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CONVEX INTEGRATION SOLUTION OF TWO-DIMENSIONAL

HYPERBOLIC NAVIER-STOKES EQUATIONS

JIAHONG WU AND KAZUO YAMAZAKI

Abstract. Hyperbolic Navier-Stokes equations replace the heat operator within the Navier-

Stokes equations with a damped wave operator. Due to this second-order temporal deriv-

ative term, there exist no known bounded quantities for its solution; consequently, various

standard results for the Navier-Stokes equations such as the global existence of a weak so-

lution, that is typically constructed via Galerkin approximation, are absent in the literature.

In this manuscript, we employ the technique of convex integration on the two-dimensional

hyperbolic Navier-Stokes equations to construct a weak solution with prescribed energy

and thereby prove its non-uniqueness. The main difficulty is the second temporal deriva-

tive term, which is too singular to be estimated as a linear error. One of our novel ideas is to

use the time integral of the temporal corrector perturbation of the Navier-Stokes equations

as the temporal corrector perturbation for the hyperbolic Navier-Stokes equations.

1. Introduction, review, and the statement of our main result

1.1. Motivation from physics and real-world applications. The Navier-Stokes equa-

tions is a prominent system of partial differential equations (PDEs) in hydrodynamics that

has various applications in real world such as fluid mechanics, aerodynamics, medicine,

and even finance. More than half a century ago, Cattaneo [12, 13] and Vernotte [47] pro-

posed replacing the heat operator with a damped wave operator to make the propagation

speed of heat transfer finite. This idea was subsequently extended by others such as Car-

rassi and Morro [11]. More recently, Couland, Hachicha, and Raugel [19] derived a general

version of the hyperbolic Navier-Stokes equations by replacing the Fourier law with the law

proposed by Cattaneo. The hyperbolic Navier-Stokes equations (1) of our main interest in

this manuscript is precisely [4, Equation (1.6)] by Brenier, Natalini, and Puel, which can

be considered as an approximation of the general version in [19].

One of the most fundamental issues concerning the standard Navier-Stokes equations

is the uniqueness of its global-in-time weak solution that has been known to exist since

the pioneering works of Leray and Hopf [31, 36]. Although the non-uniqueness of Leray-

Hopf weak solution to the three-dimensional (3D) Navier-Stokes equations remains open,

recent breakthrough technique of convex integration has advanced our understanding of

this challenging problem. The hyperbolic Navier-Stokes equations differ from the standard

Navier-Stokes equations by a second-order temporal derivative term and even the global

L2
x-bound remains unknown. The classical approach such as the Galerkin approximation

on a torus to construct a global-in-time weak solution strongly relies on such bounded
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quantities. Hence, setting aside the question of uniqueness, to the best of our knowledge,

there is currently no known construction of a global-in-time weak solution to the hyperbolic

Navier-Stokes equations from non-zero initial data.

Considering such a unique difficulty of the absence of any bounded quantities, we turn

to the non-traditional approach, specifically the recent breakthrough technique of convex

integration, and construct a global-in-time weak solution with prescribed energy and con-

sequently prove its non-uniqueness. Extending the current convex integration technique to

the hyperbolic Navier-Stokes equations with the second temporal derivative term requires

substantial modifications. With several new novel ideas and optimization over multiple

parameters, we achieve this goal. To the best of our knowledge, this is the

• first construction of a global-in-time non-zero solution to the hyperbolic Navier-

Stokes equations,

• first ill-posedness result for the hyperbolic Navier-Stokes equations,

• and first attempt of convex integration on a physically meaningful hyperbolic sys-

tem of PDEs with a second-order temporal derivative term.

1.2. Review of previous results. We define N ≜ {1, 2, . . . , }, N0 ≜ {0} ∪N, Td ≜ [−Ã, Ã]d,

and a fractional Laplacian (−∆)m for m ∈ R to satisfy (−∆)m f (x) ≜
∑

k∈Zd |k|2m f̂ (k)eik·x

for d ∈ N. Let us denote by v : R+ × Td 7→ Rd the velocity field, Ã : R+ × Td 7→ R the

pressure field, and ¸ g 0 the kinematic viscosity, so that we may write down the hyperbolic

Navier-Stokes equations generalized via a fractional diffusion ¸(−∆)mv as

µ∂ttv + ∂tv + ¸(−∆)mv + (v · ∇)v + ∇Ã = 0, (1a)

∇ · v = 0, (1b)

where µ g 0. The case µ = 0 recovers the Navier-Stokes equations and additionally taking

¸ = 0 leads to the Euler equations. For simplicity, we assume ¸ = 1 hereafter whenever

¸ > 0. For the Navier-Stokes equations in case µ = 0, taking L2(Td)-inner products with v

under the assumption of sufficient regularity of the solution leads to the energy identity of

∥v(t)∥2
L2

x
+ 2

∫ t

0

∥(−∆)
m
2 v∥2

L2
x
ds = ∥v(0)∥2

L2
x
. (2)

Based on this fundamental property, there is a rich theory of the Navier-Stokes equations

over 90 years of investigations starting from the pioneering work of Leray [36]. In sharp

contrast, the energy identity (2) fails in case µ > 0 due to the extra term

µ

∫ t

0

∫

Td

∂ssv · vdxds.

Additionally, taking L2(Td)-inner products with ∂tv and summing the resulting equations

create a different problem this time due to
∫ t

0

∫

Td

(v · ∇)v · ∂svdxds.

Consequently, there are no known bounded quantities for the solution to the hyperbolic

Navier-Stokes equations (1). Very recently, Ji, Li, Tian, and Wu [34] proved that un-

der constraints on µ and initial data, the hyperbolic Navier-Stokes equations (1) possess a

unique global-in-time mild solution in Rd for d g 2. Nevertheless, rigorous results for the

hyperbolic Navier-Stokes equations in the current literature, in general, are extremely lim-

ited due to the lack of bounded quantities disabling one from following the known classical

approaches on the Navier-Stokes equations. In turn, this presents a unique opportunity in
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which a non-classical approach that does not rely on the energy inequality (2) of the Navier-

Stokes equations may be applied to the hyperbolic Navier-Stokes equations instead to shed

light from a different angle to improve our understanding, and a good candidate for such a

technique is the convex integration, that we briefly review next.

Convex integration has its roots in geometry, specifically the famous C1-isometric em-

bedding theorem of Nash [43]. It has seen rapid developments in the past two decades

fueled by the goal of proving Onsager’s conjecture [44], the positive direction being that

every weak solution v ∈ C³(T3) to the 3D Euler equations for ³ > 1
3

conserves its energy

and the negative direction being the existence of a weak solution v ∈ C³(T3) for ³ < 1
3

that fails to conserve its energy. While Constantin, E, and Titi [17], and Eyink [25] in

1994 proved its positive direction, De Lellis and Székelyhidi Jr. [21] in 2009, by partially

using ideas from [42] by Müller and Šverák, proved the existence of a solution v ∈ L∞t,x
to the dD Euler equations for d ∈ N \ {1} with compact support in space and time, ex-

tending the previous works of Scheffer [45] and Shnirelman [46] that proved analogous

results with regularity in L2
t,x in the 2D case. After further extensions (e.g. [6, 22, 23]),

Isett [32] proved the negative direction of Onsager’s conjecture in any dimension d g 3.

The case d = 2 was excluded in [32] due to the absence of Mikado flows in the 2D case;

nevertheless, Giri and Radu [26] recently settled the 2D case as well via a new approach

of Newton-Nash iteration. Via an introduction of intermittent Beltrami waves, Buckmas-

ter and Vicol [8] proved the non-uniqueness of weak solutions to the 3D Navier-Stokes

equations, and it was followed by many more: [5, 14, 16, 24, 38, 40] on the Navier-Stokes

equations; [10] on power-law model; [39] on Boussinesq system; [3] on magnetohydrody-

namics system; [20, 41] on transport equation; [7, 33] on active scalars. We also highlight

that Albritton, Brué, and Colombo [1] proved the non-uniqueness of Leray-Hopf weak

solutions to the 3D Navier-Stokes equations under some non-zero force.

Despite the seemingly wide applicability, there exist plenty of PDEs to which we do

not know how to employ the convex integration technique. In particular, during a work-

shop “Criticality and Stochasticity in Quasilinear Fluid Systems” at the American Institute

of Mathematics in 2021, one participant suggested an open question of whether one can

apply the convex integration technique to dispersive or hyperbolic PDEs such as the wave

equation. Some workshop participants attempted but came out empty-handed in terms of

concrete results. Nevertheless, in this work we succeed in employing the convex inte-

gration technique to the hyperbolic Navier-Stokes equations (1) and thereby construct a

global-in-time solution with prescribed energy that is non-unique; we present our result

formally next in Section 2.

2. Statement of our main result

Let us present our main result in Theorem 2.1; its style of presentation has some simi-

larities to [10, Theorem B].

Theorem 2.1. Fix m ∈ (0, 2
3
), an arbitrary T > 0, as well as any

e ∈ C1(R; [e,∞)) such that ∥e∥C([−2,T ]) f ē and ∥e′∥C([−2,T ]) f ẽ, (3a)

where 4 f e f ē < ∞, ẽ ∈ [0,∞). (3b)

Then there exists a constant ´ = ´(m) ∈ (0, 1) sufficiently small such that the following

holds. There exists a mean-zero function

v ∈ C([0,T ]; H´(T2)) ∩C´([0,T ]; L2(T2)) (4)

such that
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(1) v solves the hyperbolic Navier-Stokes equations (1) distributionally; i.e.,
∫ T

0

∫

T2

v(s, x) · (µ∂ssϕ − ∂sϕ + (−∆)mϕ − (v · ∇)ϕ)(s, x)dxds = 0,

∫

T2

v(t) · ∇È = 0 ∀ t ∈ [0,T ],

for any divergence-free ϕ ∈ C2([0,T ] × T2) such that both ϕ, ∂tϕ vanish at t = 0

and t = T, and any È ∈ C1(T2);

(2)

∥v(t)∥2
L2

x
= e(t) ∀ t ∈ [0,T ]. (5)

Additionally, if two such energies e1 and e2 obeying the same bounds e, ē, and ẽ in (3)

coincide on [0, t], then there exist corresponding solutions v1 and v2 that also coincide on

[0, t ' T ], implying non-uniqueness of distributional solutions for the hyperbolic Navier-

Stokes equations (1).

The lower bound of 4 in (3) is arbitrary and any strictly positive real number suffices in the

proof of Theorem 2.1.

Remark 2.1. Initially, we attempted to prove the 3D analogue of Theorem 2.1 but faced

various difficulties unable to close several necessary estimates. Using the generalized in-

termittent jets in higher spatial dimensions from [37], we investigated to see if the difficul-

ties in the 3D case could be overcome in higher dimensions but we saw that the obstacles

still remained. In fact, the difficulties we faced in the 3D case interestingly became worse

as the spatial dimension increased. This is very counterintuitive to the theory of convex

integration in which in general, the lower dimension poses more difficulties; e.g. recall

that Isett [32] proved Onsager’s conjecture for all d g 3 but not in case d = 2. In any

event, this is how we realized that the only path forward for us with our current approach

is actually the lower dimensional case, namely when d = 2, which finally led to Theorem

2.1 after various optimizations over all parameters. We make further comments on this

issue in Remark 4.5.

Remark 2.2. Our convex integration scheme will specifically utilize the 2D intermittent

stationary flows originally introduced by Choffrut, De Lellis, and Székelyhidi Jr. [15] for

the 2D Euler equations, subsequently extended by Buckmaster, Shkoller, and Vicol [7] to

the 2D surface quasi-geostrophic equations, by Luo and Qu [38] to the 2D Navier-Stokes

equations, and by Yamazaki [49,51] to the stochastic case implementing the smooth cut-off

function “Ç introduced in [40, p. 7] (see (198)).

The main result from [38, Corollary 1.2] is the construction of a non-trivial weak solu-

tion to the 2D Navier-Stokes equations diffused by (−∆)m for all m ∈ [0, 1) that has compact

temporal support which implies non-uniqueness because the zero function is a solution to

the Navier-Stokes equations starting from zero initial data. A zero function also solves

the hyperbolic Navier-Stokes equations (1). Unfortunately, the approach of [38] directly

conflicts with one of our new novel ideas to handle the hyperbolic term (see Remark 4.1).

Consequently, we were not able to extend [38] to the hyperbolic Navier-Stokes equations

(1). Because further explanation requires more notations, let us elaborate on this difficulty

in Remark 4.4.

In [9, Theorem 7.1], Buckmaster and Vicol constructed a weak solution v(t, x) to the

3D Navier-Stokes equations such that its kinetic energy at least doubles from time t = 0

to t = 1: ∥v(1)∥2
L2

x

> 2∥v(0)∥2
L2

x

. This implies non-uniqueness because one can take such a

solution v(t, x) constructed via convex integration, consider the solution v(0, x) at t = 0 as
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initial data, and employ Galerkin approximation to it to construct another solution vG(t, x)

such that vG(0, x) = v(0, x) and ∥vG(1)∥2
L2

x

f ∥v(0)∥2
L2

x

. Our first successful result was actu-

ally an extension of [9, Section 7] to the 2D hyperbolic Navier-Stokes equations. However,

in contrast to the Navier-Stokes equations, this result does not allow us to conclude non-

uniqueness because even if we take the solution constructed via convex integration at time

t = 0, we cannot construct another classical solution via Galerkin approximation. Al-

though Theorem 2.1 with prescribed energy is stronger in various ways, we leave a sketch

of the proof of extension of [9, Theorem 7.1] to (1) in Appendix D due to its independent

mathematical interest.

Finally, Burczak, Modena, and Székelyhidi Jr. in [10, Theorems A and B] introduced a

very nice approach to construct solutions to the power-law model with prescribed energy,

which particularly proved to be amenable to the stochastic case (e.g. [29, 48]). We adapt

the convex integration scheme of [15, 38] to such a prescribed energy approach from [10]

to prove Theorem 2.1.

Remark 2.3. We briefly point out an interesting development in the research area of the

convex integration technique applied on PDEs forced by random noise of relevance to our

manuscript. There are various PDEs forced by random noise that is very rough such as

the space-time white noise, and they have been studied in the physics literature for many

decades. The lack of smoothness of such a force transmits to the roughness of its solution

and the product within the nonlinear term becomes ill-defined according to Bony’s esti-

mates that informally states that a product f g is well-defined if and only if f ∈ C³1
x , g ∈ C³2

x

for
∑2

j=1 ³ j > 0. Such PDEs are called singular stochastic PDEs (SPDEs), and its research

direction has experienced significant advances due to the recent breakthrough inventions

of the theory of regularity structures by Hairer [28] and the theory of paracontrolled dis-

tributions by Gubinelli, Imkeller, and Perkowski [27]. For example, Zhu and Zhu [52] con-

structed a local-in-time solution to the 3D Navier-Stokes equations forced by space-time

white noise using these theories. Yet, even these powerful techniques have limitations:

the constructed solutions are local-in-time, and the techniques, in general, apply only to

locally subcritical singular SPDEs, which informally require their nonlinear terms to be

smoother than the noise (see [28, Assumption 8.3] for a precise definition of local sub-

criticality). Remarkably, Hofmanová, Zhu, and Zhu [30] were able to employ the convex

integration technique to the 2D surface quasi-geostrophic equations in the locally critical

and even supercritical cases; this was the first construction of any solution to any singu-

lar SPDE in the locally critical and supercritical cases; not only that, the solutions were

global-in-time and non-unique.

In contrast, the hyperbolic Navier-Stokes equations (1) is a physically meaningful sys-

tem of PDEs with no known bounded quantities, barring any success in applications of the

classical Galerkin approximation to construct a global-in-time weak solution. Yet, we were

able to construct a non-zero global-in-time weak solutions and prove non-uniqueness. The

results of [30] and our Theorem 2.1 suggest that the technique of convex integration has

proven to be not only a breakthrough technique to demonstrate non-uniqueness of weak so-

lutions to various PDEs in hydrodynamics but a new technique to construct global-in-time,

although non-unique, solutions for PDEs when no other means are available.

Remark 2.4. With Remark 2.3 in mind, we wish to recall the 2D Kuramoto-Sivashinsky

equation that has applications in diverse areas such as the instabilities in laminar flame

fronts. It can be informally written as

∂tu + (u · ∇)u = −∆u − ∆2u (6)
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solved by u : R+ × T2 7→ R2; we refer to [18, 35] and references therein for details. Due

to the lack of divergence-free property in sharp contrast to the Navier-Stokes equations,

the solution to the 2D Kuramoto-Sivashinsky equation (6) shares the same property as the

hyperbolic Navier-Stokes equations (1), namely the absence of any known bounded quan-

tities. Consequently, to the best of our knowledge, global-in-time existence of a solution

to the 2D Kuramoto-Sivashinsky equation starting from an arbitrary initial data remains

unknown (see [2, 18]). It would be interesting if some ideas from this manuscript can

contribute to this research direction in future.

We summarize some of the novelties and significances of Theorem 2.1 and its proof.

(1) Theorem 2.1 presents the first global-in-time existence result, ill-posed type, for

the hyperbolic Navier-Stokes equations.

(2) To the best of our knowledge, Theorem 2.1 presents the first convex integration

scheme on a hyperbolic equation with a second-order temporal derivative term ∂tt.

In fact, to the best of our knowledge, it is the first time that a convex integration

scheme with prescribed energy is applied on a PDE for which we do not even

know if it has any bounded quantities at all.

(3) Within the proof of Theorem 2.1, we took a time integral of the temporal correc-

tor of the Navier-Stokes equations to handle the second-order temporal derivative

term in (1). (See Remark 4.1 for details.)

(4) There are many parameters such as r, µ, Ã−1, ³, l, b and p∗, for all of which we

had to discover non-empty intervals and optimize to obtain Theorem 2.1 for all

m ∈ (0, 2
3
). (See (31) and the discussion thereafter.) We go through details of such

derivations of the parameters in Appendices A-B to better explain their optimality.

