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Abstract—The sub-THz band offers an attractive solution to
future wireless networks, thanks to its ultra-low latency as
well as its large available bandwidth. However, link blockage
remains a major setback towards reliable sub-THz end-to-
end communication systems, due to narrow beamwidth and
inherently high penetration losses. To achieve blockage mitigation
in sub-THz communication, this paper takes advantage of unique
near-field properties and manipulates curved wavefront trajecto-
ries. Unfortunately, finding the best curved beam configuration
is non-trivial due to the lack of a closed-form equation for
received power calculation under blockage scenarios, even if
the wireless environment is precisely known. To address this,
we present a physics-informed learning-based framework that
optimizes the phase profile of the transmitting array, such that
the resulting wavefront could curve around obstacles and adapt to
dynamic environments in real time. Through extensive near-field
simulations, we evaluate the performance of our Al-generated
curved beams as opposed to optimal Airy beams achieved via
impractical exhaustive scans with prohibitively large time and
complexity overheads. Importantly, simulated results show that
our Al-generated curved wavefront provides an average SNR
gain of 19.83 dB compared with conventional beam steering and
2.13 dB compared with near-field beam focusing, across ~ 400
random and independent test scenarios.

Index Terms—Sub-THz, Airy Beam, Near Field Propagation,
Wavefront Engineering, Physics-Informed Neural Network

I. INTRODUCTION

Sub-Terahertz wireless systems are emerging due to their
exceptional potential in communication and sensing, owing to
their large available bandwidth and ultra-low latency [1]-[4].
However, the main bottleneck of such systems is susceptibility
to blockage as penetration losses increase at higher frequen-
cies [5]. There exist several blockage mitigation techniques
in the literature that rely on the presence of alternative link
paths (strong reflection or other nearby access points) [6],
[7]. Unfortunately, such alternative paths may not be present
in many environments. Hence, this paper focuses on a new
solution that does not assume alternative paths, but instead
leverages the near-field channels that are prevalent at sub-THz
regimes, e.g., the radiative near-field range extends to ~ 7m
with a 10cm transmitting aperture at 100 GHz.

In particular, in near-field regions, we can create complex
wavefronts with interesting properties [8]. In this work, we
focus on Airy beams, a wavefront in which its main lobe
follows a curved trajectory in free space. We aim to use
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Fig. 1: Real-time adaptation of curved wavefront trajectories
for blockage mitigation via an Al-empowered access point.

this intriguing property to “curve” around obstacles, realiz-
ing blockage avoidance and mitigation in sub-THz wireless
networks as shown in Fig. 1. While preliminary studies have
shown that such curved beams can indeed enhance the SNR
of blocked users [9], finding the best wavefront configuration
(i.e., curved trajectory) remains a challenge. Specifically, the
optimal wavefront is a complicated function of both the
environment (i.e., blocker) and the topological properties of
communication parties. Evidently, an exhaustive search over
all possible curved beam configurations is not feasible.

In this paper, we propose a physics-informed learning-based
framework that finds the optimal curved beam that maximizes
the power at the receiver under arbitrary obstruction. The key
idea is that by adopting a one-time pre-trained neural network
(NN), the transmitter can adapt its wavefront to dynamic
environments with minimal computational and time overhead.
In particular, according to the physics of Airy beams, we first
uniquely characterize a curved beam with three independent
variables, i.e., focal length, steering angle, and curvature
coefficient, such that the exact trajectory is a non-linear and
complex function of all three parameters. We also abstract a
blocker via its size and location features. We conduct extensive

5356

Authorized licensed use limited to: Princeton University. Downloaded on April 27,2025 at 21:13:46 UTC from IEEE Xplore. Restrictions apply.



2024 IEEE Global Communications Conference: Selected Areas in Communications: Terahertz Communications

near-field EM simulations considering more than 1800 random
environments and receiver locations, and run exhaustive scans
to find the true-optimal curved beam parameters. We use this
dataset to train a physics-informed neural network (NN) that
maps a given environmental input to the optimal three-variable
curved beam configuration. We envision that such an Al-based
wavefront shaping framework can enable real-time adaptation
of transmitted wavefront trajectories to user or environmental
mobility, without incurring the prohibitive overhead of full-
wave simulations or a brute force wavefront search.

