
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 1, JANUARY 2025 1

D3: Differential Testing of Distributed Deep
Learning with Model Generation

Jiannan Wang, Hung Viet Pham, Qi Li, Lin Tan, Senior Member, IEEE, Yu Guo, Adnan Aziz, and Erik Meijer

Abstract—Deep Learning (DL) techniques have been widely
deployed in many application domains. The growth of DL models’
size and complexity demands distributed training of DL models.
Since DL training is complex, software implementing distributed
DL training is error-prone. Thus, it is crucial to test distributed
deep learning software to improve its reliability and quality.

To address this issue, we propose a differential testing
technique—D3, which leverages a distributed equivalence rule
that we create to test distributed deep learning software. The
rationale is that the same model trained with the same model input
under different distributed settings should produce equivalent
prediction output within certain thresholds. The different output
indicates potential bugs in the distributed deep learning software.
D3 automatically generates a diverse set of distributed settings,
DL models, and model input to test distributed deep learning
software. Our evaluation on two of the most popular DL libraries,
i.e., PyTorch and TensorFlow, shows that D3 detects 21 bugs,
including 12 previously unknown bugs.

Index Terms—software testing, distributed deep learning,
differential testing, model generation

I. INTRODUCTION

DEEP learning systems are pervasive. They have been
widely deployed in many domains including recommenda-

tion systems [1], [2], self-driving cars [3], machine translation
[4], [5], and language representation [6], [7].

Given the complexity and large sizes of DL models [2],
[6], [7], [8], distributed DL training is required for many real-
world DL systems. For example, the Generative Pre-trained
Transformer 3 (GPT-3) model [7], which is an autoregression
DL model that generates human-like text, has 175 billion
parameters and takes up 350GB of space. An implementation of
a deep learning recommendation model (DLRM) [2] contains
about 23 billion parameters, and the size of the model is
91.1GB. Training such a large DL model is time and space
expensive. First, it typically takes weeks or months to train
such models. For example, the time required to train the GPT-
3 model with 175 billion parameters is 34 days on 1,024
GPUs [8]. In addition, such a model is too large to fit in a
single GPU. As a result, it is mandatory to train such large
models on multiple processors (e.g., GPUs or CPUs). This
method is called distributed training. In distributed training, the

Corresponding author: Lin Tan
Jiannan Wang, Qi Li, and Lin Tan are with the Computer Science Department,

Purdue University, USA (email: {wang4524, li4246, lintan}@purdue.edu).
Hung Viet Pham is with the Electrical Engineering and Computer Science

Department, York University, Canada (email:hvpham@yorku.ca).
Yu Guo, Adnan Aziz, and Erik Meijer are with Meta Inc., Menlo Park, USA

(email:{yuguo, adnanaziz}@fb.com, erik.meijer@meijcrosoft.com).

training task is split and sharded among multiple processors,
and each processor only handles part of the workload. By
doing so, it not only makes it possible to train models that are
too large to fit in a single processor but also speeds up the
training process.

Correctly and efficiently splitting, sharding, and aggregating
models and data at a large scale is difficult, contributing to the
complexity of distributed DL training and inference [9], [10],
[11]. Thus, software implementing distributed DL training and
inference is error-prone [12], [13], [14], [15], [16], [17], [18],
[19], [20]. In consequence, it is crucial to test distributed DL
software to improve its reliability and quality.

A. Challenges and Our Approach

Our goal is to detect bugs in distributed DL software, i.e.,
detecting implementation bugs in the code that defines, trains,
and evaluates distributed DL models, including the backend
code in the DL libraries. This goal is different from existing
papers [21], [22], [23], [24] that aim to find erroneous
behaviors in the trained models instead of the code that builds
and trains models. Previous papers have shown that DL software
bugs lead to incorrect output and failures despite correct model
output [25], [26].

There are two main challenges in testing distributed DL
software. The first challenge is that it is particularly difficult
to know the expected output of DL programs, due to their
complexity and large sizes [25], [26]. Existing techniques
address this challenge by cross-checking different libraries or
execution graphs to detect inconsistency bugs [25], [26], [27],
[28], [29], [30]. None of the existing techniques is specialized
in detecting bugs in distributed DL code. The second challenge
is that exposing bugs in distributed DL libraries requires a
large, diverse set of DL models to exercise distributed DL
code.

Distributed equivalence rules: To address the first challenge,
we build a differential testing technique—D3, which leverages
a distributed equivalence rule that we create to test distributed
deep learning software. An equivalence rule defines specific
conditions in deep learning libraries where different executions
lead to equivalent output. We define our new distributed
equivalence rule as that the distributed training and inference
should produce output that is equivalent to that of the non-
distributed training and inference counterparts. This rule also
implies that the output of distributed training and inference
with two distributed settings should also be equivalent.

0098-5589 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 1, JANUARY 2025 2

Suppose that we start with the same DLRM model structure
and train it with the same training instances. When trained on
two GPUs (referred to as a world size of two), the resulting
DLRM model is M1, and when trained on four GPUs (world
size of four), the resulting DLRM model is M2. Here world
size is the number of processors in the distributed cluster, e.g.,
the number of GPUs when training using GPUs. To make the
large models fit in GPU memories, M1 is stored and trained on
two GPUs, while M2 is stored and trained on four GPUs. Our
distributed equivalence rule states that given the same input
instance, model M1 and model M2 should produce equivalent
output, e.g., two classification vectors with differences within
small thresholds. If there is a bug in the DL training and
inference code, e.g., in the PyTorch [31] or TensorFlow [32]
libraries or the user code setting up these models, the output
may be different, indicating software bugs. Our distributed
equivalence rule enables us to detect such bugs in distributed
DL software without knowing the expected output of a given
input instance.

There are more distributed parameters than just the world
size. For example, one can shard a model to multiple GPUs
using different schemes for model parallelism, e.g., column-
wise sharding splits an embedding table by its embedding
dimension, and row-wise sharding splits the embedding table
by its first dimension. Our distributed equivalence rule states
that a model trained with column-wise sharding should produce
output equivalent to a model trained with row-wise sharding.
Distributed parameters: We identify a diverse set of dis-
tributed parameters, i.e., world size, sharding type, device,
weight quantization, activation quantization, and sharder type.
D3 then uses these distributed parameters to generate a full
set of distributed settings, to cross-check the equivalence of
model training and inference to detect bugs in distributed DL
software. Here a distributed setting consists of one concrete
value for each and all distributed parameters, e.g., {world
size: 2, sharding type: column wise, device: gpu, weight
quantization: int8, activation quantization: float16, sharder
type: EmbeddingBagSharder } is one distributed setting.
Section III-C describes the candidate values for distributed
parameters.
Distributed model architectures and model input: To address
the second challenge, we design and implement a DL model
generation technique that is specialized in producing distributed
DL models and input to these models automatically for testing
distributed DL software. Our approach generates a diverse
set of DLRM models, chain structure models, and cell-based
structure models.

B. A Motivating Example

Our tool D3 detects a severe bug automatically in the produc-
tion DL software using PyTorch that affects a multi-national
company. PyTorch’s large-scale distributed recommendation
system TorchRec [33] uses different gradient aggregation
strategies, e.g., the sum or the average, when aggregating
gradients from the processors in a distributed cluster. By default,
the company’s production DL models mistakenly use the sum
instead of the average of gradients from the processors in the

Fig. 1: D3 detects a real-world bug, revealed by an inconsistency
between a distributed setting and a non-distributed setting. The
buggy code uses sum instead of average to aggregate gradients.
The bar lengths of G0, G1, G2, GradD, and GradND represent
the magnitude of the gradient values. The bug in the gradient
aggregation leads to GradD being twice as large as GradND,
which is fixed by applying the average (“/2” in green) to the
synchronized gradient.

distributed training. Given the large sizes of these models, they
are trained on many processors, e.g., 128 GPUs. After being
put into production, each model is trained continuously on
a smaller number of processors, e.g., 64 or 32 GPUs, since
the volume of input data for incremental updating is lower.
This leads to inconsistent gradient values, because the sum of
gradients from 64 GPUs is smaller than the sum of gradients
from 128 GPUs. This kind of bug causes regression in model
accuracy, i.e., model accuracy is lower than before, in the
training process and leads to revenue losses. Loading a model
from an N node setting to an M node setting, where M < N ,
is tricky, and this bug is an example of that. Section V-B Bug
1 describes this bug in detail.

