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Abstract—The sub-THz band offers an attractive solution to
future wireless networks, thanks to its ultra-low latency as
well as its large available bandwidth. However, link blockage
remains a major setback towards reliable sub-THz end-to-
end communication systems, due to narrow beamwidth and
inherently high penetration losses. To achieve blockage mitigation
in sub-THz communication, this paper takes advantage of unique
near-field properties and manipulates curved wavefront trajecto-
ries. Unfortunately, finding the best curved beam configuration
is non-trivial due to the lack of a closed-form equation for
received power calculation under blockage scenarios, even if
the wireless environment is precisely known. To address this,
we present a physics-informed learning-based framework that
optimizes the phase profile of the transmitting array, such that
the resulting wavefront could curve around obstacles and adapt to
dynamic environments in real time. Through extensive near-field
simulations, we evaluate the performance of our AI-generated
curved beams as opposed to optimal Airy beams achieved via
impractical exhaustive scans with prohibitively large time and
complexity overheads. Importantly, simulated results show that
our AI-generated curved wavefront provides an average SNR
gain of 19.83 dB compared with conventional beam steering and
2.13 dB compared with near-field beam focusing, across ∼ 400

random and independent test scenarios.
Index Terms—Sub-THz, Airy Beam, Near Field Propagation,

Wavefront Engineering, Physics-Informed Neural Network

I. INTRODUCTION

Sub-Terahertz wireless systems are emerging due to their

exceptional potential in communication and sensing, owing to

their large available bandwidth and ultra-low latency [1]–[4].

However, the main bottleneck of such systems is susceptibility

to blockage as penetration losses increase at higher frequen-

cies [5]. There exist several blockage mitigation techniques

in the literature that rely on the presence of alternative link

paths (strong reflection or other nearby access points) [6],

[7]. Unfortunately, such alternative paths may not be present

in many environments. Hence, this paper focuses on a new

solution that does not assume alternative paths, but instead

leverages the near-field channels that are prevalent at sub-THz

regimes, e.g., the radiative near-field range extends to ∼ 7m

with a 10cm transmitting aperture at 100 GHz.

In particular, in near-field regions, we can create complex

wavefronts with interesting properties [8]. In this work, we

focus on Airy beams, a wavefront in which its main lobe

follows a curved trajectory in free space. We aim to use
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Fig. 1: Real-time adaptation of curved wavefront trajectories

for blockage mitigation via an AI-empowered access point.

this intriguing property to “curve” around obstacles, realiz-

ing blockage avoidance and mitigation in sub-THz wireless

networks as shown in Fig. 1. While preliminary studies have

shown that such curved beams can indeed enhance the SNR

of blocked users [9], finding the best wavefront configuration

(i.e., curved trajectory) remains a challenge. Specifically, the

optimal wavefront is a complicated function of both the

environment (i.e., blocker) and the topological properties of

communication parties. Evidently, an exhaustive search over

all possible curved beam configurations is not feasible.

In this paper, we propose a physics-informed learning-based

framework that finds the optimal curved beam that maximizes

the power at the receiver under arbitrary obstruction. The key

idea is that by adopting a one-time pre-trained neural network

(NN), the transmitter can adapt its wavefront to dynamic

environments with minimal computational and time overhead.

In particular, according to the physics of Airy beams, we first

uniquely characterize a curved beam with three independent

variables, i.e., focal length, steering angle, and curvature

coefficient, such that the exact trajectory is a non-linear and

complex function of all three parameters. We also abstract a

blocker via its size and location features. We conduct extensive
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near-field EM simulations considering more than 1800 random

environments and receiver locations, and run exhaustive scans

to find the true-optimal curved beam parameters. We use this

dataset to train a physics-informed neural network (NN) that

maps a given environmental input to the optimal three-variable

curved beam configuration. We envision that such an AI-based

wavefront shaping framework can enable real-time adaptation

of transmitted wavefront trajectories to user or environmental

mobility, without incurring the prohibitive overhead of full-

wave simulations or a brute force wavefront search.

The key contributions of this work are as follows:

• The first framework to shape curved beams for blockage

mitigation in sub-THz wireless networks.

• An extensive dataset covering the true-optimal curved

beam configurations in random blockage scenarios,

each solution exhaustively searched using the iterative

Rayleigh-Sommerfeld Integral.1

• A systematic evaluation of the ability of curved beams

to reduce blind spots or shadow areas.