The key contributions of this work are as follows:

e The first framework to shape curved beams for blockage
mitigation in sub-THz wireless networks.

e An extensive dataset covering the true-optimal curved
beam configurations in random blockage scenarios,
each solution exhaustively searched using the iterative
Rayleigh-Sommerfeld Integral.!

e A systematic evaluation of the ability of curved beams
to reduce blind spots or shadow areas.

e A physics-informed neural network for curved wavefront
optimization, achieving an average gain of 19.83 dB
over conventional Gaussian beam steering, and 2.13
dB compared to near-field beam focusing. Further, the
average performance loss of our NN-enabled wavefront
shaping is less than 0.8 dB compared with an impractical
exhaustive wavefront search.

II. OBSTACLE AVOIDANCE WITH CURVED BEAMS

In this paper, we focus on a particular near-field sub-THz
wavefront, the Airy beam®, due to its intriguing potential for
blockage aviodance [9]. In the near field region, the Airy
wavefront is both self-accelerating (its main lobe follows a
curved trajectory in free space) and non-diffracting (it does
not spread out like ordinary spherical waves). Its ideal 2D
electric field profile can be modeled as:

{EQ 1 k 1 = )3
() )

E(yax) = Ai(My _ E)el( TH; YT 13

where Ai(+) is the Airy function, & is the wave number, y and
x are transverse and propagation diregtions respectively, and
B, is a scalar parameter. The term }ﬁ,—o describes the wave’s
trajectory which implies that the parabolic trajectory of the
Airy beam can be adjusted with parameter B, to transmit
around an obstacle.

In this paper, we limit the Airy curvature to a 2D plane,
where a 2D obstruction is considered. We note that 3D
obstacles can be treated in a similar fashion by considering
and comparing optimal beams living within multiple rotated
2D planes that contain both the transmitter and the receiver.

We leave the extension to 3D for future work.

A. Principles of Curved Beam Generation
Curved beams can be generated following conventional
beamforming and the principle of Fourier optics [11]. Indeed,

IDataset and pre-trained NN parameters are available through [10].
2We use “Airy beam” and “curved beam” interchangeably in this paper.
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Fig. 2: Curved beam generation and parameterization.

a curved beam can be uniquely characterized with three
parameters: (i) the steering angle 6 relative to the transmitter;
(ii) the focal length f; and (iii) the curvature coefficient B.
Interestingly, we can decompose the overall phase profile into
phase patterns needed for steering, focusing, and curving:

First, the phase front at the transmit array needed to realize
a wavefront steering angle of # can be written as:

d)steer(yy 9) = *ko(y — g) sin 0, (2)

where D is the linear dimension of the array, and k, is the
free space wave number. Next, we apply an additional phase
profile to realize the properties of beam focusing using paraxial
approximation [12]:

2
¢BF(ya f) = _koy?7 (3)

where f is the focal length, the absolute distance from the
center of the array to the point of focus. This phase profile
is crucial to the generation of Airy beams as it enables a
fundamental principle in Fourier optics: if an additional phase
profile is applied in conjunction with Eq. (3), the resulting E-
field at the set focal length will be the Fourier transformation
of that phase profile. Following this, we apply a cubic phase
on top of Eq. (3), defined as:
3
(bcubic(ya B) = @
such that its Fourier transformation becomes a scaled Airy
function %Ai(%) [13]. Based on its physical effect on the
curving trajectory, we define B as the curvature coefficient.
Hence, given the Fourier optics principle, we can write the
overall desired phase to generate this curved beam as:

¢CUT"U€ (yv 9, f7 B) = (bsteer (y, 9) + QSBF (y, f) + ¢cubic(y7 B)

, “4)

Fig. 2 shows the individual contribution of each of these
phase fronts. In this work, we take advantage of this generation
process to realize arbitrarily curved beams and to uniquely
parameterize curved beams with {B, f,6}.
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Fig. 3: System model and environment abstraction.

B. System Model

We consider a 2D indoor sub-THz communication system
at 100 GHz® as shown in Fig. 3, where the transmitting array
has a fixed location and aperture length of Dpx. The x axis
represents the propagation direction while the y axis represents
the transverse direction. The transmitter creates an Airy beam
to curve around a rectangular-shaped obstacle with location
(O, 0,) and dimensions (d,d,), along the x and y axes,
respectively. Finally, the receiver is located at (R, R,) and
has a fixed aperture size of Dgx.

