ nV , where

the message M ∼ Unif(M) has a uniform distribution over

the message set M.

We consider optimum coding performance for (n,R,Γ, V )
codes defined in Definitions 3 and 4. Given ϵ ∈ (0, 1), define

M∗
fb(n, ϵ,Γ, V ) := max{⌈exp(nR)⌉ : P̄e,fb(n,R,Γ, V ) ≤ ϵ},

where P̄e,fb(n,R,Γ, V ) denotes the minimum average error

probability attainable by any (n,R,Γ, V ) code with feedback.

Similarly, define

M∗(n, ϵ,Γ, V ) := max{⌈exp(nR)⌉ : P̄e(n,R,Γ, V ) ≤ ϵ},
where P̄e(n,R,Γ, V ) denotes the minimum average error

probability attainable by any (n,R,Γ, V ) code without feed-

back. For (n,R,Γ, V ) codes for DMCs defined in Definition 3,

the following (achievability) bound on the second-order coding

rate can be obtained by using the coding scheme from [2,

Theorem 3]:

lim inf
n→∞

logM∗(n, ϵ,Γ, V )− nC(Γ)√
n

≥
√

V (Γ)Φ−1(ϵ) (10)

for ϵ ∈ (0, 1), where the right-hand side of (10) is the

optimal SOCR associated with an almost-sure cost constraint,

assuming a unique capacity-cost-achieving distribution P ∗ at

cost Γ. It is easy to see that a constant-composition code

with a fixed type class satisfies the (Γ, V ) cost constraint.

While constant-composition codes hit the optimal second-

order coding rate with an almost-sure cost constraint, such

codes are not necessarily optimal with the new (Γ, V ) cost

constraint.

Definition 5: A controller is a function F : (A × B)∗ →
P(A).

We shall sometimes write F (·|xk, yk) for F (xk, yk)(·). The

design of random feedback codes (f, g) can be directly re-

lated to the design of controllers [7], [11]. Specifically, any

controller F satisfying

E

[

n
∑

i=1

c(Xi)

]

≤ nΓ and Var

(

n
∑

i=1

c(Xi)

)

≤ nV (11)

can be used to construct an (n,R,Γ, V ) code with ideal

feedback.

Lemma 1 ([7, Lemma 14]): For any Γ ∈ (Γ0,Γ
∗) and V >

0, a controller F satisfying (11), and any n, θ and R,

P̄e,fb(n,R,Γ, V )

≤ (F ◦W )

(

1

n
log

W (Y n|Xn)

FW (Y n)
≤ R+ θ

)

+ e−nθ, (12)

where (Xn, Y n) have the joint distribution specified by

(F ◦W )(xn, yn) =

n
∏

k=1

F (xk|xk−1, yk−1)W (yk|xk),

and FW denotes the marginal distribution of Y n. Further-

more, if for some α and ϵ,

lim sup
n→∞

(F ◦W )

(

1

n
log

W (Y n|Xn)

FW (Y n)
≤ C(Γ) +

α√
n

)

< ϵ,

(13)

then the controller F gives rise to an achievable second-order

coding rate of α, i.e.,

lim inf
n→∞

logM∗
fb(n, ϵ,Γ, V )− nC(Γ)√

n
≥ α. (14)

Similar results to (12), (13) and (14) hold for P̄e(n,R,Γ, V )
and M∗(n, ϵ,Γ, V ) in the non-feedback case by replacing

controllers F by distributions P ∈ P(An).

Remark 1: Lemma 1 is a starting point to prove achievability

results both with feedback (Theorem 3) and without feedback

(Theorem 2).

Lemma 2: Consider a channel W with cost constraint

(Γ, V ) ∈ (Γ0,Γ
∗)×(0,∞), where (Γ, V ) maps to some subset

PΓ,V (An) ⊂ P(An) of distributions. Consider a random non-

feedback (n,R) code with minimum average error probability

at most ϵ ∈ (0, 1) such that the codewords are distributed
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according to some P ∈ PΓ,V (An). Then for every n, ρ > 0
and ϵ ∈ (0, 1),

log⌈exp(nR)⌉ ≤ log ρ− log

[(

1− ϵ− sup
P∈PΓ,V (An)

inf
q∈P(Bn)

(P ◦W )

(

W (Y n|Xn)

q(Y n)
> ρ

)

)+]

. (15)

Remark 2: Lemma 2 serves as a starting point to prove

converse results. Different variants of the converse in Lemma

2 can be found in [13, Theorem 27], [14, (42)] and [7, Lemma

15]. A feedback version of Lemma 2 can be proved and stated

by replacing P in (15) by controllers F such that the marginal

distribution of Xn induced by F ◦W lies in PΓ,V (An).

III. MAIN RESULTS

Definition 6: The function K : R × (0,∞) → (0, 1) is

defined as

K(r, V ) := inf
Π

E[Φ(Π)], (16)

where the infimum is over all random variables Π satisfying

E[Π] ≥ r and Var(Π) ≤ V .

