
Logic for Explainable AI
Adnan Darwiche

Computer Science Department
University of California

Los Angeles, USA
darwiche@cs.ucla.edu

Abstract—A central quest in explainable AI relates to under-
standing the decisions made by (learned) classifiers. There are
three dimensions of this understanding that have been receiving
significant attention in recent years. The first dimension relates to
characterizing conditions on instances that are necessary and suf-
ficient for decisions, therefore providing abstractions of instances
that can be viewed as the “reasons behind decisions.” The next
dimension relates to characterizing minimal conditions that are
sufficient for a decision, therefore identifying maximal aspects of
the instance that are irrelevant to the decision. The last dimension
relates to characterizing minimal conditions that are necessary
for a decision, therefore identifying minimal perturbations to
the instance that yield alternate decisions. We discuss in this
tutorial a comprehensive, semantical and computational theory
of explainability along these dimensions which is based on some
recent developments in symbolic logic. The tutorial will also
discuss how this theory is particularly applicable to non-symbolic
classifiers such as those based on Bayesian networks, decision
trees, random forests and some types of neural networks.

Index Terms—Explainable AI, symbolic logic, classifiers, prime
implicants, prime implicants, quantified logic

I. INTRODUCTION

Explaining the decisions of (learned) classifiers is perhaps
the most studied task in the area of explainable AI. A classifier
can take different forms—like a decision tree, random forest,
Bayesian network or a neural network—but it is essentially
a function that maps instances to a finite number of classes.
When a classifier maps an instance to a class, we say it has
made a decision on that instance. Each classifier has a set of
features which are discrete or numeric variables. An instance
is generated by assigning a value to each feature. Consider
the Naı̈ve Bayes classifier in Fig. 1(a) which has three binary
features (U , B, S), representing medical tests, which generate
eight instances. This classifier has two classes (P=YES, P=NO)
corresponding to whether the patient is pregnant or not. Given
an instance which represents the test results of a patient, this
classifier first computes the distribution on variable P given
these results and then assigns the class P=YES to the instance
iff this probability is no less than 0.90 (called the classification
threshold). This classifier could have been learned from data
and it makes decisions by performing probabilistic reasoning,
but it is in essence a function that maps a finite number of
instances to classes. Fig. 2(a) depicts another classifier in the
form of a decision tree. This one has two numeric features

This work has been partially supported by NSF grant #ISS-1910317.

(a) Naı̈ve Bayes classifier (b) decision graph

Fig. 1. A Naı̈ve Bayes classifier, from [1], with binary features U,B, S and
classes P=YES, P=NO. The decision graph represents the same classifier as
it will make the exact same decision on every instance.

(AGE, BMI) and, hence, an infinite number of instances which
are mapped by the classifier into one of two classes (YES, NO).

The goal of this tutorial is to discuss a theory based on
symbolic logic for explaining the decisions of such classifiers.
The theory targets three fundamental questions:

Q1. What is the reason for a decision on an instance?
Q2. What minimal aspects of an instance will guarantee

the decision on that instance?
Q3. What minimal changes to an instance will lead to a

different decision on that instance?

The answer to the first question will be a necessary and
sufficient condition for the decision, expressed as a logical
formula, which captures the essence of the instance that led to
the decision. The answer to the second question will also be
a logical formula. It will characterize minimal sets of features
with weakest conditions on their states that are guaranteed to
trigger the decision. This will immediately identify features
that are irrelevant to the decision and will also identify
irrelevant states of relevant features. The answer to the third
question will also be a logical formula but one that identifies
minimal sets of features and how they may be changed to flip
the decision into some other, designated or arbitrary, decision.
As we shall see later, the answer to the first question will form
the basis for answering the second and third questions.

The discussed theory is based on representing classifiers
using class formulas which are logical formulas that charac-
terize the instances in each class. Two questions arise here.
First, where do we get these class formulas from? Second,
is it always possible to represent a classifier this way? The
first question may arise when considering a classifier suchIn 38th Annual ACM/IEEE Symposium on Logic in Computer Science, 2023

ar
X

iv
:2

30
5.

05
17

2v
1

 [c
s.A

I]
 9

 M
ay

 2
02

3

AGE

BMI

AGE

NO YES

BMI

BMI
NO YES

NOYES

< 18

≥ 18
< 30 ≥ 30

< 40

≥ 40
< 27 ≥ 27

≥ 25 < 25

(a) decision tree

AGE

BMI

AGE

NO YES

BMI

BMI
NO YES

YES NO

a1 a2, a3

b1, b2, b3 b4

a2

a3
b1, b2 b3, b4

b2, b3, b4 b1

(b) discretized decision tree

Fig. 2. A decision tree, from [2], with numeric features AGE, BMI and classes
YES, NO. AGE is discretized into three intervals [0, 18), [18, 40) and [40,∞)
so it can be treated as a discrete variable with respective values a1, a2, a3.
BMI is discretized into four intervals [0, 25), [25, 27), [27, 30), [30,∞) so
it can be treated as a discrete variable with respective values b1, b2, b3, b4.

as the one in Fig. 1(a) which is numeric in nature and is
based on probabilistic reasoning. The features of this classifier
are discrete so the instances in each class are finite and can
be represented by a logical formula that is obtained through
a compilation process to be discussed at the end of this
tutorial, in Section VI. The second question arises in the
context of classifiers like the decision tree in Fig. 2(a) which
involves an infinite number of instances due to the presence
of numeric features. It is well known that such decision trees
can be easily discretized as shown in Fig. 2(b). Here, the
numeric values of the feature AGE are partitioned into three
equivalence intervals (labeled a1, a2, a3) and the ones for
BMI are partitioned into four equivalence intervals (labeled
b1, b2, b3, b4). Two instances whose features have point values
in the same corresponding intervals are isomorphic from the
viewpoint of this classifier, leading to a finite number of
equivalence classes for the instances in each class so they can
also be represented using logical formulas. The same applies to
a broad set of classifiers including decision graphs and random
forests with majority voting. Again, the compilation of class
formulas for such classifiers will be discussed in Section VI.

We start this tutorial by some technical preliminaries in
Section II and follow by addressing the three explainability
questions in Sections III, IV and V. We will then discuss the
compilation of classifiers into class formulas in Section VI and
finally close with some remarks in Section VII.

II. DISCRETE LOGIC

It is quite common in the literature to employ Boolean logic
even in the presence of discrete variables which are treated
by “binarization.” For example, a discrete variable with n
values may be encoded using n Boolean variables; see [3]
for a review of several encoding schemes. We will not follow
this tradition in this tutorial. Instead, we will work with what
one may call discrete logic as done in [2], [4]. In this logic,
discrete variables are first class citizens that include Boolean

variables as a special case. This is very critical semantically
for the discussed theory of explainability and can be critical
for computation too.1 The bias towards Boolean logic is due to
its potent and vast computational machinery, developed over
decades, which does not apply directly to discrete variables. As
we shall see, however, we now have potent tools for working
with discrete variables in the context of explainable AI.

A. Syntax and Semantics of Discrete Logic

We assume a finite set of discrete variables Σ. Each variable
X ∈ Σ has a finite number of states x1, . . . , xn, n > 1. A
literal ` for variable X , called an X-literal, is a set of states
such that ∅ ⊂ ` ⊂ {x1, . . . , xn}. We often denote a literal such
as {x1, x3, x4} by x134 which reads: the state of variable X
is either x1 or x3 or x4. A literal is simple iff it contains
a single state. Hence, x3 is a simple literal but x134 is not.
Since a simple literal corresponds to a state, we use these two
notions interchangeably. If a variable X has two states, it is
said to be Boolean or binary and its states are denoted by
x and x. Such a variable can only have two simple literals,
{x} and {x}, denoted x and x for convenience. A formula
is either a constant >, ⊥, literal `, negation α, conjunction
α ·β or disjunction α+β where α, β are formulas. The set of
variables appearing in a formula ∆ are denoted by vars(∆).