Figure 1 shows that D3 detects this bug by generating a
model and its model input and comparing the training on
different numbers of GPUs (we use two GPUs versus one
GPU to illustrate it without losing generality). Dev 0 and Dev
1 denote the two GPUs, while Dev 2 denotes the single GPU.
The model’s training input is split into two batches (denoted
by B0 and B1 in Figure 1) when trained on two GPUs. When
the same model is trained on one GPU, the same training input
is now processed entirely on Dev 2. We use Gi to represent
the per-device gradients on Dev i.

During the non-distributed training, TorchRec computes
gradient G2, which is a form of average metric (detail in
Section V-B Bug 1) of all input instances in B0 and B1. For
the distributed training, TorchRec computes G0, which is a
form of the average metric of input instances in B0, while G1

is for B1 instances. In the next step, TorchRec should compute
the synchronized gradient GradD by calculating the average of
G0 and G1, which should be equal to G2 (small floating-point
imprecisions allowed). But it computes the sum of G0 and G1

by mistake, which is twice as large as that from non-distributed
training on a single device (Dev 2) (GradND). In summary,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 1, JANUARY 2025 3

GradD equals G0 + G1, while GradND is (G0 + G1)/2,
although they are expected to be mathematically the same. The
inconsistent gradient values reveal this bug.

D3 automatically generates test scenarios to trigger the bug.
A test scenario is a tuple of (Sk,Mi, Iij), where Sk is a
distributed setting, Mi is a model, and Iij is the jth input
instance to the model Mi. D3 then compares the inference
output of the two resulting models from distributed training
under every pair of distributed settings, given the same input
instance. Among others, D3 detects an output inconsistency
when comparing one distributed setting and one non-distributed
setting with two processors and one processor respectively
which leads to the detection of this bug.

Detecting this bug is hard for several reasons. Firstly,
triggering this bug requires a sharding scheme for model
parallelism, e.g., table-wise or row-wise. This bug does not
happen with the data parallelism sharding scheme, which splits
data instead of the model to multiple processors. This is because
the data parallelism sharding scheme by default uses the average
instead of the sum of the gradients from processors, resulting in
consistent gradients. Secondly, triggering this bug also requires
that a model contains certain types of layers such as TorchRec’s
EmbeddingBagCollection, which are lookup tables that
convert a layer’s input to a fixed length of vectors. Finally, the
gradient differences are small and do not cause big accuracy
drops without long-running training. Thus, without comparing
the output of two distributed settings, this bug with severe
consequences remained unnoticed. D3 automatically generates
test scenarios with the specific model and sharding scheme to
trigger this bug and compares the model output of different
test scenarios to detect this bug.

C. Contributions

In this paper, we make the following contributions:
• We build the first differential testing technique D3 that is
specially designed for testing distributed DL software.

• We define a new distributed equivalence rule to address the
oracle challenge of testing distributed DL software. We
identify a diverse set of distributed parameters and we
use and combine them to automatically generate distributed
settings for testing distributed DL software.

• We design a model generation method that generates models
specifically for distributed DL software.

• Our evaluation of D3 on two widely used distributed DL
systems PyTorch and TensorFlow shows that D3 detects 21
bugs, 12 of which are previously unknown bugs.

Availability: D3 code is available in the GitHub repo1.

II. BACKGROUND

A. Deep Learning Model

A DL model structure is typically represented as a directed
acyclic graph (DAG) [34], which consists of nodes or layers
that are connected to perform a specific task (e.g., regression
or classification). Each layer applies a mathematical function

1https://github.com/lt-asset/D3

(e.g., linear, embedding, convolution, etc.) to the input data
with specific weights. Specifically, the same type of layers
can be adapted multiple times in a DL model structure. The
operations performed on those layers are generally different
because these layers have different parameters.

A DL model consists of its model structure and weights. To
obtain the correct weights for each layer in a DL model, the
model needs to be trained on a training dataset [35]. This is
called the training phase. Once the training phase is finished,
the weights (or parameters) of each layer are fixed and do not
change. Then the model can be used in the inference phase.
For evaluation, the trained model needs to be evaluated in the
inference phase on a test dataset [36], [37]. The test dataset
contains data different from the training dataset so that we can
assess the model’s performance and generalization.

DL models usually take tensors [31], [32], which are high-
dimensional data structures, as input. The shape of a tensor is
the length (number of elements) of each of the dimensions of
the tensor.

B. Distributed Training

Increasing data size and model complexity can generally lead
to better model performance. However, the training process
is very computation-intensive and thus time-consuming given
the complexity and large sizes of DL models. Distributed
training [38] is introduced to reduce the training time where
the power of multiple processors is exploited to accelerate the
training process, which is known as parallelism [39], [40].

Specifically, there are two main types of parallelism schemes–
Distributed Data Parallelism (DDP) [39] and Distributed
Model Parallelism (DMP) [41], [42]. When utilizing DDP,
the parameters are replicated on each distributed device, and
the dataset is split into N parts, where N is the number of
distributed devices, e.g., GPUs. During training, each device
calculates its gradients using local parameters and data. In the
end, the gradients on each device will be aggregated as the
final gradients.

For DMP, each part of the model is placed on different
devices. The DMP setting is widely used for very large deep-
learning models when the model cannot fit into a single
GPU’s memory. For example, deep learning models in the
recommendation system usually have very large embedding
layers to handle the high-dimensional input. Sometimes the
model is too large for a single GPU. With DMP, the huge
embedding layers are split and then distributed to multiple
GPU devices, which makes training and deployment possible.

It is non-trivial to split the model or dataset into parts and
assign each part to different computing processors. Therefore,
it is of vital importance to ensure the correctness of distributed
training and inference of deep learning models.

C. Deep Learning Recommendation Model (DLRM)

To test distributed DL libraries, we focus on a specific
type of model: the Deep Learning Recommendation Model
(DLRM) [2]. DLRM is tailored for recommendation systems
and aligns well with the requirements of distributed training
and inference. In recommendation systems, models must handle

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 1, JANUARY 2025 4

categorical data, such as user demographics (e.g., gender, age
group, occupation), and dense features, such as item prices and
user ratings. Consequently, a DLRM contains multiple embed-
ding bags that map categorical data to dense representations
in an abstract space and a multilayer perceptron (MLP) that
processes dense features. These features are then combined
and further processed through another MLP to compute event
probabilities. Given that recommendation systems rely on vast
amounts of data and require sophisticated models, DLRM,
which was specifically designed for this domain, is an ideal
candidate for distributed training and inference, encompassing
both model parallelism and data parallelism.

D. Differential Testing

Finding bugs, especially non-crash bugs in deep learning
libraries is nontrivial because it is hard to know the expected
output given the increasing complexity of deep learning
algorithms. We cannot use the ground truth as the expected
output because the deep learning model is not 100% correct.
When the model makes mistakes on certain input, the expected
output of the model is not the ground truth. In addition, the
nondeterminism in the DL computation makes the same model
trained on the same input have different output [43]. For
example, when using multi-process data loading, it is hard
to load data in the same order [44], which makes training with
the same model and input have different prediction results.
Such nondeterminism adds difficulty to differential testing.

Recent studies address this challenge using differential
testing [25], [26], [27], [28], [45]. It uses at least two implemen-
tations of the same functionality to produce equivalent output
given the same input. Inconsistencies between output indicate
potential bugs. This method automates testing processes, saving
time and effort.