• A physics-informed neural network for curved wavefront

optimization, achieving an average gain of 19.83 dB

over conventional Gaussian beam steering, and 2.13
dB compared to near-field beam focusing. Further, the

average performance loss of our NN-enabled wavefront

shaping is less than 0.8 dB compared with an impractical

exhaustive wavefront search.

II. OBSTACLE AVOIDANCE WITH CURVED BEAMS

In this paper, we focus on a particular near-field sub-THz

wavefront, the Airy beam2, due to its intriguing potential for

blockage aviodance [9]. In the near field region, the Airy

wavefront is both self-accelerating (its main lobe follows a

curved trajectory in free space) and non-diffracting (it does

not spread out like ordinary spherical waves). Its ideal 2D

electric field profile can be modeled as:

E(y, x) = Ai(
√

Boky −
x2

4Bo

)e
i(
√

k
4Bo

yx− 1

12
( x
Bo

)3
), (1)

where Ai(·) is the Airy function, k is the wave number, y and

x are transverse and propagation directions respectively, and

Bo is a scalar parameter. The term x2

Bo
describes the wave’s

trajectory which implies that the parabolic trajectory of the

Airy beam can be adjusted with parameter Bo to transmit

around an obstacle.

In this paper, we limit the Airy curvature to a 2D plane,

where a 2D obstruction is considered. We note that 3D

obstacles can be treated in a similar fashion by considering

and comparing optimal beams living within multiple rotated

2D planes that contain both the transmitter and the receiver.

We leave the extension to 3D for future work.

A. Principles of Curved Beam Generation

Curved beams can be generated following conventional

beamforming and the principle of Fourier optics [11]. Indeed,

1Dataset and pre-trained NN parameters are available through [10].
2We use “Airy beam” and “curved beam” interchangeably in this paper.

Fig. 2: Curved beam generation and parameterization.

a curved beam can be uniquely characterized with three

parameters: (i) the steering angle θ relative to the transmitter;

(ii) the focal length f ; and (iii) the curvature coefficient B.

Interestingly, we can decompose the overall phase profile into

phase patterns needed for steering, focusing, and curving:

First, the phase front at the transmit array needed to realize

a wavefront steering angle of θ can be written as:

φsteer(y, θ) = −ko(y −
D

2
) sin θ, (2)

where D is the linear dimension of the array, and ko is the

free space wave number. Next, we apply an additional phase

profile to realize the properties of beam focusing using paraxial

approximation [12]:

φBF (y, f) = −ko
y2

f
, (3)

where f is the focal length, the absolute distance from the

center of the array to the point of focus. This phase profile

is crucial to the generation of Airy beams as it enables a

fundamental principle in Fourier optics: if an additional phase

profile is applied in conjunction with Eq. (3), the resulting E-

field at the set focal length will be the Fourier transformation

of that phase profile. Following this, we apply a cubic phase

on top of Eq. (3), defined as:

φcubic(y,B) =
(2πBy)3

3
, (4)

such that its Fourier transformation becomes a scaled Airy

function 1
B
Ai(y

′

B
) [13]. Based on its physical effect on the

curving trajectory, we define B as the curvature coefficient.

Hence, given the Fourier optics principle, we can write the

overall desired phase to generate this curved beam as:

φcurve(y, θ, f, B) = φsteer(y, θ) + φBF (y, f) + φcubic(y,B)

Fig. 2 shows the individual contribution of each of these

phase fronts. In this work, we take advantage of this generation

process to realize arbitrarily curved beams and to uniquely

parameterize curved beams with {B, f, θ}.
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Fig. 3: System model and environment abstraction.

B. System Model

We consider a 2D indoor sub-THz communication system

at 100 GHz3 as shown in Fig. 3, where the transmitting array

has a fixed location and aperture length of DTX . The x axis

represents the propagation direction while the y axis represents

the transverse direction. The transmitter creates an Airy beam

to curve around a rectangular-shaped obstacle with location

(Ox, Oy) and dimensions (dx, dy), along the x and y axes,

respectively. Finally, the receiver is located at (Rx, Ry) and

has a fixed aperture size of DRX .

