CONVEX INTEGRATION SOLUTION OF TWO-DIMENSIONAL
HYPERBOLIC NAVIER-STOKES EQUATIONS

JIAHONG WU AND KAZUO YAMAZAKI

AssTrACT. Hyperbolic Navier-Stokes equations replace the heat operator within the Navier-
Stokes equations with a damped wave operator. Due to this second-order temporal deriv-
ative term, there exist no known bounded quantities for its solution; consequently, various
standard results for the Navier-Stokes equations such as the global existence of a weak so-
lution, that is typically constructed via Galerkin approximation, are absent in the literature.
In this manuscript, we employ the technique of convex integration on the two-dimensional
hyperbolic Navier-Stokes equations to construct a weak solution with prescribed energy
and thereby prove its non-uniqueness. The main difficulty is the second temporal deriva-
tive term, which is too singular to be estimated as a linear error. One of our novel ideas is to
use the time integral of the temporal corrector perturbation of the Navier-Stokes equations
as the temporal corrector perturbation for the hyperbolic Navier-Stokes equations.

1. INTRODUCTION, REVIEW, AND THE STATEMENT OF OUR MAIN RESULT

1.1. Motivation from physics and real-world applications. The Navier-Stokes equa-
tions is a prominent system of partial differential equations (PDEs) in hydrodynamics that
has various applications in real world such as fluid mechanics, aerodynamics, medicine,
and even finance. More than half a century ago, Cattaneo [12, 13] and Vernotte [47] pro-
posed replacing the heat operator with a damped wave operator to make the propagation
speed of heat transfer finite. This idea was subsequently extended by others such as Car-
rassi and Morro [11]. More recently, Couland, Hachicha, and Raugel [19] derived a general
version of the hyperbolic Navier-Stokes equations by replacing the Fourier law with the law
proposed by Cattaneo. The hyperbolic Navier-Stokes equations (1) of our main interest in
this manuscript is precisely [4, Equation (1.6)] by Brenier, Natalini, and Puel, which can
be considered as an approximation of the general version in [19].

One of the most fundamental issues concerning the standard Navier-Stokes equations
is the uniqueness of its global-in-time weak solution that has been known to exist since
the pioneering works of Leray and Hopf [31, 36]. Although the non-uniqueness of Leray-
Hopf weak solution to the three-dimensional (3D) Navier-Stokes equations remains open,
recent breakthrough technique of convex integration has advanced our understanding of
this challenging problem. The hyperbolic Navier-Stokes equations differ from the standard
Navier-Stokes equations by a second-order temporal derivative term and even the global
L2-bound remains unknown. The classical approach such as the Galerkin approximation
on a torus to construct a global-in-time weak solution strongly relies on such bounded
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quantities. Hence, setting aside the question of uniqueness, to the best of our knowledge,
there is currently no known construction of a global-in-time weak solution to the hyperbolic
Navier-Stokes equations from non-zero initial data.

Considering such a unique difficulty of the absence of any bounded quantities, we turn
to the non-traditional approach, specifically the recent breakthrough technique of convex
integration, and construct a global-in-time weak solution with prescribed energy and con-
sequently prove its non-uniqueness. Extending the current convex integration technique to
the hyperbolic Navier-Stokes equations with the second temporal derivative term requires
substantial modifications. With several new novel ideas and optimization over multiple
parameters, we achieve this goal. To the best of our knowledge, this is the

o first construction of a global-in-time non-zero solution to the hyperbolic Navier-
Stokes equations,

o first ill-posedness result for the hyperbolic Navier-Stokes equations,

¢ and first attempt of convex integration on a physically meaningful hyperbolic sys-
tem of PDEs with a second-order temporal derivative term.

1.2. Review of previous results. We define N 2 {1,2,...,}, Ny 2 {0JUN, T¢ 2 [—x, 1]%,
and a fractional Laplacian (—A)" for m € R to satisfy (=AY f(x) £ Xepalk?" f(k)e**
for d € N. Let us denote by v : R, x T¢ - R the velocity field, 7 : R, x T¢ — R the
pressure field, and 77 > O the kinematic viscosity, so that we may write down the hyperbolic
Navier-Stokes equations generalized via a fractional diffusion n(—A)™v as

YOV + 0y +n(-N)"v+ - -Vw+Vr=0, (1a)
V-v=0, (1b)

where y > 0. The case y = 0 recovers the Navier-Stokes equations and additionally taking
n = 0 leads to the Euler equations. For simplicity, we assume 1 = 1 hereafter whenever
n > 0. For the Navier-Stokes equations in case y = 0, taking L*(T¢)-inner products with v
under the assumption of sufficient regularity of the solution leads to the energy identity of

!
V@I, +2 fo I=2) 2V, ds = IVO)IZ;. )

Based on this fundamental property, there is a rich theory of the Navier-Stokes equations
over 90 years of investigations starting from the pioneering work of Leray [36]. In sharp
contrast, the energy identity (2) fails in case y > 0 due to the extra term

15
7ff0mv-vdxds.
0 Jre

Additionally, taking L*(T¢)-inner products with d,v and summing the resulting equations
create a different problem this time due to

!
ff(v-V)v-&svdxds.
0 J1¢

Consequently, there are no known bounded quantities for the solution to the hyperbolic
Navier-Stokes equations (1). Very recently, Ji, Li, Tian, and Wu [34] proved that un-
der constraints on y and initial data, the hyperbolic Navier-Stokes equations (1) possess a
unique global-in-time mild solution in R? for d > 2. Nevertheless, rigorous results for the
hyperbolic Navier-Stokes equations in the current literature, in general, are extremely lim-
ited due to the lack of bounded quantities disabling one from following the known classical
approaches on the Navier-Stokes equations. In turn, this presents a unique opportunity in
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which a non-classical approach that does not rely on the energy inequality (2) of the Navier-
Stokes equations may be applied to the hyperbolic Navier-Stokes equations instead to shed
light from a different angle to improve our understanding, and a good candidate for such a
technique is the convex integration, that we briefly review next.

Convex integration has its roots in geometry, specifically the famous C'-isometric em-
bedding theorem of Nash [43]. It has seen rapid developments in the past two decades
fueled by the goal of proving Onsager’s conjecture [44], the positive direction being that

every weak solution v € C*(T?) to the 3D Euler equations for a > % conserves its energy

and the negative direction being the existence of a weak solution v € C*(T?) for a < %
that fails to conserve its energy. While Constantin, E, and Titi [17], and Eyink [25] in
1994 proved its positive direction, De Lellis and Székelyhidi Jr. [21] in 2009, by partially
using ideas from [42] by Miiller and Sverdk, proved the existence of a solution v € L,
to the dD Euler equations for d € N \ {1} with compact support in space and time, ex-
tending the previous works of Scheffer [45] and Shnirelman [46] that proved analogous
results with regularity in Lix in the 2D case. After further extensions (e.g. [6,22, 23]),
Isett [32] proved the negative direction of Onsager’s conjecture in any dimension d > 3.
The case d = 2 was excluded in [32] due to the absence of Mikado flows in the 2D case;
nevertheless, Giri and Radu [26] recently settled the 2D case as well via a new approach
of Newton-Nash iteration. Via an introduction of intermittent Beltrami waves, Buckmas-
ter and Vicol [8] proved the non-uniqueness of weak solutions to the 3D Navier-Stokes
equations, and it was followed by many more: [5, 14, 16,24, 38,40] on the Navier-Stokes
equations; [10] on power-law model; [39] on Boussinesq system; [3] on magnetohydrody-
namics system; [20,41] on transport equation; [7,33] on active scalars. We also highlight
that Albritton, Brué, and Colombo [1] proved the non-uniqueness of Leray-Hopf weak
solutions to the 3D Navier-Stokes equations under some non-zero force.

Despite the seemingly wide applicability, there exist plenty of PDEs to which we do
not know how to employ the convex integration technique. In particular, during a work-
shop “Criticality and Stochasticity in Quasilinear Fluid Systems” at the American Institute
of Mathematics in 2021, one participant suggested an open question of whether one can
apply the convex integration technique to dispersive or hyperbolic PDEs such as the wave
equation. Some workshop participants attempted but came out empty-handed in terms of
concrete results. Nevertheless, in this work we succeed in employing the convex inte-
gration technique to the hyperbolic Navier-Stokes equations (1) and thereby construct a
global-in-time solution with prescribed energy that is non-unique; we present our result
formally next in Section 2.

2. STATEMENT OF OUR MAIN RESULT

Let us present our main result in Theorem 2.1; its style of presentation has some simi-
larities to [10, Theorem B].

Theorem 2.1. Fix m € (0, %), an arbitrary T > 0, as well as any
e € C'(R; [e, ) such that ||ellcq-2.ry) < & and |l€'llcq-2.1y < &, (3a)
where4 < e <é < ,¢ € [0,). (3b)

Then there exists a constant § = B(m) € (0, 1) sufficiently small such that the following
holds. There exists a mean-zero function

v € C([0, T1; HA(T*) n CA([0, T1; L*(T*)) )
such that
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(1) v solves the hyperbolic Navier-Stokes equations (1) distributionally; i.e.,
T
f f v(s, %) - (¥0s¢ — 05 + (=A)"¢ — (v - V)p)(s, X)dxds = 0,
0 Jr?

fv(t)-Vw:O\/te[O,T],
T2

for any divergence-free ¢ € C*([0, T1 % T?) such that both ¢, 0,4 vanish at t = 0
and t = T, and any y € C'(T?);
(2)
IIV(t)IIii =e(r) Yrel0,T] ®)
Additionally, if two such energies e; and e, obeying the same bounds e, e, and é in (3)
coincide on [0, 1], then there exist corresponding solutions vy and v, that also coincide on
[0, A T, implying non-uniqueness of distributional solutions for the hyperbolic Navier-
Stokes equations (1).

The lower bound of 4 in (3) is arbitrary and any strictly positive real number suffices in the
proof of Theorem 2.1.

Remark 2.1. Initially, we attempted to prove the 3D analogue of Theorem 2.1 but faced
various difficulties unable to close several necessary estimates. Using the generalized in-
termittent jets in higher spatial dimensions from [37], we investigated to see if the difficul-
ties in the 3D case could be overcome in higher dimensions but we saw that the obstacles
still remained. In fact, the difficulties we faced in the 3D case interestingly became worse
as the spatial dimension increased. This is very counterintuitive to the theory of convex
integration in which in general, the lower dimension poses more difficulties; e.g. recall
that Isett [32] proved Onsager’s conjecture for all d > 3 but not in case d = 2. In any
event, this is how we realized that the only path forward for us with our current approach
is actually the lower dimensional case, namely when d = 2, which finally led to Theorem
2.1 after various optimizations over all parameters. We make further comments on this
issue in Remark 4.5.

Remark 2.2. Our convex integration scheme will specifically utilize the 2D intermittent
stationary flows originally introduced by Choffrut, De Lellis, and Székelyhidi Jr. [15] for
the 2D Euler equations, subsequently extended by Buckmaster, Shkoller, and Vicol [7] to
the 2D surface quasi-geostrophic equations, by Luo and Qu [38] to the 2D Navier-Stokes
equations, and by Yamazaki [49,51] to the stochastic case implementing the smooth cut-off
function “y introduced in [40, p. 7] (see (198)).

The main result from [38, Corollary 1.2] is the construction of a non-trivial weak solu-
tion to the 2D Navier-Stokes equations diffused by (—A)™ for all m € [0, 1) that has compact
temporal support which implies non-uniqueness because the zero function is a solution to
the Navier-Stokes equations starting from zero initial data. A zero function also solves
the hyperbolic Navier-Stokes equations (1). Unfortunately, the approach of [38] directly
conflicts with one of our new novel ideas to handle the hyperbolic term (see Remark 4.1).
Consequently, we were not able to extend [38] to the hyperbolic Navier-Stokes equations
(1). Because further explanation requires more notations, let us elaborate on this difficulty
in Remark 4.4.

In [9, Theorem 7.1], Buckmaster and Vicol constructed a weak solution v(t, x) to the
3D Navier-Stokes equations such that its kinetic energy at least doubles from time t = 0
tot =1: ||v(1)||i% > 2||v(0)||i§. This implies non-uniqueness because one can take such a

solution v(t, x) constructed via convex integration, consider the solution v(0,x) att = 0 as
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initial data, and employ Galerkin approximation to it to construct another solution v°(t, x)
such that v°(0, x) = v(0, x) and ||vG(l)||i2 < ||V(0)||iz. Our first successful result was actu-
ally an extension of [9, Section 7] to the 2D hyperb(;lic Navier-Stokes equations. However,
in contrast to the Navier-Stokes equations, this result does not allow us to conclude non-
uniqueness because even if we take the solution constructed via convex integration at time
t = 0, we cannot construct another classical solution via Galerkin approximation. Al-
though Theorem 2.1 with prescribed energy is stronger in various ways, we leave a sketch
of the proof of extension of [9, Theorem 7.1] to (1) in Appendix D due to its independent
mathematical interest.