The key to applying differential testing to test deep learning
libraries is to find the equivalent components expected to
produce the same output given the same input. In this
project, we define an equivalence rule and generate equivalent
distributed settings. When the same model is distributed under
those settings, we expect equivalent output when feeding the
same input to the model. We use the equivalence rule as the
oracle to detect inconsistency bugs in distributed deep learning
libraries.

III. APPROACH

In this section, we describe how D3 detects bugs in
distributed DL libraries using the distributed equivalence rule.

A. Overview of D3

D3 automatically generates test scenarios, i.e., (Sk,Mi, Iij).
Note that we need different model input for different models
because the input layers of different models have different
shapes. D3 then compares the inference output of the two
resulting models from distributed training under every pair of
two distributed settings, given the same input instance, to test
distributed deep-learning software.

Figure 2 presents the overview of D3, which automatically
generates test scenarios for the differential testing of distributed

deep learning software. D3 consists of four steps. First, we
create a new equivalence rule, which states that under certain
distributed settings, the same model trained on the same model
input should be equivalent, i.e., produces equivalent output
when feeding with the same input (1). In the second step (2),
we collect parameters for distributed settings and their candidate
values. D3 generates distributed settings by selecting one
candidate value for each parameter. Those generated distributed
settings are later used to train models. D3 generates distributed
settings for all possible combinations of the distributed pa-
rameters’ candidate values that we collect. S0 represents the
non-distributed settings (a special case of distributed settings),
while Sk denotes all other distributed settings, where k > 0.
For example, S1 represents the distributed setting that the world
size equals one, the sharding type is table-wise sharding, the
device is on CPU, weight quantization is float32, activation
quantization is set to float32 as well, and the sharder to shard
the model is EmbeddingBagSharder.

In the third step (3), we design and implement a model
generation component so that D3 can automatically generate
models. In this step, D3 also generates model input that are valid
for the corresponding models. Finally (4), D3 executes the
generated models and their input under the distributed settings
to generate model output. Specifically, D3 trains and evaluates
a model Mi on input Iij under a distributed setting Sk, which
is denoted as TE(Sk,Mi, Iij). We use Oijk to denote the final
evaluation output of model Mi trained on input Iij under a
distributed setting Sk, i.e., Oijk = TE(Sk,Mi, Iij).

D3 then compares the model output to detect inconsistency
bugs. While our distributed rule enables us to detect hard-to-
find inconsistency bugs, our model generation component may
still expose crash bugs in DL software. Thus, D3 also detects
crash bugs when the evaluation of test scenarios crashes.

The rest of the approach section describes the equivalence
rule definition (Section III-B), the distributed setting genera-
tion (Section III-C), the model and model input generation
(Section III-D), and the bug detection process (Section III-E).

B. Distributed Equivalence Rule

To test deep to find inconsistency bugs, we create an
equivalence rule for distributed deep learning libraries. We
use the same definition of equivalence rules in the previous
work [26], which defines specific conditions in deep learning
libraries where different executions lead to equivalent output.
For example, one EAGLE equivalence rule states that if a
function has a sparse tensor version and a dense tensor version,
the two versions should produce equivalent results. Otherwise,
there are bugs in the implementations.

In this paper, we create a new distributed equivalence rule:

Distributed Equivalence Rule. For any combination of the
following distributed parameters:

1) World Size,
2) Sharding Type,
3) Device,
4) Weight Quantization,
5) Activation Quantization,
6) Sharder Type,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 1, JANUARY 2025 5

Fig. 2: D3 Overview

the distributed training and inference should produce output
that is equivalent to that of the non-distributed training and
inference counterparts.

This rule implies that the output of distributed training and
inference with two different distributed settings should also be
equivalent.

Thus, a key task of our approach is to generate a large,
diverse set of distributed settings and then compare model
training and inference in these distributed settings. One
distributed parameter is the world size, i.e., the number of
devices or processes for distributed training. For example,
distributed training on two GPUs versus four GPUs should
produce equivalence output. Another distributed parameter is
sharding type, i.e., how a model is divided into different devices
or processes, e.g., row-wise sharding and column-wise sharding.
For example, distributed training with row-wise sharding on two
GPUs should produce equivalent output to that of distributed
training with column-wise sharding on four GPUs.

C. Generation of Distributed Settings

This section describes the set of distributed parameters
and how we generate distributed settings following these
parameters. Table I (Row ‘Distributed Setting’) presents the
five distributed parameters and their possible values, while
Section III-D “DLRM-like Model Generation” describes Row
‘Model’ regarding model fuzzing.

Distributed Parameter 1: World Size World size is the
number of processes participating in the distribution job. It is
usually equal to the number of devices, such as the number of
GPUs, in the distributed system. Rank is the unique ID given
to a process so that the process can identify itself. For example,
suppose a distributed system consists of four GPUs with each
GPU running one process. Then in that system, the world size
is four, and the ranks for the four processes are in [0, 1, 2,
3]. We compare the output of distributed training with one to
eight world sizes. The World Size Equivalence rule applies to
both DDP and DMP paradigms.

Distributed Parameter 2: Sharding Type Sharding is a
concept in database systems that distributes a single database
across multiple smaller databases, which can then be stored
on multiple machines. The two common sharding types in

TABLE I: Fuzzing overview

Fuzzing parameter Candidate value

Distributed
Setting

world size {1, 2, 3, 4, 8}
sharding type* {TW, RW, CW, DP}

device {cpu, gpu}
weight quantization {int8, float32}

activation quantization {int8, float16*, float32}
sharder type* {EBS, EBCS}

Model

EmbeddingBagCollection
of embedding bags [1, 5]

Embedding Bag
of embeddings [1, 1000]

embedding dimension {4, 8, 12, ..., 1,000}

Linear
in dimension [1, 1,000]

out dimension [1, 1,000]

* indicates PyTorch/TorchRec’s specific components and values.
TW = table wise, RW = row wise, CW = column wise, DP = data
parallel. EBS = EmbeddingBagSharder, EBCS = EmbeddingBag-
CollectionSharder.

database systems are horizontal sharding (each shard has the
same schema but unique rows) and vertical sharding (each
shard has a schema that is a proper subset of the original
table’s schema). In distributed deep-learning systems, sharding
is to split a model into multiple shards, where each shard
is distributed to one processor. The sharding type defines the
principle of splitting a deep learning model. Suppose we have a
TorchRec model consisting of multiple embedding tables with
each table for one feature. For example, table-wise sharding
splits such a model by placing each table on one processor.
While table-wise sharding keeps a whole embedding table on
one processor, column-wise and row-wise sharding split an
embedding table such that one table is placed on multiple
processors. Column-wise sharding splits an embedding table
by its embedding dimension and row-wise sharding splits the
table by its first dimension. Data-parallel sharding is the same
as DDP, which replicates the model on each processor. Data-
parallel shards the dataset instead of the model.

