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Abstract. Two types of explanations have been receiving increased
attention in the literature when analyzing the decisions made by classi-
fiers. The first type explains why a decision was made and is known as
a sufficient reason for the decision, also an abductive explanation or a
PI-explanation. The second type explains why some other decision was
not made and is known as a necessary reason for the decision, also a con-
trastive or counterfactual explanation. These explanations were defined
for classifiers with binary, discrete and, in some cases, continuous fea-
tures. We show that these explanations can be significantly improved in
the presence of non-binary features, leading to a new class of explana-
tions that relay more information about decisions and the underlying
classifiers. Necessary and sufficient reasons were also shown to be the
prime implicates and implicants of the complete reason for a decision,
which can be obtained using a quantification operator. We show that
our improved notions of necessary and sufficient reasons are also prime
implicates and implicants but for an improved notion of complete reason
obtained by a new quantification operator that we also define and study.

Keywords: Explainable AI · Decision Graphs · Prime
Implicants/Implicates

1 Introduction

Explaining the decisions of classifiers has been receiving significant attention
in the AI literature recently. Some explanation methods operate directly on
classifiers, e.g., [43,44], while some other methods operate on symbolic encodings
of their input-output behavior, e.g., [8,25,37,40], which may be compiled into
tractable circuits [5,11,21,45–47]. When explaining the decisions of classifiers,
two particular notions have been receiving increased attention in the literature:
The sufficient and necessary reasons for a decision on an instance.

A sufficient reason for a decision [17] is a minimal subset of the instance which
is guaranteed to trigger the decision. It was first introduced under the name PI-
explanation in [46] and later called an abductive explanation [25].1 Consider
the classifier in Fig. 1a and a patient, Susan, with the following characteristics:
Age≥55,Btype=A and Weight=over. Susan is judged as susceptible to disease

1 We will use sufficient reasons and PI/abductive explanations interchangeably.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 106–122, 2023.
https://doi.org/10.1007/978-3-031-43619-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_8&domain=pdf
http://orcid.org/0000-0002-4475-1987
http://orcid.org/0000-0003-3976-6735
https://doi.org/10.1007/978-3-031-43619-2_8


A New Class of Explanations for Classifiers with Non-binary Features 107

Age

Weight no

yes Btype Btype

yes no yes no

≥ 55 < 55

over under norm

A, B, AB O A, B AB, O

(a)

Age

Weight Btype

yes no

B A, AB, O

yes Btype yes

yes no

≥ 55 < 55

over under norm

A, O B, AB

(b)

Fig. 1. Two classifiers of patients susceptible to a certain disease. The classifier in (b)
will be discussed later in the paper.

by this classifier, and a sufficient reason for this decision is {Age≥55,Btype=A}.
Hence, the classifier will judge Susan as susceptible to disease as long as she has
these two characteristics, regardless of how the feature Weight is set.2

A necessary reason for a decision [18] is a minimal subset of the instance that
will flip the decision if changed appropriately. It was formalized earlier in [24]
under the name contrastive explanation which is discussed initially in [33,39].3

Consider again the patient Susan and the classifier in Fig. 1a. A necessary reason
for the decision on Susan is {Age≥55}, which means that she would not be
judged as susceptible to disease if she were younger than 55. The other necessary
reason is {Weight=over,Btype=A} so the decision on Susan can be flipped by
changing these two characteristics (and this cannot be achieved by changing
only one of them). Indeed, if Susan had Weight=norm and Btype=AB, she will
not be judged as susceptible. However, since Weight and Btype are discrete
variables, there are multiple ways for changing them and some changes may not
flip the decision (e.g., Weight=under and Btype=B).

The notion of a complete reason behind a decision was introduced in [17]
and its prime implicants were shown to be the sufficient reasons for the decision.
Intuitively, the complete reason is a particular condition on the instance that
is both necessary and sufficient for the decision on that instance; see [16]. A
declarative semantics for complete reasons was given in [19] which showed how
to compute them using universal literal quantification. Furthermore, the prime
implicates of a complete reason where shown to be the necessary reasons for
the decision in [18]. Given these results, one would first use universal literal
quantification to obtain the complete reason for a decision and then compute its
prime implicates and implicants to obtain necessary and sufficient explanations.

2 See, e.g., [13,44,49] for some approaches that can be viewed as approximating suffi-
cient reasons and [26] for a study of the quality of some of these approximations.

3 We will use necessary reasons and contrastive explanations interchangeably in this
paper. Counterfactual explanations are related but have alternate definitions in the
literature. For example, as defined in [5], they correspond to length-minimal nec-
essary reasons; see [18]. But according to some other definitions, they include con-
trastive explanations (necessary reasons) as a special case; see Sect. 5.2 in [34]. See
also [1] for counterfactual explanations that are directed towards Bayesian network
classifiers and [2] for a relevant recent study and survey.
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Necessary and sufficient reasons are subsets of the instance being explained
so each reason corresponds to a set of variable settings (Feature=Value), like
Weight=under and Btype=B, which we shall call simple literals. Since nec-
essary and sufficient reasons correspond to sets of simple literals, we will refer
to them as simple or classical explanations. We will show next that these sim-
ple explanations can be significantly improved if the classifier has non-binary
features, leading to more general notions of necessary, sufficient and complete
reasons that provide more informative explanations of decisions.