It is evident that the curved wavefront should be configured
and adapted based on the location of the mobile receiver and
the dynamics of the environment (i.e., geometric features of
the blocker). In this work, we assume that the perfect knowl-
edge of the receiver’s location and the blocker’s information is
available at the transmitter (e.g., via conventional perception
techniques such as computer vision and radar)*. Hence, our
goal is to find the optimal Airy parameters that achieve the
maximum received power under the given environment. We
can formulate our optimization goal as:

{B*, f*a 9*} = arg maXPRX(Bv f7 97 va Oya dwa dya va Ry)
{B.f,0} 5)

where Prx(-) denotes the received power. Unfortunately,
finding the optimal wavefront faces multiple challenges:

First, unlike far-field communication where the propagation
loss (in free space and the case of shadowing) is well un-
derstood and modeled, near-field propagation lacks accurate
channel models [14]. In particular, there is no closed-form
equation that captures the received power under a given envi-
ronment and a certain wavefront configuration. Consequently,
conventional optimization techniques fail to solve Eq. (5) due
to the unavailability of a closed-form objective function that
maps Airy configurations to received powers (Prx) under
blockage.

Second, an exhaustive search over the entire parameter
space is not feasible. In directional WLANs (e.g., IEEE
802.11ay [15]), it is common practice for the transmitter to
scan all beam directions to find the maximum-power achiev-
ing beam for a directional point-to-point link. However, a
similar exhaustive scan over a 3D space of {B, f,0} incurs
prohibitively large overhead and is not practical.

3The same principle applies to the entire sub-THz regime.
4We leave the exploration of semi-known environments for the future.
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Fig. 4: Demonstrating the Rayleigh-Sommerfeld integral under
an arbitrary E-field distribution and the presence of a blocker.

Lastly, we emphasize that in principle, the transmitter can
perform full-wave analysis with EM solvers to find the re-
ceived power under a given curved beam configuration. How-
ever, the computational complexity of such EM simulations
is extensive; hence, performing exhaustive simulations over
Airy configurations is even more computationally prohibitive
for a practical AP or UE. Indeed, this highlights the need
for an offline and low-cost solution for accurate and real-
time wavefront adaptation. To tackle these challenges, we
present the first Al-aided wavefront adaptation framework that
provides an optimal Airy beam that curves around a known
obstacle and maximizes the receiver power.

C. Complexity-Aware Accurate Near-Field Simulations

Forming a comprehensive dataset to train our neural net-
work requires extensive simulations in different environments,
user locations, and Airy parameters. Conventional EM simula-
tion solvers or full-wave numerical methods are computation-
ally intensive even when run on our 96-core server. Therefore,
for large-scale data collection, we adopt scalar diffraction
theory where we model EM waves as complex scalar quantities
that only contain magnitude information, as opposed to the
traditional modeling where EM waves are modeled as vectors
with both magnitude and direction information.

In particular, we use the Rayleigh-Sommerfeld (RS) integral
to model the propagation characteristics of our wavefronts
along the plane of propagation. The Rayleigh-Sommerfield
integral is a scalar wave approximation method that accurately
models the propagation of arbitrary EM signals. It assumes
that each point of the source (in this case our simulated
array with a pre-determined phasefront) emits out spherical
waves along the transverse direction and sums each of their
contributions at each point in space, as shown in Fig. 4. The
Rayleigh-Sommerfield integral makes no assumption of the
initial E-field distribution. Thus, we can write the electric field
at an arbitrary location of (y,z) given an input electric field
column vector E;,(y,z = x,) as:

ks L
E E. ) = E. ! T ikr T . ’
RS (97 m| zn) / zn(y ) CEo) o2 € (7’ Zk)dy , (6)

where z, is the initial propagation coordinate, y’ is the
transverse coordinate on the input electric field, and r =
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Fig. 5: An overview of our Al-generated airy wavefront.
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Typically, Eq. (6) can calculate the E-field at any arbitrary
distance away from the transmitter. However, in the presence
of blockage, the normal diffraction behavior of the EM wave is
disrupted. To account for this, Eq. (6) must be used iteratively
along its propagation direction. Here, we introduce a binary
matrix OB(y, ), which takes the value of “0” if the blocker
includes point (z,y) and takes “1” otherwise. Hence, we write
the electric field distribution at the m‘" iteration as

Em(yax) = OB(yvm)ERS(y7$|Emfl)7 (7)

where E,,_1 = E(y,z = 2o + (m — 1)Ax) is a column
vector representing the electric feature calculated from the
previous step separated by distance Az, as shown in Fig. 4.
Please note that in the absence of blockage, OB(y, z) = 1, the
iterative process of Eq. (7) yields the same result as Eq. (6).