We also comment that considering that we were able to adapt [10, Theorems A and B]

and prescribe energy in Theorem 2.1, it is very likely that we can adapt the proof of [10,

Theorem C] and construct a solution to the 2D hyperbolic Navier-Stokes equations (1) with

prescribed initial data to give a second proof of non-uniqueness. We choose to leave this

to future works.

In what follows, we describe preliminaries and past results in Section 3, prove Theo-

rem 2.1 in Section 4, and leave additional computations in Appendix C for completeness.

Appendix D consists of a sketch of proof of the extension of [9, Theorem 7.1] to the hy-

perbolic Navier-Stokes equations (1). Hereafter, we consider (1) with µ = 1 for simplicity;

the case µ ∈ R+ \ {1} can be attained with straightforward modifications of the following

proof.

3. Preliminaries

We write A ≲a,b B to imply the existence of a constant C = C(a, b) g 0 such that

A f CB; additionally, we write A ≈a,b B if A ≲ B and B ≲ A. We write A
(·)
≲B to indicate

that this inequality is due to an equation (·). Vector components will be indicated by super-

indices, and we define x§ ≜ (−x2, x1). We denote a tensor product by ¹while the trace-free

tensor product by

f ¹̊g ≜

(

f 1g1 − 1
2

f · g f 1g2

f 2g1 f 2g2 − 1
2

f · g

)

for any R2-valued maps f and g. We write for N ∈ N0 and p ∈ [1,∞],

∥ f ∥CN
t,x
≜

∑

0fn+|³|fN

∥∂n
t D³ f ∥Ct,x

, ∥ f ∥Ct L
p
x
≜ sup

s∈[0,t]
∥ f (s)∥Lp

x
. (7)
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We also define L2
Ã ≜ { f ∈ L2

x : ∇ · f = 0}, reserve P ≜ Id − ∇∆−1div as the Leray

projection operator, and Pfr to be a Fourier operator with a Fourier symbol of 1|À|fr(À) for

any r ∈ [0,∞).

Lemma 3.1. (Geometric lemma from [7, Lemma 4.2]) Let Bϵ(Id) denote the ball of sym-

metric 2 × 2 matrices, centered at Id of radius ϵ > 0. Then there exists ϵµ > 0 with which

there exist disjoint finite subsets Λ+,Λ− ¢ S1 ∩ Q2 and smooth positive functions

µ· ∈ C∞(Bϵµ (Id)), · ∈ Λ±,
such that

(1) 5Λ± ¢ Z2,

(2) if · ∈ Λ±, then −· ∈ Λ± and µ· = µ−· ,
(3)

R =
1

2

∑

·∈Λ±
(µ·(R))2(·§ ¹ ·§) ∀ R ∈ Bϵµ (Id), (8)

(4) |· + ·′| g 1
2

for all ·, ·′ ∈ Λ± such that · + ·′ ̸= 0.

We define Λ ≜ Λ+ ∪ Λ−. For convenience, we fix the following universal constants

CΛ ≜ 2

[

ϵ−1
µ

(

Ã2 +
ϵµ

48

)

+
5

8

] 1
2

|Λ| and M ≜ CΛ sup
·∈Λ
∥µ·∥C(Bϵµ (Id)); (9)

the reason for this definition of CΛ is due to (55). Next, we describe some notations and

results concerning the 2D intermittent stationary flows introduced in [15] (e.g. [15, Lemma

4]) and extended in [38]. For all · ∈ Λ and any frequency parameter ¼ ∈ 5N, we define b·
and its potential È· as

b·(x) ≜ b·,¼(x) ≜ i·§ei¼··x, È·(x) ≜ È·,¼(x) ≜
1

¼
ei¼··x (10)

(cf. [15, Equation (14)]). It follows that for all N ∈ N0,

b·(x) = ∇§È·(x), ∇ · b·(x) = 0, ∇§ · b·(x) = ∆È·(x) = −¼2È·(x), (11a)

b·(x) = b−·(x), È·(x) = È−·(x), ∥b·∥CN
x

(7)
f (N + 1)¼N , ∥È·∥CN

x

(7)
f (N + 1)¼N−1. (11b)

Similarly to [8, Equations (3.5b), (3.5c), and (3.6) on p. 111], we consider a 2D Dirichlet

kernel for r ∈ N

Dr(x) ≜
1

2r + 1

∑

k∈Ωr

eik·x with Ωr ≜

{

k =
(

k1 k2
)T

: ki ∈ Z ∩ [−r, r] for i = 1, 2

}

,

where T denotes a transpose, that satisfies ∥Dr∥Lp
x
≲ r

1− 2
p for all p ∈ (1,∞] and ∥Dr∥L2

x
=

2Ã. The role of r is to parametrize the number of frequencies along edges of the cube

Ωr. We introduce Ã such that ¼Ã ∈ 5N to parametrize the spacing between frequencies,

or equivalently such that the resulting rescaled kernel is (T/¼Ã)2-periodic. In particular,

this will be needed in application of Lemma 3.4. Lastly, we introduce µ that measures

the amount of temporal oscillation in the building blocks. In sum, the parameters we

introduced are required to satisfy

1 j r j µ j Ã−1 j ¼, r ∈ N, and ¼, ¼Ã ∈ 5N. (12)

Now we define the directed-rescaled Dirichlet kernel by

¸·(t, x) ≜ ¸·,¼,Ã,r,µ(t, x) ≜






Dr(¼Ã(· · x + µt), ¼Ã·§ · x) if · ∈ Λ+,
¸−·,¼,Ã,r,µ(t, x) if · ∈ Λ−,

(13)
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so that

1

µ
∂t¸·(t, x) = ±(· · ∇)¸·(t, x) ∀ · ∈ Λ±, (14a)

?
T2

¸2
· (t, x)dx = 1, and ∥¸·∥L∞t L

p
x
≲ r

1− 2
p ∀ p ∈ (1,∞] (14b)

(cf. [8, Equations (3.8)-(3.10)]). Finally, we define the intermittent 2D stationary flow as

W·(t, x) ≜ W·,¼,Ã,r,µ(t, x) ≜ ¸·,¼,Ã,r,µ(t, x)b·,¼(x) (15)

(cf. [8, Equation (3.11)]). We note that Luo and Qu [38, Equation (4.15)] coined “inter-

mittent 2D stationary flow” for W· because they adapted the 2D stationary flow introduced

in CDS12 to an intermittent form. Similarly to the 3D case in [8] it follows that for all

·, ϑ ∈ Λ (see [38, Equations (4.16)-(4.19)] and also [8, Equations (3.13)-(3.14)])

Pf2¼Pg ¼
2
W· = W· , (16a)

Pf4¼Pg ¼
5
(W·¹̊Wϑ) = W·¹̊Wϑ if · + ϑ ̸= 0, (16b)

Pg ¼Ã
2

(W·¹̊Wϑ) = P̸=0(W·¹̊Wϑ), (16c)

P̸=0¸· = Pg ¼Ã
2
¸· . (16d)

Lemma 3.2. ([38, Lemmas 4.2 and 4.3]; cf. [8, Proposition 3.5]) Define ¸· and W· respec-

tively by (13) and (15), and assume (12). Then

(1) For any {a·}·∈Λ ¢ C such that a−· = ā· , a function
∑

·∈Λ a·W· is R-valued.

(2) for any p ∈ (1,∞], k, N ∈ {0, 1, 2, 3},

∥∇N∂k
t W·∥L∞t L

p
x
≲N,k,p ¼

N(¼Ãrµ)kr
1− 2

p , (17a)

∥∇N∂k
t ¸·∥L∞t L

p
x
≲N,k,p (¼Ãr)N(¼Ãrµ)kr

1− 2
p . (17b)

Lemma 3.3. ([15, Definition 9, Lemma 10], also [38, Definition 7.1, Lemmas 7.2 and

7.3]) For f ∈ C(T2), set

R f ≜ ∇g + (∇g)T − (∇ · g)Id, (18)

where g satisfies ∆g = f −
>
T2 f dx and

>
T2 gdx = 0. Then for any f ∈ C(T2) such that>

T2 f dx = 0, R f (x) is a trace-free symmetric matrix for all x ∈ T2. Moreover, ∇ · R f = f

and
>
T2 R f (x)dx = 0. When f is not mean-zero, we overload the notation and denote by

R f ≜ R( f −
∫

T2 f dx). Finally, for all p ∈ (1,∞), ∥R∥
L

p
x 7→W

1,p
x
≲ 1, ∥R∥Cx 7→Cx

≲ 1, and

∥R f ∥Lp
x
≲ ∥(−∆)−

1
2 f ∥Lp

x
.

Lemma 3.4. ([38, Lemma 6.2]) Let f , g ∈ C∞(T2) where g is also (T/»)2-periodic for

some » ∈ N. Then there exists a constant C g 0 such that

∥ f g∥L2
x
f ∥ f ∥L2

x
∥g∥L2

x
+C»−

1
2 ∥ f ∥C1

x
∥g∥L2

x
. (19)

Lemma 3.5. ([38, Lemma 7.4]) For any p ∈ (1,∞), ¼ ∈ N, a ∈ C2(T2), and f ∈ Lp(T2),

∥(−∆)−
1
2 P̸=0(aPg¼ f )∥Lp

x
≲ ¼−1∥a∥C2

x
∥ f ∥Lp

x
. (20)

4. Proof of Theorem 2.1

4.1. Proof of Theorem 2.1 assuming Proposition 4.2. We fix the function e that satisfies

(3). We set for q ∈ N0,

¼q ≜ abq

, ¶q ≜ ¼
2´

1
¼
−2´
q , (21)
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where

a ∈ 10N, a g a0, (22)

b ∈ N, and ´ ∈ (0, 1) will be selected subsequently. It is useful that ¶1 = 1, e.g. in the proof

of Proposition 4.1. We set a convention that
∑

1frf0 cr = 0 for any cr ∈ R. Hereafter, we

impose on ourselves

3 f ab´ (23)

without any significant difficulties because we can take a0 as large and ´ > 0 as small as

we wish and still maintain this inequality (23). Then, (23) allows us to define

tq ≜ −2 +
∑

0fºfq

¶
1
2
º f −

1

2
for all q ∈ N0 (24)

due to
∑

0fºfq ¶
1
2
º f 3

2
. The fact that

∑

1fºfq ¶
1
2
º f 3

2
due to (23) will also justify the second

inequality in (26a). Hereafter, we denote

Ct,x,q ≜ C([tq, t] × T2), Ct,qL
p
x ≜ C([tq, t]; Lp(T2)).

For q ∈ N0 we consider on [tq,T ]

∂ttvq + ∂tvq + (−∆)mvq + div(vq ¹ vq) + ∇Ãq = divR̊q, (25a)

∇ · vq = 0, (25b)

where R̊q is a trace-free symmetric matrix. We explain our inductive estimates.

Hypothesis 4.1 (Inductive Hypothesis at level q). We impose on [tq,T ],

∥vq∥Ct,qL2
x
f L




1 +

∑

1frfq

¶
1
2
r




ē

1
2 f 3Lē

1
2 , (26a)

∥vq∥C1
t,x,q
f ¼3

qē
1
2 , (26b)

∥R̊q∥Ct,qL1
x
f
ϵµ

36
¶q+2e(t), (26c)

3

4
¶q+1e(t) f e(t) − ∥vq(t)∥2

L2
x
f 5

4
¶q+1e(t), (26d)

for a universal constant L sufficiently large to be determined subsequently (see (77)).

Proposition 4.1. (Initial step q = 0) Together with Ã0 ≡ 0, the pair (v0, R̊0) = (0, 0) solves

(25) and satisfies Hypothesis 4.1 at level q = 0.

Proof of Proposition 4.1. (25), (26a), (26b), (26c) are all readily verified. Verification of

(26d) follows making use of the fact that ¶1 = 1 due to (21). □

Proposition 4.2. (Step q + 1 assuming the step q) Under the hypothesis of Theorem 2.1,

there exists a choice of parameters a0, ´, and b (see (34)) such that for all (vq, R̊q) that

solves (25) and satisfies Hypothesis 4.1, there exists (vq+1, R̊q+1) that solves (25) and satis-

fies Hypothesis 4.1 at level q + 1 such that for all t ∈ [tq+1,T ]

∥vq+1 − vq∥Ct,q+1L2
x
f L¶

1
2

q+1
ē

1
2 . (27)

Next, we prove Theorem 2.1 assuming Proposition 4.2.
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Proof of Theorem 2.1 assuming Proposition 4.2. We can start from (v0, R̊0) = (0, 0) in Propo-

sition 4.1 and then rely on Proposition 4.2 to obtain (vq, R̊q) for all q ∈ N0 that solves (25)

and satisfies Hypothesis 4.1. By interpolation and that bq+1 g b(q + 1) for all b ∈ N such

that b g 2, for all ´′ ∈ (0,
´

3+´
) and all t ∈ [− 1

2
,T ], we can compute

∑

qg0

∥vq+1 − vq∥C([− 1
2
,t];H

´′
x )

(27)
≲

∑

qg0

L1−´′¶
1−´′

2

q+1
(∥vq+1∥C([− 1

2
,T ];C1

x) + ∥vq∥C([− 1
2
,T ];C1

x))
´′

(26b)
≲ L1−´′¼

´(1−´′)
1

∑

qg0

¶
1−´′

2

q+1
(¼3

q+1)´
′ (21)
≲ L1−´′¼

´(1−´′)
1

. (28)

Identical computations show
∑

qg0

∥vq+1 − vq∥C´′ ([− 1
2
,t];L2

x) ≲ L1−´′¼
´(1−´′)
1

.

Therefore, we obtain the limit of a Cauchy sequence v ≜ limq→∞ vq ∈ C([− 1
2
,T ]; H´′ (T2))∩

C´′ ([− 1
2
,T ]; L2(T2)) which implies the regularity in (4). Due to ∥R̊q∥Ct,qL1

x

(26c)
f ϵµ

36
¶q+2e(t)→

0 as q → ∞, it follows that v is a weak solution of (1). On the other hand, taking q → ∞
in (26d) leads to (5).

Finally, the argument concerning non-uniqueness is as follows. If we start with two

different energies e1 and e2 that satisfy (3) and e1 ≡ e2 on [0, t ' T ] for some t > 0, then

the corresponding perturbations {w1
q+1
}q∈N0

and {w2
q+1
}q∈N0

corresponding respectively to e1

and e2 are identical on [0, t'T ] (see (62)). Thus, we can start with identical initial choices

(v1
0
, R̊1

0
) = (v2

0
, R̊2

0
) = (0, 0) according to Proposition 4.1 and see that {v1

q}q∈N0
and {v2

q}q∈ N0

corresponding to e1 and e2 are also identical on [0, t ' T ]. As a result, the constructed

limiting solutions v1, v2 ∈ C([− 1
2
,T ]; H´′ (T2)) ∩ C´′ ([− 1

2
,T ]; L2(T2)) corresponding re-

spectively to e1 and e2 are identical on [0, t ' T ]. This completes the proof of Theorem

2.1. □

4.2. Proof of Proposition 4.2. We now prove Proposition 4.2 which is the heart of the

matter.

Remark 4.1. The very first idea of our proof, which ended up not working immediately,

is to consider ∂ttvq as a linear force on the Navier-Stokes equations. In a typical convex

integration scheme, the key ingredient consists of the construction of building blocks and

that is based on the nonlinear term, especially the most technical oscillation term therein

(see (98)). Because the Navier-Stokes equations and the hyperbolic Navier-Stokes equa-

tions (1) share the same main nonlinear term (v · ∇)v (pressure, the other nonlinear term,

is readily handled), this implies that their building blocks would be the same. Once the

building blocks are determined, a linear force such as the diffusion term (−∆)mvq would

appear only in the last step of estimating the Reynolds stress. Hence, our initial idea was

to treat ∂ttvq similarly to (−∆)mvq.

The reason why this ended up not working in the 3D case is because the term ∂ttvq is

too singular. We can easily get a glimpse of why this is the case by considering a typical

convex integration scheme for the Euler equations, for which its perturbation can be

w(À)(t, x) = a(À)(t, x)ei¼q+1À·(Φ j(t,x)−x)BÀe
i¼q+1À·x,

where a(À) is a certain amplitude function, BÀ is a certain C-valued vector, and Φ j is a

solution to a certain transport equation (see [9, Section 5.5.4 on p. 208] for details). We
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can see that if ∂tt falls on such a perturbation, then we get ¼2
q+1

from chain rule which is

too large and we won’t be able to close its estimate.

The next idea would then be to turn to intermittency approach using Mikado flows.

Application of intermittency via Mikado flows has been done for the 3D Navier-Stokes

equations in [5]; however, its choice of parameters were

r∥ ≜ ¼
13−20m

12

q+1
, r§ ≜ ¼

1−20m
24

q+1
, µ ≜

¼2m−1
q+1

r∥

r§
= ¼2m−1

q+1 ¼
25−20m

24

q+1
(29)

under the constraints of

r§ j r∥ j 1 and r−1
§ j ¼q+1 (30)

(see [5, Equation (2.23) on p. 3344]). This choice of r∥ ≜ ¼
13−20m

12

q+1
and the constraint

of r∥ j 1 immediately requires m > 13
20

. As explained on [5, pp. 3343-3344], these

parameters are optimized for their specific case; e.g. in [5], considering ¼2m
q+1

from the

diffusive term (−∆)m and ∂tw
(p)

q+1
that gives

r§¼q+1µ

r∥
, they optimized by matching

¼2m
q+1 =

r§¼q+1µ

r∥
and equivalently µ =

¼2m−1
q+1

r∥

r§
as in (29).

To fit to our case, we would need to choose a different choice of parameters. Upon this

attempt, we listed all the necessary conditions on all parameters but unfortunately ended

up with an empty range of the parameters.