Consider again the decision on Susan discussed above which had the sufficient
reason {Age≥55,Btype=A}. Such an explanation can be viewed as a property
of the instance which guarantees the decision. The property has a specific form:
a conjunction of feature settings (i.e., instance characteristics) which leaves out
characteristics of the instance that are irrelevant to the decision (Weight=over).
However, the following is a weaker property of the instance which will also trig-
ger the decision: {Age≥55,Btype∈{A,B}}. This property tells us that not only
is Weight=over irrelevant to the decision, but also that Btype=A is not par-
ticularly relevant since Btype could have been B and the decision would have
still been triggered. In other words, what is really relevant is that Btype∈{A,B}
or, alternatively, Btype �∈{AB,O}. Clearly, this kind of explanation reveals more
information about why the classifier made its decision. We will later formalize
and study a new class of explanations for this purpose, called general sufficient
reasons, which arise only when the classifier has non-binary features.

A necessary reason for a decision can also be understood as a property of the
instance, but one that will flip the decision if violated in a certain manner [18].
As mentioned earlier, {Weight=over,Btype=A} is a necessary reason for the
decision on Susan. This reason corresponds to the property (Weight=over or
Btype=A). We can flip the decision by violating this property through changing
the values of Weight and Btype in the instance. Since these variables are non-
binary, there are multiple changes (six total) that will violate the property. Some
violations will flip the decision, others will not (we are only guaranteed that at
least one violation will flip the decision). For example, Weight=norm,Btype=O

and Weight=under,Btype=AB will both violate the property but only the
first one will flip the decision. However, the following weaker property is guar-
anteed to flip the decision regardless of how it is violated: (Weight=over or
Btype∈{A,B,AB}). We can violate this property using two different settings
of Weight and Btype, both of which will flip the decision. This property cor-
responds to the general necessary reason {Weight=over,Btype∈{A,B,AB}},
a new notion that we introduce and study later. Similar to general sufficient
reasons, general necessary reasons provide more information about the behavior
of a classifier and arise only when the classifier has non-binary features.

We stress here that using simple explanations in the presence of non-binary
features is quite prevalent in the literature; see, e.g., [4,6,8,18,23,28,36]. Two
notable exceptions are [12,27] which we discuss in more detail later.4

4 Interestingly, the axiomatic study of explanations in [3] allows non-binary features,
yet Axiom 4 (feasibility) implies that explanations must be simple.
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Our study of general necessary and sufficient reasons follows a similar struc-
ture to recent developments on classical necessary and sufficient reasons. In par-
ticular, we define a new quantification operator like the one defined in [19] and
show how it can be used to compute the general reason of a decision, and that
its prime implicates and implicants contain the general necessary and sufficient
reasons. Complete reasons are known to be monotone formulas. We show that
general reasons are fixated formulas which include monotone ones. We introduce
the fixation property and discuss some of its (computational) implications.

This paper is structured as follows. We start in Sect. 2 by discussing the
syntax and semantics of formulas with discrete variables which are needed to
capture the input-output behavior of classifiers with non-binary features. We
then introduce the new quantification operator in Sect. 3 where we study its
properties and show how it can be used to formulate the new notion of general
reason. The study of general necessary and sufficient reasons is conducted in
Sect. 4 where we also relate them to their classical counterparts and argue fur-
ther for their utility. Section 5 provides closed-form general reasons for a broad
class of classifiers and Sect. 6 discusses the computation of general necessary and
sufficient reasons based on general reasons. We finally close with some remarks
in Sect. 7. Proofs of all results are in Appendix A of [30].

2 Representing Classifiers Using Class Formulas

We now discuss the syntax and semantics of discrete formulas, which we use to
represent the input-output behavior of classifiers. Such symbolic formulas can be
automatically compiled from certain classifiers, like Bayesian networks, random
forests and some types of neural networks; see [16] for a summary.

We assume a finite set of variables Σ which represent classifier features. Each
variable X ∈ Σ has a finite number of states x1, . . . , xn, n > 1. A literal � for
variable X, called X-literal, is a set of states such that ∅ ⊂ � ⊂ {x1, . . . , xn}. We
will often denote a literal such as {x1, x3, x4} by x134 which reads: the state of
variable X is either x1 or x3 or x4. A literal is simple iff it contains a single state.
Hence, x3 is a simple literal but x134 is not. Since a simple literal corresponds
to a state, these two notions are interchangeable.