The semantics of discrete logic directly generalize those of
Boolean logic. A world, denoted ω, maps each variable in Σ
to one of its states. A world ω is called a model of formula α,
written ω |= α, iff α is satisfied by ω (that is, α is true at ω).
The constant > denotes a valid formula (satisfied by every
world) and the constant ⊥ denotes an unsatisfiable formula
(has no models). Formula α implies/entails formula β, written
α |= β, iff every model of α is also a model of β. In this case,
we say α is stronger than β and also say β is weaker than α.

B. Representing Classifiers using Class Formulas

A discrete variable X ∈ Σ is called a feature and a state xi
(or simple literal {xi}) is called a characteristic. An instance
is a conjunction of characteristics, one for each feature in Σ
(instances are in one-to-one correspondence with worlds).

Definition 1: A classifier with classes c1, . . . , cn is a set
of mutually exclusive and exhaustive formulas ∆1, . . . ,∆n,
called class formulas. Instance I is in class ci iff I |= ∆i.

The decision graph below is a classifier with three ternary
features X,Y, Z and three classes c1, c2, c3. Its class formulas
are ∆1 = x12+x3 ·y1 ·z13, ∆2 = x3 ·z2 and ∆3 = x3 ·y23 ·z13.

X

c1 Y

Z Z

c1 c2 c3

x1x2 x3

y1 y2y3

z1z3 z2 z2 z1z3

This classifier has 27 instances: 20
in class c1, 3 in class c2 and 4 in
class c3. For example, instance I =
x3 ·y2 ·z2 is in class c2 since I |= ∆2.
Again, even though a classifier may
take different forms, the presented
theory of explainability views it as
a set of class formulas since this is
all we need to explain decisions.

1We have seen, for example, random forests whose discretization leads to
variables with thousands of values. We want to avoid binarization in this case.

C. Explanations as Normal Forms

The answers to questions Q1, Q2 and Q3 will be expressed
using logical formulas that have normal forms, discussed next.
A term is a conjunction of literals for distinct variables. A
clause is a disjunction of literals for distinct variables. A
Disjunctive Normal Form (DNF) is a disjunction of terms.
A Conjunctive Normal Form (CNF) is a conjunction of
clauses. A Negation Normal Form (NNF) is a formula with
no negations. These definitions imply that terms cannot be
inconsistent, clauses cannot be valid, DNFs and CNFs are
NNFs, and none of these normal forms can include negations.
We say a formula (term/clause) is simple if it contains only
simple literals. Simple and non-simple formulas will delineate
two approaches for answering questions Q1, Q2 and Q3 based
on the amount of information they convey about decisions.

D. Constructing Abstractions using Conditioning

When constructing abstractions of instances to explain deci-
sions, the notion of conditioning plays a central role. Observe
first that a simple term like x1 ·y3 ·z2 represents a set of states.
The conditioning of formula ∆ on a simple term τ is denoted
by ∆|τ and obtained as follows. For each state xi that appears
in the simple term τ , replace each X-literal ` in ∆ with >
if xi ∈ `; otherwise, replace ` with ⊥. Consider the formula
∆ = x12 + x3 · y1 · z13 and the simple term τ = x3 · z1. Then
∆|τ = ⊥+>·y1 ·> = y1. In general, the conditioned formula
∆|τ does not mention any variable that appears in term τ .

E. Minimality using Prime Implicants and Implicates

Questions Q2 and Q3 involve a notion of minimality that
will be captured using the classical notions of prime implicants
and implicates. A term τ is called an implicant of formula ∆
iff it implies ∆ (τ |= ∆). It is called a prime implicant if no
other implicant of ∆ is weaker than τ (i.e., τ |= τ ′ |= ∆ does
not hold for any term τ ′ 6= τ). A clause σ is an implicate
of formula ∆ iff it is implied by ∆ (∆ |= σ). It is called a
prime implicate if no other implicate of ∆ is stronger than
σ (i.e., ∆ |= σ′ |= σ does not hold for any clause σ′ 6= σ).
A prime implicant τ is variable-minimal iff no other prime
implicant τ ′ satisfies vars(τ ′) ⊂ vars(τ). Variable-minimal
prime implicates are defined similarly.

The prime implicants and implicates of discrete formulas
behave in ways that may surprise someone who is accustomed
to these notions in a Boolean setting. Moreover, these behav-
iors have interesting implications on questions Q2 and Q3.
Consider the Boolean formula ∆b = (x+ z) · (x · z+ y). The
term x · y · z is an implicant but not prime. The only way to
weaken this term so it becomes prime is by dropping some
of its variables (y · z is a prime implicant). In discrete logic,
we can possibly weaken a term without dropping any of its
variables, by adding states to some of its literals. Consider the
discrete formula ∆d = (x ·z1+z2) ·(x ·z3+y), where variable
Z is ternary and variables X,Y are binary. The term x·y ·z1 is
an implicant of this formula but is not prime. We can weaken
this term by adding the state z2 to literal z1, leading to the
prime implicant x · y · z12. A symmetrical situation arises for

prime implicates: the only way to strengthen a Boolean clause
is by dropping some of its variables but we can strengthen a
discrete clause by removing states from its literals.

III. THE REASONS BEHIND DECISIONS

We now turn to answering question Q1: What is the
reason for a decision on an instance? We will present two
different answers to this question. The first underlies extensive
developments in explainable AI over the last few years. The
second is very recent, more informative and further subsumes
the first answer. The two answers, however, are equivalent if
all features of the classifier are binary (i.e., Boolean).

Consider a classifier specified by class formulas ∆1, . . . ,∆n

and suppose it decides that instance I belongs to class ci,
I |= ∆i. We need to know why. The answer to this question
must be a condition on the instance that implies formula ∆i.
Since this condition is meant to represent an abstraction of the
instance, we want it to be as weak as possible so we get the
most general abstraction. Here where things get interesting. If
we do not place additional requirements on this condition, we
will get a trivial answer to question Q1 since the class formula
∆i satisfies the requirements we stated. To see why, I |= ∆i

by supposition so ∆i is indeed a condition satisfied by the
instance. Moreover, there is no other condition on instance I
that is weaker than ∆i and that implies ∆i. This answer is
trivial as it will be the same answer returned when explaining
the decision on any instance in class ci. Hence, we need an
additional requirement on the sought condition and we next
review two proposals that have been extended for this purpose.

A. Complete Reasons

The first proposal requires the sought condition—that is,
the reason for the decision—to be constructed from states that
appear in the instance which can be combined in any fashion
but using only conjunctions and disjunctions. Technically
speaking, it requires the condition to be a simple NNF formula
whose literals all appear in the instance being explained. This
leads to the notion of complete reason introduced in [5].2

Definition 2: Suppose instance I belongs to class ci. The
complete reason for the decision on instance I is the weakest
NNF Γ whose literals are in I and that satisfies I |= Γ |= ∆i.

We stress here that the complete reason is a simple NNF
formula, that is, every literal it contains corresponds to a state.

Consider a classifier with three ternary features X,Y, Z.
Instance I = x2 · y2 · z1 is decided as belonging to class c2
which has formula ∆2 = x23 · (x2 + y23) · (y23 + z1). The
complete reason for this decision is x2 · (y2 + z1). It says that
instance I belongs to class c1 because it has characteristic x2
and one of the two characteristics y2, z1. This is indeed the
most general condition on the instance which implies the class
formula and that is constructed by applying conjunctions and
disjunctions to the instance characteristics x2, y2 and z1.