Finally, Burczak, Modena, and Székelyhidi Jr. in [10, Theorems A and B] introduced a
very nice approach to construct solutions to the power-law model with prescribed energy,
which particularly proved to be amenable to the stochastic case (e.g. [29,48]). We adapt
the convex integration scheme of [15, 38] to such a prescribed energy approach from [10]
to prove Theorem 2.1.

Remark 2.3. We briefly point out an interesting development in the research area of the
convex integration technique applied on PDEs forced by random noise of relevance to our
manuscript. There are various PDEs forced by random noise that is very rough such as
the space-time white noise, and they have been studied in the physics literature for many
decades. The lack of smoothness of such a force transmits to the roughness of its solution
and the product within the nonlinear term becomes ill-defined according to Bony’s esti-
mates that informally states that a product fg is well-defined if and only if f € C$', g € C{
for 23:1 «; > 0. Such PDE: s are called singular stochastic PDEs (SPDEs), and its research
direction has experienced significant advances due to the recent breakthrough inventions
of the theory of regularity structures by Hairer [28] and the theory of paracontrolled dis-
tributions by Gubinelli, Imkeller, and Perkowski [27]. For example, Zhu and Zhu [52] con-
structed a local-in-time solution to the 3D Navier-Stokes equations forced by space-time
white noise using these theories. Yet, even these powerful techniques have limitations:
the constructed solutions are local-in-time, and the techniques, in general, apply only to
locally subcritical singular SPDEs, which informally require their nonlinear terms to be
smoother than the noise (see [28, Assumption 8.3] for a precise definition of local sub-
criticality). Remarkably, Hofmanova, Zhu, and Zhu [30] were able to employ the convex
integration technique to the 2D surface quasi-geostrophic equations in the locally critical
and even supercritical cases; this was the first construction of any solution to any singu-
lar SPDE in the locally critical and supercritical cases; not only that, the solutions were
global-in-time and non-unique.

In contrast, the hyperbolic Navier-Stokes equations (1) is a physically meaningful sys-
tem of PDEs with no known bounded quantities, barring any success in applications of the
classical Galerkin approximation to construct a global-in-time weak solution. Yet, we were
able to construct a non-zero global-in-time weak solutions and prove non-uniqueness. The
results of [30] and our Theorem 2.1 suggest that the technique of convex integration has
proven to be not only a breakthrough technique to demonstrate non-uniqueness of weak so-
lutions to various PDEs in hydrodynamics but a new technique to construct global-in-time,
although non-unique, solutions for PDEs when no other means are available.

Remark 2.4. With Remark 2.3 in mind, we wish to recall the 2D Kuramoto-Sivashinsky
equation that has applications in diverse areas such as the instabilities in laminar flame
fronts. It can be informally written as

O+ (u-Vyu=—Au—ANu (6)
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solved by u : R, X T? — R?; we refer to [18, 35] and references therein for details. Due
to the lack of divergence-free property in sharp contrast to the Navier-Stokes equations,
the solution to the 2D Kuramoto-Sivashinsky equation (6) shares the same property as the
hyperbolic Navier-Stokes equations (1), namely the absence of any known bounded quan-
tities. Consequently, to the best of our knowledge, global-in-time existence of a solution
to the 2D Kuramoto-Sivashinsky equation starting from an arbitrary initial data remains
unknown (see [2, 18]). It would be interesting if some ideas from this manuscript can
contribute to this research direction in future.

We summarize some of the novelties and significances of Theorem 2.1 and its proof.

(1) Theorem 2.1 presents the first global-in-time existence result, ill-posed type, for
the hyperbolic Navier-Stokes equations.

(2) To the best of our knowledge, Theorem 2.1 presents the first convex integration
scheme on a hyperbolic equation with a second-order temporal derivative term d;,.
In fact, to the best of our knowledge, it is the first time that a convex integration
scheme with prescribed energy is applied on a PDE for which we do not even
know if it has any bounded quantities at all.

(3) Within the proof of Theorem 2.1, we took a time integral of the temporal correc-
tor of the Navier-Stokes equations to handle the second-order temporal derivative
term in (1). (See Remark 4.1 for details.)

(4) There are many parameters such as r, u, oL, b and p*, for all of which we
had to discover non-empty intervals and optimize to obtain Theorem 2.1 for all
m € (0, %). (See (31) and the discussion thereafter.) We go through details of such
derivations of the parameters in Appendices A-B to better explain their optimality.

We also comment that considering that we were able to adapt [10, Theorems A and B]
and prescribe energy in Theorem 2.1, it is very likely that we can adapt the proof of [10,
Theorem C] and construct a solution to the 2D hyperbolic Navier-Stokes equations (1) with
prescribed initial data to give a second proof of non-uniqueness. We choose to leave this
to future works.

In what follows, we describe preliminaries and past results in Section 3, prove Theo-
rem 2.1 in Section 4, and leave additional computations in Appendix C for completeness.
Appendix D consists of a sketch of proof of the extension of [9, Theorem 7.1] to the hy-
perbolic Navier-Stokes equations (1). Hereafter, we consider (1) with y = 1 for simplicity;
the case y € R, \ {1} can be attained with straightforward modifications of the following
proof.

3. PRELIMINARIES
We write A <,;, B to imply the existence of a constant C = C(a,b) > 0 such that

A < CB; additionally, we write A =,;, Bif A < Band B < A. We write A(s)B to indicate
that this inequality is due to an equation (-). Vector components will be indicated by super-
indices, and we define x* £ (—x2, x!). We denote a tensor product by ® while the trace-free
tensor product by

. o (f'g 318 f'g’
KXo =
f®g ( 124! P -1fg
for any R%-valued maps f and g. We write for N € Ny and p € [1, o],
Wlley = Y 10D flc, Wlle,z = sup IF(ll- @)
i s€[0,1]

0<n+|a|<N
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We also define L2 2 {f € 1> : V- f = 0}, reserve P = Id — VA~!div as the Leray
projection operator, and P, to be a Fourier operator with a Fourier symbol of 1}4<,(¢) for
any r € [0, 00).

Lemma 3.1. (Geometric lemma from [7, Lemma 4.2]) Let B.(Id) denote the ball of sym-
metric 2 X 2 matrices, centered at Id of radius € > 0. Then there exists €, > 0 with which
there exist disjoint finite subsets A*, A~ ¢ S' N Q? and smooth positive functions

¥ € C¥(Be,(1d)), {€A”,

such that
(1) 5A* c 72,
(2) if { € A*, then = € A* and y; =y,
3)
_ l 2001 1
R= > Z(V:(R)) ({~®¢") YRe B, (1d), 3
JeA*

@ 1K+ = % forall £,{’ € A* suchthat £ + ¢ # 0.

We define A 2 A* U A~. For convenience, we fix the following universal constants

48/ 8

the reason for this definition of C, is due to (55). Next, we describe some notations and
results concerning the 2D intermittent stationary flows introduced in [15] (e.g. [15, Lemma
4]) and extended in [38]. For all { € A and any frequency parameter A € 5N, we define b,
and its potential ¢, as

N 12, & 51 A
Ca22le! (w o+ Z)+ 2| 1Al and M = Cusuplivcleas, aon: 9)
JeA

. 1 .
bo(x) 2 bpa(x) 2 i, () 2 Ypa(0 = S (10)
(cf. [15, Equation (14)]). It follows that for all N € Ny,
be(x) = Ve (x), V-by(x)=0, V*-be(x)=Aye(x) = —/lzlflg(x), (11a)

_ _ 0 y ©) o
D) = b_r(), e@) = v, lblley < N+ DAY, Ieller < (V+ DAY (11b)

Similarly to [8, Equations (3.5b), (3.5¢), and (3.6) on p. 111], we consider a 2D Dirichlet
kernel for r € N

L1 kex - sy (1 2\ . i . _
D,(x)_mk;e w1thQ,._{k_(k i) .keZn[—r,r]forz_1,2},

where T denotes a transpose, that satisfies ||D,||» < rl_% for all p € (1, c0] and ||D,||L§ =
27. The role of r is to parametrize the number of frequencies along edges of the cube
Q,. We introduce o such that Aoc- € 5N to parametrize the spacing between frequencies,
or equivalently such that the resulting rescaled kernel is (T/Ac)-periodic. In particular,
this will be needed in application of Lemma 3.4. Lastly, we introduce u that measures
the amount of temporal oscillation in the building blocks. In sum, the parameters we
introduced are required to satisfy

l<xr<u<xo <A, reN, and 4,40 €5N. (12)

Now we define the directed-rescaled Dirichlet kernel by
D, (A0 (¢ - x + ub), Ao+ - x)  if £ € A™,

. _ (13)
N-za0ru(t, X) ifeeA,

U{(f, )C) = n{,ﬂ,a,r,y(t’ )C) = {
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so that

1
ﬁa””(t’ x)=+(L -V t,x) ¥ £ € A*, (14a)

f P, xdx =1, and |l 777 Y p e (1,00] (14b)
™ i
(cf. [8, Equations (3.8)-(3.10)]). Finally, we define the intermittent 2D stationary flow as

We(t, x) 2 Weaoru(t X) 2 07000t X)b 2 (X) (15)

(cf. [8, Equation (3.11)]). We note that Luo and Qu [38, Equation (4.15)] coined “inter-
mittent 2D stationary flow” for W, because they adapted the 2D stationary flow introduced
in CDS12 to an intermittent form. Similarly to the 3D case in [8] it follows that for all
£, 9 € A (see [38, Equations (4.16)-(4.19)] and also [8, Equations (3.13)-(3.14)])

PP a Wy = W, (16a)
PSMPZ%(WgéWﬂ) =WeWy ifl+3#0, (16b)
PZ%(W;@@W,;) = Po(W,@Wy), (16¢)
Paon, = Pz% ;. (16d)

Lemma 3.2. ([38, Lemmas 4.2 and 4.3]; cf. [8, Proposition 3.5]) Define 77, and W, respec-
tively by (13) and (15), and assume (12). Then

(1) For any {as}sen € Csuch that a_; = a, a function 3, a; Wy is R-valued.
(2) forany p € (1,00], k, N € {0, 1,2, 3},
VYWl s Swvap AN (Aor)r' =, (17a)
_2
VYO nlle 12 Sviap (Ao (Aor)r' ™7 (17b)

Lemma 3.3. ([15, Definition 9, Lemma 10], also [38, Definition 7.1, Lemmas 7.2 and
7.3]) For f € C(T?), set

Rf £ Vg+ (Vo) - (V- g, (18)
where g satisfies Ag = f — frz fdx and sz gdx = 0. Then for any f € C(T?) such that
Jgrz fdx = 0, Rf(x) is a trace-free symmetric matrix for all x € T2. Moreover, V - Rf = f
and ﬁrz Rf(x)dx = 0. When f is not mean-zero, we overload the notation and denote by
Rf £ R(f - sz fdx). Finally, for all p € (1, ), ||R||Lf,_)wl,p S LIRlc,~c, S 1, and
IRAlly < =) fllzz-

Lemma 3.4. ([38, Lemma 6.2]) Let f,g € C*(T?) where g is also (T/k)>-periodic for
some « € N. Then there exists a constant C > 0 such that

_1
Ifgllz < I N2llgllz + Cx 21 fll e llgll 2 (19)
Lemma 3.5. ([38, Lemma 7.4]) For any p € (1,00),1 € N,a € C*(T?), and f € LP(T?),
||(—A)7%P¢0(0Pzaf)llw < A7 Malle2 | fl- (20)

4. Proor oF THEOREM 2.1

4.1. Proof of Theorem 2.1 assuming Proposition 4.2. We fix the function e that satisfies
(3). We set for g € Ny,

A a A 28 -2
Ed 5, =0, Q1)
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where
a € 10N, a > ao, (22)

b e N, and 8 € (0, 1) will be selected subsequently. It is useful that §; = 1, e.g. in the proof
of Proposition 4.1. We set a convention that )., ¢, = O for any ¢, € R. Hereafter, we
impose on ourselves

3<d” (23)

without any significant difficulties because we can take ag as large and § > 0 as small as
we wish and still maintain this inequality (23). Then, (23) allows us to define

1 1
1,22+ Z 82 < -3 for all ¢ € N (24)

0<i<q

L 1
due o Yo, 62 < 3. The fact that 3} ;,, 67 < 3 due to (23) will also justify the second
inequality in (26a). Hereafter, we denote

Crg 2 Cltg 11X T,  CpyLf = C([t,,1]; L7(T?)).
For g € Ny we consider on [#,, T]

Ouvy + Ovy + (=A)"v, + div(v, ® v,) + Vrr, = divR,, (25a)
Vv, =0, (25b)

where R, is a trace-free symmetric matrix. We explain our inductive estimates.