A formula is either a constant �, ⊥, literal �, negation α, conjunction α · β
or disjunction α+β where α, β are formulas. The set of variables appearing in a
formula Δ are denoted by vars(Δ). A term is a conjunction of literals for distinct
variables. A clause is a disjunction of literals for distinct variables. A DNF is a
disjunction of terms. A CNF is a conjunction of clauses. An NNF is a formula
without negations. These definitions imply that terms cannot be inconsistent,
clauses cannot be valid, and negations are not allowed in DNFs, CNFs, or NNFs.
Finally, we say a term/clause is simple iff it contains only simple literals.

A world maps each variable in Σ to one of its states and is typically denoted
by ω. A world ω is called a model of formula α, written ω |= α, iff α is satisfied
by ω (that is, α is true at ω). The constant � denotes a valid formula (satisfied
by every world) and the constant ⊥ denotes an unsatisfiable formula (has no
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models). Formula α implies formula β, written α |= β, iff every model of α is
also a model of β. A term τ1 subsumes another term τ2 iff τ2 |= τ1. A clause σ1

subsumes another clause σ2 iff σ1 |= σ2. Formula α is weaker than formula β iff
β |= α (hence β is stronger than α).

The conditioning of formula Δ on simple term τ is denoted Δ|τ and obtained
as follows. For each state x of variable X that appears in term τ , replace each
X-literal � in Δ with � if x ∈ � and with ⊥ otherwise. Note that Δ|τ does not
mention any variable that appears in term τ . A prime implicant for a formula
Δ is a term α such that α |= Δ, and there does not exist a distinct term β such
that α |= β |= Δ. A prime implicate for a formula Δ is a clause α such that
Δ |= α, and there does not exist a distinct clause β such that Δ |= β |= α.

An instance of a classifier will be represented by a simple term which contains
exactly one literal for each variable in Σ. A classifier with n classes will be
represented by a set of mutually exclusive and exhaustive formulas Δ1, . . . ,Δn,
where the models of formula Δi capture the instances in the ith class. That is,
instance I is in the ith class iff I |= Δi. We refer to each Δi as a class formula,
or simply a class, and say that instance I is in class Δi when I |= Δi.

X

c1 Y

Z Z

c1 c2 c3

x1x2 x3

y1 y2y3

z1z3 z2 z2 z1z3

Consider the decision diagram on the right which rep-
resents a classifier with three ternary features (X,Y,Z) and
three classes c1, c2, and c3. This classifier can be represented
by the class formulas Δ1 = x12 + x3 · y1 · z13, Δ2 = x3 · z2
and Δ3 = x3 · y23 · z13. This classifier has 27 instances, par-
titioned as follows: 20 instances in class c1, 3 in class c2 and
4 in class c3. For example, instance I = x3 · y2 · z2 belongs
to class c2 since I |= Δ2.

3 The General Reason for a Decision

An operator ∀x which eliminates the state x of a Boolean variable X from a
formula was introduced and studied in [19]. This operator, called universal literal
quantification, was also generalized in [19] to the states of discrete variables but
without further study. Later, [18] studied this discrete generalization, given next.

Definition 1. For variable X with states x1, . . . , xn, the universal literal quan-
tification of state xi from formula Δ is defined as ∀xi ·Δ = Δ|xi ·

∏
j �=i(xi+Δ|xj).

The operator ∀ is commutative so we can equivalently write ∀x · (∀y · Δ),
∀y · (∀x ·Δ), ∀x, y ·Δ or ∀{x, y} ·Δ. It is meaningful then to quantify an instance
I from its class formula Δ since I is a set of states. As shown in [19], the
quantified formula ∀I ·Δ corresponds to the complete reason for the decision on
instance I. Hence, the prime implicants of ∀I · Δ are the sufficient reasons for
the decision [17] and its prime implicates are the necessary reasons [18].

We next define a new operator ∀ that we call a selection operator for rea-
sons that will become apparent later. This operator will lead to the notion of
a general reason for a decision which subsumes the decision’s complete reason,
and provides the basis for defining general necessary and sufficient reasons.
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Definition 2. For variable X with states x1, . . . , xn and formula Δ, we define
∀xi · Δ to be Δ|xi · Δ.

The selection operator ∀ is also commutative, like ∀.

Proposition 1. ∀x · (∀ y · Δ) = ∀ y · (∀x · Δ) for states x, y.

Since a term τ corresponds to a set of states, the expression ∀ τ ·Δ is well-defined
just like ∀τ · Δ. We can now define our first major notion.

Definition 3. Let I be an instance in class Δ. The general reason for the deci-
sion on instance I is defined as ∀ I · Δ.

The complete reason ∀I · Δ can be thought of as a property/abstraction of
instance I that justifies (i.e., can trigger) the decision. In fact, it is equivalent
to the weakest NNF Γ whose literals appear in the instance and that satisfies
I |= Γ |= Δ [18,19]. The next result shows that the general reason is a weaker
property and, hence, a further abstraction that triggers the decision.

Proposition 2. For instance I and formula Δ where I |= Δ, we have I |=
∀I · Δ |= ∀ I · Δ |= Δ. (I �|= Δ only if ∀I · Δ = ∀ I · Δ = ⊥)

The next result provides further semantics for the general reason and high-
lights the key difference with the complete reason.