Two questions become relevant now. First, how do we com-
pute the complete reason? Second, how can we use complete

2Ref. [5] gave a different but equivalent definition and for binary variables.
See [4] for a more general treatment.

reasons when they are too complex to be interpretable by
humans? We will address the first question next while leaving
the second question until later in the tutorial.

Ref. [5] showed that if the class formula is appropriately
represented (e.g., as an OBDD [6]), the complete reason can
be computed in linear time. A major development then came
in [7] which introduced the following quantification operator
and showed that it can be used to express the complete reason.

Definition 3: For variable X with states x1, . . . , xn, the
universal literal quantification of state xi from formula ∆ is
defined as ∀xi ·∆ = ∆|xi ·

∏
j 6=i(xi + ∆|xj).

This operator is commutative so it is meaningful to quantify
an instance I from its class formula ∆i, written ∀I ·∆i, by
quantifying the states of I in any order. Moreover, ∀I ·∆i cor-
responds to the complete reason as shown in [7] for Boolean
variables and in [4] for discrete variables. One significance of
this result is that this quantification operator is well behaved
computationally on a number of logical forms. For example,
one can quantify any set of states from a CNF in linear time.
More generally, the operator distributes over conjunctions, and
distributes over disjunctions when the disjuncts do not share
variables as also shown in [7] (see weaker conditions in [4]).
This brought into focus the following form of class formulas
as it allows one to compute complete reasons in linear time
(and general reasons too that are discussed in Section III-B).

Definition 4: An NNF is or-decomposable iff vars(α) ∩
vars(β) = ∅ for any disjuncts α and β in the NNF.3

Due to this form and some of its weakenings, [4] provided
closed-form complete reasons for certain classes of classifiers
that are based on decision graphs.

B. General Reasons

We now turn to a recent development [2] that identified
a weaker requirement on abstractions of instances which can
produce more information when explaining decisions.4

Definition 5: Suppose instance I is in class ci. The general
reason of the decision on instance I is the weakest NNF Γ
whose literals are implied by I and that satisfies I |= Γ |= ∆i.

The only difference between the complete reason and the
general reason is that the former requires literals to appear
in the instance, while the latter only requires that they are
implied by the instance. Hence, general reasons are no longer
simple formulas like complete reasons as they may contain
non-simple literals. If all features are binary, then every literal
is simple and the complete and general reasons are equal.
However, in the presence of non-binary features, general
reasons provide more information about why a decision was
made. Let us see this through an example.

Consider the classifier in Fig. 3 and a patient Rob,

(DIABETES=Y) · (WEIGHT=UNDER) · (BTYPE=A),

3This is to be contrasted with and-decomposable NNFs, known as Decom-
posable NNFs (DNNFs) [8], which have been studied extensively.

4Def. 5 is actually a proposition in [2]. We reversed the formulation here
to serve the storyline in this tutorial.

DIABETES

WEIGHT NO

YES BTYPE BTYPE

YES NO YES NO

Y N

OVER UNDER NORM

A, B, AB O A, B AB, O

Fig. 3. A classifier of some disease in the form of a decision tree [2].

decided as YES. The complete reason for the decision is

(DIABETES=Y) · (BTYPE=A)

and the general reason is

(DIABETES=Y) · (BTYPE∈{A, B, AB})·
(WEIGHT∈{UNDER, OVER}+ BTYPE∈{A, B}).

The complete reason justifies the decision by Rob having
DIABETES and a BTYPE of A. But the general reason provides
weaker justifications. One of them is that Rob has DIABETES

and his BTYPE is not AB or O. Another justification is that he
has DIABETES, his WEIGHT is not NORM and his BTYPE is not O.

The additional information provided by general reasons is
particularly critical in the context of discretized classifiers.
Consider again the decision tree in Fig. 2 which has two
numeric features AGE, BMI. The feature AGE is discretized into
three intervals [0, 18), [18, 40) and [40,∞) with corresponding
labels a1, a2, a3. The feature BMI is discretized into four
intervals [0, 25), [25, 27), [27, 30), [30,∞) with corresponding
labels b1, b2, b3, b4. Hence, AGE can be treated as a discrete
variable with states a1, a2, a3 and BMI can be treated as a
discrete variable with states b1, b2, b3, b4. Consider now the
instance AGE=42 · BMI=28 which is discretized into a3 · b3
(AGE ≥ 40 and 27 ≤ BMI < 30). The decision on this instance
is YES and its class formula ∆YES is a1 · b4 +a2 · b34 +a3 · b234
(obtained by tracing the paths leading into class YES). The
complete reason for this decision is a3 · b3 which is the
instance itself so no abstraction took place. The general reason
is a23 · b34 + a3 · b234 which reads

(AGE ≥ 18) · (BMI ≥ 27) + (AGE ≥ 40) · (BMI ≥ 25).

This is a weaker property of the instance that still implies
the decision. For example, the first part says the decision is
justified by AGE being no less than 18 and BMI being no less
than 27. These kind of justifications are impossible to obtain
using complete reasons as such reasons can only reference
instance characteristics, that is, AGE ≥ 40 and 27 ≤ BMI < 30.

General reasons can also be expressed using a quantification
operator introduced in [2].

Definition 6: For variable X with states x1, . . . , xn and
formula ∆, ∀xi ·∆ is defined as ∆|xi ·∆.

This operator is also commutative so we can quantify an
instance I from its class formula ∆i, written ∀ I · ∆i, by
quantifying the states of I in any order. Moreover, ∀ I · ∆i

corresponds to the general reason for the decision on instance
I as shown in [2]. The operators ∀ and ∀ have similar
computational properties as far as distributivity and tractability
on forms such as CNFs and or-decomposable NNFs. This is
why, similar to complete reasons, we also have closed-form
general reasons for certain classes of classifiers [2].

C. Fixation and Monotonocity

Complete and general reasons satisfy a property called
fixation, which has key implications including on computation
as we discuss later. This property was also identified in [2].

Definition 7: An NNF is locally fixated on instance I iff its
literals are consistent with I. A formula is fixated on instance
I iff it is equivalent to an NNF that is locally fixated on I.

The formula x12 ·y13 +z23 is locally fixated on the instance
I = x1 ·y1 ·z2, but this is not true for the formula x12 ·y23+z23
since the literal y23 is not consistent with the instance I. The
fixation of complete reasons follows directly from Def. 2 and
the fixation of general reasons follows directly from Def. 5.

If a simple formula is fixated then it is also monotone.
Definition 8: A formula is monotone iff for each variable X

all X-literals that occur in the formula are simple and equal.
For example, the formula (x1 + y2) · (x1 + z3) · (y2 + z3) is

monotone, but the formulas (x1 + y2) · (x12 + z3) · (y2 + z3)
is not monotone since it contains a non-simple literal x12.
The formula (x1 + y2) · (x1 + z3) · (y3 + z3) is not monotone
either since it contains distinct literals y2 and y3 for variable Y .
Complete reasons are known to be monotone and this property
was exploited computationally in [4], [5] when computing the
prime implicants and implicates of complete reasons.