III. NEURAL NETWORK ENABLED WAVEFRONT SHAPING

We present a physics-informed deep learning framework
to optimize Airy configurations for blockage mitigation. Our
high-level framework is shown in Fig. 5. If there exists a strong
LOS path between the transmitter and receiver, our framework
chooses to adopt a beam focusing wavefront. On the other
hand, if no direct path can be found, we find an optimal
curved beam by feeding the environmental features (e.g.,
blocker location) into a pre-trained physics-informed neural
network. This neural network is trained using physical features
of the environment along with ground truth optimal Airy
configurations from exhaustive near-field wavefront search.
With the optimal Airy beam parameters {B*, f*,6*}, we can
construct a desired phase profile at the transmitter array (Sec.
II-A). Taking hardware limitations into account, this phase
profile can be quantized and re-optimized for practicality. Note
that under dynamic channels, the curved wavefront should

0.9 1 1.1 1.2

x [m]

Fig. 6: (a) Moving RX within the shadow region behind an
obstacle; (b) Optimal curvature B at each RX location.

be adapted accordingly. Fortunately, the time and complexity
overhead of such adaptation is minimal with a pre-trained NN.

A. Training Set Acquisition

We consider ~ 1500 random blockage settings to generate a
comprehensive and representative training set, curated for our
application. Specifically, we consider a transmit aperture of
Drx = 60cm, a receive aperture of Drx = 10cm, and prop-
agation distances up to 2m from the transmitter.> The receiver
is moved within R, € (0.6,1.6) AR, € (—0.8,0.8) in meters,
while the obstacle is placed randomly between the transmitter
and receiver. The blocker size is set to be larger than 2cm
(i.e., 7x wavelength at 100 GHz) and smaller than 30cm (i.e.,
half as large as the transmitter aperture) to capture blockage
cases feasible for Airy curving. We note that all parameters are
sampled from uniform distributions across their corresponding
ranges, putting together a random but representative dataset for
blocked channel conditions. Further, to fit our application as
shown in Fig. 5, we only take into account blockage settings in
which the LOS path is at least partially blocked (i.e., scenarios
that would activate Airy optimization). Indeed, if there is no
blockage, a curved beam would not be needed. Moreover, we
exhaustively go through the entire Airy configuration space
{B, 1,0} to find the ground truth optimal Airy configuration
that gives the maximum received power under each randomly
generated environment.® Finally, for comparison purposes, we
find the received power under near-field beam focusing for
each setting. We note that the phase profile of beam focusing
is determined only by the location of the receiver, i.e., a focal
length of fp =

R
0p = arctan =%

" regardless of blockers in the environment.
As an example, in Fig. 6, we show the exhaustively op-
timized Airy parameter B for each RX location within the
marked region, i.e., emulating a fixed obstacle and mobile
receiver. We observe that the optimum value of B is highly
sensitive to the RX location. More interestingly, there are
some correlations between the RX locations and the optimal

curving trajectory, although not straightforward for regression

\/R2 + R? and a beam steering angle of

5The Fraunhofer distance in this scenario goes up to 240m at 100 GHz.

The brute force search is at the highest resolution our 96-core server can
afford in feasible time (step sizes of 6B = 0.02, 6 f = 2cm, 66 = 0.5°).
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models. Further, such correlation becomes even more complex
under blocker mobility. Hence, a deterministic algorithm for
Airy beam optimization is not applicable, and a physics-
informed neural network is required to understand the com-
plex underlying relationships while considering the laws of
diffraction. As mentioned, we implement deterministic near-
field beam focusing as a straightforward yet effective baseline
for comparison.