Proposition 3. The general reason ∀ I · Δ is equivalent to the weakest NNF Γ
whose literals are implied by instance I and that satisfies I |= Γ |= Δ.

The complete and general reasons are abstractions of the instance that
explain why it belongs to its class. The former can only reference simple lit-
erals in the instance but the latter can reference any literal that is implied by
the instance. The complete reason can be recovered from the general reason and
the underlying instance. Moreover, the two types of reasons are equivalent when
all variables are binary since ∀x · Δ = ∀x · Δ when x is the state of a binary
variable.

We next provide a number of results that further our understanding of general
reasons, particularly their semantics and how to compute them. We start with
the following alternative definition of the operator ∀xi.

Proposition 4. For formula Δ and variable X with states x1, . . . , xn, ∀xi ·Δ is
equivalent to (Δ|xi)·

∏
j �=i(�j +(Δ|xj)), where �j is the literal {x1, . . . , xn}\{xj}.

According to this definition, we can always express ∀ xi · Δ as an NNF in which
every X-literal includes state xi (recall that Δ|xi and Δ|xj do not mention vari-
able X). This property is used in the proofs and has a number of implications.5

5 For example, we can use it to provide forgetting semantics for the dual operator

∃ xi ·Δ = ∀ xi · Δ. Using Definition 2, we get ∃ xi ·Δ = Δ+Δ|xi. Using Proposition 4,
we get ∃ xi ·Δ = Δ|xi+

∑
j �=i(xj ·Δ|xj). We can now easily show that (1) Δ |= ∃ xi ·Δ

and (2) ∃ xi · Δ is equivalent to an NNF whose X-literals do not mention state xi.
That is, ∃ xi can be understood as forgetting the information about state xi from Δ.

This is similar to the dual operator ∃xi · Δ = ∀xi · Δ studied in [19,32] except that
∃ xi erases less information from Δ since one can show that Δ |= ∃ xi · Δ |= ∃xi · Δ.
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When Δ is a class formula, [19] showed that the application of ∀x to Δ can
be understood as selecting a specific set of instances from the corresponding
class. This was shown for states x of Boolean variables. We next generalize this
to discrete variables and provide a selection semantics for the new operator ∀ .

Proposition 5. Let τ be a simple term, Δ be a formula and ω be a world. Then
ω |= ∀τ ·Δ iff ω |= Δ and ω′ |= Δ for any world ω′ obtained from ω by changing
the states of some variables that are set differently in τ . Moreover, ω |= ∀ τ ·Δ iff
ω |= Δ and ω′ |= Δ for any world ω′ obtained from ω by setting some variables
in ω to their states in τ .

That is, ∀τ ·Δ selects all instances in class Δ whose membership in the class
does not depend on characteristics that are inconsistent with τ . These instances
are also selected by ∀ τ · Δ which further selects instances that remain in class
Δ when any of their characteristics are changed to agree with τ .

The complete reason is monotone which has key computational implications
as shown in [17–19]. The general reason satisfies a weaker property called fixation
which has also key computational implications as we show in Sect. 6.

Definition 4. An NNF is locally fixated on instance I iff its literals are con-
sistent with I. A formula is fixated on instance I iff it is equivalent to an NNF
that is locally fixated on I.

We also say in this case that the formula is I-fixated. For example, if I = x1·y1·z2
then the formula x12 · y1 + z2 is (locally) I-fixated but x12 · z1 is not. By the
selection semantic we discussed earlier, a formula Δ is I-fixated only if for every
model ω of Δ, changing the states of some variables in ω to their states in I
guarantees that the result remains a model of Δ. Moreover, if Δ is I-fixated,
then I |= Δ but the opposite does not hold (e.g., Δ = x1 + y1 and I = x1 · y2).
We now have the following corollary of Proposition 3.

Corollary 1. The general reason ∀ I · Δ is I-fixated.

The next propositions show that the new operator ∀ has similar computa-
tional properties to ∀ which we use in Sect. 5 to compute general reasons.

Proposition 6. For state x and literal � of variable X, ∀x · � = � if x ∈ �
(x |= �); else ∀ x · � = ⊥. Moreover, ∀ x · Δ = Δ if X does not appear in Δ.

Proposition 7. For formulas α, β and state xi of variable X, we have ∀xi ·
(α · β) = (∀ xi · α) · (∀ xi · β). Moreover, if variable X does not occur in both α
and β, then ∀ xi · (α + β) = (∀ xi · α) + (∀ xi · β).

An NNF is ∨-decomposable if its disjuncts do not share variables. According to
these propositions, we can apply ∀ I to an ∨-decomposable NNF in linear time,
by simply applying ∀ I to each literal in the NNF (the result is ∨-decomposable).
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4 General Necessary and Sufficient Reasons

We next introduce generalizations of necessary and sufficient reasons and show
that they are prime implicates and implicants of the general reason for a decision.
These new notions have more explanatory power and subsume their classical
counterparts, particularly when explaining the behavior of a classifier beyond a
specific instance/decision. For example, when considering the classifier in Fig. 1b,
which is a variant of the one in Fig. 1a, we will see that the two classifiers will
make identical decisions on some instances, leading to identical simple neces-
sary and sufficient reasons for these decisions but distinct general necessary and
sufficient reasons. Moreover, we will see that general necessary and sufficient
reasons are particularly critical when explaining the behavior of classifiers with
(discretized) numeric features.