Distributed Parameter 3: Device DL libraries usually provide
support for both CPU and GPU devices. While libraries often
have the same high-level API for users no matter whether CPUs
or GPUs are used, they have different kernel implementations

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 1, JANUARY 2025 6

for the operations on different devices. For example, in PyTorch,
there are operations that communicate between distributed
processes, such as all_gather which gathers tensors from
all the processes in a list and all_reduce which performs a
reduce operations (e.g., reduce sum) to the tensor data across all
machines in a way that all get the final result. Such operations
are supported by the NCCL library when training or inference
on GPUs while by the Gloo library when on CPUs. Although
they have different implementations, we expect them to produce
equivalent results when training or inferencing the same model
using the same model input.
Distributed Parameter 4: Weight Quantization Weight
quantization refers to techniques for performing computations
and storing tensors at lower bitwidths than floating point
precision. It can reduce the model size in storage as well
as bandwidth requirements for the hardware platform. It can
also speed up the model inference procedure. Although weight
quantization changes the data type of the model’s parameters
to lower precision, which inevitably leads to differences, the
influence of quantization on to model’s prediction results should
be similar between distributed settings and the non-distributed
setting.
Distributed Parameter 5: Activation Quantization Besides
weights, the model’s activations can also be quantized to low-
precision data types to further reduce the memory cost and
speed up communication between devices. Regardless of the
activation data type used, the performance of the distributed
model should be equivalent to that of the non-distributed
version.
Distributed Parameter 6: Sharder Type The sharder
implements partitions for the embedding tables according
to the specified sharding type. Different types of
sharders can shard different layers. For example,
EmbeddingBagSharder shards EmbeddingBag,
while EmbeddingBagCollectionSharder shards
EmbeddingBagCollection, which is an optimized
implementation of multiple embedding bags. Those sharders
have different implementations, but they are expected to
produce the same output, because the sharded models
combined should be equivalent to the original model.
Generation and Combination of Distributed Settings We
support the combination of different parameters. Distributed
training and inference with a combination of values of five
different distributed parameters should produce equivalent out-
put to the non-distributed training and inference. For example,
distributed training and inference with a mix of different world
sizes and sharding types should produce equivalent output.

We first collect candidate values of the distributed parameters,
by leveraging our domain knowledge about distributed DL
and consulting the deep-learning libraries’ documentation.
Table I lists all the parameters and their candidate values
evaluated in this paper. The candidate values for the distributed
parameter world size are {1, 2, 3, 4, 8}. The candidate values
for sharding type are {table wise, row wise, column wise,
data parallel}. The candidate values for the device are {cpu,
gpu}. For weight quantization, the candidate values are int8,
representing quantization is used and the model’s weights

Fig. 3: DLRM-like model template. Green components denote
model components on which D3 fuzzes.

are quantized to int8, and float32, representing quantization
is not used and the model’s weights are in their original
data type float32. As for activation quantization, the can-
didate values are {int8, float16, float32}. For the sharder
type, the candidate values are {EmbeddingBagSharder,
EmbeddingBagCollectionSharder }, specifying how
deep learning libraries shard models.

Then D3 generates one candidate value for each distributed
parameter in one distributed setting. For example, {world
size: 1, sharding type: column wise, device: gpu, weight
quantization: int8, activation quantization: float32, sharder type:
EmbeddingBagSharder } is one distributed setting. D3

generates distributed settings for all the combinations of the
distributed parameters’ candidate values. Then we removed
unsupported distributed settings by checking the DL library
documentation and unit tests written by the developers.

D. Generation of Models and Model Input

We start from popular, realistic DL structures and mutate
them to generate a diverse set of models. We use (1) a DLRM-
like structure to focus on fuzzing embedding components, and
(2) a classic chain structure template and a cell-based structure
template following previous work [46] to generate model
structures to fuzz on other components.

First, Figure 3 shows the template that we create for
generating model structures. The template structure is a DLRM-
like structure because our model template consists of the three
components in DLRM: (1) a sparse component to process the
sparse features that represent the categorical data, such as the
rating of a movie, (2) a dense component to process the dense
features, which usually represents the embedding of users, and
(3) an over component that serves as an interaction among
all the features. We choose a DLRM-like structure because
DLRM is a real-world architecture, which makes it more likely
to detect realistic bugs. We fuzz on all three components to
mutate the DLRM-like model structure to generate a diverse
set of models.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 1, JANUARY 2025 7

DLRM-like Model Structure The sparse component mainly
consists of EmbeddingBag layers, which are used to handle
the categorical features of the input. The EmbeddingBag
layer is a kind of embedding layer. A general embedding layer
is a lookup table that can convert the layer’s input to a fixed
length of vectors. An EmbeddingBag layer is a general em-
bedding layer followed by a sum/mean/max operation, while the
EmbeddingBag is more efficient than using a chain of those
operations because it does not need to initiate the intermediate
embedding. An EmbeddingBagCollection layer collects
multiple EmbeddingBag layers together so that the user
only feeds one tensor to the EmbeddingBagCollection
layer for all the embedding bags instead of one tensor for
each embedding bag. We focus on the EmbeddingBag and
EmbeddingBagCollection layers because they support
distributed model parallelism with multiple sharding types,
which is an important distributed setting for distributed deep-
learning systems.

The dense component contains a single linear layer to process
the dense features in the input. The over component first
concatenates the results from the dense component and sparse
component, then applies a linear layer followed by mean and
sigmoid functions to produce a score, which indicates how
likely one would click their mouse given the input data.

DLRM-like Model Generation Table I Row ‘Model’ presents
the details for DLRM-like model generation, which fuzzes all
three components of the model structure. The sparse component
consists of multiple embedding bags, with each embedding
bag for one sparse feature of the input. We generate two
types of embedding bags, i.e., weighted embedding bags and
unweighted embedding bags. If per-sample weights are passed
as arguments to embedding bags, they are called weighted
embedding bags and the output of the embedding bags is
scaled before performing a weighted reduction. Otherwise, for
unweighted embedding bags, the output of the embedding bags
will be directly reduced. In this project, we randomly generate
1–5 embedding bags and 1–5 weighted embedding bags.

For each embedding bag, D3 generates a random integer
between 1 and 1,000 as the size of the dictionary of embeddings,
and a random number that is a multiple of 4 between 1 and
1,000, as the size of embedding vectors. We use a multiple of
4 due to PyTorch’s FBGEMM library’s requirement.

For the dense component consisting of a linear layer, D3

randomly generates the shape of the linear layer. In other
words, it generates the dimension of the linear layer matrix (in
dimension, out dimension). The in dimension and out dimension
each is an integer in the range of [1, 1,000].

For the over component, which also contains a dense layer,
D3 randomly generates the out dimension between 1 and
1,000 inclusive. The in dimension is derived from the output
dimension for all the input features, including the dense features
and the sparse features from the dense and sparse components.

Other Model Generation Second, we follow the approach
used in Muffin [46] to generate chain structure models and
cell-based structure models. Muffin generates models by first
generating the model structure and then generating each layer.
For model structure generation, Muffin starts by selecting one

template. Muffin implements two model templates. One is
the chain structure with skip connections, which contains a
sequence of layers with random skip connections. The other is
the cell-based structure, which consists of a sequence of cells.
Each cell is a DAG with one input vertex and one output vertex
and each vertex in the DAG represents a DL layer. Given the
generated structure information, then Muffin refines the layer
information, i.e., determines the specific layer type for each
vertex in the DAG.

Layer Frozen Model Generation Distributed training and
quantization are implemented through conversions in PyTorch
and TensorFlow. For instance, during distributed training in
PyTorch, a single-device model (i.e., torch.nn.Module)
is converted into a multiple-device distributed model (i.e.,
torch.nn.parallel.DistributedDataParallel).
Similarly, in TensorFlow, quantization is achieved by
converting a layer into a QuantizeWrapper layer. Besides
adding new functionalities, such as data parallelism and
quantization, these conversions should maintain the properties
of the original layers, like whether a layer is trainable or not.
However, bugs in the implementation can lead to incorrect
conversions.

To verify the correctness of these conversions, we generate
layer-frozen models by randomly freezing a layer in the model.
This is done by setting trainable = False in TensorFlow
and requires_grad = False in PyTorch. We then test
these layer-frozen models using our distributed equivalence
rule to check for any inconsistencies introduced by incorrect
conversions.