Then, we realized that simply considering ∂ttvq as a force is not a good idea. The reason

is that the anti-divergence operator R is applied on ∂ttwq+1 = ∂tt(w
(p)

q+1
+ w

(c)

q+1
+ w

(t)

q+1
)

in the ∥R̊q+1∥Ct L
1
x
-estimate (see (62)). Typically, w

(p)

q+1
+ w

(c)

q+1
is of some form of a curl

(because w
(c)

q+1
is the divergence corrector; see (66)) so that R can reduce a derivative from

w
(p)

q+1
+w

(c)

q+1
; however, w

(t)

q+1
is not of such a form and this loss of one derivative was the main

reason why our previous attempts failed. Our novel approach is to consider an integral of

the usual w
(t)

q+1
in the convex integration scheme for the Navier-Stokes equations; this way,

our ∂ttw
(t)

q+1
for the hyperbolic Navier-Stokes equations can play the role of ∂tw

(t)

q+1
for

the Navier-Stokes equations (see (63c)), and fortunately this modification did not destroy

any key identity (a time integral on w
(p)

q+1
or w

(c)

q+1
would destroy a necessary identity such

as (66)). Finally, even with this new approach, after completing all the estimates, we

ended up with an empty range of parameters in the 3D case. Yet, upon exploring different

spatial dimensions, we finally saw a non-trivial range of parameters in the 2D case; upon

optimizing to gain the largest interval for m, we were able to conclude Theorem 2.1 with

m ∈ (0, 2
3
). We describe the difficulty in the 3D case furthermore in Remark 4.5.

Lastly, let us comment that it is tempting to integrate in time all of wq+1, the perturbation

for the Navier-Stokes equations, rather than just w
(t)

q+1
. The problem then would be that

w
(p)

q+1
would be of an integral form and w

(p)

q+1
¹ w

(p)

q+1
would not be able to cancel out R̊l as

needed (see (181)).

We start the proof of Proposition 4.2 with a remark.

Remark 4.2. As we mentioned already, in convex integration scheme, the diffusive term

does not play any role until the very end. To be specific, verifying that R̊q+1 satisfies (26c) at

level q + 1 requires ∥R̊q+1∥Ct,q+1L1
x
f ϵµ

36
¶q+3e(t) and in particular, due to (97a), we will need

to estimate ∥R(−∆)mwq+1∥Ct,q+1L
p∗
x
j ¶q+3e(t) for some p∗ ∈ (1, 2). Therefore, the proof
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becomes more difficult as m becomes larger; in fact, in case m ∈ (0, 1
2
], we can bound

∥R(−∆)mwq+1∥Ct,q+1L
p∗
x
≲ ∥wq+1∥Ct,q+1L

p∗
x

so that bounding by any small constant multiple of

¶q+3e(t) is straightforward (see e.g. [50, Equation (118)]) . Therefore, we present the proof

of Proposition 4.2 that applies for m ∈ ( 1
2
, 2

3
), considering that the case m ∈ (0, 1

2
] can be

obtained via a straightforward modification of the case m ∈ ( 1
2
, 2

3
).

Choice of parameters There are many parameters, namely

r, µ, Ã−1, ³ and l = l(³) j 1, b ∈ N such that b g 2, and p∗ ∈ (1, 2), (31)

where l is a mollifier parameter, to appear in (36). We need to optimize over r, µ, and Ã−1,

where the upper bound of m < 2
3

appears, and then find the corresponding appropriate

range for the rest of the parameters. The selection of these parameters is crucial and detail

will be explained in the Appendices A-B for completeness. The heuristic outline of how

we determined these parameters is as follows.

(1) Considering ³ and l to be arbitrarily small, b to be large, and p∗ ∈ (1, 2) to be

arbitrarily close to 1, we can complete the proof entirely leaving free the specific

choices of r, µ, and Ã−1. As we will see, the diffusive term will give us a condition

of ¼2m−1
q+1

j r (see (104)) while the term involving the second-order derivative in

time will require µ j ¼
− 1

2

q+1
Ã−1r−

1
2 (see (124)). Optimizing together with (12) leads

us to our choices of

r ≜ ¼
11m−5

7

q+1
, µ ≜ ¼

8m−3
7

q+1
, Ã−1 ≜ ¼

3m
2

q+1
(32)

(see Appendix A for details.) It can be readily verified that such r, µ, and Ã−1

satisfy

1 j r j µ j Ã−1 j ¼

from (12) with “¼” = ¼q+1 as needed. We postpone the verification of the other

conditions from (12) to Remark 4.3.

(2) Once we fix such r, µ, and Ã−1, we can plug them in to our estimates and determine

the necessary choices of ³ and l. The following choices turned out to be sufficient:

l ≜ ¼−³q+1¼
− 3

2
q where ³ ≜

2 − 3m

112
(33)

(see Appendix B for details).

(3) Once such r, µ, Ã−1, ³, and l(³) have been fixed, we can take the maximum among

all the lower bounds on b from (71), (88), (93), (103), (106), (115), (120), (127),

(133), (139), and (147), and choose any b ∈ N that satisfies

b >
(42)(56)

2 − 3m
. (34)

(4) At last, with r, µ, Ã−1, ³, l(³), and b fixed, we choose

p∗ ∈
(

1,
8(112)(11m − 5)

10795m − 5106

)

(35)

to accommodate the necessary estimates (107), (116), (121), (128), (134), (140),

and (148); the fact that 1 <
8(112)(11m−5)
10795m−5106

can be verified using the hypothesis that

m ∈ ( 1
2
, 2

3
).
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Remark 4.3. The other conditions of ¼q+1, ¼q+1Ã ∈ 5N in (12) can be verified by straight-

forward modifications of (32) as follows. Let us point out that our choices of r, µ, and

Ã−1 in (32) satisfy 1 j r j µ j Ã−1 j ¼ simply by their exponents on ab; i.e.,

0 < 11m−5
7

< 8m−3
7

< 3m
2
< 1 (and additionally (177)). By denseness of the rationals

in the reals, we can easily choose a rational d1

d2
for d1, d2 ∈ N that is arbitrarily close to

11m−5
7

and another rational
d3

d4
for d3, d4 ∈ N that is arbitrarily close to 3m

2
so that the re-

quired relationship such as ¼q+1, ¼q+1Ã ∈ 5N in (12) or (177) continue to hold even when

r is replaced by ¼

d1
d2

q+1
and Ã−1 is replaced by ¼

d3
d4

q+1
. Then we can choose b with the lower

bound of (34) to be a natural number that is a multiple of d2d4 so that r = a
bq+1(

d1
d2

) ∈ N and

¼q+1Ã = a
bq+1(1− d3

d4
) ∈ N too; we refer to the same explanation after [49, Equation (68)].

The process of finding other parameters l, ³, b and p∗ can be executed much more clearly

when the dependence on m is explicit as in (32). Thus, we will keep the r, µ, and Ã−1 in

(32), choose all other parameters, complete the proof, and afterwards, informally replace
11m−5

7
and 3m

2
with an arbitrarily close rationals and choose b accordingly to satisfy the

conditions of r, ¼q+1Ã ∈ 5N in (12) to conclude this proof of Proposition 4.2.

Throughout the rest of the proof, if not described otherwise, we will always assume that

t ∈ [tq+1,T ]. We let {ϕϵ}ϵ>0 and {φϵ}ϵ>0 respectively be families of standard mollifiers on R2

and R with mass one where the latter has compact support in (0, ¶q+1) and mollify (vq, R̊q)

in space-time to obtain over [tq+1,T ]

vl ≜ (vq ∗x ϕl) ∗t φl, R̊l ≜ (R̊q ∗x ϕl) ∗t φl, where ϕl(·) ≜
1

l2
ϕ

( ·
l

)

, φl(·) ≜
1

l
φ

( ·
l

)

. (36)

It follows that (vl, R̊l) satisfies over [tq+1,T ]

∂ttvl + ∂tvl + (−∆)mvl + div(vl ¹ vl) + ∇Ãl = div(R̊l + Rcom) (37)

where

Rcom ≜ vl¹̊vl − (vq¹̊vq) ∗x ϕl ∗t φl, (38a)

Ãl ≜ Ãq ∗x ϕl ∗t φl −
1

2
(|vl|2 − |vq|2 ∗x ϕl ∗t φl). (38b)

We obtain basic estimates for the mollified velocity as follows: for any N g 1,

∥vl − vq∥Ct,q+1L2
x
≲ ∥vq − vl∥Ct,x,q+1

≲ l∥vq∥C1
t,x,q+1

(26b)
≲ l¼3

qē
1
2 , (39a)

∥vl∥Ct,q+1L2
x
f ∥vq∥Ct,q+1L2

x

(26a)
f L




1 +

∑

1frfq

¶
1
2
r




ē

1
2 , (39b)

where we used Young’s inequality for convolution and the fact that the ϕ and È have mass

one. Now we define for ϵµ > 0 from the Lemma 3.1,

Ä(t, x) ≜ϵ−1
µ

√

l2 + |R̊l(t, x)|2 + µl(t), (40a)

µl(t) ≜
(

µq ∗t φl

)

(t), where µq(t) ≜
1

2(2Ã)2
[e(t)(1 − ¶q+2) − ∥vq(t)∥2

L2
x
]. (40b)

By (26d), we see that

∥vq(t)∥2
L2

x
f e(t)

(

1 − 3

4
¶q+1

)

for all t ∈ [tq,T ]. (41)
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On the other hand, considering (23) and that b > 2 due to (34) immediately allows us to

verify that

¶q+2 f
3

4
¶q+1. (42)

Considering (41) and (42) together shows that

µq g 0. (43)

As φl g 0, this implies by definition of µl from (40b) that

µl g 0. (44)

We note two immediate consequences:

∣
∣
∣
∣
∣
∣
Id−

(

Id− R̊l

Ä

)∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

R̊l

Ä

∣
∣
∣
∣
∣
∣

(40a)
=

∣
∣
∣
∣
∣
∣
∣
∣
∣

R̊l

ϵ−1
µ

√

l2 + |R̊l|2 + µl

∣
∣
∣
∣
∣
∣
∣
∣
∣

(44)
f

∣
∣
∣
∣
∣
∣
∣
∣
∣

R̊l

ϵ−1
µ

√

l2 + |R̊l|2

∣
∣
∣
∣
∣
∣
∣
∣
∣

f ϵµ, (45a)

Ä(t, x) g max{ϵ−1
µ l, ϵ−1

µ |R̊l(t, x)|, µl(t)}. (45b)

Proposition 4.3. The function Ä defined in (40a) satisfies

∥Ä∥Ct,q+1L
p
x
f ϵ−1

µ

(

l(2Ã)
2
p + ∥R̊l∥Ct,q+1L

p
x

)

+ (2Ã)
2
p
−2 5

8
¶q+1ē, (46a)

∥Ä∥Ct,x,q+1
≲ l−3¶q+2ē, (46b)

∥Ä∥CN
t,x,q+1
≲ l−5N+1¶q+2ē ∀ N ∈ N. (46c)

Proof of Proposition 4.3. First, let us observe that

0
(42)
f

(

3

4
¶q+1 − ¶q+2

)

e(t)
(26d)
f e(t)(1 − ¶q+2) − ∥vq(t)∥2

L2
x

(26d)
f 5

4
¶q+1ē. (47)

This allows us to estimate for all p ∈ [1,∞),

∥Ä∥Ct,q+1L
p
x

(40a)
f ϵ−1

µ

∥
∥
∥l + |R̊l|

∥
∥
∥

Ct,q+1L
p
x
+ ∥µq∥Ct,q+1L

p
x

(40b)(47)
f ϵ−1

µ

(

l(2Ã)
2
p + ∥R̊l∥Ct,q+1L

p
x

)

+ (2Ã)
2
p
−2 5

8
¶q+1ē, (48)

which is (46a). Next, for any N g 0 and t ∈ [tq+1,T ], we have due to W3,1(T2) ↪→ L∞(T2),

∥R̊l∥CN
t,x,q+1
≲

∑

0fn+|³|fN

∥∂n
t D³R̊l∥Ct,q+1W

3,1
x

(26c)
≲ l−3−N¶q+2ē. (49)

We apply (49) and straightforward estimates of max{l, ¶q+1} ≲ l−3¶q+2 for ´ > 0 sufficiently

small and a0 sufficiently large to deduce (46b). Finally, to prove (46c), we first compute

by [6, Equation (130)],
∥
∥
∥
∥
∥
∥

√

l2 + |R̊l|2
∥
∥
∥
∥
∥
∥

CN
t,x,q+1

(49)
≲ l−3−N¶q+2ē + l−(N−1)(l−4¶q+2ē)N ≲ l−5N+1¶q+2ē. (50)

Using (50) and a straightforward estimate of l−N¶q+1 ≲ l−5N+1¶q+2, we compute

∥Ä∥CN
t,x,q+1

(40a)(50)
≲ l−5N+1¶q+2ē + l−N∥µq∥Ct,q+1

(40b)(47)
≲ l−5N+1¶q+2ē + l−N¶q+1ē ≲ l−5N+1¶q+2ē. (51)
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This completes the proof of Proposition 4.3. □

Next, we define the amplitude function

a·(t, x) ≜ a·,q+1(t, x) ≜
1

2
Ä(t, x)

1
2 µ·

(

Id− R̊l(t, x)

Ä(t, x)

)

, (52)

where µ·

(

Id− R̊l(t,x)
Ä(t,x)

)

is well-defined due to (45a). For convenience, let us compute the

following identities making use of b·¹̊b−· = ·
§ ¹ ·§ − 1

2
Id whereas b· ¹ b−· = ·

§ ¹ ·§,

(8), as well as
>
T2 ¸

2
·
dx = 1 from (14b):

∑

·,ϑ∈Λ
a·(t)aϑ(t)

?
T2

W· ¹Wϑ(t)dx = −R̊l(t) + Ä(t) Id, (53a)

∑

·,ϑ∈Λ
a·(t)aϑ(t)

?
T2

W·¹̊Wϑ(t)dx = −R̊l(t) + Ä(t)




1 − 1

8

∑

·∈Λ
µ·

(

Id− R̊l(t)

Ä(t)

)2



Id, (53b)

(cf. [8, Equation (3.15)], [49, Equation 83)], and [38, Equation (5.4)]).

Proposition 4.4. The function a· defined in (52) satisfies

∥a·∥Ct,q+1L2
x
f 1

4
¶

1
2

q+1
ē

1
2

M

|Λ| , (54a)

∥a·∥Ct,x,q+1
≲ l−

3
2 ¶

1
2

q+2
ē

1
2 , (54b)

∥a·∥CN
t,x,q+1
≲ l−6N−8¶

1
2

q+2
ē

1
2 ∀ N ∈ N (54c)

where M is the constant from (9).

Proof of Proposition 4.4. Along with a straightforward estimate of l f ¶q+1 ē

4
by taking ´ >

0 sufficiently small, we verify (54a) as follows:

∥a·∥Ct,q+1L2
x

(52)(45a)
f 1

2
∥Ä∥

1
2

Ct,q+1L1
x

∥µ·∥C(Bϵµ (Id))

f1

2

[

ϵ−1
µ

(

¶q+1ēÃ2 +
ϵµ

48
¶q+1ē

)

+
5

8
¶q+1ē

] 1
2
(

M

CΛ

)

(9)
=

1

4
¶

1
2

q+1
ē

1
2

M

|Λ| . (55)

Next, we estimate

∥a·∥Ct,x,q+1

(52)(45a)
≲ ∥Ä∥

1
2

Ct,x,q+1
∥µ·∥C(Bϵµ (Id))

(46b)
≲ l−

3
2 ¶

1
2

q+2
ē

1
2 ,

which verifies (54b).