4.1 General Sufficient Reasons (GSRs)

We start by defining the classical notion of a (simple) sufficient reason but using
a different formulation than [46] which was the first to introduce this notion
under the name of a PI-explanation. Our formulation is meant to highlight a
symmetry with the proposed generalization.

Definition 5 (SR). A sufficient reason for the decision on instance I in class
Δ is a weakest simple term τ s.t. I |= τ |= Δ.

This definition implies that each literal in τ is a variable setting (i.e., character-
istic) that appears in instance I. That is, the (simple) literals of sufficient reason
τ are a subset of the literals in instance I. We now define our generalization.

Definition 6 (GSR). A general sufficient reason for the decision on instance
I in class Δ is a term τ which satisfies (1) τ is a weakest term s.t. I |= τ |= Δ
and (2) no term τ ′ satisfies the previous condition if vars(τ ′) ⊂ vars(τ).

This definition does not require the GSR τ to be a simple term, but it requires
that it has a minimal set of variables. Without this minimality condition, a GSR
will be redundant in the sense of the upcoming Proposition 8. For a term τ and
instance I s.t. I |= τ , we will use I ∩̇ τ to denote the smallest subterm in I that
implies τ . For example, if I = x2 · y1 · z3 and τ = x12 · y13, then I ∩̇ τ = x2 · y1.
Proposition 8. Let I be an instance in class Δ and τ be a weakest term s.t.
I |= τ |= Δ. If τ ′ is a weakest term s.t. I |= τ ′ |= Δ and vars(τ ′) ⊂ vars(τ),
then I ∩̇ τ |= I ∩̇ τ ′ |= Δ. Also, I ∩̇ τ is a SR iff such a term τ ′ does not exist.

According to this proposition, the term τ is redundant as an explanation in that
the subset of instance I which it identifies as being a culprit for the decision
(I ∩̇τ) is dominated by a smaller subset that is identified by the term τ ′ (I ∩̇τ ′).

Consider the classifiers in Figs. 1a and 1b and the patient Susan: Age≥55,
Btype=A and Weight=over. Both classifiers will make the same decision yes on
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Susan with the same SRs: (Age≥55 ·Btype=A) and (Age≥55 ·Weight=over).
The GSRs are different for these two (equal) decisions. For the first classifier, they
are (Age≥55 · Btype∈{A,B}) and (Age≥55 · Weight=over). For the second,
they are (Age≥55 · Btype∈{A,O}) and (Age≥55 · Weight∈{over, norm}).
GSRs encode all SRs and contain more information.6

Proposition 9. Let τ be a simple term. Then τ is a SR for the decision on
instance I iff τ = I ∩̇ τ ′ for some GSR τ ′.

Consider the instance Susan again, I = (Age≥55)·(Btype=A)·(Weight=over)
and the classifier in Fig. 1b. As mentioned, the GSRs for the decision on Susan are
τ ′
1 = (Age≥55 ·Btype∈{A,O}) and τ ′

2 = (Age≥55 ·Weight∈{over, norm}) so
τ1 = I ∩̇τ ′

1 = (Age≥55·Btype=A) and τ2 = I ∩̇τ ′
2 = (Age≥55·Weight=over),

which are the two SRs for the decision on Susan.
The use of general terms to explain the decision on an instance I in class

Δ was first suggested in [12]. This work proposed the notion of a general PI-
explanation as a prime implicant of Δ that is consistent with instance I. This
definition is equivalent to Condition (1) in our Definition 6 which has a second
condition relating to variable minimality. Hence, the definition proposed by [12]
does not satisfy the desirable properties stated in Propositions 8 and 9 which
require this minimality condition. The merits of using general terms were also
discussed when explaining decision trees in [27], which introduced the notion of
an abductive path explanation (APXp). In a nutshell, each path in a decision
tree corresponds to a general term τ that implies the formula Δ of the path’s
class. Such a term is usually used to explain the decisions made on instances that
follow that path. As observed in [27], such a term can often be shortened, leading
to an APXp that still implies the class formula Δ and hence provides a better
explanation. An APXp is an implicant of the class formula Δ but not necessarily
a prime implicant (or a variable-minimal prime implicant). Moreover, an APXp is
a property of the specific decision tree (syntax) instead of its underlying classifier
(semantics). See Appendix B in [30] for further discussion of these limitations.7

4.2 General Necessary Reasons (GNRs)

We now turn to simple necessary reasons and their generalizations. A necessary
reason is a property of the instance that will flip the decision if violated in a cer-
tain way (by changing the instance). As mentioned earlier, the difference between
the classical necessary reason and the generalized one is that the latter comes
with stronger guarantees. Again, we start with a definition of classical necessary
reasons using a different phrasing than [24] which formalized them under the
name of contrastive explanations [33]. Our phrasing, based on [18], highlights a
symmetry with the generalization and requires the following notation.
6 Unlike SRs, two GSRs may mention the same set of variables. Consider the class

formula Δ = (x1 · y12) + (x12 · y1) and instance I = x1 · y1. There are two GSRs for
the decision on I, x1 · y12 and x12 · y1, and both mention the same variables X, Y .