B. Preprocessing and Feature Engineering

In order to achieve higher accuracy and faster convergence,
we process our dataset to carry more information about the
physics of wavefront shaping and offload the burden of blind
learning off of the neural network, particularly under limited
dataset sizes. We construct two additional environment fea-
tures bl and Ay as shown in Fig. 7. Specifically, the blockage
index bl captures how much the obstacle blocks the LOS
path in a given environment. As shown, it is calculated by
computing the ratio between the shaded blocked region and
the total triangular region that could otherwise be used for
beam focusing. bl informs the neural network of the extent of
blockage and has an impact on optimal Airy configurations.
It also serves as the activation threshold (blockage criteria)
in our overall framework shown in Fig. 5: from empirical
data, we set the threshold to be bl = 0.75 (i.e., we ac-
tivate the neural network only if b/ > 0.75). On the other
hand, Ay captures the relative location of the receiver when
compared to the TX-obstacle axis. Note that Ay > 0 when
the receiver is above the axis of interest (see Fig. 7), and
Ay < 0 if otherwise. Ay plays a vital role in our physics-
informed network architecture and the direction of curving.
Finally, under each environment, we compute the deterministic
beam focusing parameters {fp,0p} and use focal/steering
adjustments {Af = f — fp,Af = 6 — Op} instead of
absolute values {f,6} as neural network outputs. This helps
with faster convergence. As such, we aim to map the 8-
dimensional input space {O,, Oy, d, dy, Ry, Ry, bl, Ay} to a
3-dimensional output space {B, Af, Af}.

C. Physics-Informed Neural Network

After our feature engineering that highlights the importance
of geometric topology, we architect a physics-informed neural
network. Here, we use an insight that is rooted in the physics
of wave propagation. Specifically, if both the obstacle and RX

“Convex Topology”

“Concave Topology”

_ Obstacle
N
e

@mé:o@&&@g@
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~

>
<

Fig. 8: Topology flipping and physics-informed neural network
architecture to guarantee symmetric performance by design.

are mirrored with respect to the perpendicular bisector of the
transmitter’s array, then the optimal airy beam is mirrored too.
As depicted in Fig. 3, if the topology of the environment is
flipped along the transverse direction (i.e., Oy — —O,, R, —
—R,), then we can easily find the new optimal Airy beam
configuration without any calculation (i.e., B* — —B*,6* —
—0*). This is inherently due to the symmetric nature of the
system with respect to y = 0.

Hence, we can break down all possible topologies into two
distinct and symmetric categories, concave (Ay < 0) and
convex (Ay > 0) topologies. To facilitate learning of the
physical system, we enforce the inherent topological symmetry
of the system and train the neural network only on convex
topologies. In other words, our neural network only learns to
optimize Airy beams for convex cases, while concave cases
are handled through geometric symmetry. This further offloads
the burden of blind learning from the neural network.

The detailed network design is shown in Fig. 8. Specifically,
{Oy, Ry, Ay} will be flipped in sign if Ay < 0 in the
input environment topology. After hyperparameter tuning, we
converge to 4x dense layers with 10% drop-out rate. Finally,
if Ay < 0, the output values of B and A are flipped
back to retrieve the final Airy configuration. We perform
standardization on both the input and output variables. During
the training process, we adopt MAE as the loss function to
reduce the impact of outliers and we use SGD with momentum
as the optimizer to improve training efficiency.

IV. PERFORMANCE EVALUATION
A. Blind Spot Reduction with Curved Beams

Here, we show that the area of blind spots caused by an
obstruction (the area in which the received power is extremely
low) can be significantly reduced when the transmitter adopts
an Airy beam to reach its destination.

We follow the setup in Fig. 6a, where the receiver is located
at several location in the close proximity of an obstacle. At
each receiver location, the entire beam space is exhaustively
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Fig. 10: Blind spot reduction performance. Received power
under (a) near-field beam focusing and (b) curved Airy beam.
(¢) Performance gain (%) in received power from Airy beams.

searched with discrete steps to find the true optimal Airy beam
configuration {B*, f*,0*}. Comparing the received power
maps shown in Fig. 10a and that in Fig. 10b, we see that
the shadow region (the dark blue region) is evidently reduced
compared with the case in which the transmitter adopts a
near-field beam focusing wavefront. We further visualize the
gain by calculating the percentage power increase from beam
focusing to Airy beams in Fig. 10c, which shows a significant
area that sees more than 100% received power improvement.
Therefore, Airy Beams (when correctly configured) can indeed
provide huge potential for blockage mitigation in sub-THz
wireless networks. Yet, an exhaustive scan over the design
space to find the right curved beam is not feasible.