It is evident that the curved wavefront should be configured

and adapted based on the location of the mobile receiver and

the dynamics of the environment (i.e., geometric features of

the blocker). In this work, we assume that the perfect knowl-

edge of the receiver’s location and the blocker’s information is

available at the transmitter (e.g., via conventional perception

techniques such as computer vision and radar)4. Hence, our

goal is to find the optimal Airy parameters that achieve the

maximum received power under the given environment. We

can formulate our optimization goal as:

{B⋆, f⋆, θ⋆} = argmax
{B,f,¹}

PRX(B, f, θ, Ox, Oy, dx, dy, Rx, Ry),

(5)

where PRX(·) denotes the received power. Unfortunately,

finding the optimal wavefront faces multiple challenges:

First, unlike far-field communication where the propagation

loss (in free space and the case of shadowing) is well un-

derstood and modeled, near-field propagation lacks accurate

channel models [14]. In particular, there is no closed-form

equation that captures the received power under a given envi-

ronment and a certain wavefront configuration. Consequently,

conventional optimization techniques fail to solve Eq. (5) due

to the unavailability of a closed-form objective function that

maps Airy configurations to received powers (PRX ) under

blockage.

Second, an exhaustive search over the entire parameter

space is not feasible. In directional WLANs (e.g., IEEE

802.11ay [15]), it is common practice for the transmitter to

scan all beam directions to find the maximum-power achiev-

ing beam for a directional point-to-point link. However, a

similar exhaustive scan over a 3D space of {B, f, θ} incurs

prohibitively large overhead and is not practical.

3The same principle applies to the entire sub-THz regime.
4We leave the exploration of semi-known environments for the future.

Fig. 4: Demonstrating the Rayleigh-Sommerfeld integral under

an arbitrary E-field distribution and the presence of a blocker.

Lastly, we emphasize that in principle, the transmitter can

perform full-wave analysis with EM solvers to find the re-

ceived power under a given curved beam configuration. How-

ever, the computational complexity of such EM simulations

is extensive; hence, performing exhaustive simulations over

Airy configurations is even more computationally prohibitive

for a practical AP or UE. Indeed, this highlights the need

for an offline and low-cost solution for accurate and real-

time wavefront adaptation. To tackle these challenges, we

present the first AI-aided wavefront adaptation framework that

provides an optimal Airy beam that curves around a known

obstacle and maximizes the receiver power.

C. Complexity-Aware Accurate Near-Field Simulations

Forming a comprehensive dataset to train our neural net-

work requires extensive simulations in different environments,

user locations, and Airy parameters. Conventional EM simula-

tion solvers or full-wave numerical methods are computation-

ally intensive even when run on our 96-core server. Therefore,

for large-scale data collection, we adopt scalar diffraction

theory where we model EM waves as complex scalar quantities

that only contain magnitude information, as opposed to the

traditional modeling where EM waves are modeled as vectors

with both magnitude and direction information.

In particular, we use the Rayleigh-Sommerfeld (RS) integral

to model the propagation characteristics of our wavefronts

along the plane of propagation. The Rayleigh-Sommerfield

integral is a scalar wave approximation method that accurately

models the propagation of arbitrary EM signals. It assumes

that each point of the source (in this case our simulated

array with a pre-determined phasefront) emits out spherical

waves along the transverse direction and sums each of their

contributions at each point in space, as shown in Fig. 4. The

Rayleigh-Sommerfield integral makes no assumption of the

initial E-field distribution. Thus, we can write the electric field

at an arbitrary location of (y, x) given an input electric field

column vector Ein(y, x = xo) as:

ERS(y, x|Ein) =

∫

Ein(y
′, xo)

x

2πr2
eikr(

1

r
− ik)dy′, (6)

where xo is the initial propagation coordinate, y′ is the

transverse coordinate on the input electric field, and r =
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Fig. 5: An overview of our AI-generated airy wavefront.

√

(x− xo)2 + (y − y′)2.

Typically, Eq. (6) can calculate the E-field at any arbitrary

distance away from the transmitter. However, in the presence

of blockage, the normal diffraction behavior of the EM wave is

disrupted. To account for this, Eq. (6) must be used iteratively

along its propagation direction. Here, we introduce a binary

matrix OB(y, x), which takes the value of “0” if the blocker

includes point (x, y) and takes “1” otherwise. Hence, we write

the electric field distribution at the mth iteration as

Em(y, x) = OB(y, x)ERS(y, x|Em−1), (7)

where Em−1 = E(y, x = x0 + (m − 1)∆x) is a column

vector representing the electric feature calculated from the

previous step separated by distance ∆x, as shown in Fig. 4.