7 A dual notion, contrastive path explanation (CPXp), was also proposed in [27].
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For a clause σ and instance I s.t. I |= σ, we will use I\\σ to denote the
largest subterm of I that does not imply σ. For example, if I = x2 · y1 · z3 and
σ = x12 + y13 then I\\σ = z3. We will also write I ˙|= σ to mean that instance I
implies every literal in clause σ. For instance I = x2 ·y1 ·z3, we have I ˙|=x12+y13
but I � ˙|= x12 + y23 even though I |= x12 + y23.

Definition 7 (NR). A necessary reason for the decision on instance I in class
Δ is a strongest simple clause σ s.t. I ˙|= σ and (I\\σ) · σ �|= Δ (if we minimally
change the instance to violate σ, it is no longer guaranteed to stay in class Δ).

A necessary reason guarantees that some minimal change to the instance
which violates the reason will flip the decision. But it does not guarantee that all
such changes will. A general necessary reason comes with a stronger guarantee.

Definition 8 (GNR). A general necessary reason for the decision on instance
I in class Δ is a strongest clause σ s.t. I ˙|= σ, (I\\σ) · σ |= Δ, and no clause σ′

satisfies the previous conditions if vars(σ′) ⊂ vars(σ).

The key difference between Definitions 7 and 8 are the conditions (I\\σ) ·σ �|= Δ
and (I\\σ) · σ |= Δ. The first condition guarantees that some violation of a NR
will flip the decision (by placing the modified instance outside class Δ) while the
second condition guarantees that all violations of a GNR will flip the decision.

The next proposition explains why we require GNRs to be variable-minimal.
Without this condition, the changes identified by a GNR to flip the decision may
not be minimal (we can flip the decision by changing a strict subset of variables).

For instance I and clause σ s.t. I |= σ, we will use I ∩̇ σ to denote the
disjunction of states that appear in both I and σ (hence, I ∩̇ σ |= σ). For
example, if I = x1 · y1 · z1 and σ = x12 + y23 + z1, then I ∩̇ σ = x1 + z1.

Proposition 10. Let I be an instance in class Δ and let σ be a strongest clause
s.t. I ˙|= σ and (I\\σ) · σ |= Δ. If σ′ is another strongest clause satisfying these
conditions and vars(σ′) ⊂ vars(σ), then I\\σ′ |= I\\σ. Moreover, I ∩̇ σ is a NR
iff such a clause σ′ does not exist.

That is, if violating σ requires changing some characteristics C of instance I,
then σ′ can be violated by changing a strict subset of these characteristics C.

Consider the classifiers in Figs. 1a and 1b which make the same decision,
yes, on Susan (Age≥55, Btype=A, Weight=over). The NRs for these equal
decisions are the same: (Age≥55) and (Weight=over+Btype=A). The GNRs
for the classifier in Fig. 1a are (Age≥55), (Btype∈{A,B,AB}+ Weight=over})
and (Btype∈{A,B} + Weight∈{under,over}). If the instance is changed to
violate any of them, the decision will change. For example, if we set Btype to
AB and Weight to norm, the third GNR will be violated and the decision on
Susan becomes no. For the classifier in Fig. 1b, the GNRs for the decision are
different: (Age≥55) and (Btype∈{A,O} + Weight∈{norm,over}). However,
both sets of GNRs contain more information than the NRs since the minimal
changes they identify to flip the decision include those identified by the NRs.



116 C. Ji and A. Darwiche

Proposition 11. Let σ be a simple clause. Then σ is a NR for the decision on
instance I iff σ = I ∩̇ σ′ for some GNR σ′.

Consider the instance Susan again, I = (Age≥55)·(Btype=A)·(Weight=over)
and the classifier in Fig. 1b. As mentioned earlier, the GNRs for the decision on
Susan are σ′

1 = (Age≥55) and σ′
2 = (Btype∈{A,O}+Weight∈{norm,over}).

Then σ1 = I ∩̇σ′
1 = (Age≥55) and σ2 = I ∩̇σ′

2 = (Weight=over+Btype=A),
which are the two NRs for the decision on Susan.

GSRs and GNRs are particularly significant when explaining the decisions of
classifiers with numeric features, a topic which we discuss in Appendix C of [30].

We next present a fundamental result which allows us to compute GSRs and
GNRs using the general reason for a decision (we use this result in Sect. 6).