Finally, to verify (54c) for N ∈ N, we compute relying on [6, Equation (130)], (45b),

and (46c), for any k ∈ {0, 1, . . . ,N − r} and r ∈ {0, 1, . . . ,N},
∥
∥
∥
∥
∥

1

Ä

∥
∥
∥
∥
∥

CN−r−k
t,x,q+1

≲ l−2[l−5(N−r−k)+1¶q+2ē] + l−(N−r−k+1)[l−4¶q+2ē]N−r−k ≲ l−5(N−r−k)−1¶q+2ē. (56)

This leads to, for any r ∈ {0, 1, . . . ,N},
∥
∥
∥
∥
∥
∥

R̊l

Ä

∥
∥
∥
∥
∥
∥

CN−r
t,x,q+1

≲

N−r∑

k=0

∥R̊l∥Ck
t,x,q+1

∥
∥
∥
∥
∥

1

Ä

∥
∥
∥
∥
∥

CN−r−k
t,x,q+1

(49)(56)
≲ l−6(N−r)−5. (57)
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We can furthermore compute for all r ∈ {0, 1, . . . ,N},

∥Dt,xR̊l∥N−r
Ct,x,q+1

≲
(

l−4∥R̊q∥Ct,q+1L1
x

)N−r (26c)
≲ l−5(N−r), (58a)

∥
∥
∥
∥
∥
∥

R̊l

Ä2

∥
∥
∥
∥
∥
∥

N−r

Ct,x,q+1

(45a)
≲

∥
∥
∥
∥
∥

1

Ä

∥
∥
∥
∥
∥

N−r

Ct,x,q+1

(45b)
≲ l−(N−r), (58b)

∥Dt,xÄ∥N−r
Ct,x,q+1

(46c)
≲

(

l−4¶q+2ē
)N−r
≲ l−5(N−r). (58c)

Combining (57) and (58), we can deduce by another application of [6, Equation (130)], for

any r ∈ {0, 1, . . . ,N},
∥
∥
∥
∥
∥
∥
µ·

(

Id− R̊l

Ä

)∥
∥
∥
∥
∥
∥

CN−r
t,x,q+1

≲

∥
∥
∥
∥
∥
∥

R̊l

Ä

∥
∥
∥
∥
∥
∥

CN−r
t,x,q+1

+ l−(N−r)∥Dt,xR̊l∥N−r
Ct,x,q+1

+

∥
∥
∥
∥
∥
∥

R̊l

Ä2

∥
∥
∥
∥
∥
∥

N−r

Ct,x,q+1

∥Dt,xÄ∥N−r
Ct,x,q+1

(45b)(57)(58)
≲ l−6(N−r)−6. (59)

Finally, we can compute by another application of [6, Equation (130)], for all r ∈ {0, 1, . . . ,N},

∥Ä 1
2 ∥Cr

t,x,q+1

(45b)
≲ l−

1
2 ∥Ä∥Cr

t,x,q+1
+ l

1
2
−r∥Ä∥r

C1
t,x,q+1

(46c)
≲ l−6r¶

1
2

q+2
ē

1
2 . (60)

At last, we are ready to conclude that for all N ∈ N,

∥a·∥CN
t,x,q+1

(52)
≲

N∑

r=0

∥Ä 1
2 ∥Cr

t,x,q+1

∥
∥
∥
∥
∥
µ·

(

Id− R̊l

Ä

) ∥
∥
∥
∥
∥

CN−r
t,x,q+1

(46b)(59)(60)(45a)
≲ l−6N−8¶

1
2

q+2
ē

1
2 . (61)

□

Next, we recall È· , ¸· ,W· , and µ respectively from (10), (13), (15), and (12), and define

the perturbation

wq+1 ≜ w
(p)

q+1
+ w

(c)

q+1
+ w

(t)

q+1
and vq+1 ≜ vl + wq+1 (62)

where

w
(p)

q+1
≜

∑

·∈Λ
a·W· , (63a)

w
(c)

q+1
≜

∑

·∈Λ
∇§(a·¸·)È· , (63b)

w
(t)

q+1
≜µ−1





∑

·∈Λ+
−

∑

·∈Λ−




PP̸=0

∫ t

tq+1

(a2
· P̸=0¸

2
··)ds. (63c)

Remark 4.4. We come back to continue from Remark 2.2 in explaining why we cannot

follow the proof of [38, Corollary 1.2] and deduce the existence of a non-trivial weak

solution to the hyperbolic Navier-Stokes equations with compact support in time. Luo and

Qu defines

Nϵ(S ) ≜ {t ∈ [0,T ] : there exists s ∈ S such that |t − s| f ϵ}

in [38, Equation (2.21)] and included an inductive hypothesis of

supptvq+1 ∪ supptR̊q+1 ¢ N¶q+1
(supptvq ∪ supptR̊q) (64)
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in [38, Equation (2.17)]. Given any smooth divergence-free vector field u(t, x) that is mean-

zero and ϵ > 0, the authors completed the inductive step q = 0 with v0 = u. As vq → v in

C([0,T ]; L2(T2)) and R̊q → 0 in C([0,T ]; L1(T2)) and

∞∑

q=1

¶q =

∞∑

q=1

¼
−2´
q f

∞∑

q=1

a−b2´q =
a−b2´

1 − a−b2´
< ϵ

for ´ > 0 sufficiently small so that

supptv ¢ Nϵ(supptv0) = Nϵ(supptu),

taking u ≡ 0 allowed them to deduce a solution with the compact temporal support. Now,

in order to verify (64) at level q+1, Luo and Qu defines a temporal cut-off function Φq as a

smooth function such that suppΦq(t) ¢ Nl(supptR̊
∗
l
) where R̊∗

l
≜ R̊l + Rcom in [38, Equation

(5.1)] and then a· ≜ A
1
2 ¶

1
2

q+1
µ·(A

−1¶−1
q+1

R̊∗
l
(t, x))Φq(t) so that suppta· ¢ Nl(supptR̊

∗
l
) for all

· ∈ Λ (see [38, Equation (5.2)] for details) which in turn leads to

supptwq+1 ¢ ∪·∈Λsuppta· ¢ Nl(supptR̊
∗
l ); (65)

here, the first inclusion crucially relies on their choice of

w
(t)

q+1
= µ−1





∑

·∈Λ+
−

∑

·∈Λ−




PP̸=0(a2

· P̸=0¸
2
··).

In contrast, our choice of w
(t)

q+1
in (63c) does not lead to (65) because suppt

∫ t

tq+1
(a2
·
P̸=0¸

2
·
·)ds ̸¢

∪·∈Λsuppta· .

We have the identity of

(w
(p)

q+1
+ w

(c)

q+1
)(t, x)

(11a)(15)
= ∇§





∑

·∈Λ
a·(t, x)¸·(t, x)È·(x)




. (66)

It follows that wq+1 is divergence-free and mean-zero. By (13) ¸· is (T/¼q+1Ã)2-periodic,

while by (10)-(11) b· is (T/¼q+1)2-periodic. It follows that W· in (15) is (T/¼q+1Ã)2-

periodic. Thus, we can apply Lemma 3.4 to deduce

∥w(p)

q+1
∥Ct,q+1L2

x

(63)(19)
f

∑

·∈Λ
∥a·∥Ct,q+1L2

x
∥W·∥Ct,q+1L2

x
+C(¼q+1Ã)−

1
2 ∥a·∥Ct,q+1C1

x
∥W·∥Ct,q+1L2

x

(17a)(54a)(54c)
f |Λ| M

4CΛ
¶

1
2

q+1
ē

1
2 +C¼

− 1
2

q+1
Ã−

1
2 l−14¶

1
2

q+2
ē

1
2 . (67)

Now the process of determining the optimal choices of parameters based on the minimum

constraints from (12) and (31) starts here. First, for the subsequent estimates (73) and

(77), we need to bound this ∥w(p)

q+1
∥Ct,q+1L2

x
by a constant multiple of ¶

1
2

q+1
ē

1
2 . We notice that

1 j ¼q+1Ã from (12) making ¼
− 1

2

q+1
Ã−

1
2 j 1, and therefore, as long as l satisfies

¼
− 1

2

q+1
Ã−

1
2 l−14 ≲ 1, (68)

we can conclude from (67) that

∥w(p)

q+1
∥Ct,q+1L2

x
≲ ¶

1
2

q+1
ē

1
2 (69)

without imposing any condition on the precise choice of Ã−1 because ¶q+2 f ¶q+1. Our

choices of r, µ, and Ã−1 in (32) were determined in Appendix A after collecting all the
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conditions similarly. Second, in order to determine l after choosing r, µ, and Ã−1 in (32),

let us observe that due to (32), (68) is implied by

l−1 j ¼
2−3m

56

q+1
. (70)

Again, our choice of l in (33) was determined in Appendix B after collection all such

conditions similarly. Third, in order to determine b after choosing l in (33), let us observe

that applying our choice of l = ¼−³
q+1
¼
− 3

2
q with ³ = 2−3m

112
from (33), the estimate (70) holds

if
168

2 − 3m
< b; (71)

thus, we incorporate this condition to our choice of b in (34) to claim (69).

Next, we can show that the functions w
(p)

q+1
,w

(c)

q+1
, and w

(t)

q+1
defined in (63) satisfies for

all p ∈ (1,∞) and t ∈ [tq+1,T ],

∥w(p)

q+1
∥Ct,q+1L

p
x

(63)
f sup

s∈[tq+1,t]

∑

·∈Λ
∥a·(s)∥L∞x ∥W·(s)∥Lp

x

(17a)(54c)
≲ ¶

1
2

q+2
l−

3
2 r

1− 2
p ē

1
2 , (72a)

∥w(c)

q+1
∥Ct,q+1L

p
x

(63)
≲ sup

s∈[tq+1,t]

∑

·∈Λ
∥∇§(a·¸·)(s)∥Lp

x
∥È·∥L∞x

(11b)(17b)(54)
≲ ¼−1

q+1¶
1
2

q+2
l−

3
2 ē

1
2 r

1− 2
p [l−

25
2 + ¼q+1Ãr], (72b)

∥w(t)

q+1
∥Ct,q+1L

p
x

(63)
≲

∥
∥
∥
∥
∥
µ−1(

∑

·∈Λ+
−

∑

·∈Λ−
)PP̸=0(a2

· P̸=0¸
2
··)

∥
∥
∥
∥
∥

Ct,q+1L
p
x

(72c)

≲ µ−1
∑

·∈Λ
∥a·∥2Ct,q+1L∞x

∥¸·∥2
Ct,q+1L

2p
x

(17b)(54c)
≲ µ−1¶q+2l−3r

2− 2
p ē. (72d)

It follows from (62), (69) and (72b)-(72d) that

∥wq+1∥Ct,q+1L2
x
≲ ¶

1
2

q+1
ē

1
2 + ¼−1

q+1¶
1
2

q+2
ē

1
2 l−

3
2 [l−

25
2 + ¼q+1Ãr] + µ−1¶q+2l−3rē. (73)

For subsequent estimates in (78) and (79), we need to bound this by a constant multiple of

¶
1
2

q+1
ē

1
2 . In fact, for our subsequent verification of the inductive hypothesis (26d) (precisely

(173)), it would be convenient that we dominate all these terms by ¶q+2 so that

∥w(c)

q+1
∥Ct,q+1L2

x
+ ∥w(t)

q+1
∥Ct,q+1L2

x
j ¶q+2 f ¶

1
2

q+2
(74)

for a0 sufficiently large and ´ > 0 sufficiently small, and therefore we shall impose

l−14 j ¼q+1, l−
3
2Ãr j 1, µ−1l−3r j 1, (75)

to deduce for ´ > 0 sufficiently small

¼−1
q+1¶

1
2

q+2
l−14ē

1
2 j ¶q+2, ¶

1
2

q+2
ē

1
2 l−

3
2Ãr j ¶q+2, µ−1¶q+2l−3rē j ¶q+2, (76)

respectively. In the last inequality of (76), we used the fact that ¶q f 1 for all q g 1. We

note that none of the conditions in (75) imposes any constraint on our choice of Ã, r, or

µ−1, because Ãr j 1 and µ−1r j 1 from (12). In order to determine l after r, µ, and Ã−1

from (32) are chosen in Appendix A after collecting all their constraints, we see that the
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first condition l−14 j ¼q+1 in (75) is implied by l−1 j ¼
2−3m

56

q+1
from (70) while we plug in

(32) to the second and third conditions of (75) to see that they are implied by

l−
3
2 ¼

m−10
14

q+1
j 1, l−3¼

3m−2
7

q+1
j 1

which are both implied by (70), respectively. Therefore, applying (76) to (73) we obtain

by choosing the universal constant L k 1,

∥wq+1∥Ct,q+1L2
x
f 3

4
L¶

1
2

q+1
ē

1
2 . (77)

It now follows that

∥vq+1∥Ct,q+1L2
x

(62)
f ∥vl∥Ct,q+1L2

x
+ ∥wq+1∥Ct,q+1L2

x

(39b)(77)
f L




1 +

∑

1frfq+1

¶
1
2
r




ē

1
2 (78)

which verifies (26a) at level q + 1. We can also verify (27) as for all t ∈ [tq+1,T ], we can

compute

∥vq+1(t) − vq(t)∥L2
x
f∥wq+1(t)∥L2

x
+ ∥vl(t) − vq(t)∥L2

x

(77)(39a)
f 3

4
L¶

1
2

q+1
ē

1
2 +Cl¼3

qē
1
2 f L¶

1
2

q+1
ē

1
2 (79)

assuming that

l¼3
q j 1 (80)

and taking ´ > 0 sufficiently small after the b is already fixed so that Cl¼3
q f 1

4
L¶

1
2

q+1
. The

estimate (80) can be satisfied by our choice of l = ¼−³
q+1
¼
− 3

2
q for ³ = 2−3m

112
from (33) if

168

2 − 3m
< b,

which is same as (71), to claim (80) and therefore (79). Next, we estimate ∥w(p)

q+1
∥C1

t,x,q+1

starting from (63a); for simplicity we will not keep track of bound by ē because such

Ct,x,q+1-norm estimates are for the purpose of verifying (26b) which is independent of ē

anyway. We compute

∥w(p)

q+1
∥C1

t,x,q+1
≲

∑

·∈Λ
∥a·∥C1

t,x,q+1
∥W·∥L∞

t,x,q+1
+ ∥a·∥L∞

t,x,q+1
∥W·∥C1

t,x,q+1
(81)

(54c)(54b)(17a)
≲ (¶

1
2

q+2
l−14)r + (¶

1
2

q+2
l−

3
2 )[¼q+1 + ¼q+1Ãrµ]r ≲ ¶

1
2

q+2
l−

3
2 ¼q+1r[1 + Ãrµ]

where we assumed that l−
25
2 j ¼q+1 which follows from l−14 j ¼q+1 from (75).

Next, we compute from (63)

∥w(c)

q+1
∥C1

t,x,q+1
≲

∑

·∈Λ
∥a·∥Ct,q+1C2

x
∥¸·∥Ct,q+1Cx

∥È·∥Cx
+ ∥a·∥Ct,q+1C1

x
∥¸·∥Ct,q+1C1

x
∥È·∥Cx

(82)

+ ∥a·∥Ct,q+1C1
x
∥¸·∥Ct,q+1Cx

∥È·∥C1
x
+ ∥a·∥Ct,q+1Cx

∥¸·∥Ct,q+1C2
x
∥È·∥Cx

+ ∥a·∥Ct,q+1Cx
∥¸·∥Ct,q+1C1

x
∥È·∥C1

x
+ ∥a·∥C1

t,q+1
C1

x
∥¸·∥Ct,q+1Cx

∥È·∥Cx

+ ∥a·∥Ct,q+1C1
x
∥¸·∥C1

t,q+1
Cx
∥È·∥Cx

+ ∥a·∥C1
t,q+1

Cx
∥¸·∥Ct,q+1C1

x
∥È·∥Cx

+ ∥a·∥Ct,q+1Cx
∥¸·∥C1

t,q+1
C1

x
∥È·∥Cx

(54)(17b)(11b)
≲ ¶

1
2

q+2
[l−20r¼−1

q+1 + l−14Ãr2 + l−14r + l−
3
2 ¼q+1Ã

2r3 + l−
3
2 ¼q+1Ãr2

+ l−14Ãr2µ + l−
3
2 ¼q+1Ã

2r3µ].
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For a subsequent estimate in (90), we would like to bound this by a constant multiple of

¶
1
2

q+2
l−

3
2 ¼q+1Ãr2[1 + Ãrµ]. In order to do so, we observe that r j Ã−1 from (12) so that

rÃ j 1 and consequently

l−14Ãr2 j l−14r, l−
3
2 ¼q+1Ã

2r3 j l−
3
2 ¼q+1Ãr2.

Concerning rest of the terms, because µ j ¼q+1 from (12), we only have to impose l−
25
2 j

¼q+1, or more strongly

l−
25
2 µ j ¼q+1 (83)

to assure

l−14Ãr2µ j l−
3
2 ¼q+1Ãr2. (84)

Finally, it follows from (70) that we assumed already that

l−20r¼−1
q+1 j l−14r¼

6( 2−3m
56

)

q+1
¼−1

q+1 f l−14r.

Applying such estimates already gives us

∥w(c)

q+1
∥C1

t,x,q+1
≲ ¶

1
2

q+2
[l−14r + l−

3
2 ¼q+1Ãr2 + l−

3
2 ¼q+1Ã

2r3µ].

Moreover, because 1 j r and ¼q+1Ã k 1 from (12), it does not cost any additional

constraint on Ã, r, or µ−1 to ask for

l−
25
2 j ¼q+1Ãr, (85)

which would imply l−14r j l−
3
2 ¼q+1Ãr2 and therefore

∥w(c)

q+1
∥C1

t,x,q+1
≲ ¶

1
2

q+2
l−

3
2 ¼q+1Ãr2[1 + Ãrµ]. (86)

Now, in order to determine l after r, µ, and Ã−1 in (32) are already selected, we observe

that plugging (32) into (83) and (85) leads to

l−
25
2 j ¼

m+4
14

q+1
. (87)

In order to determine the condition on b after l in (33) is chosen, we plug in l = ¼−³
q+1
¼
− 3

2
q

with ³ = 2−3m
112

from (33) to see that (87) is satisfied if

(75)(56)

91m + 14
< b; (88)

we incorporate this condition upon choosing b in (34) to claim (87) and hence (86).

Finally, we give up ¼ϵ
q+1

for ϵ > 0 arbitrarily small to bound P in Cx and compute

∥w(t)

q+1
∥C1

t,x,q+1
≲ µ−1¼ϵq+1

∑

·∈Λ

[∥a·∥Ct,x,q+1
∥a·∥Ct,q+1C1

x
∥¸·∥2Ct,x,q+1

+ ∥a·∥2Ct,x,q+1
∥¸·∥Ct,x,q+1

∥¸·∥Ct,q+1C1
x

]

(54c)(17b)
≲ µ−1¼ϵq+1¶q+2l−3r2[l−

25
2 + ¼q+1Ãr]

(85)
≲ µ−1¼1+ϵ

q+1¶q+2l−3r3Ã (89)

where the last inequality used an assumption that

l−
25
2 j ¼q+1Ãr

and we notice that this is same as (85). Thus, we conclude

∥vq+1∥C1
t,x,q+1

(62)
f ∥vq∥C1

t,x,q+1
+ ∥w(p)

q+1
∥C1

t,x,q+1
+ ∥w(c)

q+1
∥C1

t,x,q+1
+ ∥w(t)

q+1
∥C1

t,x,q+1

(26b)(86)(81)(89)
≲ ¼3

q + ¶
1
2

q+2
l−

3
2 ¼q+1r[1 + Ãrµ]
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+ ¶
1
2

q+2
l−

3
2 ¼q+1Ãr2[1 + Ãrµ] + µ−1¼1+ϵ

q+1¶q+2l−3r3Ã

≲¶
1
2

q+2
l−

3
2 ¼q+1r[1 + Ãrµ] + µ−1¼1+ϵ

q+1¶q+2l−3r3Ã (90)

where the last inequality used the fact that Ãr j 1 due to (12).

We continue from (90) to verify (26b) at level q + 1 using our choices of r, µ, and Ã−1

in (32); some experience with convex integration suggests that this should not depend on

the choice of r, µ, and Ã−1, informally because the upper bound of ¼3
q+1

in (26b) at level

q + 1 is so large that this verification is expected to not create any significant difficulties.