Model Input Generation For each generated DL model, D3

generates model input according to the models’ input layers.
Since the model is generated according to the DLRM model

template, the model input consists of three components: sparse
features (i.e., the features for embedding bag layers), dense
features (i.e., the features for fully connected layers), and
labels. When D3 generates input, D3 reads parameters from
the model’s input layers, e.g., the input dimension of the fully
connected layers and the embedding layers. For example, if
the model that D3 generated consists of one fully connected
layer in its dense part and one embedding bag in its sparse
part, the randomly generated input to this model consists of
two tensors, one tensor with the shape of (n, i), where n is the
batch size and i is the input dimension of the fully connected
layer, and one tensor with the shape of (n, r), where r is a
random number with value within the range [0, e), where e is
the vocabulary size of the embedding layer.

For the sparse features, D3 obtains the vocabulary size
of each feature by reading certain parameters from each
embedding bag, e.g. parameter num_embeddings of Py-
Torch’s layer API torch.nn.EmbeddingBag. The vocab-
ulary sizes specify the range of input values for each feature.
For example, if the num_embeddings is 100 for embedding
bag eb1, then the value of relative sparse feature f1 in the
model input should be within the range of [0, 100).

For dense features, D3 generates a tensor with the shape
of [batch size, in dimension] and values between [0.0, 1.0],
where batch size is set to 2,400 in our experiment and

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 1, JANUARY 2025 8

in dimension is the input dimension of the Linear layer.
For the labels, D3 generates a random vector with the shape

of [batch size] and values between [0.0, 1.0].

E. Bug Detection

In this final step, D3 evaluates the generated test scenarios,
i.e., the distributed settings generated in step two (Section III-C)
and the models and model input generated in step three
(Section III-D). D3 loads one pair of model Mi and model
input Iij , then trains Mi for a preset number of iterations
under the generated distributed setting Sk. Then D3 uses the
model for inference on Iij to produce output Oijk. That is,
given a triple (Sk, Mi, Iij), D3 produces output Oijk. After D3

evaluates all models and model input under different settings, it
compares all Oijk for the same i and j with different k values
to detect inconsistencies. That is, comparing output values from
the same model and model input trained and evaluated under
all distributed and non-distributed settings.

To speed up the process, we focus on comparing distributed
settings with non-distributed settings. For instance, with model
M1 and input I11, we compare O111, O112, ..., with O110,
respectively, where S0 represents the non-distributed setting
and S1, S2, ..., denote the distributed settings. Throughout the
debugging process, we will further make comparisons between
distributed settings to help debug and identify additional
inconsistent setting pairs, which help developers fix bugs. D3

reports inconsistent output, i.e., the element-wise difference of
output vectors, that is bigger than the sum of two thresholds,
one for absolute difference and one for relative difference, as
potential inconsistency bugs (Section IV).

Iteratively Mapping Inconsistencies to Bugs Given the large
number of inconsistencies, we design an iterative debugging
approach to systematically map inconsistencies to bugs to help
developers fix bugs. First, we cluster inconsistencies by the
inconsistency-introducing APIs. Specifically, we employ the
rate of change metric from CRADLE [25]. For each pair of
distributed settings that produces an inconsistency above our
thresholds, we calculate the Mean Absolute Distance (MAD)
between each pair of corresponding hidden states from two
executions of the same layer on two different test scenarios,
i.e., Oijk1

and Oijk2
. Then we calculate the rate of change

for each layer, and finally cluster inconsistencies based on the
layer API which produces the largest rate of change.

Second, we randomly sample test scenarios from each cluster
for investigation. Upon identifying a bug, we seek a suitable
fix. We check existing bug reports to find fixes for known
bugs, such as converting standard batch normalization layers
to synchronized batch normalization layers. For new bugs,
we report the bugs to the developers to obtain a possible
fix. If a viable fix is found, we apply it and subsequently re-
execute the experiments that cause inconsistencies. After the
re-execution, we count the number of inconsistencies again.
The reduction in the number of inconsistencies is the number
of inconsistencies resolved by the fix, which is counted as the
number of inconsistencies caused by the bug. For the bugs
that the developers have not fixed yet, i.e., the confirmed bugs
and the reported bugs, we regard the inconsistencies in one

TABLE II: Number of inconsistencies found by D3 and
distributed settings of D3

DL library PyTorch TensorFlow Total

of inconsistencies 10,478 5,595 16,073
of distributed settings 77 24 101

cluster as one bug and wait for the developers’ fixes. Once
the developers fix the bug we reported, we apply the fix and
resume the iterative debugging process. Ultimately, we obtain
a list of bugs identified through this systematic debugging
approach.

IV. EXPERIMENT SETUP

We tested PyTorch 1.12.0 (TorchRec 0.2.0) and TensorFlow
2.11.0. They were the latest versions of PyTorch and Tensor-
Flow when we started building the tool (October 2022 for
PyTorch and November 2022 for TensorFlow). The initial
experiment was executed in February 2023 and an additional
experiment was executed in June 2024 to obtain final results.
We use docker to build environments.

We exclude a few distributed settings for PyTorch as they
have not been supported by the library yet according to its
documentation, e.g., the row-wise sharding on CPU is not
supported by PyTorch.

Following previous work [26], we use the same inconsistency
threshold formula that TensorFlow and PyTorch use in their test
suite to determine whether the two output from the two models
are equivalent. For example, model M1 and model input I11
are trained under distributed settings S1 and S2, with respective
output vectors O111 and O112. Their output are equivalent if
the equation abs(O111 −O112) <= atol+ rtol ∗ abs(O112) is
element-wise true, with atol=5 ∗ 10−4 and rtol=1 ∗ 10−4. In
the formula, atol is the threshold for absolute difference and
rtol is for relative difference. We use both thresholds together
to measure inconsistencies.

We use an Intel(R) Xeon(R) Gold 5220R server with 504GB
memory, four NVIDIA RTX A5000 GPUs and four NVIDIA
GeForce RTX 2080 Ti GPUs.

V. RESULTS

This section presents the results of our four Research
Questions (RQs). RQ1 (Section V-A) presents the number of
bugs D3 detects. RQ2 (Section V-B) describes the bugs D3

detected using those equivalence rules. RQ3 (Section V-C)
compares D3 to other DL-library testing techniques. RQ4
(Section V-D) studies D3’s execution time.

A. RQ1: How many bugs does D3 detect?

We evaluate D3 on two of the most popular distributed deep
learning libraries, PyTorch and TensorFlow. For each library,
D3 generates 400 models and for each model, D3 generates 10
model input, resulting in a total of 4,000 input generated. The
same 4,000 input and 400 models are used in all 77 distributed
settings for PyTorch, and another set of 4,000 input and 400
models generated for TensorFlow are used in all 24 distributed

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 1, JANUARY 2025 9

settings for TensorFlow. D3 generates fewer distributed settings
for TensorFlow because two distributed parameters are not
supported in TensorFlow, i.e., sharding type and sharder type.
Table II shows the total number of inconsistencies D3 detects,
and Table III describes the bugs D3 detects.

Overall, D3 detects 21 bugs, including 14 inconsistency bugs
and seven crash bugs. Out of the 21 bugs, 12 are previously
unknown bugs. 14 of the 21 bugs have been confirmed or
fixed by developers. In Table III, we list root causes, affected
distributed parameters, affected libraries, and the number of
inconsistencies caused by each bug. The Status column shows
whether the bugs are fixed, confirmed, or reported (waiting
for replies from the developers). The New columns represent
whether the bug is a new bug or a duplicate of a known bug.
While D3 detects crash bugs, of the 21 bugs detected by D3,
14 are inconsistency bugs, with eight being newly discovered,
underscoring the significant contribution of the distributed
equivalence rule.

Out of the 21 bugs, 11 are only detected by fuzzing
the embedding components, demonstrating the usefulness of
fuzzing embedding components in addition to other model
structures. The remaining ten bugs are not specific to the
embedding components and are detected by D3-generated
models with chain and cell-base structures.