Please note that in the absence of blockage, OB(y, x) = 1, the

iterative process of Eq. (7) yields the same result as Eq. (6).

III. NEURAL NETWORK ENABLED WAVEFRONT SHAPING

We present a physics-informed deep learning framework

to optimize Airy configurations for blockage mitigation. Our

high-level framework is shown in Fig. 5. If there exists a strong

LOS path between the transmitter and receiver, our framework

chooses to adopt a beam focusing wavefront. On the other

hand, if no direct path can be found, we find an optimal

curved beam by feeding the environmental features (e.g.,

blocker location) into a pre-trained physics-informed neural

network. This neural network is trained using physical features

of the environment along with ground truth optimal Airy

configurations from exhaustive near-field wavefront search.

With the optimal Airy beam parameters {B⋆, f⋆, θ⋆}, we can

construct a desired phase profile at the transmitter array (Sec.

II-A). Taking hardware limitations into account, this phase

profile can be quantized and re-optimized for practicality. Note

that under dynamic channels, the curved wavefront should

Fig. 6: (a) Moving RX within the shadow region behind an

obstacle; (b) Optimal curvature B at each RX location.

be adapted accordingly. Fortunately, the time and complexity

overhead of such adaptation is minimal with a pre-trained NN.

A. Training Set Acquisition

We consider ∼ 1500 random blockage settings to generate a

comprehensive and representative training set, curated for our

application. Specifically, we consider a transmit aperture of

DTX = 60cm, a receive aperture of DRX = 10cm, and prop-

agation distances up to 2m from the transmitter.5 The receiver

is moved within Rx ∈ (0.6, 1.6)∧Ry ∈ (−0.8, 0.8) in meters,

while the obstacle is placed randomly between the transmitter

and receiver. The blocker size is set to be larger than 2cm

(i.e., 7× wavelength at 100 GHz) and smaller than 30cm (i.e.,

half as large as the transmitter aperture) to capture blockage

cases feasible for Airy curving. We note that all parameters are

sampled from uniform distributions across their corresponding

ranges, putting together a random but representative dataset for

blocked channel conditions. Further, to fit our application as

shown in Fig. 5, we only take into account blockage settings in

which the LOS path is at least partially blocked (i.e., scenarios

that would activate Airy optimization). Indeed, if there is no

blockage, a curved beam would not be needed. Moreover, we

exhaustively go through the entire Airy configuration space

{B, f, θ} to find the ground truth optimal Airy configuration

that gives the maximum received power under each randomly

generated environment.6 Finally, for comparison purposes, we

find the received power under near-field beam focusing for

each setting. We note that the phase profile of beam focusing

is determined only by the location of the receiver, i.e., a focal

length of fD =
√

R2
x +R2

y and a beam steering angle of

θD = arctan
Ry

Rx
, regardless of blockers in the environment.

As an example, in Fig. 6, we show the exhaustively op-

timized Airy parameter B for each RX location within the

marked region, i.e., emulating a fixed obstacle and mobile

receiver. We observe that the optimum value of B is highly

sensitive to the RX location. More interestingly, there are

some correlations between the RX locations and the optimal

curving trajectory, although not straightforward for regression

5The Fraunhofer distance in this scenario goes up to 240m at 100 GHz.
6The brute force search is at the highest resolution our 96-core server can

afford in feasible time (step sizes of δB = 0.02, δf = 2cm, δθ = 0.5◦).
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Fig. 7: Illustrating environmental features bl and ∆y.

models. Further, such correlation becomes even more complex

under blocker mobility. Hence, a deterministic algorithm for

Airy beam optimization is not applicable, and a physics-

informed neural network is required to understand the com-

plex underlying relationships while considering the laws of

diffraction. As mentioned, we implement deterministic near-

field beam focusing as a straightforward yet effective baseline

for comparison.