B. Accuracy of NN-Predicted Curved Beam

We demonstrate the performance of our Airy optimization
framework through extensive simulations, evaluated on a sep-
arate test dataset of ~ 400 random blockage environments.
Further, we observe consistent learning performance despite
random shuffling and splitting between the training and test
sets, which confirms the robustness of our framework.

To show the effective learning of our neural network, we
show parity plots where the predicted {B,Af, A0} labels
are plotted against the ground truth {B*, Af* A@*} labels
from exhaustive search (Fig. 11a-c). We observe that a general
trend of positive correlation (along y = x) can be found in
all three parity plots, despite huge variances in environmental
configurations and a large number of outlier scenarios (e.g.,
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Fig. 11: Parity plots of NN-predicted Airy configurations.

full blockage, edge diffraction, etc.). We report R? scores of
0.31, 0.47, and 0.87 for B, Af, A# predictions, respectively.

Next, we show the performance of our NN-predicted Airy
configurations. Specifically in each test scenario, we calculate
the received power under (i) Conventional far-field beam
steering, (ii) Near-field beam focusing, (iii) Al-predicted Airy
configurations, and (iv) Exhaustive Airy configurations. Fig. 9a
shows normalized mean received powers under each method,
grouped by and plotted against the blockage index bl. As
expected, as the blockage gets more severe, the received power
drops. Nevertheless, we observe that Airy beams maintain a
relatively strong SNR despite severe blockage conditions, even
compared with near-field beam focusing, showing a unique
resilience against channel blockage. Further, it is evident that
the NN-predicted Airy configurations are able to achieve near-
optimal performances compared to the brute force scheme.

In practice, we envision that the transmitter would adopt a
two-shot wavefront selection, i.e., it compares the performance
of near-field beam focusing with Al-generated Airy wavefront
and locks into the one achieving the higher SNR. We note that
calling the pre-trained neural network for prediction induces
minimal computational overhead. Further, the amount of time
overhead for curved beam configuration is dependent on the
computational resources and phase switching speed of the
transmitting node. Regardless, this overhead is constant and
negligible in practical settings.

The overall power performance of such a method is com-
pared with baselines in Fig. 9b. We observe that Al-generated
Airy beams can achieve a significant average gain of 19.83
dB compared with conventional beam steering and 2.13 dB
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compared with near-field beam focusing. Again, as shown,
the performance of Al-generated curved beams is close to that
of the true-optimal wavefronts (average loss of under 0.8 dB
compared with the impractical exhaustive search).

So far, we assumed the RX’s location is perfectly known.
Here, we evaluate the performance under inaccurate RX posi-
tioning. In each of the ~ 400 test scenarios, we move the RX
within a square-shaped region centered around its true location
(R, Ry), with a side length of 20cm. We calculate the average
received power across these RX locations and compare it
with the case where the RX is accurately placed. Fig. 9c
plots the received power variation caused by inaccurate RX
positioning under different methods. We observe that our Al-
enabled framework works the best under receiver uncertainty
as compared to beam focusing and brute force optimization.
This is because (i) the Airy diffraction has larger coverage and
(ii) compared with beam focusing, our framework takes into
account environmental information (other than the receiver
locations). Interestingly, inaccurate RX information may yield
even higher received power in some instances. We highlight
that resilience to RX location errors was not considered when
training the neural network. In the future, we will explore
Al-based frameworks that take into account both SNR and
resilience objectives for Airy beam engineering.

V. CONCLUSION

To conclude, we present a physics-informed NN-enabled
framework for real-time obstacle-avoiding Airy beams in sub-
THz wireless systems. We observe that the proposed frame-
work can achieve a 19.83 dB gain from conventional far-field
beam steering, and a 2.13 dB gain compared with near-field
beam focusing. Our NN-predicted Airy configurations also
show interesting resilience against inaccurate RX locations.
We believe that, by providing a low-overhead solution for Airy
beam optimization, this work paves the way for the adoption
of such complex wavefronts in future sub-THz networks.
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