We compute for any ϵ > 0,

∥vq+1∥C1
t,x,q+1

(90)(32)
≲ ¶

1
2

q+2
l−

3
2 ¼

11m+2
7

q+1
[1 + ¼

17m−16
14

q+1
] + ¼

ϵ+ 29m−10
14

q+1
¶q+2l−3

≲¶
1
2

q+2
l−

3
2 ¼

11m+2
7

q+1
+ ¼

ϵ+ 29m−10
14

q+1
¶q+2l−3, (91)

which can be further bounded by ¼3
q+1

ē
1
2 if l satisfies

l−
3
2 j ¼

19−11m
7

q+1
and l−3 j ¼

52−29m
14
−ϵ

q+1
. (92)

Applying our choice of l = ¼−³
q+1
¼
− 3

2
q with ³ = 2−3m

112
from (33), and choosing e.g. ϵ = m

14

shows that (92) holds if
3(1176)

2870 − 1617m
< b, (93)

and we incorporate this condition to our choice of b in (34) to claim that (26b) at level q+1

was verified.

Lastly, for p ∈ (1,∞) we compute the W
1,p
x -norms of the perturbation for the purpose

of subsequent estimates (100). First, we estimate using (66)

∥w(p)

q+1
+ w

(c)

q+1
∥

Ct,q+1W
1,p
x

≲
∑

·∈Λ
∥a·∥Ct,q+1C2

x
∥¸·∥Ct,q+1L

p
x
∥È·∥Cx

+ ∥a·∥Ct,x,q+1
∥¸·∥Ct,q+1W

2,p
x
∥È·∥Cx

+ ∥a·∥Ct,x,q+1
∥¸·∥Ct L

p
x
∥È·∥C2

x

(54)(17b)(11b)
≲ (¶

1
2

q+2
l−20)r1− 2

p ¼−1
q+1 + (¶

1
2

q+2
l−

3
2 )(¼q+1Ãr)2r

1− 2
p ¼−1

q+1 + (¶
1
2

q+2
l−

3
2 )r1− 2

p ¼q+1

≲ ¶
1
2

q+2
l−

3
2 [¼q+1Ã

2r
3− 2

p + r
1− 2

p ¼q+1] ≲ ¶
1
2

q+2
l−

3
2 r

1− 2
p ¼q+1 (94)

where in the second to last inequality we assumed that l−
37
2 ¼−1

q+1
≲ ¼q+1 which follows from

l−
25
2 j ¼q+1 that already appeared before (83), while the last inequality used the fact that

r j Ã−1 due to (12) so that Ã2r
3− 2

p = (Ãr)2r
1− 2

p j r
1− 2

p . Second, we estimate

∥w(t)

q+1
∥

Ct,q+1W
1,p
x

(63)
≲ µ−1

∑

·∈Λ
∥a·∥Ct,q+1Cx

∥a·∥Ct,q+1C1
x
∥¸·∥2

Ct,q+1L
2p
x

+ ∥a·∥2Ct,q+1Cx
∥¸·∥Ct,q+1L

2p
x
∥¸·∥Ct,q+1W

1,2p
x

(54c)(17b)
≲ µ−1¶q+2l−3r

2− 2
p [l−

25
2 + ¼q+1Ãr] ≲ µ−1¶q+2l−3¼q+1Ãr

3− 2
p (95)

where the last inequality relied on the previous assumption (85).

We now verify (26c) at level q + 1. We write using (25), (62), and (37),

divR̊q+1 − ∇Ãq+1 = (−∆)mwq+1 + ∂t(w
(p)

q+1
+ w

(c)

q+1
+ w

(t)

q+1
) + div(vl ¹ wq+1 + wq+1 ¹ vl)

︸                                                                                  ︷︷                                                                                  ︸

divRlin I+∇Ãlin 1
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+ ∂tt(w
(p)

q+1
+ w

(c)

q+1
)

︸              ︷︷              ︸

divRlin 2

+ div((w
(c)

q+1
+ w

(t)

q+1
) ¹ wq+1 + w

(p)

q+1
¹ (w

(c)

q+1
+ w

(t)

q+1
))

︸                                                            ︷︷                                                            ︸

divRcor+∇Ãcor

+ div(w
(p)

q+1
¹ w

(p)

q+1
+ R̊l) + ∂ttw

(t)

q+1
︸                                   ︷︷                                   ︸

divRosc+∇Ãosc

+divRcom − ∇Ãl; (96)

i.e.,

divR̊q+1 − ∇Ãq+1 = div(Rlin 1 + Rlin 2 + Rcorr + Rosc + Rcom) − ∇(Ãlin 1 + Ãcorr + Ãosc + Ãl)

where

Rlin 1 ≜R(−∆)mwq+1 + R∂t(w
(p)

q+1
+ w

(c)

q+1
+ w

(t)

q+1
) + vl¹̊wq+1 + wq+1¹̊vl, (97a)

Ãlin 1 ≜vl · wq+1, (97b)

Rlin 2 ≜R∂tt(w
(p)

q+1
+ w

(c)

q+1
), (97c)

Rcor ≜(w
(c)

q+1
+ w

(t)

q+1
)¹̊wq+1 + w

(p)

q+1
¹̊(w

(c)

q+1
+ w

(t)

q+1
), (97d)

Ãcor ≜
1

2
[(w

(c)

q+1
+ w

(t)

q+1
) · wq+1 + w

(p)

q+1
· (w(c)

q+1
+ w

(t)

q+1
)]. (97e)

Concerning Rosc that is arguably the most technical, we can write

Rosc ≜R




1

2

∑

·,ϑ∈Λ
E·,ϑ,1 +

1

2

∑

·,ϑ∈Λ

∑

k=1,3,4

E·,ϑ,2,k + A2 + A3




, (98a)

Ãosc ≜
1

2
|w(p)

q+1
|2 + Ä




1 − 1

8

∑

·∈Λ
µ·

(

Id− R̊l

Ä

)2



(98b)

+
1

2

∑

·,ϑ∈Λ
P̸=0(a·aϑPg

¼q+1

2

(¸·¸ϑ¼
2
q+1È·Èϑ))1·+ϑ ̸=0

+
1

2

∑

·∈Λ
a2
·Pg

¼q+1Ã

2

¸2
· − ∆−1∇ · µ−1





∑

·∈Λ+
−

∑

·∈Λ−




P̸=0∂t(a

2
· P̸=0¸

2
··)

where E·,ϑ,1 can be found in (183a), E·,ϑ,2,1 in (188a), and A2 and A3 are defined in (192b)-

(192c). We leave the detailed derivation of (98) in Appendix C for completeness. Consid-

ering (96) we define

Ãq+1 ≜ Ãl − Ãlin 1 − Ãcor − Ãosc and R̊q+1 ≜ Rlin 1 + Rlin 2 + Rcor + Rosc + Rcom. (99)

Proposition 4.5. Rlin 1 defined in (97a) satisfies for a0 sufficiently large and ´ > 0 suffi-

ciently small

∥Rlin 1∥Ct,q+1L
p∗
x
j ¶q+3e(t).

Proof of Proposition 4.5. First, we estimate the diffusive term, recalling the m ∈ ( 1
2
, 2

3
) due

to Remark 4.2:

∥R(−∆)mwq+1∥Ct,q+1L
p∗
x
≲ ∥wq+1∥2−2m

Ct,q+1L
p∗
x

∥∇wq+1∥2m−1

Ct,q+1L
p∗
x

(100)

(72)(94)(95)
≲ [¶

1
2

q+2
l−

3
2 r

1− 2
p∗ (1 + ¼−1

q+1l−
25
2 + Ãr) + µ−1¶q+2l−3r

2− 2
p∗ ]2−2m

× [¶
1
2

q+2
l−

3
2 r

1− 2
p∗ ¼q+1 + µ

−1¶q+2l−3¼q+1Ãr
3− 2

p∗ ]2m−1

≲ [¶
1
2

q+2
l−

3
2 r

1− 2
p∗ + µ−1¶q+2l−3r

2− 2
p∗ ]2−2m
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× [¶
1
2

q+2
l−

3
2 r

1− 2
p∗ ¼q+1 + µ

−1¶q+2l−3¼q+1Ãr
3− 2

p∗ ]2m−1
(101)
≲ ¶

1
2

q+2
l−

3
2 r

1− 2
p∗ ¼2m−1

q+1

where we used that Ãr j 1 due to (12), and ¼−1
q+1

l−
25
2 ≲ 1 due to (83) in the second to last

inequality and also assumed

µ−1¶
1
2

q+2
l−

3
2 r ≲ 1, µ−1¶

1
2

q+2
l−

3
2 r2Ã ≲ 1 (101)

in the last inequality, none of which implies condition on µ, Ã, or r because µ−1r j 1

and rÃ j 1 due to (12) so that µ−1r2Ã j 1. Now, after r, µ, and Ã−1 have been selected

in (32), in order to determine l, let us observe that due to (32), (101) is equivalent to

¼
3m−2

7

q+1
¶

1
2

q+2
l−

3
2 ≲ 1 which is implied by (70), and

¼
m−2

7

q+1
l−

3
2 ≲ 1. (102)

After r, µ, and Ã−1 in (32) and l with ³ in (33) have been selected, we see that the

estimate in (102) can be satisfied by our choice of l = ¼−³
q+1
¼
− 3

2
q with ³ = 2−3m

112
from (33) if

9(56)

58 − 3m
< b (103)

holds, as well as by taking ´ ∈ (0, 1) sufficiently small after b in (34) is fixed; we incorpo-

rate this condition to our choice of b in (34) to claim (102) and hence (100).

Now that we have claimed (100), considering r
1− 2

p∗ ¼2m−1
q+1

in (100) for p∗ > 1 arbitrarily

close, we now impose

r−1¼2m−1
q+1 j 1. (104)

In fact, let us make a stronger assumption that

l−
3
2 r−1¼2m−1

q+1 j 1

or equivalently due to (32)

l−
3
2 ¼

3m−2
7

q+1
j 1. (105)

The estimate (105) can be seen to be satisfied by our choice of l = ¼−³
q+1
¼
− 3

2
q where

³ = 2−3m
112

from (33) if

9(112)

58(2 − 3m)
< b, (106)

and we incorporate this condition to our choice of b in (34) to claim (105).

At last, with all the parameters chosen thus far, let us make our argument continuing

from (100) formal by selecting the appropriate p∗ ∈ (1, 2) in (35) and making use of the

fact that e(t) g e g 4 due to (3): for a0 sufficiently large and ´ > 0 sufficiently small

∥R(−∆)mwq+1∥Ct,q+1L
p∗
x

(100)(33)(32)
≲

(

¼
2−3m
112

q+1
¼

3
2
q

) 3
2
(

¼
11m−5

7

q+1

)1− 2
p∗
¼2m−1

q+1

(34)
≲ ¼

448m−224
224

+
3(2−3m)

224
+ 9

4

(
2−3m

(42)(56)

)

+ 11m−5
7
− (11m−5)

7
2
p∗

q+1
≈ ¼

11065m−5286
14(224)

− (11m−5)2
7p∗

q+1
j ¶q+3e(t) (107)

where the last inequality is because 11065m−5286
14(224)

− (11m−5)2
7p∗ < 0 if and only if p∗ < (11m−5)(28)(32)

11065m−5286

and this holds due to our choice from p∗ in (35).

Second, we estimate

∥R∂t(w
(p)

q+1
+w

(c)

q+1
+w

(t)

q+1
)∥

Ct,q+1L
p∗
x
f ∥R∂t(w

(p)

q+1
+w

(c)

q+1
)∥

Ct,q+1L
p∗
x
+ ∥R∂tw

(t)

q+1
∥

Ct,q+1L
p∗
x
. (108)
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We can compute separately

∥R∂t(w
(p)

q+1
+ w

(c)

q+1
)∥

Ct,q+1L
p∗
x

(66)
≲

∑

·∈Λ
∥∂ta·∥Ct,x,q+1

∥¸·∥Ct,q+1L
p∗
x
∥È·∥Cx

+ ∥a·∥Ct,x,q+1
∥∂t¸·∥Ct,q+1L

p∗
x
∥È·∥Cx

(54)(11b)(17b)
≲ ¶

1
2

q+2
r

1− 2
p∗ [l−14¼−1

q+1 + l−
3
2Ãµr], (109a)

∥R∂tw
(t)

q+1
∥

Ct,q+1L
p∗
x

(63)
≲ ∥µ−1(

∑

·∈Λ+
−

∑

·∈Λ−
)PP̸=0(a2

·P ̸=0¸
2
··)∥

Ct,q+1L
p∗
x

(72d)
≲ µ−1¶q+2l−3r

2− 2
p∗ . (109b)

Applying (109) to (108) gives us

∥R∂t(w
(p)

q+1
+w

(c)

q+1
+w

(t)

q+1
)∥

Ct,q+1L
p∗
x
≲ ¶

1
2

q+2
r

1− 2
p∗ [l−14¼−1

q+1+ l−
3
2Ãµr]+µ−1¶q+2l−3r

2− 2
p∗ . (110)

Concerning the first term ¶
1
2

q+2
r

1− 2
p∗ l−14¼−1

q+1
, paying attention to only the dominant term

r
1− 2

p∗ ¼−1
q+1

for p∗ > 1 arbitrarily close, we see that the first term does not impose any

condition on r, µ, or Ã−1 because 1 j r¼q+1 due to (12). Similarly, for the second term

¶
1
2

q+2
r

1− 2
p∗ l−

3
2Ãµr, r

1− 2
p∗ (Ãµr) j 1 is expected to hold for p∗ > 1 arbitrarily close to 1 due

to µ j Ã−1 from (12). Finally, for the third term µ−1¶q+2l−3r
2− 2

p∗ , we can rely on µ−1 j 1

due to (12). Therefore, bounding (110) by a small constant multiple of ¶q+3e(t) does not

impose any additional conditions on our choice of r, µ, and Ã−1.

That being said, in order to see the conditions on l, let us continue to estimate from

(110) using (32) as follows:

∥R∂t(w
(p)

q+1
+ w

(c)

q+1
+ w

(t)

q+1
)∥

Ct,q+1L
p∗
x

(110)(32)
≲ ¼

( 11m−5
7

)(1− 2
p∗ )

q+1
[l−14¼−1

q+1 + l−
3
2 ¼

17m−16
14

q+1
] + ¼

3−8m
7

q+1
l−3¼

( 11m−5
7

)(2− 2
p∗ )

q+1

≲¼
( 11m−5

7
)(1− 2

p∗ )

q+1
l−

3
2 ¼

17m−16
14

q+1
+ ¼

3−8m
7

q+1
l−3¼

( 11m−5
7

)(2− 2
p∗ )

q+1
(111)

where in the last inequality we assumed that

l−
25
2 ≲ ¼

17m−2
14

q+1
(112)

so that l−14¼−1
q+1
≲ l−

3
2 ¼

17m−16
14

q+1
. Thus, assuming p∗ ∈ (1, 2) to be taken is arbitrarily close to

1, we see the need to impose

¼
( 11m−5

7
)(−1)

q+1
l−

3
2 ¼

17m−16
14

q+1
j 1 and ¼

3−8m
7

q+1
l−3 j 1 (113)

or equivalently

l−
3
2 j ¼

6+5m
14

q+1
and l−3 j ¼

8m−3
7

q+1
(114)

respectively.

After our choices of r, µ, and Ã−1 in (32) and thereafter l and ³ in (33) have been

determined, in order to find the conditions on b, we observe that the estimates (112) and

(114) can be satisfied by our choice of l = ¼−³
q+1
¼
− 3

2
q where ³ = 2−3m

112
from (33) if

21(200)

347m − 82
< b (115)
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and we incorporate this condition to our choice of b in (34) to claim (112) and (114).

We now use all our parameters chosen and make these arguments precise, continuing

from (111) by formally selecting the appropriate p∗ ∈ (1, 2) from (35), making use of the

fact that e(t) g e g 4: for a0 sufficiently large and ´ > 0 sufficiently small

∥R∂t(w
(p)

q+1
+ w

(c)

q+1
+ w

(t)

q+1
)∥

Ct,q+1L
p∗
x

(111)(33)(32)
≲ ¼

( 11m−5
7

)

q+1
¼
−( 11m−5

7
) 2

p∗

q+1

(

¼
2−3m
112

q+1
¼

3
2
q

) 3
2

¼
17m−16

14

q+1
+ ¼

3−8m
7

q+1

(

¼
2−3m
112

q+1
¼

3
2
q

)3

¼
( 11m−5

7
)2

q+1
¼
−( 11m−5

7
) 2

p∗

q+1

(34)
≲ ¼

11m−5
7

q+1
¼
−( 11m−5

7
) 2

p∗

q+1
¼

3(2−3m)
2(112)

q+1
¼

9
4

[ 2−3m
(42)(56)

]

q+1
¼

17m−16
14

q+1
+ ¼

3−8m
7

q+1
¼

3(2−3m)
112

q+1
¼

9
2

[ 2−3m
(42)(56)

]

q+1
¼

( 11m−5
7

)2

q+1
¼
−( 11m−5

7
) 2

p∗

q+1

≈¼
2867(3m−2)

14(224)
−( 11m−5

7
) 2

p∗

q+1
+ ¼

3001m−1478
14(112)

−( 11m−5
7

) 2
p∗

q+1
j ¶q+3e(t) (116)

where the last inequality used the fact that
2867(3m−2)

14(224)
− ( 11m−5

7
) 2

p∗ < 0 as m < 2
3

and
3001m−1478

14(112)
− ( 11m−5

7
) 2

p∗ < 0 due to our choice from (35).