B. Preprocessing and Feature Engineering

In order to achieve higher accuracy and faster convergence,

we process our dataset to carry more information about the

physics of wavefront shaping and offload the burden of blind

learning off of the neural network, particularly under limited

dataset sizes. We construct two additional environment fea-

tures bl and ∆y as shown in Fig. 7. Specifically, the blockage

index bl captures how much the obstacle blocks the LOS

path in a given environment. As shown, it is calculated by

computing the ratio between the shaded blocked region and

the total triangular region that could otherwise be used for

beam focusing. bl informs the neural network of the extent of

blockage and has an impact on optimal Airy configurations.

It also serves as the activation threshold (blockage criteria)

in our overall framework shown in Fig. 5: from empirical

data, we set the threshold to be blT = 0.75 (i.e., we ac-

tivate the neural network only if bl ≥ 0.75). On the other

hand, ∆y captures the relative location of the receiver when

compared to the TX-obstacle axis. Note that ∆y > 0 when

the receiver is above the axis of interest (see Fig. 7), and

∆y ≤ 0 if otherwise. ∆y plays a vital role in our physics-

informed network architecture and the direction of curving.

Finally, under each environment, we compute the deterministic

beam focusing parameters {fD, θD} and use focal/steering

adjustments {∆f = f − fD,∆θ = θ − θD} instead of

absolute values {f, θ} as neural network outputs. This helps

with faster convergence. As such, we aim to map the 8-

dimensional input space {Ox, Oy, dx, dy, Rx, Ry, bl,∆y} to a

3-dimensional output space {B,∆f,∆θ}.

C. Physics-Informed Neural Network

After our feature engineering that highlights the importance

of geometric topology, we architect a physics-informed neural

network. Here, we use an insight that is rooted in the physics

of wave propagation. Specifically, if both the obstacle and RX

Fig. 8: Topology flipping and physics-informed neural network

architecture to guarantee symmetric performance by design.

are mirrored with respect to the perpendicular bisector of the

transmitter’s array, then the optimal airy beam is mirrored too.

As depicted in Fig. 3, if the topology of the environment is

flipped along the transverse direction (i.e., Oy → −Oy, Ry →
−Ry), then we can easily find the new optimal Airy beam

configuration without any calculation (i.e., B⋆ → −B⋆, θ⋆ →
−θ⋆). This is inherently due to the symmetric nature of the

system with respect to y = 0.

Hence, we can break down all possible topologies into two

distinct and symmetric categories, concave (∆y < 0) and

convex (∆y > 0) topologies. To facilitate learning of the

physical system, we enforce the inherent topological symmetry

of the system and train the neural network only on convex

topologies. In other words, our neural network only learns to

optimize Airy beams for convex cases, while concave cases

are handled through geometric symmetry. This further offloads

the burden of blind learning from the neural network.

The detailed network design is shown in Fig. 8. Specifically,

{Oy, Ry,∆y} will be flipped in sign if ∆y < 0 in the

input environment topology. After hyperparameter tuning, we

converge to 4× dense layers with 10% drop-out rate. Finally,

if ∆y < 0, the output values of B and ∆θ are flipped

back to retrieve the final Airy configuration. We perform

standardization on both the input and output variables. During

the training process, we adopt MAE as the loss function to

reduce the impact of outliers and we use SGD with momentum

as the optimizer to improve training efficiency.

IV. PERFORMANCE EVALUATION

A. Blind Spot Reduction with Curved Beams

Here, we show that the area of blind spots caused by an

obstruction (the area in which the received power is extremely

low) can be significantly reduced when the transmitter adopts

an Airy beam to reach its destination.

We follow the setup in Fig. 6a, where the receiver is located

at several location in the close proximity of an obstacle. At

each receiver location, the entire beam space is exhaustively
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Fig. 9: (a) Comparison of resilience against blockage. (b) Empirical CDF of received power in all simulated environments. (c)

Received power variation under imperfect RX location knowledge.

Fig. 10: Blind spot reduction performance. Received power

under (a) near-field beam focusing and (b) curved Airy beam.

(c) Performance gain (%) in received power from Airy beams.

searched with discrete steps to find the true optimal Airy beam

configuration {B⋆, f⋆, θ⋆}. Comparing the received power

maps shown in Fig. 10a and that in Fig. 10b, we see that

the shadow region (the dark blue region) is evidently reduced

compared with the case in which the transmitter adopts a

near-field beam focusing wavefront. We further visualize the

gain by calculating the percentage power increase from beam

focusing to Airy beams in Fig. 10c, which shows a significant

area that sees more than 100% received power improvement.