Definition 9. A prime implicant/implicate c of formula Δ is variable-minimal
iff there is no prime implicant/implicate c′ of Δ s.t. vars(c′) ⊂ vars(c).

Proposition 12. Let I by an instance in class Δ. The GSRs/GNRs for the
decision on instance I are the variable-minimal prime implicants/implicates of
the general reason ∀ I · Δ.

The disjunction of SRs is equivalent to the complete reason which is equiv-
alent to the conjunction of NRs. However, the disjunction of GSRs implies the
general reason but is not equivalent to it, and the conjunction of GNRs is implied
by the general reason but is not equivalent to it; see Appendix D in [30]. This
suggests that more information can potentially be extracted from the general
reason beyond the information provided by GSRs and GNRs.

5 The General Reasons of Decision Graphs

Decision graphs are DAGs which include decision trees [7,9], OBDDs [10], and
can have discrete or numeric features. They received significant attention in
the work on explainable AI since they can be compiled from other types of
classifiers such as Bayesian networks [47], random forests [12] and some types of
neural networks [45]. Hence, the ability to explain decision graphs has a direct
application to explaining the decisions of a broad class of classifiers. Moreover,
the decisions undertaken by decision graphs have closed-form complete reasons
as shown in [18]. We provide similar closed forms for the general reasons in this
section. We first review decision graphs to formally state our results.

Each leaf node in a decision graph is labeled with some class c. An internal
node T that tests variable X has outgoing edges

X, S1−−−→T1, . . . ,
X, Sn−−−−→Tn, n ≥ 2.

The children of node T are T1, . . . , Tn and S1, . . . , Sn is a partition of some states
of variable X. A decision graph will be represented by its root node. Hence, each
node in the graph represents a smaller decision graph. Variables can be tested
more than once on a path if they satisfy the weak test-once property discussed

next [18,22]. Consider a path . . . , T
X, Sj−−−→Tj , . . . , T

′ X, Rk−−−−→Tk, . . . from the root
to a leaf (nodes T and T ′ test X). If no nodes between T and T ′ on the path test
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variable X, then {Rk}k must be a partition of states Sj . Moreover, if T is the
first node that tests X on the path, then {Sj}j must be a partition of all states
for X. Discretized numeric variables are normally tested more than once while
satisfying the weak test-once property; see Appendix C in [30] for an illustration.

Proposition 13. Let T be a decision graph, I be an instance in class c, and
I[X] be the state of variable X in instance I. Suppose Δc[T ] is the class formula
of T and class c. The general reason ∀ I · Δc[T ] is given by the NNF circuit:8

Γ c[T ] =

⎧
⎪⎨

⎪⎩

� if T is a leaf with class c

⊥ if T is a leaf with class c′ �= c
∏

j(Γ
c[Tj ] + �) if T has outgoing edges

X,Sj−−−→ Tj

Here, � is the X-literal {xi | xi �∈ Sj} if I[X] �∈ Sj, else � = ⊥.

The following proposition identifies some properties of the above closed form,
which have key computational implications that we exploit in the next section.

Proposition 14. The NNF circuit in Proposition 13 is locally fixated on
instance I. Moreover, every disjunction in this circuit has the form �+Δ where
� is an X-literal, and for every X-literal �′ in Δ we have �′ �= � and � |= �′.

6 Computing Prime Implicants and Implicates

Computing the prime implicants/implicates of Boolean formulas was studied
extensively for decades; see, e.g., [29,31,48]. The classical methods are based
on resolution when computing the prime implicates of CNFs, and consensus
when computing the prime implicants of DNFs; see, e.g., [15,20]. More modern
approaches are based on passing encodings to SAT-solvers; see, e.g., [28,35,41].
In contrast, the computation of prime implicants/implicates of discrete formulas
has received very little attention in the literature. One recent exception is [12]
which showed how an algorithm for computing prime implicants of Boolean for-
mulas can be used to compute simple prime implicants of discrete formulas given
an appropriate encoding. Computing prime implicants/implicates of NNFs also
received relatively little attention; see [14,18,42] for some exceptions. We next
provide methods for computing variable-minimal prime implicants/implicates of
some classes of discrete formulas that are relevant to GSRs and GNRs.

A set of terms S will be interpreted as a DNF
∑

τ∈S τ and a set of clauses S
will be interpreted as a CNF

∏
σ∈S σ. If S1 and S2 are two sets of terms, then

S1 × S2 = {τ1 · τ2 | τ1 ∈ S1, τ2 ∈ S2}. For a set of terms/clauses S, 
(S) denotes
the result of removing subsumed terms/clauses from S.