Third, we estimate

∥vl¹̊wq+1 + wq+1¹̊vl∥Ct,q+1L
p∗
x
≲ ∥vq∥C1

t,x,q+1
(∥w(p)

q+1
∥

Ct,q+1L
p∗
x
+ ∥w(c)

q+1
∥

Ct,q+1L
p∗
x
+ ∥w(t)

q+1
∥

Ct,q+1L
p∗
x

)

(26b)(72)
≲ ¼3

q(l−
3
2 r

1− 2
p∗ + ¼−1

q+1l−
3
2 r

1− 2
p∗ [l−

25
2 + ¼q+1Ãr] + µ−1l−3r

2− 2
p∗ ). (117)

Concerning the first two terms ¼3
ql−

3
2 r

1− 2
p∗ and ¼3

q¼
−1
q+1

l−
3
2 r

1− 2
p∗ l−

25
2 , paying attention to only

r
1− 2

p∗ , when p∗ > 1 is arbitrarily close to 1, we see that no condition is imposed on r because

r−1 j 1 due to (12). Similarly, the third term ¼3
q¼
−1
q+1

l−
3
2 r

1− 2
p∗ ¼q+1Ãr = ¼3

ql−
3
2Ãr

2− 2
p∗ does

not cause an additional condition because Ã j 1 due to (12). Finally, the fourth term

¼3
qµ
−1l−3r

2− 2
p∗ does not require any additional condition on µ because µ−1 j 1 due to (12).

In order to determine conditions on l after r, µ, and Ã−1 are determined in (32), we

continue from (117) with our choice from (32) as follows:

∥vl¹̊wq+1 + wq+1¹̊vl∥Ct,q+1L
p∗
x

(117)(85)
≲ ¼3

q(l−
3
2 r

1− 2
p∗ + ¼−1

q+1l−
3
2 r

1− 2
p∗ ¼q+1Ãr + µ−1l−3r

2− 2
p∗ )

(32)
≈ ¼3

q(l−
3
2 ¼

( 11m−5
7

)(1− 2
p∗ )

q+1
+ l−

3
2 ¼

( 11m−5
7

)(1− 2
p∗ )

q+1
¼

m−10
14

q+1
+ ¼

3−8m
7

q+1
l−3¼

( 11m−5
7

)(2− 2
p∗ )

q+1
)

≲ ¼3
q(l−

3
2 ¼

( 11m−5
7

)(1− 2
p∗ )

q+1
+ ¼

3−8m
7

q+1
l−3r

( 11m−5
7

)(2− 2
p∗ )) (118)

where in the last inequality, we used ¼
m−10

14

q+1
≲ 1. Considering p∗ > 1 arbitrarily close to 1,

we impose additionally

¼3
ql−

3
2 ¼

5−11m
7

q+1
j 1, ¼3

q¼
3−8m

7

q+1
l−3 j 1. (119)

The estimate (119) can be satisfied by our choice of l = ¼−³
q+1
¼
− 3

2
q for ³ = 2−3m

112
from (33) if

21(56)

361m − 166
< b, (120)

and we incorporate this condition to our choice of b in (34) to claim (119).

Now let us use our choices of parameters and make this argument precise, continuing

from (118) as follows by formally selecting the appropriate p∗ ∈ (1, 2) from (35), using the

fact that e(t) g e g 4 due to (3): for a0 sufficiently large and ´ > 0 sufficiently small

∥vl¹̊wq+1 + wq+1¹̊vl∥Ct,q+1L
p∗
x
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(118)(33)
≲ ¼3

q[

(

¼
2−3m
112

q+1
¼

3
2
q

) 3
2

¼
11m−5

7
−( 11m−5

7
) 2

p∗

q+1
+ ¼

3−8m
7

q+1

(

¼
2−3m
112

q+1
¼

3
2
q

)3

¼
( 11m−5

7
)2−( 11m−5

7
) 2

p∗

q+1
]

(34)
≲ ¼

3(2−3m)
2(112)

+ 21
4

( 2−3m
(42)(56)

)+ 11m−5
7
−( 11m−5

7
) 2

p∗

q+1
+ ¼

3−8m
7
+

3(2−3m)
112
+ 15

2
( 2−3m

(42)(56)
)+

2(11m−5)
7
−( 11m−5

7
) 2

p∗

q+1

≈¼
−306+683m

4(112)
−( 11m−5

7
) 2

p∗

q+1
+ ¼

−1474+2995m
14(112)

−( 11m−5
7

) 2
p∗

q+1
j ¶q+3e(t) (121)

where the last inequality is de to −306+683m
4(112)

− ( 11m−5
7

) 2
p∗ < 0 and −1474+2995m

14(112)
− ( 11m−5

7
) 2

p∗ < 0

due to our choice of p∗ from (35).

We are now able to conclude that for a0 sufficiently large and ´ > 0 sufficiently small

∥Rlin 1∥Ct,q+1L1
x

(97a)
f ∥R(−∆)mwq+1∥Ct,q+1L1

x
+ ∥R∂t(w

(p)

q+1
+ w

(c)

q+1
+ w

(t)

q+1
)∥Ct,q+1L1

x

+ ∥vl¹̊wq+1 + wq+1¹̊vl∥Ct,q+1L1
x

(107)(116)(121)
j ¶q+3e(t). (122)

□

Proposition 4.6. Rlin 2 defined in (97c) satisfies for a0 sufficiently large and ´ > 0 suffi-

ciently small

∥Rlin 2∥Ct,q+1L
p∗
x
j ¶q+3e(t).

Proof of Proposition 4.6. We come to the unique term that we must estimate for the hy-

perbolic Navier-Stokes equations. This term is singular due to the second derivatives with

respect to time variable t and creates constraints in the choice of parameters, and ultimately

the upper bound of m < 2
3
, as it will be explained in detail Appendix A. We estimate

∥R∂tt(w
(p)

q+1
+ w

(c)

q+1
)∥

Ct,q+1L
p∗
x

(66)
≲

∑

·∈Λ
∥∂tt[a·(t, x)¸·(t, x)]È·(x)∥

Ct,q+1L
p∗
x

≲
∑

·∈Λ
(∥∂tta·∥Ct,x,q+1

∥¸·∥Ct,q+1L
p∗
x
+ ∥a(·)∥Ct,x,q+1

∥∂tt¸·∥Ct,q+1L
p∗
x

)∥È·∥Cx

(54)(11b)(17b)
≲

(

[¶
1
2

q+2
l−20]r1− 2

p∗ + [¶
1
2

q+2
l−

3
2 ](¼q+1Ãrµ)2r

1− 2
p∗
)

¼−1
q+1. (123)

The first term in (123), in which we only pay attention to the dominant term r
1− 2

p∗ ¼−1
q+1

,

does not require any additional condition on r because 1 j ¼q+1r due to (12). However,

for the second term in (123), paying attention to only (¼q+1Ãrµ)2r
1− 2

p∗ ¼−1
q+1

when p∗ > 1 is

arbitrarily close to 1, we obtain a new condition of

µ j ¼
− 1

2

q+1
Ã−1r−

1
2 . (124)

After having selected r, µ, and Ã−1 in (32), in order to find conditions on l and ³, con-

tinuing from (123), we estimate by using our choices from (32) as follows:

∥R∂tt(w
(p)

q+1
+ w

(c)

q+1
)∥

Ct,q+1L
p∗
x

≲

(

¶
1
2

q+2
l−20¼

( 11m−5
7

)(1− 2
p∗ )

q+1
+ ¶

1
2

q+2
l−

3
2 ¼

17m−2
7

q+1
¼

( 11m−5
7

)(1− 2
p∗ )

q+1

)

¼−1
q+1. (125)

Considering p∗ > 1 arbitrarily close to 1, this requires that we impose additionally

l−20¼
5−11m

7

q+1
¼−1

q+1 j 1, (126)

as well as l−
3
2 ¼

17m−2
7

q+1
¼

5−11m
7

q+1
¼−1

q+1
j 1, but this condition is implied by (70).
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After l has been determined in (33), in order to find conditions on b, we use our choice

from (33) and see that (126) can be satisfied if

30(28)

59m − 2
< b. (127)

and we incorporate this condition to our choice of b in (34) to claim (126).

Now with all the parameters chosen, let us make these arguments precise continuing

from (125) by formally selecting the appropriate p∗ ∈ (1, 2) from (35) and utilizing the fact

that e(t) g e g 4 due to (3): for a0 sufficiently large and ´ > 0 sufficiently small,

∥R∂tt(w
(p)

q+1
+ w

(c)

q+1
)∥

Ct,q+1L
p∗
x

(125)(33)
≲

(

(¼
2−3m
112

q+1
¼

3
2
q )20¼

11m−5
7
−( 11m−5

7
) 2

p∗

q+1
+ (¼

2−3m
112

q+1
¼

3
2
q )

3
2 ¼

17m−2
7

q+1
¼

11m−5
7
−( 11m−5

7
) 2

p∗

q+1

)

¼−1
q+1

(34)
≲ ¼

5(2−3m)
28
+30( 2−3m

(42)(56)
)+ 11m−12

7
−( 11m−5

7
) 2

p∗

q+1
+ ¼

3(2−3m)
224
+ 9

4
( 2−3m

(42)(56)
)+4m−2−( 11m−5

7
) 2

p∗

q+1

≈¼
391m−522

7(56)
−( 11m−5

7
) 2

p∗

q+1
+ ¼

12319m−6122
(14)(224)

−( 11m−5
7

) 2
p∗

q+1
j ¶q+3e(t) (128)

where the last inequality is due to 391m−522
7(56)

− ( 11m−5
7

) 2
p∗ < 0 which is immediate because

m ∈ ( 1
2
, 2

3
), and 12319m−6122

(14)(224)
− ( 11m−5

7
) 2

p∗ < 0 due to our choice of p∗.

Hence, we conclude that for a0 sufficiently large and ´ > 0 sufficiently small,

∥Rlin 2∥Ct,q+1L1
x

(97c)
= ∥R∂tt(w

(p)

q+1
+ w

(c)

q+1
)∥Ct,q+1L1

x
j ¶q+3e(t). (129)

□

Proposition 4.7. Rcor defined in (97d) satisfies for a0 sufficiently large and ´ > 0 suffi-

ciently small,

∥Rcor∥Ct,q+1L
p∗
x
j ¶q+3e(t).

Proof of Proposition 4.7. We estimate

∥(w(c)
q+ + w

(t)

q+1
)¹̊wq+1 + w

(p)

q+1
¹̊(w

(c)

q+1
+ w

(t)

q+1
)∥

Ct,q+1L
p∗
x

≲(∥w(c)

q+1
∥

Ct,q+1L
2p∗
x
+ ∥w(t)

q+1
∥

Ct,q+1L
2p∗
x

)(∥w(p)

q+1
∥

Ct,q+1L
2p∗
x
+ ∥w(c)

q+1
∥

Ct,q+1L
2p∗
x
+ ∥w(t)

q+1
∥

Ct,q+1L
2p∗
x

)

(72)
≲ (¼−1

q+1l−
3
2 r

1− 1
p∗ [l−

25
2 + ¼q+1Ãr] + µ−1l−3r

2− 1
p∗ )

× (l−
3
2 r

1− 1
p∗ + ¼−1

q+1l−
3
2 r

1− 1
p∗ [l−

25
2 + ¼q+1Ãr] + µ−1l−3r

2− 1
p∗ ). (130)

Considering the dominant terms for p∗ > 1 arbitrarily close to 1, we see that it suffices that

¼−1
q+1

[l−
25
2 + ¼q+1Ãr]+ µ−1r j 1; thus, this does not impose any condition on our choices of

r, µ, or Ã−1 because Ãr j 1 and µ−1r j 1 due to (12).

After µ, r, and Ã−1 are determined in (32), in order to determine the conditions on l, we

continue from (130) with our choices from (32) as follows:

∥(w(c)
q+ + w

(t)

q+1
)¹̊wq+1 + w

(p)

q+1
¹̊(w

(c)

q+1
+ w

(t)

q+1
)∥

Ct,q+1L
p∗
x

(131)

(130)(32)(85)
≲

(

¼−1
q+1l−

3
2 ¼

( 11m−5
7

)(1− 1
p∗ )

q+1
¼

4+m
14

q+1
+ ¼

3−8m
7

q+1
l−3¼

( 11m−5
7

)(2− 1
p∗ )

q+1

)

×
(

l−
3
2 ¼

( 11m−5
7

)(1− 1
p∗ )

q+1
+ ¼−1

q+1l−
3
2 ¼

( 11m−5
7

)(1− 1
p∗ )

q+1
¼

4+m
14

q+1
+ ¼

3−8m
7

q+1
l−3¼

( 11m−5
7

)(2− 1
p∗ )

q+1

)

≲

(

¼−1
q+1l−

3
2 ¼

( 11m−5
7

)(1− 1
p∗ )

q+1
¼

4+m
14

q+1
+ ¼

3−8m
7

q+1
l−3¼

( 11m−5
7

)(2− 1
p∗ )

q+1

) (

l−
3
2 ¼

( 11m−5
7

)(1− 1
p∗ )

q+1
+ ¼

3−8m
7

q+1
l−3¼

( 11m−5
7

)(2− 1
p∗ )

q+1

)

.
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Considering p∗ > 1 arbitrarily close to one, we see that we need to impose

l−3¼
m−10

14

q+1
j 1 and l−

9
2 ¼

3m−2
7

q+1
j 1 (132)

so that (¼−1
q+1

l−
3
2 ¼

4+m
14

q+1
)l−

3
2 j 1 and (¼

3−8m
7

q+1
l−3¼

11m−5
7

q+1
)l−

3
2 j 1, respectively. After l is chosen

in (33), in order to determine the conditions on b, we see that the estimate (132) can be

satisfied by our choice of l = ¼−³
q+1
¼
− 3

2
q with ³ = 2−3m

112
from (33) if

(27)(56)

23(2 − 3m)
< b, (133)

and we incorporate this condition to our choice of b in (34).

Now with all the selected parameters, let us make these estimates more precise con-

tinuing from (131) and formally selecting the appropriate p∗ ∈ (1, 2) from (35): for a0

sufficiently large and ´ > 0 sufficiently small,

∥(w(c)
q+ + w

(t)

q+1
)¹̊wq+1 + w

(p)

q+1
¹̊(w

(c)

q+1
+ w

(t)

q+1
)∥

Ct,q+1L
p∗
x

(131)(33)
≲

(

¼
2−3m
112

q+1
¼

3
2
q

)3

¼
2(11m−5)

7
− 2(11m−5)

7p∗ + m−10
14

q+1
+

(

¼
2−7m
112

q+1
¼

3
2
q

) 9
2

¼
3(11m−5)

7
− 2(11m−5)

7p∗ +
3−8m

7

q+1

+

(

¼
2−3m
112

q+1
¼

3
2
q

)6

¼
4(11m−5)

7
− 2(11m−5)

7p∗ +
2(3−8m)

7

q+1

(34)
≲ ¼

3(2−3m)
112
+ 9

2

(
2−3m

(42)(56)

)

+
2(11m−5)

7
+ m−10

14
− 2(11m−5)

7p∗

q+1
+ ¼

9(2−3m)
224
+ 27

4

(
2−3m

(42)(56)

)

+ 25m−12
7
− 2(11m−5)

7p∗

q+1

+ ¼
3(2−3m)

56
+9

(
2−3m

(42)(56)

)

+ 28m−14
7
− 2(11m−5)

7p∗

q+1

≈ ¼
1635(3m−2)

(14)(112)
− 2(11m−5)

7p∗

q+1
+ ¼

10795m−5106
(28)(112)

− 2(11m−5)
7p∗

q+1
+ ¼

3001m−1478
(14)(56)

− 2(11m−5)
7p∗

q+1
j ¶q+3e(t) (134)

where the last inequality is due to
1635(3m−2)

(14)(112)
− 2(11m−5)

7p∗ < 0 due to m < 2
3

while 10795m−5106
(28)(112)

−
2(11m−5)

7p∗ < 0 and 3001m−1478
(14)(56)

− 2(11m−5)
7p∗ < 0 due to our choice of p∗ from (35).

Therefore, we conclude that for a0 sufficiently large and ´ > 0 sufficiently small,

∥Rcor∥Ct,q+1L1
x

(97d)
= ∥(w(c)

q+1
+ w

(t)

q+1
)¹̊wq+1 + w

(p)

q+1
¹̊(w

(c)

q+1
+ w

(t)

q+1
)∥Ct,q+1L1

x
j ¶q+3e(t). (135)

□

Proposition 4.8. Rosc defined in (98a) satisfies for a0 sufficiently large and ´ > 0 suffi-

ciently small

∥Rosc∥Ct,q+1L
p∗
x
j ¶q+3e(t).

Proof of Proposition 4.8. First, we estimate using Lemma 3.5
∥
∥
∥
∥
∥
R(

1

2

∑

·,ϑ∈Λ
E·,ϑ,1)

∥
∥
∥
∥
∥

Ct,q+1L
p∗
x

(183)(20)
≲ ¼−1

q+1Ã
−1

∑

·,ϑ∈Λ
(∥a·∥Ct,q+1C3

x
∥aϑ∥Ct,x,q+1

+ ∥a·∥Ct,x,q+1
∥aϑ∥Ct,q+1C3

x
)∥W·∥Ct,q+1L

2p∗
x
∥Wϑ∥Ct,q+1L

2p∗
x

(54)(17a)
≲ ¼−1

q+1Ã
−1¶q+2l−

55
2 r

2− 2
p∗ . (136)

For p∗ > 1 arbitrarily close to 1, this does not impose any condition on our choice of r, µ,

or Ã−1 because ¼−1
q+1
Ã−1 j 1 due to (12).
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After selecting r, µ, and Ã−1 in (32), in order to find conditions on l we continue from

(136) with our choices from (32) as follows:

∥
∥
∥
∥
∥
R(

1

2

∑

·,ϑ∈Λ
E·,ϑ,1)

∥
∥
∥
∥
∥

Ct,q+1L
p∗
x

(136)(32)
≲ ¼−1

q+1¼
3m
2

q+1
¶q+2l−

55
2 ¼

( 11m−5
7

)(2− 2
p∗ )

q+1
. (137)

Considering p∗ > 1 arbitrarily close to 1, this implies that we need additional condition of

¼
−1+ 3m

2

q+1
l−

55
2 j 1. (138)

To see the necessary conditions on b, we plug in our choices of l = ¼−³
q+1
¼
− 3

2
q with

³ = 2−3m
112

from (33) and see that (138) can be satisfied if

56(165)

57(2 − 3m)
< b, (139)

and we incorporate this condition to our choice of b in (34) to claim (138).