D. Selection Semantics

For an instance I and its class formula ∆i, we have [2]:

I |= ∀I ·∆i |= ∀ I ·∆i |= ∆i

so the general reason is always weaker than the complete
reason. The above relations also show that reasons, whether
complete or general, are stronger than class formulas. Hence,
the operators ∀ and ∀ can be viewed as selection operators
since they select subsets of the instances in class ci [2], [7].
In particular, ∀I · ∆i selects all instances in class ci whose
membership in the class does not depend on characteristics
that are inconsistent with instance I. For example, suppose
that instance I ′ is in class ci and disagrees with instance I
only on the states of features X,Y, Z. Then I ′ will be selected
by ∀I ·∆i iff changing the states of any subset of its features
X,Y, Z yields an instance that is also in class ci. In contrast,
∀ I · ∆i selects all instances that remain in class ci if any
of their characteristics are changed to agree with instance I
(these include the ones selected by ∀I ·∆i). In the previous
example, instance I ′ will be selected by ∀ I ·∆i iff setting the
states of any subset of its features X,Y, Z to the states they
have in I yields an instance that is also in class ci.

Fig. 4. Example sufficient reason from the domain of classifying digits [11].

IV. THE SUFFICIENT REASONS FOR A DECISION

We now turn to answering question Q2: What minimal
aspects of an instance guarantee the decision on that instance?
We will provide two answers which depend on how we define
“aspects.” The first answer is based on the following notion.

Definition 9: Suppose instance I is in class ci. The sufficient
reasons (SRs) for the decision on instance I are the prime
implicants of the complete reason ∀I ·∆i.

A sufficient reason is a term τ = `1 · . . . · `n where each
literal `i is simple (i.e., a state) and appears in instance I.5

This leads to the relationships I |= τ |= ∀I ·∆i |= ∆i which
further imply that any instance containing states `1, . . . , `n will
be decided similarly to instance I. Moreover, this does not
hold for any strict subset of these states; otherwise, τ cannot
be a prime implicant of ∀I ·∆i. In other words, the sufficient
reason τ is a minimal set of characteristics in instance I that
justify the decision on the instance, so other characteristics of
the instance can be viewed as irrelevant to the decision as they
can be changed in any fashion while sustaining the decision.

The notion of a sufficient reason was first introduced in [9]
under the name of a PI-explanation using a different but
equivalent definition. The term “sufficient reason” was first
used in [5] which introduced the complete reason and showed
that its prime implicants are the PI-explanations. Sufficient
reasons are sometimes also called abductive explanations [10].

For a concrete example of sufficient reasons, from [11],
consider Fig. 4 which depicts 16×16 images. The image on the
left was passed to a Convolutional Neural Network (CNN) that
is tasked with classifying digits 0, 1 and the CNN classified
the image correctly as digit 0. One of the sufficient reasons for
this decision is depicted in the middle of Fig. 4. This sufficient
reason contains 3 white pixels (out of 256 pixels) so any image
that contains these 3 white pixels will be classified as digit 0
by this CNN, as shown on the right of Fig. 4.

For another concrete example, from [2], consider the clas-
sifier in Fig. 3 and the following patient, Lara,

I: (DIABETES=Y) · (WEIGHT=OVER) · (BTYPE=A). (1)

The decision on Lara is YES and the class formula ∆YES is

(DIABETES=Y)·
[(WEIGHT=OVER) +

(WEIGHT=NORM) · (BTYPE∈{A, B}) +

(WEIGHT=UNDER) · (BTYPE∈{A, B, AB})]. (2)

5Since the complete reason is simple and fixated on the instance I.

The complete reason ∀I ·∆YES for this decision is

(DIABETES=Y) · [(WEIGHT=OVER) + (BTYPE=A)]. (3)

It has two prime implicants

(DIABETES=Y) · (WEIGHT=OVER) (4)
(DIABETES=Y) · (BTYPE=A) (5)

which are the sufficient reasons for the decision. Hence, the
feature BTYPE is irrelevant to the decision on Lara given her
characteristics (DIABETES=Y) · (WEIGHT=OVER), and the feature
WEIGHT is irrelevant given (DIABETES=Y) · (BTYPE=A).

One can obtain weaker sufficient reasons—and, hence,
identify further irrelevant aspects of instances—by employing
the general reason behind the decision as shown recently in [2].

Definition 10: Suppose instance I is in class ci. The general
sufficient reasons (GSRs) for the decision on I are the variable-
minimal prime implicants of the general reason ∀ I ·∆i.6

The general reason ∀ I ·∆YES for the decision on Lara is

(DIABETES=Y)·
[(WEIGHT=OVER) + (BTYPE∈{A, B}) +

(WEIGHT∈{UNDER, OVER}) · (BTYPE∈{A, B, AB})] (6)

and has three prime implicants

(DIABETES=Y) · (WEIGHT=OVER) (7)
(DIABETES=Y) · (BTYPE∈{A, B}) (8)
(DIABETES=Y) · (WEIGHT∈{UNDER, OVER}) · (BTYPE∈{A, B, AB})

(9)

Only the first two are variable-minimal so they are the general
sufficient reasons for the decision. We have seen (7) as
a sufficient reason in (4). However, the general sufficient
reason in (8) is weaker than the sufficient reason in (5) and
conveys more information about the decision. In particular, the
sufficient reason in (5) says that Lara’s WEIGHT is irrelevant to
the decision because she has DIABETES and her BTYPE type is
A, but the general sufficient reason in (8) says it is because
she has DIABETES and her BTYPE is not AB or O.

Every general sufficient reason is consistent with the in-
stance since the general reason is fixated on the instance.
Define the intersection of instance I with a general sufficient
reason τ as the smallest subset of I that implies τ . Then this
intersection is guaranteed to be a sufficient reason. Moreover,
this guarantee holds iff we have the variable-minimality condi-
tion in Def. 10. For example, the intersection of (1) and (8) is
(DIABETES=Y) · (BTYPE=A) which is a sufficient reason but the
intersection of (1) and (9) is (DIABETES=Y) · (WEIGHT=OVER) ·
(BTYPE=A) which is not a sufficient reason.7 More generally,
the sufficient reasons of a decision are precisely the intersec-
tions of general sufficient reasons with the instance. Hence,
general sufficient reasons subsume their classical counterparts
and provide more information about decisions and underlying

6This definition is a proposition in [2] which provided a different definition
for general sufficient reasons that does not reference general reasons.

7Ref. [3] suggested using prime implicants that are not variable-minimal.

classifiers. We finally note, again, that if all features are binary,
the complete and general reasons are equivalent so general
sufficient reasons reduce to classical sufficient reasons. All
the previous observations are implied by the results in [2].

V. THE NECESSARY REASONS FOR A DECISION

We now turn to answering question Q3: What minimal
changes to an instance will lead to a different decision on that
instance? The answer to this question will identify minimal
sets of features that will flip the decision if changed properly.
There are two orthogonal variations on this question. The first
determines whether the specific changes to these features are
also identified which in turn depends on whether we employ
the complete or general reason for this purpose. The second
variation relates to whether we seek to flip the decision into
some specific alternative or some arbitrarily different decision.

A. Undermining a Current Decision

We assume in this section that our goal is to undermine
the current decision, without targeting a particular alternate
decision. This aim can be achieved using the following notion.

Definition 11: Suppose instance I is in class ci. The
necessary reasons (NRs) for the decision on instance I are
the prime implicates of the complete reason ∀I ·∆i.

Each necessary reason is a clause `1 + . . .+ `n where each
literal `i is simple (a state) and appears in instance I.8 Hence,
each necessary reason is satisfied by the instance. However,
if we change the instance in a way that violates a necessary
reason, the decision is no longer guaranteed to be sustained.
Suppose state `i is for feature Xi. To violate the necessary
reason `1 + . . .+ `n we must change the state of each feature
Xi in the instance. The guarantee that comes with a necessary
reason is that at least one such change will flip the decision,
and no strict subset of this change will flip the decision.