8 An NNF circuit is a DAG whose leaves are labeled with ⊥, �, or literals; and whose
internal nodes are labelled with · or +.
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Algorithm 1. GSR(Δ) — without Line 10, this is Algorithm 2 PI(Δ)
Input: NNF circuit Δ which satisfies the properties in Proposition 14
1: if CACHE(Δ) �= NIL then return CACHE(Δ)
2: else if Δ = � then return {�}
3: else if Δ = ⊥ then return ∅
4: else if Δ is a literal then return {Δ}
5: else if Δ = α · β then
6: S ← 	(GSR(α) × GSR(β))
7: else if Δ = α + β then
8: S ← 	(GSR(α) ∪ GSR(β))
9: end if

10: S ← �(S, ivars(Δ))
11: CACHE(Δ) ← S
12: return S

6.1 Computing General Sufficient Reasons

Our first result is Algorithm 1 which computes the variable-minimal prime impli-
cants of an NNF circuit that satisfies the properties in Proposition 14 and, hence,
is applicable to the general reasons of Proposition 13. If we remove Line 10
from Algorithm 1, it becomes Algorithm 2 which computes all prime implicants
instead of only the variable-minimal ones. Algorithm 2 is the same algorithm
used to convert an NNF into a DNF (i.e., no consensus is invoked), yet the
resulting DNF is guaranteed to be in prime-implicant form. Algorithm 2 is justi-
fied by the following two results, where the first result generalizes Proposition 40
in [38].

In the next propositions, pi(Δ) denotes the prime implicants of formula Δ.

Proposition 15. pi(α · β) = 
(pi(α) × pi(β)).

Proposition 16. For any disjunction α+β that satisfies the property of Propo-
sition 14, pi(α + β) = 
(pi(α) ∪ pi(β)).

We will next explain Line 10 of Algorithm 1, S ← �(S, ivars(Δ)), which is
responsible for pruning prime implicants that are not variable-minimal (hence,
computing GSRs). Here, Δ is a node in the NNF circuit passed in the first call
to Algorithm 1, and ivars(Δ) denotes variables that appear only in the sub-
circuit rooted at node Δ. Moreover, �(S, V ) is the set of terms obtained from
terms S by removing every term τ ∈ S that satisfies vars(τ) ⊃ vars(τ ′) and
V ∩ (vars(τ) \ vars(τ ′)) �= ∅ for some other term τ ′ ∈ S.9 That is, term τ will
be removed only if some variable X in vars(τ) \ vars(τ ′) appears only in the
sub-circuit rooted at node Δ (this ensures that term τ will not participate in
constructing any variable-minimal prime implicant). This incremental pruning
technique is enabled by the local fixation property (Definition 4).

9 The condition V ∩ (vars(τ) \ vars(τ ′)) �= ∅ is trivially satisfied when Δ is the root
of the NNF circuit since V will include all circuit variables in this case.
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Proposition 17. Algorithm 1, GSR(Δ), returns the variable-minimal prime
implicants of NNF circuit Δ.

6.2 Computing General Necessary Reasons

We can convert an NNF circuit into a CNF using a dual of Algorithm 2 but the
result will not be in prime-implicate form, even for ciruits that satisfy the prop-
erties Proposition 14.10 Hence, we next propose a generalization of the Boolean
resolution inference rule to discrete variables, which can be used to convert a
CNF into its prime-implicate form. Recall first that Boolean resolution derives
the clause α+β from the clauses x+α and x+β where X is a Boolean variable.

Definition 10. Let α = �1 + σ1, β = �2 + σ2 be two clauses where �1 and �2
are X-literals s.t. �1 �|= �2 and �2 �|= �1. If σ = (�1 · �2) + σ1 + σ2 �= �, then the
X-resolvent of clauses α and β is defined as the clause equivalent to σ.

We exclude the cases �1 |= �2 and �2 |= �1 to ensure that the resolvent is not
subsumed by clauses α and β. If σ = �, it cannot be represented by clause since
a clause is a disjunction of literals over distinct variables so it cannot be trivial.

Proposition 18. Closing a (discrete) CNF under resolution and removing sub-
sumed clauses yields the CNF’s prime implicates.

The following proposition shows that we can incrementally prune clauses that
are not variable-minimal after each resolution step. This is significant computa-
tionally and is enabled by the property of local fixation (Definition 4) which is
satisfied by the general reasons in Proposition 13 and their CNFs.

Proposition 19. Let S be a set of clauses (i.e., CNF) that is locally fixated.
For any clauses σ and σ′ in S, if vars(σ′) ⊂ vars(σ), then the variable-minimal
prime implicates of S are the variable-minimal prime implicates of S \ {σ}.

In summary, to compute GNRs, we first convert the general reason in Propo-
sition 13 into a CNF, then close the CNF under resolution while removing sub-
sumed clauses and ones that are not variable-minimal after each resolution step.

7 Conclusion

We considered the notions of sufficient, necessary and complete reasons which
have been playing a fundamental role in explainable AI recently. We provided
generalizations of these notions for classifiers with non-binary features (discrete
or discretized). We argued that these generalized notions have more explanatory
power and reveal more information about the underlying classifier. We further
provided results on the properties and computation of these new notions.

Acknowledgments. This work has been partially supported by NSF grant ISS-
1910317.

10 The number of clauses in this CNF will be no more than the number of NNF nodes if
the NNF is the general reason of a decision tree (i.e., the NNF has a tree structure).
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