Hypothesis 4.1 (Inductive Hypothesis at level g). We impose on [t,,T],

Valle,, 2 < L(l + Z 5}]@5 <3Le2, (26a)
1<r<q
Vgller, < 4322, (26b)
° €.
WRqllc, 1 < 3¢ 8q2e(0), (260)
3 5
Z5q+1€(t) <e(- IIVq(t)IIiE < Z5q+le(t)v (26d)

for a universal constant L sufficiently large to be determined subsequently (see (77)).

Proposition 4.1. (Initial step q = 0) Together with g = 0, the pair (v, Ro) = (0,0) solves
(25) and satisfies Hypothesis 4.1 at level g = 0.

Proof of Proposition 4.1. (25), (26a), (26b), (26¢) are all readily verified. Verification of
(26d) follows making use of the fact that §; = 1 due to (21). O

Proposition 4.2. (Step g + 1 assuming the step q) Under the hypothesis of Theorem 2.1,
there exists a choice of parameters ay, 3, and b (see (34)) such that for all (vq,I%q) that
solves (25) and satisfies Hypothesis 4.1, there exists (V41 ,J%qH) that solves (25) and satis-
fies Hypothesis 4.1 at level g + 1 such that for all t € [ty1,T]

=

1
[Vg+1 — Vq”C/,,,,,]LE < L(S;He . 27

Next, we prove Theorem 2.1 assuming Proposition 4.2.
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Proof of Theorem 2.1 assuming Proposition 4.2. We can start from (v, Ry) = (0,0)in Propo-
sition 4.1 and then rely on Proposition 4.2 to obtain (v, R,) for all g € Ny that solves (25)
and satisfies Hypothesis 4.1. By interpolation and that b%*! > b(q + 1) for all b € N such

that b > 2, for all 8’ € (0, fTﬁ) and allr € [—%, T], we can compute

) PN ,
Z”Vqﬂ - V‘I”C([—%,t];Hf’) < Z L 6[1_;1 (||Vq+l||c([7%,T];C'}() + ”Vq”c([f%,r];c}r))ﬁ
q>0 B >0

(26b) 21)
< L

’ -3 i 7 ( - —R
AN S 2 (B S LR (28)
q>0

Identical computations show

1-p B0
Z”V'I“‘Vq”ct*’([—%,r];L%@L A
q=0

Therefore, we obtain the limit of a Cauchy sequence v £ limy_« v, € C([-3, T1; H* (T*)N

CP ([-1, T L3(T?)) which implies the regularity in (4). Due to ||1céq||c,,q I (220) g—yﬁéqﬂe(t) -
0 as g — oo, it follows that v is a weak solution of (1). On the other hand, taking g — oo
in (26d) leads to (5).

Finally, the argument concerning non-uniqueness is as follows. If we start with two
different energies e; and e, that satisfy (3) and e; = e; on [0, ¢ A T] for some ¢ > 0, then
the corresponding perturbations {w:] +1}gen, and {szz +11gen, corresponding respectively to e;
and e, are identical on [0, 7 A T'] (see (62)). Thus, we can start with identical initial choices
(v('),f?(')) = (vg,f?%) = (0, 0) according to Proposition 4.1 and see that {v}},en, and {v;}ye 1,
corresponding to e; and e, are also identical on [0, A T]. As a result, the constructed
limiting solutions vi,v, € C([-3,T1; H¥ (T%) n C# (-1, T1; L*(T?)) corresponding re-
spectively to e; and e, are identical on [0,7 A T]. This completes the proof of Theorem
2.1. O

4.2. Proof of Proposition 4.2. We now prove Proposition 4.2 which is the heart of the
matter.

Remark 4.1. The very first idea of our proof, which ended up not working immediately,
is to consider 0,v, as a linear force on the Navier-Stokes equations. In a typical convex
integration scheme, the key ingredient consists of the construction of building blocks and
that is based on the nonlinear term, especially the most technical oscillation term therein
(see (98)). Because the Navier-Stokes equations and the hyperbolic Navier-Stokes equa-
tions (1) share the same main nonlinear term (v - V)v (pressure, the other nonlinear term,
is readily handled), this implies that their building blocks would be the same. Once the
building blocks are determined, a linear force such as the diffusion term (—=A)"v, would
appear only in the last step of estimating the Reynolds stress. Hence, our initial idea was
to treat 0,v, similarly to (=A)"v,.

The reason why this ended up not working in the 3D case is because the term 0V, is
too singular. We can easily get a glimpse of why this is the case by considering a typical
convex integration scheme for the Euler equations, for which its perturbation can be

We)(1, %) = age (1, x)e SO0 Bettanx,

where ay is a certain amplitude function, Bg is a certain C-valued vector, and ®; is a
solution to a certain transport equation (see [9, Section 5.5.4 on p. 208] for details). We
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can see that if 0y falls on such a perturbation, then we get /13 +1 Jrom chain rule which is
too large and we won’t be able to close its estimate.

The next idea would then be to turn to intermittency approach using Mikado flows.
Application of intermittency via Mikado flows has been done for the 3D Navier-Stokes
equations in [5]; however, its choice of parameters were

2m—1

13-20m 1-20m g+l ll 25-20m

r”é/lw, 2 N ,llé——/l2ml/l 24 (29)

g+l ° ry q+1 g+l

under the constraints of

ro< < landr’ < A, (30)
13201

(see [5, Equation (2.23) on p. 3344]). This choice of rj = /lq +1fm and the constraint

of ry < 1 immediately requires m > % As explained on [5, pp. 3343-3344], these

parameters are optimized for their specific case; e.g. in [5], considering /12’”1 from the

diffusive term (—A)" and le(p ) that gives

L q+]l‘

, they optimized by matching
2m—1r
. q+1 I .
and equivalently y = ——— as in (29).
r

ul i

ridgeipt

2m  _
/lq+l -

To fit to our case, we would need to choose a different choice of parameters. Upon this
attempt, we listed all the necessary conditions on all parameters but unfortunately ended
up with an empty range of the parameters.

Then, we realized that simply considering 0,/v, as a force is not a good idea. The reason

(P) () w® )

gq+1 + Wq+1 q+l

is that the anti-divergence operator R is applied on 0,W4i1 = O0y(W

(P) (c)

g+1 + Wq+l

in the IIRqHIICth -estimate (see (62)). Typically, w

(because w; )

fff : fle ; 1 is not of such a form and this loss of one derivative was the main

reason why our prevzous attempts failed. Our novel approach is to consider an integral of
the usual wg) in the convex integration scheme for the Navier-Stokes equations; this way,

is of some form of a curl

is the divergence corrector; see (66)) so that R can reduce a derivative from

(1)

+w however, w,

1
our 6,tw | Jor the hyperbolic Navier-Stokes equations can play the role of 6,w() + Jor
the Navzer Stokes equations (see (63c)), and fortunately this modification did not destroy
any key identity (a time integral on w;p )1 or ngl would destroy a necessary identity such
as (66)). Finally, even with this new approach, after completing all the estimates, we
ended up with an empty range of parameters in the 3D case. Yet, upon exploring different
spatial dimensions, we finally saw a non-trivial range of parameters in the 2D case; upon
optimizing to gain the largest interval for m, we were able to conclude Theorem 2.1 with
m € (0, %). We describe the difficulty in the 3D case furthermore in Remark 4.5.

Lastly, let us comment that it is tempting to integrate in time all of wy,1, the perturbation

@ The problem then would be that

g+1°
.1 would not be able to cancel out Rl as

for the Navier-Stokes equations, rather than just w

w(p)1 would be of an integral form and w;’fl ® W(l)

needed (see (181)).
We start the proof of Proposition 4.2 with a remark.

Remark 4.2. As we mentioned already, in convex integration scheme, the diffusive term
does not play any role until the very end. To be specific, verifying that I%q+1 satisfies (26¢) at
level g + 1 requires ||1f’€qu1||C/_q+1 < 36—766q+3e(t) and in particular, due to (97a), we will need
to estimate IIR(—A)”’quIICIW o < Og+3e(t) for some p* € (1,2). Therefore, the proof
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becomes more difficult as m becomes larger; in fact, in case m € (0, %], we can bound
IR(=A)"Wgr1 ”Ci,q-v-l w < [Iwg+ ||Cz,q+l 80 that bounding by any small constant multiple of
Og+3€(t) is straightforward (see e.g. [50, Equation (118)]) . Therefore, we present the proof
of Proposition 4.2 that applies for m € (%, %), considering that the case m € (0, %] can be
obtained via a straightforward modification of the case m € (%, %).

Choice of parameters There are many parameters, namely
T, U, o Laandl = l(@) < 1,b € Nsuch that b > 2, and p* € (1,2), 3D

where [ is a mollifier parameter, to appear in (36). We need to optimize over r, u, and o1
where the upper bound of m < % appears, and then find the corresponding appropriate
range for the rest of the parameters. The selection of these parameters is crucial and detail
will be explained in the Appendices A-B for completeness. The heuristic outline of how
we determined these parameters is as follows.

(1) Considering @ and [ to be arbitrarily small, b to be large, and p* € (1,2) to be
arbitrarily close to 1, we can complete the proof entirely leaving free the specific
choices of r, u, and o~ 1. As we will see, the diffusive term will give us a condition

of /lf]’fl’ I <« r (see (104)) while the term involving the second-order derivative in

_1
time will require u <« /1q K ol (see (124)). Optimizing together with (12) leads
us to our choices of

r:/lq+1 s ,u=/1q+1, o =/1qul (32)
(see Appendix A for details.) It can be readily verified that such r,u, and 0!
satisfy

l<r<u<o' <A

from (12) with “A” = A,,1 as needed. We postpone the verification of the other
conditions from (12) to Remark 4.3.

(2) Once we fix such r, u, and o~ !, we can plug them in to our estimates and determine
the necessary choices of @ and /. The following choices turned out to be sufficient:

_3 2-3
12 A,7,4,> where a = 112m

q+1 (33)
(see Appendix B for details).

(3) Once such r, u,07!, @, and I(@) have been fixed, we can take the maximum among
all the lower bounds on b from (71), (88), (93), (103), (106), (115), (120), (127),
(133), (139), and (147), and choose any b € N that satisfies

(42)(56)
b . 34
” 2 3m (34
(4) Atlast, with r, u, o, a, (@), and b fixed, we choose
. 8(112)(11m = 5)
P e\ 10795m = 5106 (33)

to accommodate the necessary estimates (107), (116), (121), (128), (134), (140),

and (148); the fact that 1 < % can be verified using the hypothesis that
me (3.3
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Remark 4.3. The other conditions of Ay, Ag+10 € SN in (12) can be verified by straight-
Sforward modifications of (32) as follows. Let us point out that our choices of r,u, and
o lin 32) satisfy 1 < r < u < o' < A simply by their exponents on d’; i.e.,

0 < @ < 8'”7—_3 < 37'” < 1 (and additionally (177)). By denseness of the rationals

in the reals, we can easily choose a rational Z—l for di,d, € N that is arbitrarily close to

@ and another rational Z—j for ds,d, € N that is arbitrarily close to %" so that the re-

quired relationship such as Ag.1, Age10 € SN in (12) or (177) continue to hold even when
d &}

r is replaced by /l:;zl and o is replaced by /lgr Then we can choose b with the lower

i, d
bound of (34) to be a natural number that is a multiple of drdy so that r = a @ € Nand

+1 _‘LB
Agr10 = &R e N too; we refer to the same explanation after [49, Equation (68)].

The process of finding other parameters I, a, b and p* can be executed much more clearly
when the dependence on m is explicit as in (32). Thus, we will keep the r,u, and o~ in
(32), choose all other parameters, complete the proof, and afterwards, informally replace
Um=5 and 37’" with an arbitrarily close rationals and choose b accordingly to satisfy the

7
conditions of r, 14410 € SN in (12) to conclude this proof of Proposition 4.2.