The notion of a necessary reason was first formalized
in [12] using a different but equivalent definition, under the
name of a contrastive explanation [13]. Necessary reasons
are sometimes also called counterfactual explanations [14].9

The term “necessary reason” was first used in [4] which
showed that contrastive explanations are the prime implicates
of the complete reason and provided the semantics of necessity
discussed earlier (a property that must be preserved if the
decision is to be preserved). Let us now illustrate necessary
reasons using a concrete example.

We are back to patient Lara given in (1) who was decided
as YES by the classifier in Fig. 3. The class formula is given
in (2) and the complete reason for the decision is given in (3).
This complete reason has two prime implicates, (DIABETES=Y)
and (WEIGHT=OVER) + (BTYPE=A). There is only one way to
violate the first reason by setting DIABETES to N, which will
indeed flip the decision to NO as can be verified in Fig. 3. The

8Since the complete reason is simple and fixated on the instance.
9There is an extensive body of work in philosophy, social science and AI

that discusses contrastive explanations and counterfactual explanations; see,
e.g., [15]–[24]. While the definitions of these notions are sometimes variations
or refinements on one another, they are not always compatible.

second necessary reason can be violated in six different ways,
by setting WEIGHT to a state in {UNDER, NORM} and setting BTYPE

to a state in {B, AB, O}. Not all of these changes/violations
will flip the decision but at least one will. The change to
(WEIGHT=UNDER) · (BTYPE=O) does flip the decision but the
change to (WEIGHT=UNDER) · (BTYPE=AB) does not (always
assuming that DIABETES is left unchanged). We stress again
that no strict subset of the first change will flip the decision
since the changes suggested by necessary reasons are minimal.

We will now see that we can do better than this if we employ
the general reasons of decisions as suggested recently in [2].

Definition 12: Suppose instance I is in class ci. The general
necessary reasons (GNRs) for the decision on I are the
variable-minimal prime implicates of general reason ∀ I ·∆i.10

Like necessary reasons, violating a general necessary reason
will undermine the decision. However, we now have an addi-
tional guarantee: every violation of a general necessary reason
will flip the decision. This guarantee will not hold if we do not
insist on variable-minimal prime implicates, and if some prime
implicate that is not variable minimal satisfies this guarantee,
then some changes it suggests cannot be minimal (i.e., we
can flip the decision with fewer changes to the instance).
Moreover, any change that flips the decision and is suggested
by some necessary reason will also be suggested by some
general necessary reason. That is, the latter reasons subsume
the former and convey more information about decisions and
the underlying classifiers.11 Let us look at a concrete example.

The general reason for the decision on Lara is given in (6)
and has three prime implicates

(DIABETES=Y)

(WEIGHT=OVER) + (BTYPE∈{A, B, AB})
(WEIGHT∈{UNDER, OVER}) + (BTYPE∈{A, B}).

All are variable-minimal so they are all general necessary
reasons. The first can be violated in only one way by setting
DIABETES to N which will flip the decision. The second can
be violated in two ways by setting WEIGHT to a state in
{UNDER, NORM} and setting BTYPE to state O. Both violations
will flip the decision as can be verified using the classifier in
Fig. 3. The third general necessary reason can be violated in
two ways by setting WEIGHT to state NORM and setting BTYPE

to a state in {AB, O}. Again, both violations will flip the
decision. Hence, every violation of these general necessary
reasons is guaranteed to flip the decision. Moreover, every
change suggested by a necessary reason and which flips the
decision is also suggested by some general necessary reason.

We conclude this section by the following remarks. Boolean
resolution derives the clause α+β from clauses x+α and x+β.
Moreover, a classical method for computing prime implicates
of Boolean CNFs is to close the CNF under resolution and
remove subsumed clauses after each resolution step; see,
e.g., [25], [26]. As recently shown in [2], this can also be done

10This definition is a proposition in [2] which provided a different definition
for general necessary reasons that does not reference general reasons.

11The general necessary reasons are fixated (Def. 7) on instance I.

for discrete CNFs but using a generalized resolution rule that
derives clause `·`′+α+β from clauses `+α and `′+β where
` and `′ are literals for the same variable. What is particularly
striking is this. If the CNF is locally fixated (Def. 7), as is the
case for general reasons, then one can compute the general
necessary reasons by simply discarding clauses that are not
variable-minimal after each resolution step [2].

B. Targeting a New Decision

The previous discussion showed how (general) necessary
reasons can be used to flip a decision but without a guarantee
on what the new decision is. This becomes an issue when
the classifier has more than two classes and hence can make
more than two decisions. Consider a classifier that decides
whether an applicant should be approved for large loan (c1),
approved for a small loan (c2) or declined (c3). Let ∆1,∆2,∆3

be the corresponding class formulas and suppose we have
an applicant I who was approved for a small loan, that is,
I |= ∆2. The (general) necessary reasons for this decision do
suggest minimal changes to the application that will flip the
decision but they do not guarantee whether the new decision
will approve a larger loan or decline the application. Suppose
that we wish to flip the decision so the applicant is approved
for a larger loan (c1). What we can do is merge classes c2
and c3 leading to a classifier with two decisions c1, c23 and
corresponding class formulas ∆1 and ∆23 = ∆2 + ∆3. The
decision to approve a small loan (c2) in the original classifier,
I |= ∆2, is now a decision to approve a small loan or decline
the application (c23) in the new classifier, I |= ∆23. Flipping
this decision is then guaranteed to approve a large loan (c1).

More generally, suppose we have a classifier with classes
c1, . . . , cn, class formulas ∆1, . . . ,∆n, and an instance I in
class ci, I |= ∆i. If we wish to minimally change this
instance so it moves to some other class cj , we need to
compute the complete reason ∀I ·

∑
k 6=j ∆k or the general

reason ∀ I·
∑

k 6=j ∆k. This can then be followed by computing
the (variable-minimal) prime implicates of these reasons as
discussed earlier. This technique of merging class formulas
was proposed in [4] and the resulting necessary reasons have
been known as targeted contrastive explanations [12].

VI. COMPILING CLASS FORMULAS

A comprehensive discussion of compiling class formulas
for various types of classifiers is beyond the scope of this
tutorial.12 However, we will share some key insights about this
compilation process to make it somewhat less mysterious. The
first observation is that the techniques underlying this process
depend on the type of classifier, and its difficulty depends on
both the type of classifier and the desired form of compiled
formulas. A number of works have targeted compilations in
the form of tractable circuits [27] but we will largely ignore
this dimension here since compiling formulas into tractable
circuits is a well understood problem that has been studied
extensively in the area of knowledge compilation [28].

12The term “class formulas” was first used in [4]. Compiling the “decision
function” or “input-output behavior” of a classifier are more common terms.

Fig. 5. Compiling a Naı̈ve Bayes classifier into a decision graph [29].