Although the distributed equivalence rule in D3 is designed
to detect inconsistency bugs by comparing the results from the
same models trained on the same model input under different
distributed settings, D3 also effectively detects crash bugs due
to the different distributed settings and the different model and
model inputs D3 generates. For example, D3 detects a crash
bug (Bug 15) when generating a distributed setting with the
EmbeddingBagSharder sharder. This specific distributed
setting, combined with a randomly generated model and inputs,
led to a mismatch of length between the input and the model’s
embedding layer. This demonstrates D3’s ability to detect crash
bugs by generating varied distributed settings, models, and
model input.

A single bug often causes many inconsistencies. Specifically,
the 21 bugs that D3 detects map to 16,073 inconsistencies
in TensorFlow and PyTorch. Table II shows the number
of inconsistencies detected by D3. Among the total 16,073
inconsistencies D3 detects, all inconsistencies indicate true bugs,
with 366 inconsistencies mapped to Bug 1, 125 inconsistencies
mapped to Bug 2, 1,323 inconsistencies mapped to Bug 3,
1,132 inconsistencies mapped to Bug 4, 944 inconsistencies
mapped to Bug 5, 973 inconsistencies mapped to Bug 6,
230 inconsistencies mapped to Bug 7, 30 inconsistencies
mapped to Bug 8, 3,947 inconsistencies mapped to Bug
9, 28 inconsistencies mapped to Bug 10, 408 inconsisten-
cies mapped to Bug 11, 5,304 inconsistencies mapped to
Bug 12, 1,147 inconsistencies mapped to Bug 13, and 116
inconsistencies mapped to Bug 14 For example, the 230
inconsistencies that map to Bug 7 result from 13 models
that contain BatchNormalization layers. After we ap-
ply the fix, i.e., replacing BatchNormalization with
SyncBatchNormalization, the number of inconsisten-
cies decreases, indicating those reduced inconsistencies are
caused by Bug 7.

To illustrate the effectiveness of the six distributed parame-
ters, we investigate the inconsistency-triggering parameters
for each bug. Inconsistency-triggering parameters are the
parameters that when changed alone can cause inconsistencies
or crashes. For example, denote the bug explained in Figure 1
as bug 1. D3 detects inconsistencies caused by bug 1 between
two settings, S1 and S2, with S1 being {world size: 2,
sharding type: column wise, device: gpu, weight quantiza-
tion: float32, activation quantization: float32, sharder type:
EmbeddingBagCollectionSharder } and S2 being
{world size: 4, sharding type: column wise, device: gpu, weight
quantization: float32, activation quantization: float32, sharder
type: EmbeddingBagCollectionSharder }. The only
difference between S1 and S2 is world size. If we detect
inconsistencies between two distributed settings that have
only one different parameter, that parameter is called an
inconsistency-triggering parameter. In the above example, world
size is an inconsistency-triggering parameter to bug 1.

Note that for bug 1, the sharding type is also an inconsistency-
triggering parameter. Further investigation finds that the gra-
dient aggregation setting only affects model parallelism (i.e.,
table wise, row wise, and column wise sharding). When the
sharding type is set to data parallel, the distributed training
will obtain correct results, i.e., using the average to aggregate
per device gradients, which is inconsistent with other sharding
types, e.g., row wise sharding. Therefore, sharding type is also
an inconsistency-triggering parameter to bug 1.

Table III demonstrates that each of the six distributed
parameters is an inconsistency-triggering parameter to at least
one bug, indicating their effectiveness in distributed testing.

B. RQ2: What bugs are detected by D3?

In this section, we describe the details of the bugs that D3

detects in addition to the bug in Figure 1.
a) Bug 1: (PyTorch gradient aggregation bug) This is the

bug that Section I-B and Figure 1 describe.
In principle, gradient aggregation in distributed training

should be consistent with the loss function. For example,
when using mean squared error (MSE) as the loss function
in the training process, the gradient computed is the per-
sample average gradient. When switching to DDP in this
case, in order to obtain the same training result as in the non-
distributed setting, users need to use the average to aggregate
per-device gradients to get the same gradients as those in the
non-distributed setting.

Making sure the gradient calculation is the same is important,
especially in the product development process. This is because
training hyperparameters should correspond to gradients. For
example, in Figure 1, the gradient becomes smaller when
changing from the distributed setting to the non-distributed
setting. If the same learning rate is used, the step size in each
iteration’s optimization is smaller, finally leading to accuracy
differences. Hyperparameters are usually fine-tuned for the best
training performance. The fine-tuning process is expensive and
highly relies on human expertise. In order to avoid repeating
hyperparameters fine-tuning, it is essential to make gradient
calculation the same as the non-distributed process, so that the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 1, JANUARY 2025 10

TABLE III: Bugs found by D3. Bug 1 is the bug in Figure 1. “# Inconsistencies” represents the number of inconsistencies
detected for each bug. “-” indicates a crash bug. D3 detects 21 bugs, 14 of which are inconsistency bugs. Majority (14) of the
21 bugs are confirmed or fixed by the developers. Most (12) of the 21 bugs are previously unknown bugs.

Bug ID Root Cause Inconsistency-triggering Parameters Software # Inconsistencies Status New

1 Gradient aggregation world size & sharding type PyTorch 366 fixed yes
2 Keras distributed layer world size TensorFlow 125 fixed yes
3 Quantized weighted EBC world size & weight quant PyTorch 1,323 fixed no
4 Batch normalization world size PyTorch 1,132 fixed no
5 Integer activation quantization world size & weight quant & activation quant PyTorch 944 fixed no
6 Float activation quantization world size & weight quant & activation quant PyTorch 973 fixed no
7 Batch normalization world size TensorFlow 230 fixed no
8 XLA precision error world size & device TensorFlow 30 fixed no
9 Quantize apply world size & weight quant TensorFlow 3,947 confirmed yes
10 Synchronized batch normalization world size & device PyTorch 28 reported yes
11 NaN results world size & weight quant PyTorch 408 reported yes
12 NaN results world size & weight quant & activation quant PyTorch 5,304 reported yes
13 Synchronized batch normalization world size & device TensorFlow 1,147 reported yes
14 Quantization trainable=False world size & weight quant TensorFlow 116 reported yes
15 Dummy feature name sharder type PyTorch - fixed no
16 Key mismatch error weight quant PyTorch - fixed no
17 CUDA error device PyTorch - fixed no
18 Missing configuration sharder type PyTorch - confirmed yes
19 MirroredStrategy overhead world size & device TensorFlow - confirmed yes
20 CUDA internal assert failed device & weight quant PyTorch - reported yes
21 to_dict() error weight quant & activation quant PyTorch - reported yes

same hyperparameters can be used for training with any world
size.

b) Bug 2: (TensorFlow Keras distributed layer bug) D3

detects inconsistencies when training a TensorFlow model
consisting of Keras layers with different world sizes. The
TensorFlow developers confirmed this is an issue with the
Keras layers. This bug has been fixed in the latest Keras
nightly version after we reported it.

c) Bug 3: (PyTorch quantized weighted Embedding-
BagCollection bug): D3 detects inconsistencies when train-
ing DLRM-like models with weight quantization and NCCL
backend under different world sizes. Further investigation shows
the model’s weighted EmbeddingBagCollection layer’s
output have huge differences under the two distributed settings
(e.g., between training on one GPU and training on eight
GPUs), which could be the cause for this inconsistency. These
inconsistencies have been fixed in the recent nightly versions.

d) Bug 4: (PyTorch BatchNorm2d bug): D3 de-
tects inconsistencies when training a model containing
torch.nn.BatchNorm2d layers using different world
sizes, e.g., training on one GPU versus training on eight
GPUs. The bug is caused by the lack of synchronization across
devices with regard to BatchNorm2d layers. Specifically, the
replicated BatchNorm2d layers on each device are trained
using their local batches which are different across devices. This
leads to different weights in different devices. This bug severely
affects model accuracy, leading to a drop in model accuracy
when training on multiple GPUs. We confirmed that this bug is a
known bug 2 raised by previous users, and the developers added
a synchronized version API torch.nn.SyncBatchNorm
to fix this bug.