Throughout the rest of the proof, if not described otherwise, we will always assume that
t € [ty+1, T1. We let {pc}es0 and {@e}e-0 respectively be families of standard mollifiers on R?
and R with mass one where the latter has compact support in (0, d,+1) and mollify (v, I%q)
in space-time to obtain over [#.1, T]

. , 1 1 /.
WE s s Rix Ry, whee 902 56(3), 60 = 10(;). G6)

It follows that (v,, I°€1) satisfies over [tg41,T]

Buvi + Opvy + (=A™ + div(v; ® v)) + Vi, = div(R; + Reom) (37)
where

Reom 2 vi®V; — (vg®Vy) *x ¢1 %, @1, (38a)
T2 o= P = gl . g1 ) (380)

We obtain basic estimates for the mollified velocity as follows: for any N > 1,

(26b) . |
W= Vglle, iz S g = Villeyn S Mvller < 12327, (392)
(26a) )
Wille,,. 2 < Vglley,. iz < L[l + > 63]@2, (39b)
1<r<q

where we used Young’s inequality for convolution and the fact that the ¢ and  have mass
one. Now we define for €, > 0 from the Lemma 3.1,

plt. ) 26, 2 + IRt 0)P + yi(0), (40a)

1
70 £ (yg 1) (@), where y,() £ 55511 = 8412) = IOl ). (40b)

By (26d), we see that

3
g2, < e(t)(l - Z‘S‘f“) forall 7 € [1,, T]. (41)
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On the other hand, considering (23) and that b > 2 due to (34) immediately allows us to
verify that

3
6q+2 < Zéq+l~ (42)
Considering (41) and (42) together shows that
Ye2 0. 43)
As ¢; > 0, this implies by definition of y; from (40b) that
72 0. (44)
We note two immediate consequences:
R R;| (40 R (44) R
‘Id— (Id——’) _ (B} (40) ! < |l——=——|<¢. (45
PP 1B+ IR+, 1 \P +IRP
p(t,x) > max{e, 'L, €, ' |R,(t, )|, yi()}. (45b)
Proposition 4.3. The function p defined in (40a) satisfies
_ I, 2,5
lollc,,..i0 < &' (l(27r) 4 ||R,||CLM) + i 2508 (46a)
Iollc,.,.. 1764428 (46b)
lolley < 7N 15,06 ¥ N eN. (46¢)

1x,g+1

Proof of Proposition 4.3. First, let us observe that
42) (3 (26d) 5 (26d) 5 B
0 < Zéqu —Ografet) < el =6442) = lvg@ll [ < Zéqne- 47
This allows us to estimate for all p € [1, ),

“0n)
lolle,,..r <&l +|Rl|”qq+1u:+”7’q”CLq+1LZ

(40b)(47) 2 e 2,5
< g (l(27r)ﬂ + ||Rl||CW|L¢) + Q) 26, (48)
which is (46a). Next, forany N > 0 and 7 € [#,.1, T], we have due to W3(T?) — L=(T?),
. . (26c) .~
WRilex,, < D WD Rille, w5 160, (49)
0<n+|a|<N

We apply (49) and straightforward estimates of max{/, 5,41} < l‘36q+2 for 8 > O sufficiently
small and a, sufficiently large to deduce (46b). Finally, to prove (46¢), we first compute
by [6, Equation (130)],

VB + IR

Using (50) and a straightforward estimate of /™Y, < [N +16q+2, we compute

(40a)(50)
llollcy S

(40b)(47)
s

(49)
< NS e + TN DA, 00N < 179V 6,408, (50)

cN

tx,g+1

“SN+ls = . -N
77608 + T gl

NS e + TN e < VS 0. (51)
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This completes the proof of Proposition 4.3. O

Next, we define the amplitude function

R/, x)) 52)

. o 1 1
ag(t, X) = agg+1(8, %) = Ep(l, X)2y; (Id— ot %)

where 7y Id - 20 ¢ well-defined due to (45a). For convenience, let us compute the
4 (%)

following identities making use of b,®b_, = {* ® {* — 1 1d whereas b, ® b_; = {* ® {*,
(8), as well as £, n2dx = 1 from (14b):

D anay) JC W, ® Wy(t)dx = —Ri(t) + p(t) 1d, (53a)
L 0eN T

D arnay(@) JC W, &Wy(H)dx = —R(1) + p(t){l - = Z ( d —R’—(t)) ]Id (53b)
£9eA T (eA @

(cf. [8, Equation (3.15)], [49, Equation 83)], and [38, Equation (5.4)]).

Proposition 4.4. The function a; defined in (52) satisfies
1+ oM
laclc, .,z < Zéqznez Al (542)

1

llaglic, . < 26’ e, (54b)

1=

lacliey < l‘ﬁN—85;+2é VNeN (54c)

tx,g+1
where M is the constant from (9).

q+1€

Proof of Proposition 4.4. Along with a straightforward estimate of / <
0 sufficiently small, we verify (54a) as follows:

by taking 5 >

(52)(45a) 1
ladlc, ..o < 3 ||P|| Ll yellees., aay
1

1, NS (MO M

SE [ey (5q+|e7r +486q+|e)+§6q+1e] (CA) 4_16‘;“6 m (55)
Next, we estimate
(52)(45a) 1 (46b) 5 1

laclic, s lolle, Wvellesgaay s 726,82,

which verifies (54b).
Finally, to verify (54c) for N € N, we compute relying on [6, Equation (130)], (45b),
and (46c) forany k € {0,1,...,N—r}andr € {0,1,...,N},

This leads to, for any r € {0, 1, ..., N},

. < l_z[l_S(N_r_k)+16q+2é] + l_(N_r_k+1)[1_46q+zé]N_r_k < l_S(N_r_k)_16q+2é. (56)
CN-r-

1x,q+1

(49l<(56) l*6(Nfr)75' (57)
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We can furthermore compute for all r € {0, 1, ..., N},
s Ner (260)
D RN < (RN, ) < ™7, (582)
N-r
R (45a) || 1N (45b)
il 2L [0, (58b)
p Cz,x,q+l p Cr.x,q+l

N-r

(46¢c) , e
Dol < (0g02) < 10, (58¢)

Combining (57) and (58), we can deduce by another application of [6, Equation (130)], for
any r € {0, 1,...,N},

R R
ve (Id——Z) ] e I e [ o
p C:{erﬂ p CNAVJ,] N
N-r
3 45b)(57)(58) .
+ = IIDmpIIC,W, < [ON=I=6 1 (59)
Cr,x,q+l

Finally, we can compute by another application of [6, Equation (130)], forall » € {0, 1,..., N},
(46 )

1 b) —r r —6r % 5
0¥, = Hlolley,, + 17l 67 e (60)
At last, we are ready to conclude that for all N € N,
fel (46b)(59)(60)(45a) 1
llacliex lep ey, (1ve (Id—;) o < 17oN= 862 ez, (61)
tx,g+l1

]

Next, we recall ¥, i, Wy, and p respectively from (10), (13), (15), and (12), and define
the perturbation

Wl = w;pj] + w;i)l + w;ﬁ)rl and vy £ v+ wyi (62)
where
Wl £ a W, (63a)
leA
w2V amoe, (63b)
leN
!
w0 2! [Z - Z]PP#) (@;Pomz{)ds. (63c)
[eAY  leA- Ig+1

Remark 4.4. We come back to continue from Remark 2.2 in explaining why we cannot
follow the proof of [38, Corollary 1.2] and deduce the existence of a non-trivial weak
solution to the hyperbolic Navier-Stokes equations with compact support in time. Luo and
Qu defines

N(S)={r€[0,T]: thereexists s € S such that |t — s| < €}
in [38, Equation (2.21)] and included an inductive hypothesis of

suppVg+1 U Supptkq+1 c N64+] (suppvq U Supptjéq) (64)
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in [38, Equation (2.17)]. Given any smooth divergence-free vector field u(t, x) that is mean-
zero and € > 0, the authors completed the inductive step g = 0 with vy = u. As vy — vin
C([0, T1; L*(T?)) and ﬁq — 0in C([0,T1; L'(T?)) and

a-b2B

;5q = qz;/l;zﬁ < ;a_bzﬁ" =T <€

for B > 0O sufficiently small so that

supp,v C Ne(supp,vo) = Ne(supp,u),
taking u = 0 allowed them to deduce a solution with the compact temporal support. Now,
in order to verify (64) at level g+ 1, Luo and Qu defines a temporal cut-off function ®, as a
smooth function such that supp®,(t) C Nl(supptl(é}“) where R}“ = I°€l + Reom in [38, Equation

1 , 5
(5.1)] and then a; = A%5;+1y§(A’16;i1R7(t, X))®(?) so that supp,a; C Ni(supp,R}) for all
L € A (see [38, Equation (5.2)] for details) which in turn leads to

SUPPWar1 C Ugzeasupp,a; < Ni(supp,R)); (65)

here, the first inclusion crucially relies on their choice of

WE]tJ)rl = Iu_l [Z — Z)PP#(KQ?P#OT]?()

JeAt  leA™

In contrast, our choice of wf;il in (63c) does not lead to (65) because supp; ft ;] (a?]l%w?{ )ds ¢
UreaSUpp,ay.

We have the identity of

(p)

PR ()

(W g+1

D aclt,0met, (). (66)

leA

(11a)(15) v*(

It follows that wg, is divergence-free and mean-zero. By (13) 7, is (T//lq+10')2-periodic,
while by (10)-(11) b is (T/A4+1)*-periodic. It follows that W, in (15) is (T/g+10)?-
periodic. Thus, we can apply Lemma 3.4 to deduce

) (63)(19) N
q+1||cr,q+lL% S Z”adlcr,qﬂl‘%”W{”Cr,q-v-lLE + C(/lq+10-) 8 ”a{”Cr,qa—lC}”W{”Cr,qﬂlj
LeA
(17a)(54a)(54c¢) A Moy b ooane T 6
< | |E6"+]e +C/lq o 6q ez, 67)
Now the process of determining the optimal choices of parameters based on the minimum
constraints from (12) and (31) starts here. First, for the subsequent estimates (73) and

(77), we need to bound this ||W;Ij_)1

[lw

1
llc,,,,2 by a constant multiple of 6; HZ’%. We notice that

1 < Ag4+10 from (12) making /l;flo’z < 1, and therefore, as long as / satisfies

1
Ao s, (68)

we can conclude from (67) that
(p) i
”Wq+l”Cr,q+1L§ S 6;+1e

DI

(69)

without imposing any condition on the precise choice of 0! because 6,42 < J441. Our
choices of r,u, and o' in (32) were determined in Appendix A after collecting all the



18 JIAHONG WU AND KAZUO YAMAZAKI

conditions similarly. Second, in order to determine / after choosing r, u, and o~ 'in (32),
let us observe that due to (32), (68) is implied by

2-3m

-1 36
I < /1q+1 .

(70)

Again, our choice of / in (33) was determined in Appendix B after collection all such
conditions similarly. Third, in order to determine b after choosing / in (33), let us observe
_3
that applying our choice of / = /l;jfl 4,° witha = % from (33), the estimate (70) holds
if
168
2-3m

thus, we incorporate this condition to our choice of b in (34) to claim (69).

Next, we can show that the functions w;’?l, W(q?l’ and w(th)rl defined in (63) satisfies for
all pe (1,00) and 1 € [t441, T,

< b; 71

(17a)(54c) 1,

(63) 3 g2l
WP, < sup Yl lWes)ly s 85,00 e, (72a)

S€[tg41,1] CeA

; (63)
i,z < sup Y IVH@n) @il

s€[tg41,1] Zen
(11b)(17b)(54) 1y
< S, TR + o], (72b)
63) _
W N,z < H,u 'O = D PP nt)) ) (72¢)
{EA* {EA’ Cr,q+l Lx
B (17b)(54c) o2
S0 Y a2 S Sl e (724)
{EA tg+14x
It follows from (62), (69) and (72b)-(72d) that
3 . -1 3 —ll—3 l—é -1 1—3 S
||Wq+1||c,.q+]L} s 6q+1e‘ +/lq+16q+262 2T + Agrror] + u S0l re. (73)

For subsequent estimates in (78) and (79), we need to bound this by a constant multiple of
1 1

5; €2 . In fact, for our subsequent verification of the inductive hypothesis (26d) (precisely

(173)), it would be convenient that we dominate all these terms by ¢4+ so that

© ® 3
||Wq+] ||CI,1]+]L,% + ”Wq+1 ”Cr,qHLi < 6’1+2 < 6;4—2 (74)

for ay sufficiently large and 5 > O sufficiently small, and therefore we shall impose
<A, Dor<1, p'Pr<, (75)

to deduce for 8 > 0 sufficiently small

N N VI o133 - 3
A6 o1 < Sga, 81,83 1720r K 6ga, W04l < 6gua,  (76)

respectively. In the last inequality of (76), we used the fact that 6, < 1 forall g > 1. We
note that none of the conditions in (75) imposes any constraint on our choice of o, r, or
', because or < 1 and u~'r < 1 from (12). In order to determine [ after r,y, and 0!
from (32) are chosen in Appendix A after collecting all their constraints, we see that the
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first condition ™% < 1,4 in (75) is implied by I”! < /l +1 " from (70) while we plug in
(32) to the second and third conditions of (75) to see that they are implied by

3 mo10 3 3m-2
ZZ/qu1 <1, I /l 7 <1

which are both implied by (70), respectively. Therefore, applying (76) to (73) we obtain
by choosing the universal constant L > 1,