Therefore, Airy Beams (when correctly configured) can indeed

provide huge potential for blockage mitigation in sub-THz

wireless networks. Yet, an exhaustive scan over the design

space to find the right curved beam is not feasible.

B. Accuracy of NN-Predicted Curved Beam

We demonstrate the performance of our Airy optimization

framework through extensive simulations, evaluated on a sep-

arate test dataset of ∼ 400 random blockage environments.

Further, we observe consistent learning performance despite

random shuffling and splitting between the training and test

sets, which confirms the robustness of our framework.

To show the effective learning of our neural network, we

show parity plots where the predicted {B,∆f,∆θ} labels

are plotted against the ground truth {B⋆,∆f⋆,∆θ⋆} labels

from exhaustive search (Fig. 11a-c). We observe that a general

trend of positive correlation (along y = x) can be found in

all three parity plots, despite huge variances in environmental

configurations and a large number of outlier scenarios (e.g.,

Fig. 11: Parity plots of NN-predicted Airy configurations.

full blockage, edge diffraction, etc.). We report R2 scores of

0.31, 0.47, and 0.87 for B, ∆f , ∆θ predictions, respectively.

Next, we show the performance of our NN-predicted Airy

configurations. Specifically in each test scenario, we calculate

the received power under (i) Conventional far-field beam

steering, (ii) Near-field beam focusing, (iii) AI-predicted Airy

configurations, and (iv) Exhaustive Airy configurations. Fig. 9a

shows normalized mean received powers under each method,

grouped by and plotted against the blockage index bl. As

expected, as the blockage gets more severe, the received power

drops. Nevertheless, we observe that Airy beams maintain a

relatively strong SNR despite severe blockage conditions, even

compared with near-field beam focusing, showing a unique

resilience against channel blockage. Further, it is evident that

the NN-predicted Airy configurations are able to achieve near-

optimal performances compared to the brute force scheme.

In practice, we envision that the transmitter would adopt a

two-shot wavefront selection, i.e., it compares the performance

of near-field beam focusing with AI-generated Airy wavefront

and locks into the one achieving the higher SNR. We note that

calling the pre-trained neural network for prediction induces

minimal computational overhead. Further, the amount of time

overhead for curved beam configuration is dependent on the

computational resources and phase switching speed of the

transmitting node. Regardless, this overhead is constant and

negligible in practical settings.

The overall power performance of such a method is com-

pared with baselines in Fig. 9b. We observe that AI-generated

Airy beams can achieve a significant average gain of 19.83
dB compared with conventional beam steering and 2.13 dB
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compared with near-field beam focusing. Again, as shown,

the performance of AI-generated curved beams is close to that

of the true-optimal wavefronts (average loss of under 0.8 dB

compared with the impractical exhaustive search).

So far, we assumed the RX’s location is perfectly known.

Here, we evaluate the performance under inaccurate RX posi-

tioning. In each of the ∼ 400 test scenarios, we move the RX

within a square-shaped region centered around its true location

(Rx, Ry), with a side length of 20cm. We calculate the average

received power across these RX locations and compare it

with the case where the RX is accurately placed. Fig. 9c

plots the received power variation caused by inaccurate RX

positioning under different methods. We observe that our AI-

enabled framework works the best under receiver uncertainty

as compared to beam focusing and brute force optimization.

This is because (i) the Airy diffraction has larger coverage and

(ii) compared with beam focusing, our framework takes into

account environmental information (other than the receiver

locations). Interestingly, inaccurate RX information may yield

even higher received power in some instances. We highlight

that resilience to RX location errors was not considered when

training the neural network. In the future, we will explore

AI-based frameworks that take into account both SNR and

resilience objectives for Airy beam engineering.

V. CONCLUSION

To conclude, we present a physics-informed NN-enabled

framework for real-time obstacle-avoiding Airy beams in sub-

THz wireless systems. We observe that the proposed frame-

work can achieve a 19.83 dB gain from conventional far-field

beam steering, and a 2.13 dB gain compared with near-field

beam focusing. Our NN-predicted Airy configurations also

show interesting resilience against inaccurate RX locations.

We believe that, by providing a low-overhead solution for Airy

beam optimization, this work paves the way for the adoption

of such complex wavefronts in future sub-THz networks.
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