e) Bug 5&6: (PyTorch activation quantization bug): D3

detects two inconsistency bugs during model inferencing when

2https://github.com/pytorch/pytorch/issues/2584

quantizing the activation to integer (e.g., torch.qint8)
and float (e.g., torch.float16), respectively. Both bugs
cause the weighted sparse layer to produce large incon-
sistencies during inferencing, which then propagate to the
model’s final output. However, with activation quantized to
torch.float16, there are large inconsistencies in the sparse
layer’s output as well, while the sparse layer’s output is identical
when the activation is quantized to torch.qint8. Both bugs
have been fixed in the latest version of TorchRec.

f) Bug 7: (TensorFlow BatchNormalization bug):
D3 detects inconsistencies when training a model containing
tf.keras.layers.BatchNormalization layer under
different world sizes, e.g., training on 1 GPU versus train-
ing on 8 GPUs. This bug has the same cause as bug
2. After the previous users submitted a report about this
bug 3, the developers fixed it by providing a synchro-
nized version API tf.keras.layers.experimental.-
SyncBatchNormalization which applies batch normal-
ization to the global batches.

g) Bug 8: (TensorFlow XLA precision bug): D3 detects
inconsistencies when training a TensorFlow model with CPU
backends and GPU backends. The developer confirmed the
inconsistencies are precision-related because of XLA fusion.
This bug has been fixed in the latest version of TensorFlow.

h) Bug 9: (TensorFlow quantize_apply bug): D3

detects inconsistencies when training a quantize-aware
model converted using tfmot.quantization.keras.-
quantize_apply under different world sizes, e.g., training
on one GPU versus on two GPUs. There are no inconsistencies
when the model is trained under the same world sizes, e.g.,
training on two CPUs versus on two GPUs. After we report
the bug, the developers confirm the root cause is that during
quantization, the min and max value of each activation is

3https://github.com/pytorch/pytorch/issues/2584

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 1, JANUARY 2025 11

not synchronized over distributed units. Many inconsistencies
are related to this bug because it affects all quantization
experiments.

i) Bug 10: (PyTorch SyncBatchNorm bug) D3 detects
inconsistencies with specific models and input even after
converting the BatchNorm2d layers to SyncBatchNorm.
This bug happens when training the model with multiple GPUs.
We have reported the bug to the developers.

j) Bug 11: (PyTorch training NaN results bug): D3

detects NaN when training a quantized model with NCCL
backend and world size setting to 4. The model’s weighted
EmbeddingBagCollection layer produces some NaN
values in its output, which in turn causes the subsequent layer
to produce all NaN output.

k) Bug 12: (PyTorch inferencing NaN bug): D3 detects
another NaN bug when inferencing a model with activation
quantized to torch.qint8. Further investigation reveals that
the sparse layer and the weighted sparse layer produce NaN
output, which then propagates to the model’s output. This
bug is different from Bug 11 because reproducing this bug
requires only inferencing, while Bug 11 is caused by training.
We reproduced the bug with the latest TorchRec and reported
it to the developers.

l) Bug 13: (TensorFlow SyncBatchNormalization
bug): D3 detects inconsistencies when training a model con-
taining SyncBatchNormalization under different world
sizes on CPU devices. However, there are no inconsistencies
when the same model is trained on the same input on different
numbers of GPUs. Thus, D3 successfully detects this bug in
the SyncBatchNormalization layer in a recent version
of TensorFlow 2.11.0. However, this layer API is already
deprecated in the latest version of TensorFlow 2.12.0 which is
only a few months more recent. But we found that the same
bug exists in its replacement BatchNormalization layer
when synchronized is set to true.

m) Bug 14: (TensorFlow trainable=False bug): D3

detects inconsistencies when training a TensorFlow model
containing a quantized dense layer with trainable set
to False. Further investigation reveals that when setting
trainable=False, the kernel of the quantized dense layer
is still trainable, There is a bug in the quantization conversion
function that does not correctly set the trainable property
from the original dense layer thus leading to inconsistent results
after training.

n) Bug 15: (PyTorch EmbeddingBagSharder
dummy feature name bug): When EmbeddingBagSharder
shards the embedding bags, it generates a dummy feature
name and assigns it to all sharded embedding bags, causing
the sharded embedding bags to have the same feature name.
We find that when testing with some specific model that D3

generates, the sharded embedding bags that have the same
feature name are regarded as one embedding bag, which
causes a mismatch of length between the input and the model’s
embedding layer. This triggers an assertion in TorchRec’s
source code.

o) Bug 16: (PyTorch quantize_embeddings bug):
TorchRec raises a key mismatch error when saving and
loading the state_dict of a model quantized us-

ing quantize_embeddings. The model’s state_dict,
which is a dictionary that maps model parameters’ names
with their values, alters after quantization. This is caused
by inconsistencies between parameter names in FBGEMM
backend kernels and the canonical EmbeddingBag represen-
tation. The developers fix this bug by adding a mapping to
transfer parameter names in backend kernels to the canonical
representation.

p) Bug 17: (PyTorch DataLoader bug): A CUDA error
occurs when training a TorchRec model using DataLoader
with multiple workers on GPU. DataLoader is a class
provided by PyTorch that has many options for data load-
ing. num_workers is an option to enable multiprocess
for DataLoader. By default, num_workers is set to
0, which represents single process data loading. When
num_workers is set to a positive number, DataLoader
creates num_workers subprocesses to speed up data loading.
However, a bug occurred when using DataLoader with
num_workers equals two to generate CUDA tensors to
train a DLRM model. The developers fixed it by disabling
multiprocessing for DataLoader.

q) Bug 18: (PyTorch EmbeddingBagSharder miss-
ing configuration bug): This bug happens in TorchRec when
specifying EmbeddingBagSharder to shard a model con-
taining EmbeddingBagCollection. The sharder tries to
shard the model table-wise, but the table-wise sharding is not
implemented, so it raises an error. In TorchRec, a planner
is called to generate an optimized sharding plan for a given
module with its shardable parameters according to the provided
sharders, the topology of the devices, and any customized
constraints specified by users. The planner first generates
all possible sharding plans by enumerating all combinations
of available sharding types and computing kernels and then
searches for an optimized sharding plan. The available sharding
types and compute kernels are defined in the shader’s class.
However, EmbeddingBagSharder doesn’t support table-
wise sharding while it still includes the table-wise option in
its available sharding types, which leads to this error.

r) Bug 19: (TensorFlow MirroredStrategy over-
head bug): D3 detects a hang that occurs when using
MirroredStrategy with eager mode on more than one
GPU which does not happen with graph mode or on CPUs. It is
due to significant overhead when using MirroredStrategy
in eager mode with multiple GPUs. This bug prevents the users
from utilizing the benefit of eager mode to debug efficiently.

s) Bug 20: (PyTorch quantization Gloo backend bug):
The Gloo and NCCL backends are the two collective commu-
nications libraries for distributed training of DL models mostly
on CPUs and GPUs, respectively. D3 detects crashes when
training quantized models with this Gloo backend. This bug
occurs exclusively when training quantized models with the
Gloo backend and not with the NCCL backend.

t) Bug 21: (PyTorch to_dict() crash bug): A crash
bug occurs when transferring the embedding bag collection
layer output to a dictionary in a DLRM model with activation
quantized to torch.qint8. The output of the embedding
bag collection layer, a concatenated tensor of each embedding
bag’s output, should be converted into a dictionary using

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 1, JANUARY 2025 12

TABLE IV: Analysis question results for the bugs found by D3. ✓ represents detecting this bug requires the specific feature in
the analysis question, which indicates existing methods would fail to detect this bug.