I\)"—‘

IWgeill,,. 2 < 4L62 er. 77

It now follows that
(62) (39b)(77) I
Wgatlle, e < Wille,e + wgalle,z < L|1+ > &ilez  (78)
1<r<g+1

which verifies (26a) at level g + 1. We can also verify (27) as for all # € [t,,1,T], we can
compute

Vg1 () = vg@llz2 <lwger@Dllz2 + [vi(@) = vg(@ll2

(77)(39a)3 FR 5 .
I 62 er +Clyer < LcS2 e? (79)
assuming that
1, < 1 (80)
and taking 8 > 0 sufficiently small after the b is already fixed so that Cl/lq < iL&; .- The
estimate (80) can be satisfied by our choice of / = /l @ /l i for a = 21 132’” from (33) if
168
<0,
2-3m

which is same as (71), to claim (80) and therefore (79). Next, we estimate ||w(p )

||c1
+1 tLx,q+1
starting from (63a); for simplicity we will not keep track of bound by e because suqch
C; 4+1-norm estimates are for the purpose of verifying (26b) which is independent of e

anyway. We compute

W ler < D lladley IWells, |+ llaglls
LeA

(54)(54b)(172) 1 . L T
S Gl D gt + Agur oy S 62,17 gl + ol

IWelle: (81)

1x,g+1 tx,g+1

where we assumed that [~3 < Ag+1 Which follows from < Ag41 from (75).
Next, we compute from (63)

wihller < Y llaclle,,. c2limellc, e Welic, + llaclc, .. cillnellc,,.,cilwele, (82)
leA

+llaclle,,..cilngllc,..cWeller + llaglle, .. c.lnllc,,.. c2Welle,
+laglle, e lmelic,,. ciléeller +llaglicr  cilinglle,,..c.l¥elie.
clWelle, + llagllicr

g+l

clnclle,,..cilvelie, +llaclle, cllneller  cillvelle,

g+l

+llallc,,..cilielcy
34)(17b)(1 lb) 1
S

_3
ol 20 /lqil + I %P+ I % v 2/1q+10'2r3 +1 2/1,,+10'r2

+1 %0 u+10 2/1q+10' r ,u].
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For a subsequent estimate in (90), we would like to bound this by a constant multiple of

6§+21‘%/lq+10'r2[1 + oru]. In order to do so, we observe that r < o' from (12) so that
ro < 1 and consequently
o’ < l_l4r, l_%/lq+10'2r3 < l_%/lq+10'r2.
Concerning rest of the terms, because u < 4441 from (12), we only have to impose 7 <
Ag+1, Or more strongly
73 < Aguy (83)

to assure \

Moty < l_ixquO'rz. (84)
Finally, it follows from (70) that we assumed already that

6(%)/171

—-14
q+1 q+1 <l r.

ragl, < 17'%ra
Applying such estimates already gives us

1
wililler S 62,0

tx,g+l1

3 _3
Y+ l_i/quO'r2 +1 2/lq+10'2r3;1].

Moreover, because 1 < r and Ag.i00 > 1 from (12), it does not cost any additional
constraint on o, r, or u~! to ask for

I3 < Ao, (85)

which would imply 747 <« l‘%/lqﬂa'rz and therefore

© 3 -3 2
[l <02, g0 [1 + orpl. (86)

“W‘I"'l Lx,g+l q+2

Now, in order to determine / after r, u, and o' in (32) are already selected, we observe
that plugging (32) into (83) and (85) leads to
m+4

rE<a)y. (87)

_3
In order to determine the condition on b after / in (33) is chosen, we plugin/ = 1°% 4,

qg+1779

with @ = 222 from (33) to see that (87) is satisfied if
(75)(56)
91m + 14

we incorporate this condition upon choosing b in (34) to claim (87) and hence (86).
Finally, we give up /1;+1 for € > 0 arbitrarily small to bound P in C, and compute

< b; (88)

e <7250 3 ladle,llacle,, iR, ., +lladl, Indle,.lndlc, . ct]
leA

(54¢)(17b) , (85)

S A G PR+ Agaor] S T A S P (89)

where the last inequality used an assumption that
25
7?7 < Agyior

and we notice that this is same as (85). Thus, we conclude

(P) (©) (1)
||Vq+1 Ilczl,x,q+l < ”Vq”Czl.x,qH + ||Wq+1 Ilczl,x,q+l + ”W‘]Jrl ”C/],,x.q+l + ”Wqul ||C11.x,q+l

(26b)(86)(81)(89) ,
<

1 3
/lq + (5;+zl7 Age1r[1 + oru]
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1
2
+6qu
<67 Al + o] + 1 A6, o P (90)
pS g+1 HI+ [ AL 10g+2

L gL+ ol + 17 A4l

where the last inequality used the fact that or < 1 due to (12).

We continue from (90) to verify (26b) at level g + 1 using our choices of r, u, and 0!
in (32); some experience with convex integration suggests that this should not depend on
the choice of r,u, and 0!, informally because the upper bound of /13 . in (26b) at level
q + 1 is so large that this verification is expected to not create any significant difficulties.
We compute for any € > 0,

(90)(32) 1 3 Lims2 17m-16
52

29m-10

-3 377 1 €77 -3
||Vq+1 Ilczl,x,qﬂ < quzl z/qurl [1 + /]'qul ] + /lq+1 6q+21
13 lme2 e 29m=10 3
2 7 14 3
séq+2l z/lq+1 + /lq+1 Oge2l™, on
. 1. .
which can be further bounded by /12 €2 if [ satisfies
3 197711»1 3 52—14219m e
M < /lq+1 and [7° < /lq+1 . 92)

_3
Applying our choice of [ = /l;fl/lq2 with @ = zl—% from (33), and choosing e.g. € = {;

shows that (92) holds if
3(1176)
2870 — 1617m
and we incorporate this condition to our choice of b in (34) to claim that (26b) at level g + 1
was verified.
Lastly, for p € (1, c0) we compute the W, -norms of the perturbation for the purpose
of subsequent estimates (100). First, we estimate using (66)

(p) (c) ” .
g+1 q+11Cr 441 WX"’

93)

W™ +w

< D lad, . calimelle,,. olelle, + Naglc,.. e, weelWele, + llaglle, . Imellc,olllcs
leA

GHATLY(ATL) 1 e Lo N R N
< (OO0 TP AL + (62,1 Qgrar)r T AL + (82,17 T g
3 -3 23-2  1-2 R S
S 02l g T T A S 62,0 T A (94)

where in the second to last inequality we assumed that l‘%/lq‘ll < Ag+1 which follows from
7 < Ag+1 that already appeared before (83), while the last inequality used the fact that
r < o~ due to (12) so that 02r° "7 = (or)2r' ™7 < r'"7. Second, we estimate

(63)
(1) -1 2 2
”Wq"'l”Cf.qHW;W S H Z“aél”C’*q*IC*'”a{“CLqHC}“ngHCLqﬂLip + ”aé,”Cr,qﬂCx”n.f”Cz‘qﬂLip”n{”Cu]HW;zp
leA
(54¢)(17b)
S

16geal P + Agaror] S 0400l P Agiorh (95)

where the last inequality relied on the previous assumption (85).
We now verify (26c) at level g + 1. We write using (25), (62), and (37),

divRy1 — Vg = (=A) "Wy + 3w + w;‘zl f;il

e +w

)+ div(v; ® Wotl + W41 ® V)

divRiin 1+ V7in 1
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+ WP+ W )+d1v((w(c) ) ® Wyrt + WP & W 4 w® )

q+1 q+1 q+1 q+l q+l q+l
divR)in 2 divR or+Veor
+ d1v(w(p) ® w;’jr)l +R)+ 8,,w | +diVReom — V73 (96)

divRosc +Vose
i.e.,

diVRq+l - V71'q+1 = diV(Rlin 1+ Rlin 2+ Rcorr + Rosc + Rcom) - V(7'l'lin 1+ Teorr + Mose + ﬂl)

where
Riin 1 2R(=A)" W1 + RO + i) 4wl )+ vidwgar + wan v, (97a)
Min1 =V Wasls (97b)
Rin2 2R, W) +wiS))), (97¢)
Reor =(wf;+>1 + wq+1)®wq+1 + w<”> ®(w§;jl qﬂ) (97d)
e 231005, + W) g + 2, O, 401 ©7¢)

Concerning R, that is arguably the most technical, we can write

Rosc éR[ D Eor+ 5 Z D Eronk+ A +A3], (98a)

TN (ﬂeAk=134
1 2
Mose é§|w<q'fl|2 +p[l S Zy[ (Id——) ] (98b)
{e/\
1
+5 Z PyolagasP ) (U:?]ﬂ/lqul/’:l!/ﬂ))lgm#o
£0eA
1
+ ZZafP AW,,( A [Z Z]Pﬂ)at(a P0n2d)
leA JeNt  (eA™

where &; 9.1 can be found in (183a), ;5,1 in (188a), and A, and A3 are defined in (192b)-
(192c). We leave the detailed derivation of (98) in Appendix C for completeness. Consid-
ering (96) we define

Tg+1 £ /T = Min 1 = Meor — Mosc and Rq+1 = Rjin1 + Rjin2 + Reor + Rose + Reom. (99)

Proposition 4.5. R, | defined in (97a) satisfies for ay sufficiently large and B > 0 suffi-
ciently small
1Rzin l”C i < 5,,4.36(1‘)

Proof of Proposition 4.5. First, we estimate the diffusive term, recalling the m € (%, %) due
to Remark 4.2:

”R(_A)mW‘IHHCf.qHL;’* < ||wq+1||2 2le] “VW‘]HH?In;:L’Z* (100)
(72)(94)(95)
S [52+zl (14 Al T or) +u S0l 2= 2-2m

><[52 3P Ay + 7 6gunl P Agero? ™7 P

[6q+2l T + gl N
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(101)

1 3 2 1 3
3 -3 1-= 2m—1 2 2m 1
X [6;+21 2T dger T 6q+21 /lq+10'r ” 7] < 6;+zl iy /l

where we used that or < 1 due to (12), and /l;i] "% < 1 due to (83) in the second to last
inequality and also assumed

1 3 1 3
P s 1, e, e s (101)

in the last inequality, none of which implies condition on y, o, or r because u‘lr <1
and ro < 1 due to (12) so that u~'r>c < 1. Now, after , u, and o~ have been selected

in (32), in order to determine /, let us observe that due to (32), (101) is equivalent to
3m-2 1

1, K 62 a > < 1 which is implied by (70), and

<. (102)

After r,u, and o~ in (32) and / with @ in (33) have been selected, we see that the

estimate in (102) can be satisfied by our choice of I = 4?4, with @ = 223m from (33) if

T2
9(56)
58 - 3m
holds, as well as by taking 8 € (0, 1) sufficiently small after b in (34) is fixed; we incorpo-
rate this condition to our choice of b in (34) to claim (102) and hence (100).
Now that we have claimed (100), considering rl_/%*/liﬁr"]" in (100) for p* > 1 arbitrarily
close, we now impose

(103)

T < (104)

In fact, let us make a stronger assumption that

FE <

or equivalently due to (32)

3m=2

I 7/1 o<1 (105)

_3
The estimate (105) can be seen to be satisfied by our choice of | = ¢ /l 2 where

a = 32 from (33) if

g+1

9(112) -
58(2 — 3m) ’
and we incorporate this condition to our choice of » in (34) to claim (105).
At last, with all the parameters chosen thus far, let us make our argument continuing
from (100) formal by selecting the appropriate p* € (1,2) in (35) and making use of the
fact that e(f) > e > 4 due to (3): for g sufficiently large and 8 > O sufficiently small

(106)

(100)(33)(32) / 23w 3\3 [ 1ws\l-7
2m-1
IRCA wlle, 5 (0 Aa) (der ) 7
(34) IS 2z4+3(7222m)+9( 22 Srnﬁ) 1m=5 _ (1lm=5) 2 11063;;55286_(11111—5)2
42)(5! 7 7 * 1 Tp*
< q+1 @260 " ox /lqﬂ( ) T K bgaze(t) 107)
where the last inequality is because “0165(”212_ 5)286 _a 1'7’;5)2 < Oifand only if p* < %
and this holds due to our choice from p* in (35).
Second, we estimate
) ! t
IR, w2y + Wil + Wi Dllg, o < IROWE, +wilDllg, o +IROWL I, - (108)
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We can compute separately

(66)
(p) (c)
RO, + WDl “ (ZAuafagnc,,x,[,ﬂ||ng||cl,q+,L§»«||w;||cx
4S]
GHAYATO) o+ .
+llaglc, . 0mellc,  p Wellc, < 82,r I ALY + opr], (1092)

©3)
RO e, % T (Y = D PPa@PiZOl,
LeAT  [eA™ Y

(72d)
PR e (109b)