A. Bayesian Networks

Compiling the class formulas of Bayesian network clas-
sifiers is perhaps the most subtle conceptually since de-
ciding what instance belongs to what class requires prob-
abilistic reasoning. There are two fundamental insights be-
hind this compilation process. The first is the notion of
equivalence intervals introduced in [29]. Consider the Naı̈ve
Bayes classifier in Fig. 1(a) which has the class distribution
Pr(P=YES),Pr(P=NO) = (0.87, 0.13). We can change this
distribution quite significantly without changing any decision
made by this classifier as long as Pr(P=YES) ∈ [0.684, 0970],
which is called an equivalence interval. The second fun-
damental insight is the notion of equivalent sub-classifiers
also introduced in [29]. Continuing with the same classifier,
suppose we set the features U,B to values +VE, –VE. This leads
to a sub-classifier over one features S with a new class dis-
tribution (0.948, 0.052) since Pr(P=YES|U=+VE, B=–VE) =
0.948. Similarly, if these two features are set to –VE, +VE,
we get another sub-classifier over the same features U
but with a different class distribution (0.924, 0.076) since
Pr(P=YES|U=–VE, B=+VE) = 0.924. By utilizing the concept
of equivalence intervals, we can conclude that these two sub-
classifiers are equivalent, that is, they make the same decisions
on sub-instances S=+VE and S=–VE. Putting these two insights
together, we can compile a Bayesian network classifier into a
(symbolic) decision graph by conducting a depth-first search
on the space of feature instantiations while pruning the search
whenever we encounter a sub-classifier that is equivalent to
another sub-classifier that we already encountered (compiled);
see Fig. 5. This was used to compile Naı̈ve Bayes classifiers
in [29], tree-structured classifiers in [9] and graph-structured
classifiers in [30]. The techniques for computing equivalence
intervals and for identifying equivalent sub-classifiers depend
on the classifier’s structure which explains this progression.
Fig. 1(b) depicts the compiled decision graph using this
method for the Naı̈ve Bayes classifier in Fig. 1(a). Extracting
class formulas from decision graphs is discussed next.

B. Decision Graphs and Random Forests

Our next discussion on decision graphs applies to decision
trees since they are a special case. It is well known that the

class formulas of decision graphs can be directly obtained
as DNFs. To construct the DNF for a class ci, we simply
construct a term for each path from the root to a leaf labeled
with ci and then disjoin these terms. For example, in the
decision graph below, there are two paths from the root to
class c1 which generate the DNF ∆1 = x12 + x3 · y1 · z13.

X

c1 Y

Z Z

c1 c2 c3

x1x2 x3

y1 y2y3

z1z3 z2 z2 z1z3

For decision graphs (that are not
trees), this may yield a DNF that is
exponentially larger than the graph.
We can alleviate this by constructing
an NNF circuit whose size is guar-
anteed to be linear in the decision
graph size. The next construction
from [4] produces circuits that sat-
isfy even stronger properties as such
circuits will allow one, under weak conditions, to compute
complete and general reasons in time linear in the circuit size.

Let c1, . . . , cn be the classes of the decision graph (i.e.,
labels of leaf nodes) and suppose we wish to construct an
NNF circuit for the formula of some class ck. We first
define the function nnf(N) which maps a node N in the
decision graph into an NNF fragment as follows. If node N
has outgoing edges `1−→ C1, . . . ,

`m−−→ Cm, then nnf(N) =∑m
i=1(`i · nnf(Ci)). For leaf nodes, nnf(ci) = > if ci = ck

and nnf(ci) = ⊥ if ci 6= ck. We can now convert the decision
graph into an NNF circuit by calling nnf(R) where R is the
graph’s root node. This is the standard method but [4] defined
the function nnf(.) differently so the NNF circuits satisfy
desirable properties. In particular, for an internal node N , it
instead used nnf(N) =

∏m
i=1(`′i +nnf(Ci)) where literal `′i

is the complement of literal `i. Leaf nodes are kept the same,
nnf(ci) = > if ci = ck and nnf(ci) = ⊥ if ci 6= ck. The new
method is equivalent to using the first method to construct an
NNF circuit for the union of classes c1, . . . , ck−1, ck+1, . . . , cn
and then negating the resulting circuit using deMorgan’s law.

The NNF circuits constructed by this new method are
guaranteed to be or-decomposable (Def. 4) if the decision
graph satisfies the test-once property (a feature is tested at
most once on any path). Recall that complete and general
reasons can be computed in linear time if the class formulas
are or-decomposable NNFs since the operators ∀ (Def. 3) and
∀ (Def. 6) will distribute over disjunctions and conjunctions
in such NNFs. One can also obtain NNF circuits that allow
linear-time computation of complete and general reasons if the
decision graph satisfies the weak test-once property discussed
in [4]. Discretized decision graphs satisfy this property (e.g.,
the decision tree in Fig. 2(b)). The above construction and its
variants are the basis for the closed-form complete reasons
proposed in [4] and the closed-form general reasons in [2].

For random forests with majority voting, one can easily
construct NNF circuits for class formulas by combining the
NNF circuits for trees in the forest using a majority circuit. But
the resulting circuit is not guaranteed to be or-decomposable
even when the circuits for trees are or-decomposable.

C. Neural Networks

The compilation of neural network classifiers into class
formulas is more involved due to the multiplicity of techniques
and assumptions such as the type of activation functions and
whether the network is binary, binarized or quantized. We will
therefore restrict the discussion to one approach for binary
neural networks while giving pointers to other approaches.

The work we shall sample is [11] which assumed neural
networks with binary inputs and step-activation functions. The
compilation technique is based on a few observations. First,
a neuron with step activation has a binary output so if its
inputs are also binary then the neuron represents a Boolean
function. Hence, a neural network with binary inputs and step-
activation functions must represent a Boolean function (i.e.,
the signals on its inputs, internal wires and output must all be
in {0, 1}). One can therefore convert the neural network into
a Boolean circuit (from which class formulas can be easily
extracted) if one can compile a neuron into a Boolean circuit
(i.e., one with binary inputs and a step-activation function).
The next observation is that a neuron with step activation is
a linear classifier similar to Naı̈ve Bayes classifiers. Hence,
the technique we discussed earlier for compiling Naı̈ve Bayes
classifiers into decision graphs, from [29], can be adopted
for compiling this class of neurons into decision graphs
and then NNF circuits. Once such neurons are successfully
compiled, the neural network can be immediately represented
as a Boolean circuit from which class formulas can be easily
obtained. This work went a bit further by employing a variant
on the compilation method in [29] which assumes that the
neuron weights w1, . . . , wn and threshold T are integers. This
allows one to conduct the compilation in O(nW) time where
W = |T |+

∑n
i=1 |wi| is a sum of absolute values. This pseudo-

polynomial time compilation algorithm can be applied to real-
valued weights by multiplying the weights by a constant and
then truncating (i.e., the weights have fixed precision). This
technique permitted the compilation of neural networks with
hundreds of inputs (features). The example in Fig. 4 and many
other examples in [11] were produced by this approach.

For further techniques that encode input-output behavior
symbolically, see [31]–[37] for binarized neural networks
and [38]–[41] for quantized ones. Most of these works target
verification tasks though instead of explaining behavior.

VII. CONCLUDING REMARKS

We close this tutorial with three remarks. The first remark
concerns two distinct classes of works on explainable AI.
One class assumes enough information about the classifier to
allow the construction of class formulas or, more generally, the
characterization of which instances belong to what classes.
This is clearly the assumption we made in this tutorial and
the resulting approaches are known as model-based. These
approaches usually seek explanations that come with hard
guarantees like the ones we discussed. The other class of
works assume that we can only query the classifier, that is,
ask it to classify instances. These approaches are known as
model-agnostic and have been mostly popularized through the

early systems described in [42], [43]. These approaches tend
to scale better but do not offer hard guarantees and can be
viewed as computing approximate explanations [44].