Lemma 3: The function K(r, V ) satisfies the following three

properties:

1) The infimum in (16) is a minimum, and there exists

a minimizer which is a discrete probability distribution

with at most 3 point masses;

2) K(r, V ) is a strictly increasing function w.r.t. r (for a

fixed V );

3) K(r, V ) is (jointly) continuous in (r, V ).

Corollary 1: An equivalent definition of the function K :
R× (0,∞) → (0, 1) is

K (r, V ) = min
Π:

E[Π]=r
Var(Π)≤V
|supp(Π)|≤3

E [Φ(Π)] .

Define

r∗ = max

{

r ∈ R : K
(

r
√

V (Γ)
,
C ′(Γ)2V

V (Γ)

)

≤ ϵ

}

. (17)

The matching converse (Theorem 1) and achievability (Theo-

rem 2) results establish r∗ as the optimal second-order coding

rate of DMCs with the (Γ, V ) cost constraint. The maximum

on the right-hand side of (17) is well-defined. In fact, we have

the following general result.

Lemma 4: For any V > 0 and 0 < ϵ < 1, the supremum,

sup {r′ ∈ R : K(r′, V ) ≤ ϵ} , (18)

is achieved. Furthermore, the maximum, call it r∗, satisfies

K(r∗, V ) = ϵ.
Having denoted the optimal SOCR of (n,R,Γ, V ) codes

by r∗ in (17), it is insightful to compare (17) with the

optimal SOCR of previous cost constraints, such as almost-

sure constraint and expected cost constraint.

• Almost-sure constraint (c(Xn) ≤ Γ almost surely):

Recall that ra.s. :=
√

V (Γ)Φ−1(ϵ) is the optimal SOCR

associated with an a.s. cost constraint1. We note that r∗ ≥
√

V (Γ)Φ−1(ϵ) with equality if a minimizing probability

distribution in K
(

r∗√
V (Γ)

, C′(Γ)2V
V (Γ)

)

has only one point

mass. One indeed has r∗ =
√

V (Γ)Φ−1(ϵ) for V = 0.

While the a.s. cost constraint is not, strictly speaking,

equivalent to the (Γ, V ) cost constraint with V = 0, one

nevertheless obtains r∗ = ra.s. for V = 0 because in

practice, optimal schemes for the case V = 0 satisfy the

a.s. cost constraint.

• Expected cost constraint (E[c(Xn)] ≤ Γ):

This is a special case of (Γ, V ) cost constraint with

V = ∞. As mentioned in the Introduction, the strong

converse does not hold with an expected cost constraint

so the optimal SOCR in this case can be considered to

be infinite. One therefore expects r∗ → ∞ as V → ∞.

This is indeed the case and it suffices to show that

K(r,∞) = 0 for all values of r. Since K(r,∞) is non-

decreasing in r, fix an arbitrarily large value of r > 0.

Then for any ϵ > 0, we can choose m sufficiently large so

that for p = 1− 1/m, π1 = −
√
logm and π2 = r−pπ1

1−p ,

we have pπ1 + (1− p)π2 = r and

K(r,∞) ≤ pΦ(π1) + (1− p)Φ(π2)

≤ − p

π1
ϕ(π1) + 1− p ≤ ϵ.

A. Non-Feedback Converse

Theorem 1:

Fix an arbitrary ϵ ∈ (0, 1). Consider a channel W with cost

constraint (Γ, V ) ∈ (Γ0,Γ
∗)× (0,∞) such that P ∗ is unique

and V (Γ) > 0. Then

lim sup
n→∞

logM∗(n, ϵ,Γ, V )− nC(Γ)√
n

≤ r∗.

Alternatively, for R = C(Γ) + r√
n

,

lim inf
n→∞

P̄e (n,R,Γ, V ) ≥ K
(

r
√

V (Γ)
,
C ′(Γ)2V

V (Γ)

)

.

Proof Outline: The starting point will be the result in

Lemma 2, where PΓ,V (An) is set equal to the set of dis-

tributions P such that the channel input Xn ∼ P satisfies

E [
∑n

i=1 c(Xi)] ≤ nΓ and Var (
∑n

i=1 c(Xi)) ≤ nV . Choosing

ρ = exp (nC(Γ) +
√
nr) in Lemma 2 and a suitable choice

of q in (15), we upper bound

sup
P

(P ◦W )

(

W (Y n|Xn)

q(Y n)
> ρ

)

= sup
P

∑

xn∈An

P (xn)W

(

log
W (Y n|xn)

q(Y n)
> nC(Γ) +

√
nr

)

⪅ sup
P

EP

[

1− Φ

(√
nC ′(Γ)
√

V (Γ)

(

Γ− 1

n

n
∑

i=1

c(Xi)

)

1assuming a unique capacity-cost-achieving distribution.
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+
r

√

V (Γ)

)]

= 1− inf
Π

E [Φ(Π)] , (19)

where the infimum is over random variables Π satisfying

E [Π] ≥ r√
V (Γ)

and Var(Π) ≤ C′(Γ)2V
V (Γ) . Lemma 3 is then

used in (19), giving rise to the K-function. In view of (15),
the converse is given by the maximum value of r in (19) for

which the value of K-function is at most ϵ.