We now use our choice of parameters to make these arguments precise, continuing from

(137) by formally selecting the appropriate p∗ ∈ (1, 2) from (35): for a0 sufficiently large

and ´ > 0 sufficiently small

∥
∥
∥
∥
∥
R(

1

2

∑

·,ϑ∈Λ
E·,ϑ,1)

∥
∥
∥
∥
∥

Ct,q+1L
p∗
x

(137)(33)
≲ ¼

3m
2
−1

q+1

(

¼
2−3m
112

q+1
¼

3
2
q

) 55
2

¼
( 11m−5

7
)2−( 11m−5

7
) 2
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q+1

(34)
≲ ¼

3m−2
2
+

55(2−3m)
2(112)

+ 165
4

[ 2−3m
(42)(56)

]+
2(11m−5)

7
−( 11m−5

7
) 2

p∗

q+1
≈ ¼

12085m−5966
28(112)

−( 11m−5
7

) 2
p∗

q+1
j ¶q+3e(t) (140)

where the last inequality is due to 12085m−5966
28(112)

− ( 11m−5
7

) 2
p∗ due to (35).

Second, we estimate
∥
∥
∥
∥
∥
R(

1

2

∑

·,ϑ∈Λ
E·,ϑ,2,3)

∥
∥
∥
∥
∥

Ct,q+1L
p∗
x

(141)

(188c)(20)
≲

∑

·,ϑ∈Λ
¼−1

q+1(∥a·∥Ct,q+1C3
x
∥aϑ∥Ct,x,q+1

+ ∥a·∥Ct,x,q+1
∥aϑ∥Ct,q+1C3

x
)

× ∥¸·∥Ct,q+1L
2p∗
x
∥¸ϑ∥Ct,q+1L

2p∗
x
¼2

q+1∥È·∥Cx
∥Èϑ∥Cx

(54c)(11b)(17b)
≲ ¼−1

q+1¶q+2l−
55
2 r

2− 2
p∗ .

We mention that in the application of (20), it is required that
¼q+1

10
∈ N which is the reason

why we chose to impose a ∈ 10N. For p∗ > 1 arbitrarily close to 1, this term does not

impose any condition on our choice of r, µ, or Ã−1 because ¼−1
q+1
j 1.

Hence, in order to see conditions on other parameters, we continue from (141) using or

choice of r, µ, and Ã−1 from (32) as follows:

∥
∥
∥
∥
∥
R(

1

2

∑

·,ϑ∈Λ
E·,ϑ,2,3)

∥
∥
∥
∥
∥

Ct,q+1L
p∗
x

(141)(32)
≲ ¼−1

q+1¶q+2l−
55
2 (¼

11m−5
7

q+1
)2− 2

p∗ . (142)

The right hand side of (142) is bounded by the right hand side of (137) and thus we imme-

diately conclude that for a0 sufficiently large and ´ > 0 sufficiently small
∥
∥
∥
∥
∥
R(

1

2

∑

·,ϑ∈Λ
E·,ϑ,2,3)

∥
∥
∥
∥
∥

Ct,q+1L
p∗
x

j ¶q+3e(t). (143)
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Third, we compute
∥
∥
∥
∥
∥
R(
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·,ϑ∈Λ
E·,ϑ,2,1)

∥
∥
∥
∥
∥

Ct,q+1L
p∗
x

(144)

(188a)(20)
≲

∑

·,ϑ∈Λ
¼−1

q+1(∥a·∥Ct,q+1C2
x
∥aϑ∥Ct,x,q+1

+ ∥a·∥Ct,x,q+1
∥aϑ∥Ct,q+1C2

x
)∥b·∥Cx

∥bϑ∥Cx

× (∥∇¸·∥Ct,q+1L
2p∗
x
∥¸ϑ∥Ct,q+1L

2p∗
x
+ ∥¸·∥Ct,q+1L

2p∗
x
∥∇¸ϑ∥Ct,q+1L

2p∗
x

)
(54c)(11b)(17b)

≲ ¶q+2l−
43
2 Ãr

3− 2
p∗ .

Considering p∗ > 1 arbitrarily close to 1, we see that this term does not impose any addi-

tional condition because Ãr j 1 due to (12).

After r, µ, and Ã−1 in (32) are selected, in order to determine l, we continue from (144)

with our choices from (32) as follows:

∥
∥
∥
∥
∥
R(

1

2

∑

·,ϑ∈Λ
E·,ϑ,2,1)

∥
∥
∥
∥
∥

Ct,q+1L
p∗
x

(144)(32)
≲ ¶q+2l−

43
2 ¼
− 3m

2

q+1
(¼

11m−5
7

q+1
)3− 2

p∗ . (145)

Considering p∗ > 1 arbitrarily close to 1, this leads to additional condition of

l−1 j ¼
1

43
( 10−m

7
)

q+1
= ¼

2
43

( 10−m
14

)

q+1
(146)

so that l−
43
2 ¼
− 3m

2

q+1
¼

11m−5
7

q+1
j 1.

After l in (33) is selected, in order to determine conditions on b, we apply our choice of

l = ¼−³
q+1
¼
− 3

2
q where ³ = 2−3m

112
from (33) and see that (146) is satisfied if

3(42)

2m + 1
< b, (147)

and we incorporate this condition to our choice of b in (34) to claim (146).

We now utilize our choice of parameters and make these arguments precise, continuing

from (145) as follows: for a0 sufficiently large and ´ > 0 sufficiently small,

∥
∥
∥
∥
∥
R(

1

2

∑

·,ϑ∈Λ
E·,ϑ,2,1)

∥
∥
∥
∥
∥

Ct,q+1L
p∗
x

(145)(33)
≲

(

¼
2−3m
112

q+1
¼

3
2
q

) 43
2

¼
− 3m

2

q+1
¼

( 11m−5
7

)3−( 11m−5
7

) 2
p∗

q+1

(34)
≲ ¼

43(2−3m)
2(112)

+ 129
4

[ 2−3m
(42)(56)

]

q+1
¼
−21m+6(11m−5)

14
−( 11m−5

7
) 2

p∗

q+1
≈ ¼

8145(3m−2)
2(42)(112)

−( 11m−5
7

) 2
p∗

q+1
j ¶q+3e(t) (148)

where the last inequality is due to m < 2
3
.

Fourth, we compute

∥
∥
∥
∥
∥
R(

1

2

∑

·,ϑ∈Λ
E·,ϑ,2,4)

∥
∥
∥
∥
∥

Ct,q+1L
p∗
x

(188d)(20)
≲ ¼q+1

∑

·,ϑ∈Λ
(∥a·∥Ct,q+1C2

x
∥aϑ∥Ct,x,q+1

+ ∥a·∥Ct,x,q+1
∥aϑ∥Ct,q+1C2

x
)

× (∥∇¸·∥Ct,q+1L
2p∗
x
∥¸ϑ∥Ct,q+1L

2p∗
x
+ ∥¸·∥Ct,q+1L

2p∗
x
∥∇¸ϑ∥Ct,q+1L

2p∗
x

)∥È·∥Cx
∥Èϑ∥Cx

(54c)(11b)(17b)
≲ ¶q+2l−

43
2 Ãr

3− 2
p∗ . (149)

The upper bound of (149) is identical to that of (144) and hence we are immediately able

to conclude that for a0 sufficiently large and ´ > 0 sufficiently small

∥R(
1

2

∑

·,ϑ∈Λ
E·,ϑ,2,4)∥

Ct,q+1L
p∗
x
j ¶q+3e(t). (150)
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Finally,
∥
∥
∥
∥
∥
R(A2 + A3)

∥
∥
∥
∥
∥

Ct,q+1L
p∗
x

(151)

(192)(20)
≲

∑

·∈Λ
(¼q+1Ã)−1[∥a·∥Ct,q+1C3

x
∥a·∥Ct,x,q+1

+ µ−1∥a·∥C1
t,q+1

C2
x
∥a·∥Ct,x,q+1

]∥¸·∥2
Ct,q+1L

2p∗
x

(54c)(17b)
≲ ¼−1

q+1Ã
−1[¶q+2l−

55
2 + µ−1¶q+2l−

55
2 ]r2− 2

p∗ ≲ ¼−1
q+1Ã

−1¶q+2l−
55
2 r

2− 2
p∗

where the last inequality used the fact that µ−1 j 1 due to (12). We realize that the bound

in (151) is identical to that of (136) and hence we conclude that for a0 sufficiently large

and ´ > 0 sufficiently small

∥R(A2 + A3)∥
Ct,q+1L

p∗
x
j ¶q+3e(t). (152)

At last, we deduce that for a0 sufficiently large and ´ > 0 sufficiently small

∥Rosc∥Ct,q+1L1
x

(98a)
f

∥
∥
∥
∥
∥
R(

1

2

∑

·,ϑ∈Λ
E·,ϑ,1)

∥
∥
∥
∥
∥

Ct,q+1L1
x

+

∥
∥
∥
∥
∥
R(

1

2

∑

·,ϑ∈Λ

∑

k=1,3,4

E·,ϑ,2,k)

∥
∥
∥
∥
∥

Ct,q+1L1
x

+ ∥R(A2 + A3)∥Ct,q+1L1
x

(140)(143)(148)(150)(152)
j ¶q+3e(t). (153)

□

Proposition 4.9. Rcom defined in (38) satisfies for a0 sufficiently large and ´ > 0 sufficiently

small

∥Rcom∥Ct,q+1L
p∗
x
j ¶q+3e(t).

Proof of Proposition 4.9. We estimate

∥Rcom∥Ct,q+1L1
x
≲ l∥vq∥C1

t,x,q+1
∥vq∥Ct,q+1L2

x

(26a)(26b)
≲ lLē¼3

q. (154)

The condition on l that we obtain from (154) is l¼3
q j 1 which is same as (80); thus, we

conclude that for a0 sufficiently large and ´ > 0 sufficiently small

∥Rcom∥Ct,q+1L1
x
j ¶q+3e(t). (155)

□

Finally, combining Propositions 4.5, 4.6, 4.7, 4.8, and 4.9, we have proven that for a0

sufficiently large and ´ > 0 sufficiently small

∥R̊q+1∥Ct,q+1L1
x

(99)
f ∥Rlin 1∥Ct,q+1L1

x
+ ∥Rlin 2∥Ct,q+1L1

x
+ ∥Rcor∥Ct,q+1L1

x

+ ∥Rosc∥Ct,q+1L1
x
+ ∥Rcom∥Ct,q+1L1

x

(122)(129)(135)(153)(155)
j ¶q+3e(t). (156)

This concludes the proof of (26c) at level q + 1.

Remark 4.5. In order to find the appropriate choice of parameters in (32), we just de-

scribed lower and upper bounds on µ. It is here that we faced difficulty upon attempting

similarly using the 3D intermittent jets from [9, Section 7.4]; we explain briefly with nota-

tions from [9, Section 7.4]. For example, analogous computations to (123) on Rlin 2 gave

us

∥R∂tt(w
(p)

q+1
+ w

(c)

q+1
)∥

Ct,q+1L
p∗
x
≲ l−2¼−1

q+1r
2
p∗ −1

§ r
1
p∗ −

1
2

∥

(
r§¼q+1µ

r∥

)2
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so that for p∗ ≈ 1, considering only the dominant terms leads us to

¼q+1r3
§r
− 3

2

∥ µ2 j 1; i.e. µ j ¼
− 1

2

q+1
r
− 3

2

§ r
3
4

∥ . (157)

On the other hand, analogous computations to (130) on Rcor gave us

∥(w(c)

q+1
+ w

(t)

q+1
)¹̊wq+1 + w

(p)

q+1
¹̊(w

(c)

q+1
+ w

(t)

q+1
)∥

Ct,q+1L
p∗
x

≲l−2r
2

2p∗ −1

§ r
1

2p∗ −
1
2

∥ + l−12r
2

2p∗
§ r

1
2p∗ −

3
2

∥ + µ−1l−4r
2

2p∗ −2

§ r
1

2p∗ −1

∥

so that for p∗ ≈ 1, considering only the dominant terms leads us to requiring

µ−1r−1
§ r
− 1

2

∥ j 1 i.e., r−1
§ r
− 1

2

∥ j µ. (158)

Considering (157)-(158) leads to a requirement of

r−1
§ r
− 1

2

∥ j ¼
− 1

2

q+1
r
− 3

2

§ r
3
4

∥

which is equivalent to

r§¼q+1 j r
5
2

∥ . (159)

Unfortunately, r−1
§ j ¼q+1 from (30) so that 1 j r§¼q+1 and r∥ j 1 from (30) imply that

(159) is impossible.

At last, faced with such a difficulty, we actually attempted analogous approach in higher

dimension d g 3 using the generalized intermittent jets in higher dimension from [37,

Section 3]; however, it led to a requirement of

r
− d

2
+ 1

2

§ r
− 1

2

∥ j µ j ¼
− 1

2

q+1
r
− d

4
− 3

4

§ r
3
4

∥

which is an analogue of (157)-(158); this reduces to

r
5−d

2

§ ¼q+1 j r
5
2

∥ , (160)

which is an analogue of (159). Unfortunately, the constraints that we need in such gen-

eralized intermittent jets in higher dimension is the same as (30). Thus, for any d g 3 we

realize that (160) is impossible again because 1 j r§¼q+ while r∥ j 1. However, this is

where we come to the crucial observation. Because r§ j 1 from (30), the condition (160)

becomes increasingly more difficult as d rises; this is the reason why we realized that the

only pathway possible for us with our current approach is the case d = 2, which led to

Theorem 2.1 after optimizing all the parameters thereafter.

Proposition 4.10. Define

¶E(t) ≜
∣
∣
∣
∣e(t)(1 − ¶q+2) − ∥vq+1(t)∥2

L2
x

∣
∣
∣
∣ . (161)

Then, for all t ∈ [tq+1, t]

¶E(t) f 1

4
¶q+2e(t) (162)

so that (26d) holds at level q + 1.

Proof of Proposition 4.10. The following computations follow those of [29], and have sim-

ilarities to previous estimates. Not surprisingly, the constraints on the parameters l, ³, and

b we have already determined in previous sections turn out to suffice. Therefore, we will

not mention new constraints and simply use the parameters l and b respectively from (33)

and (34) and complete this proof. We compute using (40b) and (62)

¶E(t) =

∣
∣
∣
∣
∣
µq(t)2(2Ã)2 +

∫

T2

|vq(t)|2 − |vl(t)|2 − 2vl(t) · w(p)

q+1
(t) − 2vl(t) · (w(c)

q+1
+ w

(t)

q+1
)(t)
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− |w(p)

q+1
(t)|2 − 2w

(p)

q+1
(t) · (w(c)

q+1
+ w

(t)

q+1
)(t) − |(w(c)

q+1
+ w

(t)

q+1
)(t)|2dx

∣
∣
∣
∣
∣
f

5∑

k=1

Ik (163)

where

I1 ≜

∣
∣
∣
∣µq(t)2(2Ã)2 − ∥w(p)

q+1
(t)∥2

L2
x

∣
∣
∣
∣ , (164a)

I2 ≜ ∥(w(c)

q+1
+ w

(t)

q+1
)(t)∥2

L2
x
, (164b)

I3 ≜ 2

∣
∣
∣
∣
∣

∫

T2

(vl + w
(p)

q+1
) · (w(c)

q+1
+ w

(t)

q+1
)(t)dx

∣
∣
∣
∣
∣
, (164c)

I4 ≜ 2

∣
∣
∣
∣
∣

∫

T2

vl · w(p)

q+1
(t)dx

∣
∣
∣
∣
∣
, (164d)

I5 ≜

∣
∣
∣
∣
∣

∫

T2

|vq(t)|2 − |vl(t)|2dx

∣
∣
∣
∣
∣
. (164e)

For I1, we use the fact that R̊q and therefore R̊l is trace-free to write using (63a) and

(53a),

|w(p)

q+1
(t)|2 − µq(t)2 =

∑

·,ϑ∈Λ
(a·aϑ)(t) Tr P̸=0

(

W· ¹Wϑ

)

(t) + 2
(

Ä(t) − µq(t)
)

. (165)

This leads us to

I1 f2ϵ−1
µ (2Ã)2l + 2ϵ−1

µ ∥R̊l(t)∥L1
x
+ 2(2Ã)2|µl(t) − µq(t)|

+
∑

·,ϑ∈Λ

∣
∣
∣
∣
∣

∫

T2

(a·aϑ)(t) Tr P̸=0

(

W· ¹Wϑ

)

(t)dx

∣
∣
∣
∣
∣
. (166)

We estimate the first term of (166) using the fact that e(t) g e g 4, for a0 sufficiently large

and ´ > 0 sufficiently small,

2ϵ−1
µ (2Ã)2l

(33)
= ϵ−1

µ 8Ã2¼
− 2−3m

112

q+1
¼
− 3

2
q j ¼

2´

1
¼
−2´

q+2
e(t) = ¶q+2e(t). (167)

We estimate the second term of (166) by

2ϵ−1
µ ∥R̊l(t)∥L1

x
f 2ϵ−1

µ ∥R̊q(t)∥L1
x

(26c)
f 1

18
¶q+2e(t). (168)

We estimate the third term of (166) using the fact that e(t) g e g 4, for a0 sufficiently large

and ´ > 0 sufficiently small,

2(2Ã)2|µl(t) − µq(t)|
(3)(40b)
≲ lẽ + l∥vq∥Ct,q+1L2

x
∥vq∥C1

t,q+1
L2

x

(26)
≲ l¼3

q

(33)(34)
≲ ¼

− 13
14

( 2−3m
112

)

q+1
j ¶q+2e(t). (169)

Next, we take

M >
4073m − 1670

4(2 − 3m)(347)
(170)

and estimate the fourth term of (166) by
∑

·,ϑ∈Λ

∣
∣
∣
∣
∣

∫

T2

(a·aϑ)(t) Tr P̸=0(W· ¹Wϑ)(t)dx

∣
∣
∣
∣
∣

(171)

(16c)(54)
≲

∑

·,ϑ∈Λ

(

l−
3
2 ¶

1
2

q+2
ē

1
2

) (

l−6M−8¶
1
2

q+2
ē

1
2

)

(¼q+1Ã)−M∥W·∥Ct,q+1L4
x
∥Wϑ∥Ct,q+1L4

x
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(17a)(32)(33)
≲ ¶q+2

(

¼
2−3m
112

q+1
¼

3
2
q

)6M+ 19
2

¼
( 2−3m

2
)(−M)

q+1
¼

11m−5
7

q+1

(34)
≲ ¶q+2

(

¼
2−3m
112
+ 3

2
[ 2−3m

(42)(56)
]

q+1

)6M+ 19
2

¼
( 2−3m

2
)(−M)+ 11m−5

7

q+1
≈ ¶q+2¼

− (2−3m)(347)M

7(112)
+ 4073m−1670

28(112)

q+1

(170)
j ¶q+2e(t).