The second remark relates to the extensive nature of in-
vestigations that were conducted on explainability over the
last few years, particularly on the complexity of computing
explanations. The following are some examples. For Naı̈ve
Bayes (and linear) classifiers, it was shown that one sufficient
reason can be generated in log-linear time, and all sufficient
reasons can be generated with polynomial delay [45]. For
decision trees, the complexity of generating one sufficient
reason was shown to be in polynomial time [46]. Later works
showed the same complexity for decision graphs [47] and
some classes of tractable circuits [14], [48]. The generation of
sufficient reasons for decision trees was also studied in [49],
including the generation of shortest sufficient reasons which
was shown to be hard even for a single reason. The generation
of shortest sufficient reasons was also studied in a broader
context that includes decision graphs and SDDs [4].13 The
complexity of shortest sufficient reasons was studied in [55]
for Boolean classifiers which correspond to decision graphs
and for neural networks with ReLU activation functions. It
was further shown that the number of necessary reasons is
linear in the decision tree size [4], [47], that all such reasons
can be computed in polynomial time [4], [49], and that the
shortest necessary reasons can be enumerated with polynomial
delay if the classifier satisfies some conditions as stated in [56].
Further complexity results were shown in [14], [48], where
classifiers where categorized based on the tractable circuits
that represent them [48] or the kinds of processing they permit
in polynomial time [14]. A comprehensive study of complexity
was also presented in [57] for a large set of explanation queries
and classes of Boolean classifiers. Computational approaches
based on either SAT, MaxSAT or partial MaxSAT were also
proposed for random forests, e.g., [58], [59], tree ensembles,
e.g., [60] and boosted trees, e.g., [61]. Formal results on ex-
plainability were even employed to question common wisdoms
like those relating to the interpretability of decision trees [62].

The last remark relates to the storyline adopted in this
tutorial which treated the complete and general reasons behind
decisions as the core notions in this theory of explainability
and used them to describe other notions, even ones that were
proposed before such reasons were conceived. This is an
outcome of our firm belief that the notion of “instance abstrac-
tion” must be the core of any comprehensive and well-founded
theory of explainability. We hope the reader would agree with
us that this treatment has also led to a minimalistic formulation
that explicates semantics and facilitates computation.

ACKNOWLEDGMENT

I wish to thank Yizuo Chen, Haiying Huang and Albert Ji
for their useful feedback and discussions.

13SDDs (Sentential Decision Diagrams) are decision diagrams that branch
on formulas (sentences) instead of variables [50]. SDDs are a superset of,
and exponentially more succinct than [51], OBDDs but are not comparable
to some other types of decision graphs in terms of succinctness [52]–[54].

REFERENCES

[1] H. Chan and A. Darwiche, “Reasoning about Bayesian network classi-
fiers,” in UAI. Morgan Kaufmann, 2003, pp. 107–115.

[2] C. Ji and A. Darwiche, “A new class of explanations for classifiers with
non-binary variables,” CoRR, vol. abs/2304.14760, 2020.

[3] A. Choi, A. Shih, A. Goyanka, and A. Darwiche, “On symbolically
encoding the behavior of random forests,” CoRR, vol. abs/2007.01493,
2020.

[4] A. Darwiche and C. Ji, “On the computation of necessary and sufficient
explanations,” in AAAI. AAAI Press, 2022.

[5] A. Darwiche and A. Hirth, “On the reasons behind decisions,” in ECAI,
ser. Frontiers in Artificial Intelligence and Applications, vol. 325. IOS
Press, 2020, pp. 712–720.

[6] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. Computers, vol. 35, no. 8, pp. 677–691, 1986.

[7] A. Darwiche and P. Marquis, “On quantifying literals in Boolean logic
and its applications to explainable AI,” J. Artif. Intell. Res., vol. 72, pp.
285–328, 2021.

[8] A. Darwiche, “Decomposable negation normal form,” J. ACM, vol. 48,
no. 4, pp. 608–647, 2001.

[9] A. Shih, A. Choi, and A. Darwiche, “A symbolic approach to explaining
bayesian network classifiers,” in IJCAI. ijcai.org, 2018, pp. 5103–5111.

[10] A. Ignatiev, N. Narodytska, and J. Marques-Silva, “Abduction-based
explanations for machine learning models,” in Proceedings of the Thirty-
Third Conference on Artificial Intelligence (AAAI), 2019, pp. 1511–1519.

[11] W. Shi, A. Shih, A. Darwiche, and A. Choi, “On tractable representations
of binary neural networks,” in KR, 2020, pp. 882–892.

[12] A. Ignatiev, N. Narodytska, N. Asher, and J. Marques-Silva, “From
contrastive to abductive explanations and back again,” in AI*IA, ser.
Lecture Notes in Computer Science, vol. 12414. Springer, 2020, pp.
335–355.

[13] P. Lipton, “Contrastive explanation,” Royal Institute of Philosophy
Supplements, vol. 27, p. 247–266, 1990.

[14] G. Audemard, F. Koriche, and P. Marquis, “On tractable XAI queries
based on compiled representations,” in KR, 2020, pp. 838–849.

[15] A. Garfinkel, “Forms of explanation: Rethinking the questions in social
theory,” British Journal for the Philosophy of Science, vol. 33, no. 4,
pp. 438–441, 1982.

[16] D. Lewis, “Causal explanation,” in Philosophical Papers Vol. Ii,
D. Lewis, Ed. Oxford University Press, 1986, pp. 214–240.

[17] D. Temple, “The contrast theory of why-questions,” Philosophy of
Science, vol. 55, no. 1, pp. 141–151, 1988.

[18] S. Wachter, B. D. Mittelstadt, and C. Russell, “Counterfactual expla-
nations without opening the black box: Automated decisions and the
GDPR,” Harvard Journal of Law & Technology, vol. 31, no. 2, 2018.

[19] J. van der Waa, M. Robeer, J. van Diggelen, M. Brinkhuis, and
M. Neerincx, “Contrastive explanations with local foil trees,” arXiv
preprint arXiv:1806.07470, 2018.

[20] T. Miller, “Explanation in artificial intelligence: Insights from the social
sciences,” Artif. Intell., vol. 267, pp. 1–38, 2019.

[21] B. Mittelstadt, C. Russell, and S. Wachter, “Explaining explanations in
AI,” Proceedings of the Conference on Fairness, Accountability, and
Transparency, Jan 2019.

[22] Y. Goyal, Z. Wu, J. Ernst, D. Batra, D. Parikh, and S. Lee, “Coun-
terfactual visual explanations,” in Proceedings of the 36th International
Conference on Machine Learning, ser. Proceedings of Machine Learning
Research, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. PMLR,
09–15 Jun 2019, pp. 2376–2384.

[23] S. Verma, V. Boonsanong, M. Hoang, K. E. Hines, J. P. Dickerson,
and C. Shah, “Counterfactual explanations and algorithmic recourses
for machine learning: A review,” 2022.

[24] R. K. Mothilal, A. Sharma, and C. Tan, “Explaining machine learning
classifiers through diverse counterfactual explanations,” Proceedings of
the 2020 Conference on Fairness, Accountability, and Transparency, Jan
2020.

[25] V. Gurvich and L. Khachiyan, “On generating the irredundant con-
junctive and disjunctive normal forms of monotone Boolean functions,”
Discrete Applied Mathematics, vol. 96, pp. 363–373, 1999.

[26] Y. Crama and P. L. Hammer, “Boolean functions - theory, algorithms,
and applications,” in Encyclopedia of mathematics and its applications,
2011.

[27] A. Darwiche, “Three modern roles for logic in AI,” in PODS. ACM,
2020, pp. 229–243.

[28] A. Darwiche and P. Marquis, “A knowledge compilation map,” J. Artif.
Intell. Res., vol. 17, pp. 229–264, 2002.

[29] H. Chan and A. Darwiche, “Reasoning about bayesian network classi-
fiers,” in UAI. Morgan Kaufmann, 2003, pp. 107–115.

[30] A. Shih, A. Choi, and A. Darwiche, “Compiling bayesian network
classifiers into decision graphs,” in AAAI. AAAI Press, 2019, pp. 7966–
7974.