B. Non-Feedback Achievability

Theorem 2: Fix an arbitrary ϵ ∈ (0, 1). Consider a channel

W with cost constraint (Γ, V ) ∈ (Γ0,Γ
∗) × (0,∞) such that

P ∗ is unique and V (Γ) > 0. Then

lim inf
n→∞

logM∗(n, ϵ,Γ, V )− nC(Γ)√
n

≥ r∗.

Alternatively, for R = C(Γ) + r√
n

,

lim sup
n→∞

P̄e (n,R,Γ, V ) ≤ K
(

r
√

V (Γ)
,
C ′(Γ)2V

V (Γ)

)

.

Remark 3: We prove Theorem 2 under a slightly stricter

cost formulation given by

max
1≤i≤n

E [c(Xi)] ≤ Γ and Var

(

n
∑

i=1

c(Xi)

)

≤ nV, (20)

which trivially implies the original cost formulation,

E

[

n
∑

i=1

c(Xi)

]

≤ nΓ and Var

(

n
∑

i=1

c(Xi)

)

≤ nV. (21)

Despite the restriction, we obtain a matching lower bound in

Theorem 2 to the upper bound in Theorem 1. This means that

the distinction between (20) and (21) is immaterial as far as

the optimal SOCR is concerned.

Proof Outline: The achievability scheme makes use of

the solution (a three-point probability distribution) to the

optimization problem in K
(

r∗√
V (Γ)

, C′(Γ)2V
V (Γ)

)

. Specifically,

the minimizing probability distribution PΠ with three point

masses is mapped to three different cost values Γ1,Γ2 and

Γ3. The cost values are in turn mapped to three types T1, T2

and T3, each type Tj being close to a capacity-cost-achieving

distribution for cost Γj . Subsequently, we use a random coding

scheme where the codewords are drawn randomly from one

of the three type classes with the probability weights of PΠ.

The analysis of constant composition codes, i.e., codes that

generate random codewords uniformly from a fixed type class,

is complicated by the fact that the induced output distribution

is Qcc instead of Q∗, the former of which does not factorize

into a product over the output sequence. In other words, the

channel output is not i.i.d. The third part of [12, Lemma 5]

bounding the ratio of Qcc and Q∗ is then helpful for such

analysis. Specifically, it is helpful in effecting a change of

measure from Qcc to Q∗, although it cannot be directly applied

because the induced output distribution itself is a mixture of

three "Qcc’s".

C. Feedback Improves the SOCR

Theorem 3: Fix an arbitrary ϵ ∈ (0, 1). Consider a channel

W with cost constraint (Γ, V ) ∈ (Γ0,Γ
∗) × (0,∞) such that

P ∗ is unique and V (Γ) > 0. Then

lim inf
n→∞

logM∗
fb(n, ϵ,Γ, V )− nC(Γ)√

n
> r∗.

Alternatively, for R = C(Γ) + r√
n

,

lim sup
n→∞

P̄e,fb (n,R,Γ, V ) < K
(

r
√

V (Γ)
,
C ′(Γ)2V

V (Γ)

)

. (22)

Remark 4: An explicit expression for the improvement in

error probability in (22) is provided in [12, (118)] in terms of

an optimizable design parameter β.

Proof Outline: We consider a random feedback code in

which feedback is only used once halfway through the

transmission. Recall from the discussion in the Introduction

Section, specifically from (3) - (5), that timid and bold

channel input distributions are associated with low and high

variance, respectively, of the information density. During the

first half, the distribution of the channel input is similar to the

distribution used in the non-feedback achievability scheme (as

described in the proof outline for Theorem 2). To reiterate, it

is a mixture distribution of the three type classes emanating

from a minimizing three-point probability distribution in

K
(

r
√

V (Γ)
,
C ′(Γ)2V

V (Γ)

)

. (23)

Using feedback at t = n/2, the encoder determines whether

the information density evaluated at (xn/2, yn/2) is above

some suitable threshold. If it is, then the channel input for the

second half is chosen to be constant-composition over only one

type class with cost Γ; otherwise, the channel input is chosen

to retain the mixture distribution of the three type classes over

the whole blocklength. Since the mixture distribution of three

type classes has a greater spread around the cost point Γ than

the constant-composition distribution over a single type class,

the former can be considered a bold distribution and the latter

a timid distribution. Hence, if the transmission has proceeded

well, the encoder switches to a timid distribution.

One caveat in the timid/bold scheme described above is

that the mixture distribution could be a constant-composition

code over only one type class. This is the case when the

minimizing probability distribution in (23) is a single-point

mass distribution. In this case, we use a constant-composition

code over one type class during the first half, which is a

timid distribution. Since V > 0, we can construct an arbitrary

mixture distribution of two type classes with costs Γ1 < Γ
and Γ2 > Γ to form a bold distribution, which can be used in

the second half if the information density at t = n/2 is below

some suitable threshold. Indeed, this also leads to an SOCR

improvement.
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