Applying (167), (168), (169), and (171) to (166) gives us now for ´ > 0 sufficiently small,

I1 f
1

9
¶q+2e(t). (172)

Next, we are able to take advantage of previous estimate (74) make quick work of

I2

(164b)
= ∥(w(c)

q+1
+ w

(t)

q+1
)(t)∥2

L2
x
≲

(

∥w(c)

q+1
∥Ct,q+1L2

x
+ ∥w(t)

q+1
∥Ct,q+1L2

x

)2 (74)
j ¶q+2e(t), (173a)

I3

(164c)
f 2

(

∥vl∥Ct,q+1L2
x
+ ∥w(p)

q+1
∥Ct,q+1L2

x

)

[∥w(c)

q+1
∥Ct,q+1L2

x
+ ∥w(t)

q+1
∥Ct,q+1L2

x
]

(39b)(69)
≲

(

Lē
1
2 + ¶

1
2

q+1
ē

1
2

)

[∥w(c)

q+1
∥Ct,q+1L2

x
+ ∥w(t)

q+1
∥Ct,q+1L2

x
]

(74)
j ¶q+2e(t), (173b)

for a0 sufficiently large and ´ > 0 sufficiently small.

Next, to estimate I4 from (164d), we take ϵ > 0 such that

ϵ <
91m − 42

8(11m − 5)
< 2 (174)

and estimate from (164d) for a0 sufficiently large and ´ > 0 sufficiently small,

I4 ≲∥vl∥Ct,q+1C1
x
∥w(p)

q+1
∥

Ct,q+1L
2

2−ϵ
x

(26b)(72a)(33)
≲ ¼

21
2

q ¼
3(2−3m)

224
+( 11m−5

7
)(−1+ϵ)

q+1

(34)
≲ ¼

21
2

[ 2−3m
(42)(56)

]+
3(2−3m)+32(11m−5)(−1+ϵ)

2(112)

q+1
≈ ¼

42−91m+8(11m−5)ϵ
56

q+1

(174)
j ¶q+2e(t). (175)

Finally, we estimate from (164e), for a0 sufficiently large and ´ > 0 sufficiently small

I5 ≲ ∥vq∥Ct,q+1L2
x
l∥vq∥C1

t,x,q+1

(26a)(26b)(33)
≲ ¼

−( 2−3m
112

)

q+1
¼
− 3

2
q ¼3

q

(34)
≲ ¼

−( 2−3m
112

)+ 3
2

[ 2−3m
(42)(56)

]

q+1
≈ ¼−( 13

14
)[ 2−3m

112
]

q+1
j ¶q+2e(t). (176)

Applying (172), (173), (175), and (176) to (163) we are finally able to conclude that

¶E(t) f
5∑

k=1

Ik f
1

4
¶q+2e(t)

for a0 sufficiently large and ´ > 0 sufficiently small; this completes the proof of Proposition

4.10. □

Proof of Proposition 4.2. We proved (27) in (79), (26a) in (78), (26b) in (91) together

with (92)-(93), (26c) in (156), and (26d) in Proposition 4.10, completing the proof of

Proposition 4.2.

□
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Appendix A. Derivation of r, µ, and Ã−1
from (32)

Let us explain our choice of r, µ, and Ã−1 from (32). Recall from Remark 4.2 that we

consider only m ∈ ( 1
2
, 2

3
). We need ¼2m−1

q+1
j r from (104) while µ j ¼

− 1
2

q+1
Ã−1r−

1
2 from

(124). We have r k 1 and ¼q+1 k 1 from (12) so that ¼
− 1

2

q+1
r−

1
2 j 1. These imply that we

need

¼2m−1
q+1

(104)
j r

(12)
j µ

(124)
j ¼

− 1
2

q+1
Ã−1r−

1
2 j Ã−1

(12)
j ¼q+1. (177)

We optimize and choose

µ =

√

r(¼
− 1

2

q+1
Ã−1r−

1
2 ) = r

1
4 ¼
− 1

4

q+1
Ã−

1
2 (178)

so that (177) reduces to

¼2m−1
q+1 j r j r

1
4 ¼
− 1

4

q+1
Ã−

1
2 j ¼

− 1
2

q+1
Ã−1r−

1
2 j Ã−1 j ¼q+1.

We furthermore optimize from this to choose

r =

√

¼2m−1
q+1

(r
1
4 ¼
− 1

4

q+1
Ã−

1
2 ) = ¼

m− 1
2

q+1
r

1
8 ¼
− 1

8

q+1
Ã−

1
4 ,

which implies r
7
8 ¼

5
8
−m

q+1
= Ã−

1
4 and hence

r
7
2 ¼

5
2
−4m

q+1
= Ã−1. (179)

From (177) we know we need Ã−1 j ¼q+1 which implies that we require r
7
2 ¼
−4m+ 5

2

q+1
j ¼q+1

or equivalently r j ¼
2
7

(4m− 3
2

)

q+1
. From (177) we know we need ¼2m−1

q+1
j r and thus we

optimize over
(2m−1)+ 2

7
(4m− 3

2
)

2
= 11m−5

7
and hence define r = ¼

11m−5
7

q+1
. Applying this choice

of r to (179) leads us to Ã−1 = ¼
3m
2

q+1
. At last, we apply this definition of r = ¼

11m−5
7

q+1
and

Ã−1 = ¼
3m
2

q+1
to (178) to conclude µ = ¼

8m−3
7

q+1
.

Appendix B. Derivation of l in (33)

We have conditions on l from (70), (80), (87), (92), (102), (112), (114), (119), (126),

(132), (138), and (146). In short, all of these conditions boil down to ¼3
q j l−1 from

(80) and l−1 j ¼
2−3m

56

q+1
from (70) assuming that b ∈ N is sufficiently large and yet to be

determined; thus, we optimize and select

l−1 =

√

¼
2−3m

56

q+1
¼3

q = ¼
2−3m
112

q+1
¼

3
2
q

as we did in (33).

Appendix C. Derivation of (98)

We sketch the derivation of (98). In contrast to previous works such as [38, 49], our

divRosc +∇Ãosc consists of ∂ttw
(t)

q+1
instead of ∂tw

(t)

q+1
; we designed our w

(t)

q+1
in (63c) so that

this difference does not create major difficulties in the following computations (see [49,

Equations (101)-(115)] for details). First, we write

div(w
(p)

q+1
¹ w

(p)

q+1
) = div(w

(p)

q+1
¹̊w

(p)

q+1
) + ∇1

2
|w(p)

q+1
|2, (180)
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while

w
(p)

q+1
¹̊w

(p)

q+1
+ R̊l

(53b)(63)
=

∑

·,ϑ∈Λ
a·aϑPg

¼q+1Ã

2

(W·¹̊Wϑ)

+ Ä




1 − 1

8

∑

·∈Λ
µ·

(

Id− R̊l

Ä

)2



Id (181)

due to (16). The identity (181) leads to

div(w
(p)

q+1
¹̊w

(p)

q+1
+ R̊l) =

1

2

∑

·,ϑ∈Λ
E·,ϑ,1 +

1

2

∑

·,ϑ∈Λ
E·,ϑ,2

+ ∇



Ä




1 − 1

8

∑

·∈Λ
µ·

(

Id− R̊l

Ä

)2







(182)

where

E·,ϑ,1 ≜ P̸=0(∇(a·aϑ) · Pg ¼q+1Ã

2

(W·¹̊Wϑ +Wϑ¹̊W·)), (183a)

E·,ϑ,2 ≜ P̸=0(a·aϑ∇ · (W·¹̊Wϑ +Wϑ¹̊W·)), (183b)

in which we used symmetry. Now for any ·, ϑ ∈ Λ ¢ S1, we can compute

(·§ ¹ ϑ§ + ϑ§ ¹ ·§)(· + ϑ) = (·§ · ϑ§ − 1)Id(· + ϑ). (184)

It follows from (10) and (184) that

∇ · (b·¹̊bϑ + bϑ¹̊b·)(x) = ∇(¼2
q+1È·Èϑ)(x). (185)

Consequently, via (15) and (185),

∇ · (W·¹̊Wϑ +Wϑ¹̊W·) = (b·¹̊bϑ + bϑ¹̊b·) · ∇(¸·¸ϑ) + (¸·¸ϑ)∇(¼2
q+1È·Èϑ). (186)

After splitting 1
2

∑

·,ϑ∈Λ E·,ϑ,2 = 1
2
(
∑

·,ϑ∈Λ: ·+ϑ ̸=0 +
∑

·,ϑ∈Λ: ·+ϑ=0)E·,ϑ,2, this allows us to write

1

2

∑

·,ϑ∈Λ: ·+ϑ ̸=0

E·,ϑ,2
(16b)(183b)(186)

=
1

2

∑

·,ϑ∈Λ

4∑

k=1

E·,ϑ,2,k (187)

where

E·,ϑ,2,1 ≜ P ̸=0(a·aϑPg
¼q+1

10

[(b·¹̊bϑ + bϑ¹̊b·) · ∇(¸·¸ϑ)])1·+ϑ ̸=0, (188a)

E·,ϑ,2,2 ≜ ∇P̸=0(a·aϑPg
¼q+1

10

(¸·¸ϑ¼
2
q+1È·Èϑ))1·+ϑ̸=0, (188b)

E·,ϑ,2,3 ≜ −P̸=0(∇(a·aϑ)Pg
¼q+1

10

(¸·¸ϑ¼
2
q+1È·Èϑ))1·+ϑ ̸=0, (188c)

E·,ϑ,2,4 ≜ −P̸=0(a·aϑPg
¼q+1

10

(∇(¸·¸ϑ)¼2
q+1È·Èϑ))1·+ϑ ̸=0. (188d)

On the other hand, in case ·+ϑ = 0 we have ∇(¼2
q+1
È·È−·)

(10)
= ¼2

q+1
∇( 1

¼2
q+1

ei¼q+1(·−·)·x) = 0,

while we can multiply (14a) by 2¸· to deduce µ−1∂t |¸· |2 = ±(· · ∇)|¸· |2 for all · ∈ Λ± and

hence

∇ · (W·¹̊W−· +W−·¹̊W·)
(15)(185)(10)

= 2·§¹̊·§∇¸2
· = ∇¸2

· ∓ 2µ−1(∂t¸
2
· )·. (189)

This allows us to write

1

2

∑

·,ϑ∈Λ: ·+ϑ=0

E·,ϑ,2
(183b)(189)

=
1

2

∑

·∈Λ
∇(a2

·Pg
¼q+1Ã

2

¸2
· ) − P̸=0(∇a2

·Pg
¼q+1Ã

2

¸2
· ) (190)
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− µ−1(
∑

·∈Λ+
−

∑

·∈Λ−
)∂tP ̸=0(a2

· P̸=0(¸2
··)) − P̸=0(∂ta

2
·Pg

¼q+1Ã

2

(¸2
··))

where we also used that Pg
¼q+1Ã

2

¸2
·
= P̸=0¸

2
·
. At last, we obtain by using the definition of

P = Id − ∇∆−1∇·
1

2

∑

·,ϑ∈Λ: ·+ϑ=0

E·,ϑ,2 + ∂ttw
(t)

q+1

(63)(190)
=

4∑

k=1

Ak (191)

where

A1 ≜
1

2

∑

·∈Λ
∇(a2

·Pg
¼q+1Ã

2

¸2
· ), (192a)

A2 ≜ −
1

2

∑

·∈Λ
P̸=0(∇a2

·Pg
¼q+1Ã

2

¸2
· ), (192b)

A3 ≜ µ
−1(

∑

·∈Λ+
−

∑

·∈Λ−
)P̸=0(∂ta

2
·Pg

¼q+1Ã

2

(¸2
··)), (192c)

A4 ≜ −∇∆−1∇ · µ−1(
∑

·∈Λ+
−

∑

·∈Λ−
)P̸=0∂t(a

2
· P̸=0¸

2
··). (192d)

Therefore, combining (180), (182), (187), and (191) gives us

div(w
(p)

q+1
¹ w

(p)

q+1
+ R̊l) + ∂ttw

(t)

q+1
=

1

2

∑

·,ϑ∈Λ
E·,ϑ,1 +

1

2

∑

·,ϑ∈Λ

∑

k=1,3,4

E·,ϑ,2,k + A2 + A3

+ ∇
[
1

2
|w(p)

q+1
|2 +




Ä




1 − 1

8

∑

·∈Λ
µ·

(

Id− R̊l

Ä

)2








+
1

2

∑

·,ϑ∈Λ
P̸=0(a·aϑPg

¼q+1

10

(¸·¸ϑ¼
2
q+1È·Èϑ))1·+ϑ ̸=0

+
1

2

∑

·∈Λ
a2
·Pg

¼q+1Ã

2

¸2
· − ∆−1∇ · µ−1(

∑

·∈Λ+
−

∑

·∈Λ−
)P ̸=0∂t(a

2
· P̸=0¸

2
··)

]

,

which finally leads us to (98).

Appendix D. Construction of a solution to (1) that doubles its energy

Here, we briefly sketch the proof of the construction of a solution that doubles its energy

from initial time by time t = 1 in belief of its independent mathematical interest.

Theorem D.1. Fix m ∈ (0, 2
3
). Then there exists a constant ´ = ´(m) ∈ (0, 1) suf-

ficiently small such that the following holds. There exists a mean-zero weak solution

v ∈ C([0, 1]; H´(T2)) ∩ C´([0, 1]; L2(T2)) to the hyperbolic Navier-Stokes equations (1)

such that

∥v(1)∥L2
x
> 2∥v(0)∥L2

x
. (193)

The existence time interval of the solution is taken to be [0, 1] in Theorem D.1 for simplic-

ity and can be replaced by [0,T ] for any T > 0 fixed a priori.

We sketch the proof of Theorem D.1. In contrast to (21), we can set simply define

¼q ≜ abq

, ¶q ≜ ¼
−2´
q ; i.e., it is no longer necessary that ¶1 = 1. Requiring a−2b´ f 1

49
assure
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that tq f − 5
6
. We can consider the same iteration (25) with T = 1. We can simplify the

induction hypothesis (26) as follows: on [tq, 1]

∥vq∥Ct,qL2
x
f L

1
2




1 +

∑

1frfq

¶
1
2
r




, (194a)

∥vq∥C1
t,x,q
f L

1
2 ¼3

q, (194b)

∥R̊q∥Ct,qL1
x
f cRL¶q+1 (194c)

for a universal constant cR > 0 and L sufficiently large so that

(4Ã + 8)2(49)2

c2
R

< L. (195)

The step q = 0 will become more complicated than Proposition 4.1 as follows:

Proposition D.2. (Initial step q = 0) Define

v0(t, x) ≜
tL

1
2

2Ã

(

sin(x2)

0

)

and then

R̊0(t, x) ≜
L

1
2

2Ã

(

0 − cos(x2)

− cos(x2) 0

)

+ R(−∆)mv0(t, x).

Then (v0, R̊0) solves (25) with T = 1, satisfies (194) provided

(4Ã
√

2 + 8)49 f (4Ã
√

2 + 8)a2b´ f cRL
1
2 ;

moreover, v0 satisfies

∥v0(t)∥L2
x
=
|t|L 1

2

√
2
f L

1
2 . (196)

Next, Proposition 4.2 is replaced by the following:

Proposition D.3. (Step q + 1 assuming the step q) Let L > 0 be sufficiently large so that

(195) holds. Under the hypothesis of Theorem D.1, there exists a choice of parameters a, b,

and ´ such that for all (vq, R̊q) that solves (25) and satisfies (194), there exists (vq+1, R̊q+1)

that solves (25) and satisfies (194) at level q + 1 such that for all t ∈ [tq+1, 1]

∥vq+1 − vq∥Ct,q+1L2
x
f L

1
2 ¶

1
2

q+1
. (197)

The main difference in the proof of Proposition D.3 and Proposition 4.2 is that we would

let Ç be a smooth function such that

Ç(z) ≜






1 if z ∈ [0, 1],

z if z ∈ [2,∞),
(198)

and z f 2Ç(z) f 4z for z ∈ (1, 2) and thereby define

Ä(t, x) ≜ 4cR¶q+1LÇ((cR¶q+1L)−1|R̊l(t, x)|).

Proof of Theorem D.1. We only highlight the difference from the proof of Theorem 2.1,

namely (193). We can compute

∥v(t) − v0(t)∥L2
x
f

∑

qg0

∥vq+1(t) − vq(t)∥L2
x

(197)
f

∑

qg0

L
1
2 ¶

1
2

q+1
f L

1
2

6
. (199)
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Recalling ∥v0(t)∥L2
x
= tL

1
2√
2

for all t ∈ [0, 1] from (196), we are ready to conclude

2∥v(0)∥L2
x
f2∥v0(0)∥L2

x
+ 2∥v(0) − v0(0)∥L2

x

(196)(199)
f L

1
2

3
<

L
1
2

√
2
− L

1
2

6

(196)(199)
= ∥v0(1)∥L2

x
− ∥v(1) − v0(1)∥L2

x
f ∥v(1)∥L2

x
.
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