Applying (109) to (108) gives us

1 3
IR, + W +w® S8 IR T o)+ 6,0l L (110)

g1 T Wi q+1)”cr,q+lu’*

1
Concerning the first term 6; - S

1 paying attention to only the dominant term
p Al

for p* > 1 arbitrarily close, we see that the first term does not impose any

g+1
condltlon on r,u, or o ! because 1 <« rdg41 due to (12). Similarly, for the second term
6; ol l%*l‘%o;ur, rl_ﬂl*(o;ur) < 1 is expected to hold for p* > 1 arbitrarily close to 1 due

to u < o~ ! from (12). Finally, for the third term y’16q+2l’3r27ﬁ% ,wecanrely onu™! <1
due to (12). Therefore, bounding (110) by a small constant multiple of 6,43e() does not
impose any additional conditions on our choice of 7, i, and o'

That being said, in order to see the conditions on /, let us continue to estimate from
(110) using (32) as follows:

(P t
IR, (wyy + widy + Wi Dlle, o

q+1 q+1
(110)(32) (Hm=3yp- 2 17m-16 (llm s)(z_i)
7 P* —14 -1 14 7 3
< /lq+1 [T, + /1 ]+/lqul I~ Aq+1

(llm Sy1-2) 3 lm-l6 3-8m (11';' s)(2,%)

</lq+1 "l /lq+‘f +/lq+l I /1q+l ! 111)
where in the last inequality we assumed that
17m=2

I3 /lqj (112)

17m-16
so that l‘14/l;1 < l"’/l ‘4 . Thus, assuming p* € (1,2) to be taken is arbitrarily close to

1, we see the need to 1mpose

(l]m 5)( l) 3 17m-16 3-8m _3
Ayl [ /lq+]14 <landd / I <1 (113)
or equivalently
3 6+5m 8m-3
7 < A,5 and " < .0 (114)

respectively.
After our choices of r,u, and o' in (32) and thereafter / and « in (33) have been
determined, in order to find the conditions on b, we observe that the estimates (112) and

_3
(114) can be satisfied by our choice of [ = /l;jfl A,° where a = 223m from (33) if

112
21(200)

=) 11
347m g2 - P (113)
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and we incorporate this condition to our choice of b in (34) to claim (112) and (114).

We now use all our parameters chosen and make these arguments precise, continuing
from (111) by formally selecting the appropriate p* € (1,2) from (35), making use of the
fact that e(f) > e > 4: for ay sufficiently large and 8 > O sufficiently small

(p) w© (1)
||R(9[(Wq+1 q+1 + Wq+1)||cz,q+1L.€*

2 )2 14 7 112 TP
g1 e A A ) Ay A (A0 A ) A T A

(111)(33)(32)/1(@)/1_(@)%( 2-3m 1)% /ll7m—I6 3= 8m( 2-3m z) /1(@)2 —(Um=5y 2

(34) 1im=5 (Il/n 5 2 3(2“3;»)1) 4[(427),(3?6)] 1Im-16 3-8m  3(2-3m) 2[(32)?%)] (Um=syy 11/171-5)%
T T 7 2
S /151+1 /lq+1 /qurl /lq+1 /lq+1 + /1 Aq+1 /1q+1 /151+1 /qurl
WO7Gm=2) _(1lm=5y 2 3001m-1478 (]lm 5y2
14(224) 7T T4(112) »
~A,)] +A,,] < 6443e(t) (116)

where the last inequality used the fact that 270m-2) _ (“”71’5 )%

14(229)
30?2’("1_1;‘78 — (Hm=s )% < 0 due to our choice from (35).

Third, we estimate

< 0Oasm < %and

(c) (0

o o )
Ividwger +wen®ille, e < IVdlley, (WXL, e +

(26b)(72)
<

1||C Lf* + “W 1||C g+ ILI )

BT+ LR+ Ao 7 AT, (117)

Concerning the first two terms /lgl‘% P77 and /lf]/l(;ill‘% PRl , paying attention to only
o , when p* > 1is arbitrarily close to 1, we see that n0 condition is imposed onr because
r~! < 1 due to (12). Similarly, the third term ;A7 l G 7 Ag1 0T = /131 20r* 7 does
not cause an additional condition because o << 1 due to (12). Finally, the fourth term
Lut? 777 does not require any additional condition on u because u~! < 1 due to (12).
In order to determine conditions on [ after r,u, and o~ are determined in (32), we

continue from (117) with our choice from (32) as follows:
(117)(85)

Wi@werr +wendvily, e S R LT Ao 47 P
(3 ) 3-3 (11m5)(1 3 (]lmS)(l_l) m=10 3-8m 3 (”’”’5)(2—”%)
A (l q+1 +1 /lq+1 Aq:‘l +}'q-:1 l /lq+17 )
llm S _ 3 gm n—
P /13(1,5/1( )1 > i 3,02 (118)
m=10
where in the last inequality, we used /l 1 S 1. Considering p* > 1 arbitrarily close to 1,
we impose additionally
3 S-1lm 3 3-8m 3
A l’fxlqjl < 1, /lq/lqjl I < 1. (119)
The estimate (119) can be satisfied by our choice of / = /l @ /l : for @ = 21 135” from (33) if
21(56)
—— < b, 120
361m — 166 (120)

and we incorporate this condition to our choice of b in (34) to claim (119).

Now let us use our choices of parameters and make this argument precise, continuing
from (118) as follows by formally selecting the appropriate p* € (1,2) from (35), using the
fact that e(f) > e > 4 due to (3): for ay sufficiently large and S > O sufficiently small

Vi®wgs1 + Wq+1®Vl”CW” e
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(118)(33) 23m  3\3 Lm=S_ lims 38w [ 2-3m =S )y (1m=s ) 2
3 T2 = - =" i (Z5202-(=52) %
< A [(/l A2 ) /lq+1 +/lq+1 /qurl /l /lq+1 "]
3-3 ’ ) m=sy 2 30-3 _3 2(11m-=5 .
(3<4)/l o | (g s _(lms) 2 .\ /13 Sy 30 1S ( 2m 2015) (i 52
q+1 gq+1
=306+683m _(1im=5y 2. S147412995m _(lln=3 ) 2
401D 7 )5F T4(112) »
Nﬂqﬂ +/lqul < Gge3e(t) (121)

where the last inequality is de to
due to our choice of p* from (35).
We are now able to conclude that for a sufficiently large and 8 > 0 sufficiently small

—306+683m _ 11m=5+ 2 —147442995m _ (11m=5 2
) (77 )F<Oand fay -~ ( )F<0

Ta
Rinille,zy < IREA"Wslle,,, ot + IR, + Wi +wh D, o1
R . (107)(116)(121)
+ vigwgsr + wen®ville,,, 11 < 8ge3e(t). (122)

]

Proposition 4.6. Rj;,, defined in (97¢) satisfies for ay sufficiently large and B > 0 suffi-
ciently small
”Rlin 2||Ct.q+]L£* < 6q+36(t).

Proof of Proposition 4.6. We come to the unique term that we must estimate for the hy-
perbolic Navier-Stokes equations. This term is singular due to the second derivatives with
respect to time variable 7 and creates constraints in the choice of parameters, and ultimately
the upper bound of m < %, as it will be explained in detail Appendix A. We estimate

. (66)
RO, + WDl S > NBulac(t, omelt, e,

leA
< S Wnaclc, it + Nl Wuncl, o ecle,
LeA
GHA)ATO) , 1+
< 1000V 16y N et )L a23)

The first term in (123), in which we only pay attention to the dominant term P iv

does not require any additional condition on r because 1 < A4 17 due to (12). However

2 .
for the second term in (123), paying attention to only (A, 0ru)>r' ™7 /l;+11 when p* > 1is
arbitrarily close to 1, we obtain a new condition of

/1<</l ol (124)

q+l

After having selected r, u, and o~ in (32), in order to find conditions on [/ and a, con-
tinuing from (123), we estimate by using our choices from (32) as follows:

1IR3 Wil + Wi Dlle, e
L (11,; i)(l_]%) ; 3 17,,, 2 (Ilm 5)(1——) _
(6q+21 A +0, 02,0 4, )Aq+, (125)
Considering p* > 1 arbitrarily close to 1, this requires that we impose additionally
-20
/ /lq+71 /qu < 1, (126)

17m=2  5-1lm

as well as [~ z/lq A /lq o /l;H < 1, but this condition is implied by (70).
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After [ has been determined in (33), in order to find conditions on b, we use our choice
from (33) and see that (126) can be satisfied if
30(28)
59m -2
and we incorporate this condition to our choice of b in (34) to claim (126).
Now with all the parameters chosen, let us make these arguments precise continuing
from (125) by formally selecting the appropriate p* € (1, 2) from (35) and utilizing the fact
that e(f) > e > 4 due to (3): for ao sufficiently large and § > 0 sufficiently small,

IRL Wy + Wil Dl

<b. (127)

q+1
(125)(33) 2-3m 3 m=5 _1lm=5y 2 2-3m 3 17m-2  Um=5 _ nm-s
2 32420 7 (75 )p* 112 T 7 (57 -
N ((/lq+1 /l ) ﬂq-*—l + (/lq+l )z/lq+l g+1 Aq+l
5(2 ?m) . m— m—. 3(2-. ?m) m =
(34) +30( (}2)?%))_'_ 1m-12 (11 5) 2 B =] 9((:2)256)”4"1_2_(117 5)/%
~ q+l q+1
391m=522 _«1lm: S)l 12319m—-6122 (]Im—S)l
~A, +7;5"” "+ 1, 3 T < Sgeae(t) (128)
h : o 391m-522 1im=51 2 SR :
where the last inequality is due to e — ( )[7 < 0 which is immediate because

me(3,3),and 12?1149);?2—2%22 — (12=5)2 < 0 due to our choice of p*.

Hence, we conclude that for ay sufficiently large and g8 > 0 sufficiently small,

(97¢) ‘
IRin2llc,, zn - = RO +wDDllc,, . 11 < Sgrae(d). (129)

]

Proposition 4.7. R, defined in (97d) satisfies for ay sufficiently large and > 0 suffi-
ciently small,

”RCWHCWHL_’Z* < 5q+3€(t).

Proof of Proposition 4.7. We estimate

(c) ) \& (p) (c) (t)
1wy + Wy D®Wger + W,/ &, + Wordlle, o
<(||w“>1||c o+ Wl 2 YU N+ I e, o + I,y
( ) 3 1 25 L
(/1qu11 2T 4+ Agior] +,u_ll_3r2_n*)
-3 1-— -1 -3 -2 -17-3 2--%
X (72r 7 +/1q+1l 2T+ Agaor] ). (130)

Considering the dominant terms for p* > 1 arbitrarily close to 1, we see that it suffices that
/l;il [1’275 + Agr107] + ,LF1 r < 1; thus, this does not impose any condition on our choices of
1,1, or 0! because or < 1 and y~'r < 1 due to (12).

After u, r, and o~ ! are determined in (32), in order to determine the conditions on /, we
continue from (130) with our choices from (32) as follows:
(p) () (t)

10w + Wi D@wger + w80 +wid Dllg, (131)
(130)(32)(85) (/l 13 (@)(1_,) )/14]? /137 l_g/l(nm i)(z_i))
q+1 g+1 g+1 q+1 q+1
-3 (]lm i)(l——) 3 (]Im 5)(1——) 4em 3-8m (]]m 5)(2_,
(l q+1 q+ll q+1 /lq]fl + /l 7 l q+1 )
11ms 1im=5 nms 1im-5 1
! _-, ( )(1_,) 44m 3-8m ( )2-L __7 ( )(1_, 3-8m ( )2-E)
( q+1l q+1 /lqlﬁl + /l 7 l /qurl I q+1 + Aqll - /lq+1 :
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Considering p* > 1 arbitrarily close to one, we see that we need to impose

3m=2

—10
13/1 ® < landl” /17 <1 (132)

so that (1}, =31 ‘41)1" < 1 and (/l 7 l"/l M )l < 1, respectively. After [ is chosen
in (33), in order to determine the condltlons on b we see that the estimate (132) can be

satisfied by our choice of [ = /l /1 2 witha = 112 " from (33) if
(27)(56)
—————— < b, 133
232 -3m) (133)

and we incorporate this condition to our choice of b in (34).