[31] N. Narodytska, S. P. Kasiviswanathan, L. Ryzhyk, M. Sagiv, and
T. Walsh, “Verifying properties of binarized deep neural networks,” in
AAAI. AAAI Press, 2018, pp. 6615–6624.

[32] N. Narodytska, H. Zhang, A. Gupta, and T. Walsh, “In search for a
sat-friendly binarized neural network architecture,” in ICLR. OpenRe-
view.net, 2020.

[33] N. Narodytska, A. A. Shrotri, K. S. Meel, A. Ignatiev, and J. Marques-
Silva, “Assessing heuristic machine learning explanations with model
counting,” in SAT, ser. Lecture Notes in Computer Science, vol. 11628.
Springer, 2019, pp. 267–278.

[34] T. Baluta, S. Shen, S. Shinde, K. S. Meel, and P. Saxena, “Quantitative
verification of neural networks and its security applications,” in CCS.
ACM, 2019, pp. 1249–1264.

[35] A. Shih, A. Darwiche, and A. Choi, “Verifying binarized neural networks
by angluin-style learning,” in SAT, ser. Lecture Notes in Computer
Science, vol. 11628. Springer, 2019, pp. 354–370.

[36] K. Jia and M. Rinard, “Efficient exact verification of binarized neural
networks,” in Proceedings of the 34th International Conference on
Neural Information Processing Systems, ser. NIPS’20. Red Hook, NY,
USA: Curran Associates Inc., 2020.

[37] Y. Zhang, Z. Zhao, G. Chen, F. Song, and T. Chen, “BDD4BNN:
A BDD-based quantitative analysis framework for binarized neural
networks,” in Computer Aided Verification, A. Silva and K. R. M. Leino,
Eds. Cham: Springer International Publishing, 2021, pp. 175–200.

[38] M. Giacobbe, T. A. Henzinger, and M. Lechner, “How many bits does
it take to quantize your neural network?” in Tools and Algorithms for
the Construction and Analysis of Systems, A. Biere and D. Parker, Eds.
Cham: Springer International Publishing, 2020, pp. 79–97.

[39] T. A. Henzinger, M. Lechner, and D. Zikelic, “Scalable verification of
quantized neural networks,” in AAAI. AAAI Press, 2021, pp. 3787–
3795.

[40] Y. Zhang, Z. Zhao, G. Chen, F. Song, M. Zhang, T. Chen, and J. Sun,
“QVIP: An ilp-based formal verification approach for quantized neural
networks,” ser. ASE ’22. New York, NY, USA: Association for
Computing Machinery, 2023.

[41] Y. Zhang, F. Song, and J. Sun, “QEBVerif: Quantization error bound
verification of neural networks,” CoRR, vol. abs/2212.02781, 2022.

[42] M. T. Ribeiro, S. Singh, and C. Guestrin, “”Why should I trust you?”:
Explaining the predictions of any classifier,” in KDD. ACM, 2016, pp.
1135–1144.

[43] ——, “Anchors: High-precision model-agnostic explanations,” in AAAI.
AAAI Press, 2018, pp. 1527–1535.

[44] A. Ignatiev, N. Narodytska, and J. Marques-Silva, “On validating, repair-
ing and refining heuristic ML explanations,” CoRR, vol. abs/1907.02509,
2019.

[45] J. Marques-Silva, T. Gerspacher, M. C. Cooper, A. Ignatiev, and
N. Narodytska, “Explaining naive bayes and other linear classifiers with
polynomial time and delay,” in NeurIPS, 2020.

[46] Y. Izza, A. Ignatiev, and J. Marques-Silva, “On explaining decision
trees,” CoRR, vol. abs/2010.11034, 2020.

[47] X. Huang, Y. Izza, A. Ignatiev, and J. Marques-Silva, “On efficiently
explaining graph-based classifiers,” in KR, 2021, pp. 356–367.

[48] X. Huang, Y. Izza, A. Ignatiev, M. C. Cooper, N. Asher, and J. Marques-
Silva, “Efficient explanations for knowledge compilation languages,”
CoRR, vol. abs/2107.01654, 2021.

[49] G. Audemard, S. Bellart, L. Bounia, F. Koriche, J.-M. Lagniez, and
P. Marquis, “On the explanatory power of boolean decision trees,” Data
& Knowledge Engineering, vol. 142, p. 102088, 2022.

[50] A. Darwiche, “SDD: A new canonical representation of propositional
knowledge bases,” in IJCAI. IJCAI/AAAI, 2011, pp. 819–826.

[51] S. Bova, “SDDs are exponentially more succinct than obdds,” in AAAI.
AAAI Press, 2016, pp. 929–935.

[52] B. Bollig and M. Buttkus, “On the relative succinctness of sentential
decision diagrams,” Theory Comput. Syst., vol. 63, no. 6, pp. 1250–
1277, 2019.

[53] P. Beame and V. Liew, “New limits for knowledge compilation and
applications to exact model counting,” in UAI. AUAI Press, 2015, pp.
131–140.

[54] P. Beame, J. Li, S. Roy, and D. Suciu, “Lower bounds for exact model
counting and applications in probabilistic databases,” in UAI. AUAI
Press, 2013.

[55] P. Barceló, M. Monet, J. Pérez, and B. Subercaseaux, “Model inter-
pretability through the lens of computational complexity,” in NeurIPS,
2020.

[56] G. Audemard, F. Koriche, and P. Marquis, “On Tractable XAI Queries
based on Compiled Representations,” in Proceedings of the 17th In-
ternational Conference on Principles of Knowledge Representation and
Reasoning, 9 2020, pp. 838–849.

[57] G. Audemard, S. Bellart, L. Bounia, F. Koriche, J. Lagniez, and
P. Marquis, “On the computational intelligibility of Boolean classifiers,”
in KR, 2021, pp. 74–86.

[58] Y. Izza and J. Marques-Silva, “On explaining random forests with SAT,”
in IJCAI. ijcai.org, 2021, pp. 2584–2591.

[59] G. Audemard, S. Bellart, L. Bounia, F. Koriche, J. Lagniez, and P. Mar-
quis, “Trading complexity for sparsity in random forest explanations,”
in AAAI. AAAI Press, 2022, pp. 5461–5469.

[60] A. Ignatiev, Y. Izza, P. J. Stuckey, and J. Marques-Silva, “Using maxsat
for efficient explanations of tree ensembles,” in AAAI. AAAI Press,
2022, pp. 3776–3785.

[61] G. Audemard, J. Lagniez, P. Marquis, and N. Szczepanski, “Computing
abductive explanations for boosted trees,” ser. Proceedings of the 26th
International Conference on Artificial Intelligence and Statistics (AIS-
TATS), vol. 206. PMLR, 2023.

[62] Y. Izza, A. Ignatiev, and J. Marques-Silva, “On tackling explanation
redundancy in decision trees,” J. Artif. Intell. Res., vol. 75, pp. 261–
321, 2022.

	I Introduction
	II Discrete Logic
	II-A Syntax and Semantics of Discrete Logic
	II-B Representing Classifiers using Class Formulas
	II-C Explanations as Normal Forms
	II-D Constructing Abstractions using Conditioning
	II-E Minimality using Prime Implicants and Implicates

	III The Reasons Behind Decisions
	III-A Complete Reasons
	III-B General Reasons
	III-C Fixation and Monotonocity
	III-D Selection Semantics

	IV The Sufficient Reasons for a Decision
	V The Necessary Reasons for a Decision
	V-A Undermining a Current Decision
	V-B Targeting a New Decision

	VI Compiling Class Formulas
	VI-A Bayesian Networks
	VI-B Decision Graphs and Random Forests
	VI-C Neural Networks

	VII Concluding Remarks
	References