Now with all the selected parameters, let us make these estimates more precise con-
tinuing from (131) and formally selecting the appropriate p* € (1,2) from (35): for ag
sufficiently large and 8 > O sufficiently small,

© 40

(c) (f) (p)
HOwE) + W) D + w2 &0, + Wl Dl e

q+1

(131)(33) 23w 3\3  2m=5)  2(m=5)  mo10 2-Tm ;% 3im=S) _ 201m=5) | 3-8m
) (1—1”3)17 o o (1,1012)17 Jat

q+1 q+1 q+1 q+1

23w 3\6  40Im=s) _20im-5) | 20 8m)
112 Tp*
(/lq+l A4 ) /lq+l
(34) 32-3m) 9( 2-3m )+ 211m=5) | m-10 _ 2(11m=5) 9(2-3m) g( 2-3m )+ 25m-12 _ 2(11m-5)
/l 112 @(56) 7 [ A B AR 7 T
g+1
3(2 3m) 2-3m 28m—14 _ 2(11m=5)
2 9 ity )+ 2% 7
q+1
16353m=2) _ 2(11m-5) 10795m-5106 _ 2(11m-5) 3001m-1478 _ 2(11m-5)
(14)(112) p* (28)(112) 1p* (14)(56) Tp*
~ /lq+1 + /qu + /qu < Oge3e(t) (134)

where the last inequality is due to 1??2;(31”1';)2) - 2(171;:’:5 ! < 0duetom < 2 while i -

2Im=3) () and 3Wm-1478 _ 201m=5) - () que to our choice of p* from (35).

T (14)(56) A
Therefore, we conclude that for a sufficiently large and 8 > O sufficiently small,
(97d)
IReorlle, izt = WSy + W Wyt + Wl &) + Wl Dllc,, 11 < Sgee(®). (135)

]

Proposition 4.8. R, defined in (98a) satisfies for ay sufficiently large and B > 0 suffi-
ciently small

“R”‘YC”C/,qﬂLﬁi < 6q+3e(t).

Proof of Proposition 4.8. First, we estimate using Lemma 3.5

1
‘R(z Z Ero.1)

9eN Cr,q+l Lf*
18320 ,
< Ao Y adle,,. cillaslic,., +laglc,.,. laslle,,., c)IWelle, 2 Wollg, 2
L9eA
(54)(17a) 52
S T e R e (136)

For p* > 1 arbitrarily close to 1, this does not impose any condition on our choice of r, u,
or 0! because /1;10"1 < 1 due to (12).
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After selecting r, u, and o~!in (32), in order to find conditions on ! we continue from
(136) with our choices from (32) as follows:

136)(32) asyp 2
”R(_ > &) LR

Y I Y e | (137)
{0eN

S g+1 q+1 q+2 q+1

r*
Cz,q+1 L.\'

Considering p* > 1 arbitrarily close to 1, this implies that we need additional condition of

PYREN (138)

3

To see the necessary conditions on b, we plug in our choices of / = /l (Ag? with
" from (33) and see that (138) can be satisfied if

56(165) <
57(2 - 3m)

and we incorporate this condition to our choice of » in (34) to claim (138).

We now use our choice of parameters to make these arguments precise, continuing from
(137) by formally selecting the appropriate p* € (1,2) from (35): for ay sufficiently large
and S > 0 sufficiently small

@ = 112

b, (139)

(137)(33) 3m_q 2-3m 3 575 (M)z_(M)L
2 12 7 7Pt
HR(_ § 8(19] o N /lq+1 (Aq+1 Aq ) /16]+1
ZﬂEA tq+1tx
(34) 3m=2 | 552-3m) plosp 2am gy 2AIm=5) ]lme) 2 12085m-5066 _( Llm=5) 2.
/qu 2112) @2)56) /l 28(]12) 7 o 5q+3€(l) (140)

where the last inequality is due to 120285(’;‘1_25)966 - (“’;’_5 )% due to (35).

Second, we estimate

CEDI-T (141)
gﬂeA Cr,q+1Lx
(188¢)(20) i
SN e, cllaslc,,., + laclc,.,. sl co)
{0eN
5 (54¢)(11b)(17b) » 55 42
<, ol o Balbcleoolle, 5 Al F R

We mention that in the application of (20), it is required that Ai’(*)' € N which is the reason

why we chose to impose a € 10N. For p* > 1 arbitrarily close to 1, this term does not
impose any condition on our choice of r, u, or o~ ! because /l;ll < 1.

Hence, in order to see conditions on other parameters, we continue from (141) using or
choice of 7, t, and 0! from (32) as follows:

HR(‘ 3 6 (141)(32) ipes

R G MY o YO A o (142)
(1961\ C/.qHLf

The right hand side of (142) is bounded by the right hand side of (137) and thus we imme-
diately conclude that for aq sufficiently large and 8 > O sufficiently small

R(— D Eond| <Oy, (143)

1‘)6/\ rq+lL).
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Third, we compute

HR(% Z Erv21)

L9eN
(1882)(20)
<

-1
< Z A llacllc,,. c2llaslic, ... +llaglle,, . llasllc, .. cllblic 1bslic,
L9eA

(144)

p*
C/.q+ 1 L,\

(54c)(11b)(17b) 8 g2
b

< UVell, ol o + el o IVl o Spal ForF

Considering p* > 1 arbitrarily close to 1, we see that this term does not impose any addi-
tional condition because or < 1 due to (12).

After r,u, and o' in (32) are selected, in order to determine /, we continue from (144)
with our choices from (32) as follows:

1 (14032 o e
HR(E Z Er921) Cont? < Ogral 2 A, 5 (4, ) 7. (145)

L9eN
Considering p* > 1 arbitrarily close to 1, this leads to additional condition of

| 1 (10-m) 2
- B3V7T —_ )8
l < /1q+| = /lq+l

E (146)

3m  1lm=5

e M
so that / z/qu/qu < 1.

After [ in (33) is selected, in order to determine conditions on b, we apply our choice of
_3
I=2-22,7 where @ = 2= from (33) and see that (146) is satisfied if

q+17 112
3(42)
2m+ 1

and we incorporate this condition to our choice of b in (34) to claim (146).
We now utilize our choice of parameters and make these arguments precise, continuing
from (145) as follows: for ag sufficiently large and 8 > O sufficiently small,

b, (147)

43
1 (145)(33) 23m 3\7 _3m (Um=3y3_ (lm=Sy2
_ 2 32 2 7 7 Pt
HR(Z § Er2,1) . S (/lq+1 /lq) Ay A
[,ﬂEA Cz,q+l Lx
(34) $30-3m) | 1297 23m | 2wt6(ln=S) _1m=5y 2 871452(3”1*22)_(11”175)1
2112 14 L@nse) 14 AR ) 7 )P
< a0 A ~ A < Gguze(t) (148)

where the last inequality is due to m < %

Fourth, we compute

H’R(% Z Er924)

L9eA

(188d)(20)
< A D lladle,,elaslle,,,, + llalc, . laglc,.,c)
Z9eA

Cr.q+ 1 Lf

< UVnel,, ol + Wl ol 2o Ml Isolle,

(54¢)(11b)(17b) :
< Syal T (149)

The upper bound of (149) is identical to that of (144) and hence we are immediately able
to conclude that for ay sufficiently large and 8 > 0 sufficiently small

1
IRG D Ecoadll,, iy < Sgeseld). (150)
L9
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Finally,
”R(Az + Az) . (151)
Cl.q+]Lf\f
(192)(20) _ 2
D g Mgl csllaclle, . + 1 Nacller | callaclc,, Mnel, o
{GA tq+14x
(540)(17b)

—35 — _35 2 _2
E Tl 0 RS TRl MY VS Y Y e P

where the last inequality used the fact that u~! < 1 due to (12). We realize that the bound
in (151) is identical to that of (136) and hence we conclude that for a sufficiently large
and S8 > 0 sufficiently small

[RA2 + Al < Syuaeld) (152)

At last, we deduce that for a sufficiently large and 8 > 0 sufficiently small

T HR(— Yean|  +RG YY) Eeaaw
TN CugniLy LOeA k=134 Crgnls
(140)(143)(148)(150)(152)
+ ||R(A, +A3)||c,,[,+1L1, < Og+3e(t).  (153)

O

Proposition 4.9. R, defined in (38) satisfies for ay sufficiently large and 3 > 0 sufficiently
small

”RC"m”C,_,,J,]Lf* < 6q+3e(t).
Proof of Proposition 4.9. We estimate

(26a)(26b)
Vallc, .2 < lLea;. (154)

The condition on / that we obtain from (154) is l/lz < 1 which is same as (80); thus, we
conclude that for ay sufficiently large and 8 > O sufficiently small

IRcomllc, ..z} < Gq+3€(D). (155)
O

”Rcom”C,'qHLl < llvgller

Lx,q+1

Finally, combining Propositions 4.5, 4.6, 4.7, 4.8, and 4.9, we have proven that for ag
sufficiently large and 8 > 0O sufficiently small

||Rq+1”C,,q+|L} < |IRiin 1||C,,q+|L}. + [IRiin 2||c/'q+|Lle + ”Rcor”C/'qHL},

(122)(129)(135)(153)(155)
+ ”Rosc”C,‘qHL‘L + ”Rcom”CwHLL < 6q+3€(l). (156)

This concludes the proof of (26¢) at level g + 1.

Remark 4.5. In order to find the appropriate choice of parameters in (32), we just de-
scribed lower and upper bounds on p. It is here that we faced difficulty upon attempting
similarly using the 3D intermittent jets from [9, Section 7.4]; we explain briefly with nota-
tions from [9, Section 7.4]. For example, analogous computations to (123) on Ry, » gave

us
2
(rJ_/qurl:u)
n

-2 I
- < rro2
- /14,+1 d

IR+ wil D,

q+1 q+1 L
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so that for p* =~ 1, considering only the dominant terms leads us to
“9

/lq+1ri | ,u <l ie u<x /lq+1 ”. (157)

On the other hand, analogous computations to (130) on R, gave us

(P) © 4,0

q+1®(wq+l q+1)”C, L

||<w§;31 qH)@qu +w

2.1 L. -1 2 _3 2 L
-2 zp* 2p —12 211 2p* 2 —-1;-4 211* 2
slrer! " P+ | +u "
so that for p* = 1, considering only the dominant terms leads us to requiring

-1.-%

1
u rLr2<<11e ront << (158)
Considering (157)-(158) leads to a requirement of
_1 1 o_3 2
rllr” ERS< /qul’lzrﬁ
which is equivalent to
3
ridgn < r”2. (159)

Unfortunately, r7' < Ags1 from (30) so that 1 < riAgy and ry < 1 from (30) imply that
(159) is impossible.

At last, faced with such a difficulty, we actually attempted analogous approach in higher
dimension d > 3 using the generalized intermittent jets in higher dimension from [37,
Section 3]; however, it led to a requirement of

d_ 1 1 1 d_3
4

? 7r” leu<x /l_

rL2 2
which is an analogue of (157)-(158); this reduces to
5-d
r? Agr1 < r

-7

3
i

i (160)

which is an analogue of (159). Unfortunately, the constraints that we need in such gen-
eralized intermittent jets in higher dimension is the same as (30). Thus, for any d > 3 we
realize that (160) is impossible again because 1 < r A4 while ry < 1. However, this is
where we come to the crucial observation. Because r, < 1 from (30), the condition (160)
becomes increasingly more difficult as d rises; this is the reason why we realized that the
only pathway possible for us with our current approach is the case d = 2, which led to
Theorem 2.1 after optimizing all the parameters thereafter.

Proposition 4.10. Define
SE() = |e(D)(1 = 6442) — IIVq+1(t)|Ii% . (1el1)
Then, for all t € [ty41,1]
O0E(r) < %6q+ze(t) (162)
so that (26d) holds at level g + 1.

Proof of Proposition 4.10. The following computations follow those of [29], and have sim-
ilarities to previous estimates. Not surprisingly, the constraints on the parameters /, @, and
b we have already determined in previous sections turn out to suffice. Therefore, we will
not mention new constraints and simply use the parameters / and b respectively from (33)
and (34) and complete this proof. We compute using (40b) and (62)

SE(f)

=y, (n227) + f g (OF = Wi = 2vi(e) - Wl (1) = 2vi() - W), + W) (@)
T2
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Z[k (163)

_ |W(P) (l)|2 2W(17) () - (W(c) (f) Y1) — |(W(L) (f) )(1‘)| dx| <

g+l g+l q+l q+l q+l q+l
where
LRGP (164a)
L+ ||(w;?1 Wi DO, (164b)
L2 TZ(V/ + wf;fl) W+ w )(o)dx|, (164c)
L22 ) fT viw (p)l(t)dx (164d)
15 2| [ P ~lcoPas). (164¢)

For I;, we use the fact that I‘éq and therefore 1031 is trace-free to write using (63a) and
(53a),

WL OF = 7y2 = > (arap)O) TrPa (We © Wy) (0 +2 (o) = v4(0) . (165)
L9eA

This leads us to
I <26, 2m)* 1+ 26, IRl 1 + 221 i) = y4(0)]

*

L9

(166)

f (azap)(t) TrPyo (W, ® Wy) (1)dx]

We estimate the first term of (166) using the fact that e(¢) > e > 4, for ao sufficiently large
and S8 > 0 sufficiently small,

_3
26, 2n)l (33 € '8m %q;;z 1,7 < Azﬁ/l;f’;e(t) = S4u2e(0). (167)
We estimate the second term of (166) by
s s (260) 1
2¢, (IRl <2€, (IRl < §6q+26(t)- (168)

We estimate the third term of (166) using the fact that e(7) > e > 4, for ay sufficiently large
and S8 > 0 sufficiently small,

3 )
22070 =yl s+ lvglle,, iz vller, 1
(26) . (33)(34) _npzwm
S5 R <5 ). (169)
Next, we take
4073m — 1670
M 202 D7 170
” 22 = 3m)(347) (179)

and estimate the fourth term of (166) by

f (a(ag)(t) Tr P#O(W( ® Wy)(t)dx

171)
L0eN

(16¢c)(54) s N[ erg L 1 _
ST (oot ) e o) M IWelc, s WWollc
O
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(173)(32)(33) ) (/l%/l%fm% Q)
~ q+ q+1 74 q+1 q+1
_3m Zam \OM+Y . 2-3mGADM | 4073m—
(?f') S /12“32 +%[(422)?55)] 2 (B (- M+ =2 ~6 /l_( 7(112) +4072;(11]2?70 (1Z<0) 5 0
S 9g+2 | 444 g+1 N Og+2d, 4y q+2€\).

Applying (167), (168), (169), and (171) to (166) gives us now for 8 > 0 sufficiently small,
1
I < §6q+26‘(l). (172)

Next, we are able to take advantage of previous estimate (74) make quick work of

74)

, . 2 (
2
vy + Wi DOIE: < (W I,z + W00 lle,002) < Sgeae®), (173a)

L (164b)

(164c) » © 0)
Loo< 2(lle,z + W5 e z) U lle,oz + W e, 2]

(B9Y69) 1, . (74)
< (Lé%+6;+1ei)[||w;31||c,vqm+||w;‘il||c/WLg] < Sgu2e(), (173b)

for ay sufficiently large and 5 > O sufficiently small.
Next, to estimate I4 from (164d), we take € > 0 such that

91m —42

E<m<2 (174)

and estimate from (164d) for ay sufficiently large and 8 > O sufficiently small,

2 (26b)(7<23)(33) P e )

(»)
I <Iville,, w2 2

fomrd
g+l Lx €

20 2.3 32-3m)+32(1 lm=5)(~1+¢)
G4 561+ A112)

=1
2 1 (42)(56)
S /lq 1

2-91mssim-s¢ (174)
36

~ 1 < Byuelt). (175)

g+1

Finally, we estimate from (164e), for ag sufficiently large and 8 > O sufficiently small

(262)26b)(33) 2,
Is < Wglle,,. 2lvgller < A

(34) —(2Amyy 3 23m —(By2=m)

< /lq+1112 2L @2)(56) ~ /lq+114 112 < 5q+26([). (176)

Applying (172), (173), (175), and (176) to (163) we are finally able to conclude that

5
: 1

SE®N) < ) I < J0u2e(0)
k=1

for ay sufficiently large and 8 > 0 sufficiently small; this completes the proof of Proposition
4.10. O

Proof of Proposition 4.2. We proved (27) in (79), (26a) in (78), (26b) in (91) together
with (92)-(93), (26¢) in (156), and (26d) in Proposition 4.10, completing the proof of
Proposition 4.2.

]
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APPENDIX A. DERIVATION OF r, i, AND o' From (32)

Let us explain our choice of 7, u, and o~! from (32). Recall from Remark 4.2 that we

_1 |
consider only m € ( 2) We need /12’" ! <« r from (104) while JTRSS /1q flo:lr’i from

_1
(124). We have r > 1 and 4,441 > 1 from (12) so that /lq j]r‘% < 1. These imply that we

need
(104) (12) (124) (12)
/12m 1 < r < u < /lq+10- lr 2 K O -1 < /lq+] (177)

q+1
= \/r(/quO' r- 2)—r4/lq+10'

We optimize and choose

1
2 (178)
so that (177) reduces to
2m-1 Lo-3 1 -4 91 -1
/lq+1 <r< erqjlo- LIRS /lqjlo- I L0 K Ager.
We furthermore optimize from this to choose
2m-1 TR Pl g
\//lqz—ll (r4/1q+10- 7) _/lq+lzrg/lq+lo— i
. . . 7 %,m _1
which implies 7§ A4 = 0~ % and hence
q+1
3-4m -1
rl/l =0 . (179)

gq+1

L. . . —4m+3
From (177) we know we need 0! < Ag+1 which implies that we require r%/lq +r1"+ P Agat

2(4m-3)

or equivalently r < /l;il . From (177) we know we need /l;’fl‘l < r and thus we

.. 2m—1)+2(4m-32 _ Lm=5 . . .
optimize over @m-DrsGm=p) _ 11"7“ 3 and hence define r = /lq .| - Applying this choice

2

3m 1lm-5

of rto (179) leads us to o~ = /1;1. At last, we apply this definition of r = 1, . and

8m-3

3m
ol = A,y to (178) to conclude = 4,/ .

AppPENDIX B. DERIVATION OF / IN (33)

We have conditions on / from (70), (80), (87), (92), (102), (112), (114), (119), (126),
(132), (138), and (146). In short, all of these conditions boil down to 4, < [7' from

2-3m
(80) and I"! < /quf] from (70) assuming that b € N is sufficiently large and yet to be
determined; thus, we optimize and select

2-3m
N O Y

AppPENDIX C. DERIVATION OF (98)

1w

as we did in (33).

We sketch the derivation of (98) In contrast to previous works such as [38,49], our
divR s + Vo consists of 6,rw , instead of 6,wq 1> we designed our w , in (63¢) so that
this difference does not create major difficulties in the following computatlons (see [49,
Equations (101)-(115)] for details). First, we write

: 2
divon? @ wir)) = divew!?, & ;’fl)+v w2, (180)
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while

53b)(63 S
WP &P l( )( )Z agagP_ 1., (W@Wy)

g+1 q+l
L0eA

o 2
1 R,
1-= Id——] [Id 181
+p( 3 Zﬂ( p) ] (181)
due to (16). The identity (181) leads to

divw? &wil), + R) =2 Z Eron+ = Z Eoz

z HeA 4 HeA
2
( [l——Zy((d——) ]] (182)
e
where
Ero1 = Puo(Viagay) - PZM%W(WgéWﬂ + Wo@W,)), (183a)
Erna = PuolaragV - (W, Wy + Wy@W,)), (183b)
in which we used symmetry. Now for any ,® € A C S', we can compute
R+ +) = (-9 = DI + D). (184)
It follows from (10) and (184) that
V- (b®by + by@b)(x) = V(A 1 Yeh)(X). (185)

Consequently, via (15) and (185),
V- (W &Wy + Wy®W,) = (b&by + by®b;) - V(1) + (nmﬁ)V(ﬂ;Hlﬂglﬁﬂ). (186)

After splitting % DiroenSron = %(Z £0en: r+920 T 2z.0en: c+9=0)E¢.9.2, this allows us to write

4
1 (16b)(183b)(186) 1
= > & = SDIPNTEN (187)
£0eA: (+9#40 £0€eN k=1
where
S = PyolagagP_ i [(b®by + by®by) - V(nm)) 1 z4o20, (188a)
= 10

Ecnan = VPu(aragP iy My, 1 Weho)) oo, (188b)
= 10

Ecnas = —Puo(V(agap)P i g, 1 Weho)) oo, (188¢)

= 10

Ernaa 2 —ProlazagP i (Vo) o))l croso. (188d)

= 10

10
On the other hand, in case  +1 = 0 we have V(/12+1¢//(l// D= (19 q+lV( L o1 @=0rxy = ()

while we can multiply (14a) by 27, to deduce u 16,|17§|2 =+({- V)|17§|2 for all £ € A* and
hence

. . 15)(185)(10 . _
V- (WRW_ + W,§®W§)( YA8X )2§l®glvn§ =Vp; F 27 @mpe. (189)

This allows us to write

1 (183b)(189) 1
5D, S =3 ) V@R ) = Pu(VaP ueny)  (190)
£9eh: (+9=0 IZIN =2 =72
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—17 Y = D 0P u(@ZPa0MED) ~ Puo(DaZP_iye (1)
lent  len- 2
where we also used that IP’ZAWT“,U? = IP’#)n? At last, we obtain by using the definition of
P=1Id- VAV

4
1 63)(190)
LY Earam®, Oy, (191)
£9eA: (+9=0 k=1
where
L
Al = 5 Z V(GEPZ/!‘HT[UUE), (1923)
leA
1
A2 2 _E Z IP#)(Va?PZﬂ T]?), (192b)
ZeN -
As 27 () = > PB@Pine (70)), (192¢)
{Ez/\; g\: >l
Ay 2 -VA'lY -/J_I(Z - Z)P;éoat(aZP#on?{)- (192d)
JeAT  leA™

Therefore, combining (180), (182), (187), and (191) gives us

. o 1 1
le(WEIZ_)l ® W;’i_)l + R)) + 6,tw;'il = 5 Z 8{,0,1 + E Z Z 85’,9’2,]( + Ay + Az
LA LOeA k=13,4
o \2
Lo ! R
+V[§|wq+1| +|p 1—§{€ZA:7{ Id—;

1
*3 Z P¢0(a§a19PZa%. (ng”]19/1521+ll//§'l//19))1§+19#0
{0eN

1 2 2 -1 -1 2 2
45 2 AP e = AV () = ) DPad @R,
leA JeAt  leA

which finally leads us to (98).

APPENDIX D. CONSTRUCTION OF A SOLUTION TO (1) THAT DOUBLES ITS ENERGY

Here, we briefly sketch the proof of the construction of a solution that doubles its energy
from initial time by time ¢ = 1 in belief of its independent mathematical interest.

Theorem D.1. Fix m € (0,%). Then there exists a constant B = Bm) € (0,1) suf-
ficiently small such that the following holds. There exists a mean-zero weak solution
v € C([0, 11; HA(T?)) n CB([0, 11; LX(T?)) to the hyperbolic Navier-Stokes equations (1)
such that

v(Dllz2 > 2[vO)lz2- (193)

The existence time interval of the solution is taken to be [0, 1] in Theorem D.1 for simplic-
ity and can be replaced by [0, T'] for any T > 0 fixed a priori.
We sketch the proof of Theorem D.1. In contrast to (21), we can set simply define

A2 a”", 6, % /1;25; i.e., it is no longer necessary that §; = 1. Requiring a 2% < % assure
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that 7, < —g. We can consider the same iteration (25) with T = 1. We can simplify the
induction hypothesis (26) as follows: on [z, 1]

Vglle,, 2 < L {1 ) 5,2], (194a)
1<r<q

Wglley, < L7243, (194b)

IRllc,, 22 < crLSq11 (194c)

for a universal constant cg > 0 and L sufficiently large so that
47 + 8)%(49)?
(4 + 82497

2 (195)
The step g = 0 will become more complicated than Proposition 4.1 as follows:
Proposition D.2. (Initial step q = 0) Define
vt x) & té;i (sin(())ﬂ))
and then 1
Rox 2 2 ( 002 @ Cog(xz)) + R(=AY"o(1, ).
Then (vy, Ro) solves 25) with T = 1, satisfies (194) provided
(4n V2 + 8)49 < (4n V2 + 8)a®P < cxL?;
moreover, vy satisfies
ol: = 1 < 2k (196)
V2

Next, Proposition 4.2 is replaced by the following:

Proposition D.3. (Step g + 1 assuming the step q) Let L > 0 be sufficiently large so that
(195) holds. Under the hypotheszs of Theorem D. 1, there exists a choice of parameters a, b,
and B such that for all (v, q) that solves (25) and satisfies (194), there exists (Vgi1, q+])
that solves (25) and satisfies (194) at level g + 1 such that for all t € [t41, 1]

Vg1 = valle,,, 2 < L26;+1 (197)

The main difference in the proof of Proposition D.3 and Proposition 4.2 is that we would
let y be a smooth function such that

Q) 2 {Zl ;fi : g 2) (198)
and z < 2y(z) < 4z for z € (1,2) and thereby define

p(t, x) 2 dcrdy L((crdyi L) [Ri(2, ).
Proof of Theorem D.1. We only highlight the difference from the proof of Theorem 2.1,
namely (193). We can compute
I(0) = vo(®)llz2 < ) Ivgsr (1) = vg(Dlz (e Srisr, < %

q=0 =0

I—

(199)
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Recalling [[vo(1)llz = £ for all € [0, 1] from (196), we are ready to conclude

V2
2lvO)llzz <2lvo(OIz + 2[v(0) = vo(O)ll 2

(196)<(199)E L L7 (196)(199)

< 7 < 56 vo(Dllzz = lIv(1) = vo(Dllz2 < [W(DIlz2-
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