Analysis questions Bug ID
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

QI) Distributed setting or rule ✓
QII) Multi-layer model ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
QIII) Embedding bag layer ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
QIV) Training ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

length_per_key to determine each embedding bag output’s
length pre-concatenation. However, TorchRec raises an error,
claiming the sum of length_per_key does not match the
concatenated tensor length. This discrepancy makes the tensor
invalid, preventing access to individual embedding bag output.

Case study In this section, we use Bug 5 as an example
to illustrate how D3 identifies a bug. After D3 completes
the experiment, we compare the final evaluation output
between distributed and non-distributed settings to detect
inconsistencies. We then run a clustering algorithm to group
inconsistencies based on the rate of change metric. As a
result, 944 inconsistencies are clustered within the weighted
EmbeddingBagCollection layers.

Next, we randomly sampled five inconsistencies and discov-
ered that all exhibited significant inconsistencies in the weighted
EmbeddingBagCollection layers during a single forward pass
without training. We created a minimal reproduction program
based on the detected bug pattern. Before submitting a bug
report to the developers, we ran the reproduction program
on the latest versions of PyTorch and TorchRec (torch 2.3.0,
torchrec 0.7.0) and found that the reproduction program did
not produce inconsistencies, indicating that the bugs had been
fixed by the developers.

Since this bug was fixed silently and we could not identify the
exact commit that resolved the issue, we considered updating
to the latest version as the fix for this bug. Finally, we applied
the fix to all inconsistencies in the cluster by rerunning all
test scenarios with the latest versions to confirm that all
inconsistencies were resolved.

C. RQ3: Does D3 detect bugs that existing DL-library testing
techniques cannot find?

In this section, we compare D3 with existing techniques
that differential test DL libraries to study the contributions
of each component of D3. The main contributions of D3

include 1) the distributed settings generation and the distributed
equivalence rule, 2) the generation of multi-layer DL models 3)
the generation of DL models with embedding bag layers, and
4) testing the training phase as opposed to testing the inference
phase only like CRADLE [25], Audee [27], and LEMON [28].
We qualitatively analyze each bug found by D3 and answer
the questions below: QI) Does detecting this bug require a
distributed setting or a distributed equivalence rule? QII) Does
detecting this bug require a multi-layer DL model? QIII) Does
detecting this bug require a DL model with embedding bag
layers? QIV) Does detecting this bug require at least one step
of training?

We first study the four analysis questions QI to QIV, and
then use those answers to quantify, how many bugs existing
DL-library testing techniques cannot detect out of the 21 bugs
that D3 detects. Regarding QI, out of the total of 21 bugs
detected by D3, 20 bugs require setting up distributed settings
or a distributed equivalence rule as the oracle to detect. For
example, to detect Bug 5, it requires a distributed setting with
world size greater than one, and both weight and activation
quantization set to int8. It also requires comparing the results
from the distributed setting and the non-distributed setting to
detect inconsistencies. D3 is the first approach that defines a
distributed equivalence rule and generates distributed settings
to test distributed DL software. Since none of the prior DL-
library testing techniques generates distributed settings, they
fail to detect those bugs.

To illustrate D3’s contributions in DL model generation
(QII & QIII) and the testing of model training (QIV), we
compare D3 with previous approaches with distributed settings
added. In other words, we study if we add D3’s distributed
setting generation and equivalence rules to existing approaches,
whether the enhanced existing approaches can detect the bugs
that D3 detects. Regarding QII, out of the total 21 bugs,
detecting 17 bugs requires multi-layer DL models that D3

generates. As for QIII, 11 out of the total 21 bugs need models
with embedding bag layers to detect. For QIV, 11 out of the
21 require at least one step of training to trigger.

Table IV summarizes the bugs that existing DL-library
testing tools cannot detect. We compare D3 with fifteen
existing tools EAGLE [26], DocTor [47], FreeFuzz [29],
∇Fuzz [48], FuzzGPT [49], TitanFuzz [50], DeepREL [30],
CRADLE [25], Audee [27], LEMON [28], NeuRI [51],
Muffin [46], Ramos [52], GenCoG [53], and HirGen [54]. API-
based DL-library testing approaches, i.e., EAGLE, DocTor,
FreeFuzz, ∇Fuzz, FuzzGPT, TitanFuzz, and DeepREL, cannot
find 17 of the bugs detected by D3 because they cannot generate
multi-layer models (QII). Muffin hardcoded the supported
layer for generation which does not contain the embedding
bag layer. Therefore, it cannot detect 11 bugs that require
models with embedding bag layers as test inputs (QIII). NeuRI
automatically collects layers from developer test cases, however,
it focuses on testing the inference stage of DL models so it
cannot detect the 11 bugs that require DL training (QIV). The
remaining approaches, i.e., CRADLE, Audee, LEMON, Ramos,
GenCoG, and HirGen, do not generate embedding bag layers
(QIII) and only test the inference stage (QIV). They cannot
detect 19 of the bugs.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 1, JANUARY 2025 13

TABLE V: Execution Time of D3

PyTorch TensorFlow

(model, model input) generated 4,000 4,000
Time per pair (seconds) 373 119

D. RQ4: What is the run time of D3?

Table V shows D3’s execution time. On average, it takes
373 seconds to evaluate a pair of (model, model input) on our
equivalence rules in PyTorch and 119 seconds in TensorFlow.

VI. THREATS TO VALIDITY

D3 does not find all bugs Since we use a threshold to define
inconsistencies, we might miss bugs that cause very small
differences in the prediction results. To mitigate this threat,
we use a threshold used by popular DL libraries to measure
the inconsistencies. As a result, D3 is effective in detecting 21
bugs in PyTorch/TorchRec and TensorFlow automatically.

Generalizability D3’s generalizability to different DL libraries
with a variety of DL model types has not been measured
beyond the two libraries evaluated. Also, the generality of
the distributed equivalence rule and the model generation was
not quantified beyond PyTorch and TensorFlow. However, D3

detects 21 bugs, including 14 inconsistency bugs, across two
of the most popular DL libraries, i.e., PyTorch/TorchRec and
TensorFlow. This already demonstrates D3’s capabilities of
finding bugs in different distributed DL libraries. In addition,
D3 applies the equivalence rules to multiple model templates,
including the DLRM-like models, chain structure models, and
cell-based structure models, which cover a diverse set of DL
model types. It is straightforward to apply D3’s equivalence
rule on other model templates. Finally, D3 provided a new DL
model template for the DLRM-like models, which could be
used to enhance existing DL model generation tools, such as
Muffin.

Nondeterminism Not all inconsistencies are bugs because
DL model training can be nondeterministic [43]. We mitigate
nondeterminism by using the same random seed to make the
model training procedure algorithmically reproducible. We
also use a threshold used by popular DL libraries to take into
consideration floating-point precision inconsistencies. We adopt
one-step training to minimize the nondeterminism of DL model
training. Overall, all of the total 16,073 inconsistencies that
D3 detects indicate true bugs.

VII. RELATED WORK

Differential testing of DL libraries D3 is closely related to
EAGLE [26] which applies differential testing using equivalent
computational graphs to test a single DL library. EAGLE uses
equivalent graphs which use different Application Programming
Interfaces (APIs), data types, or optimizations to achieve
the same functionality. D3 focuses on testing distributed DL
libraries whereas none of the 16 equivalent rules proposed by
EAGLE can detect bugs in distributed DL training code.

Some recent work also leverages differential testing by
comparing results between CPU and GPU runs [29] or between
automatically matched equivalent DL APIs [30] to detect
inconsistency bugs. Unlike these approaches, D3 detects bugs in
the DL-distributed training code with its distributed equivalent
rule.

Other work [25], [27], [28], [52], [55], [56], [57], [58],
[59], [60] also uses differential testing to find inconsistencies
between DL libraries. These approaches require either (1) a
high-level library that supports several DL backends (e.g.,
Keras), (2) a good model converter (e.g., MMdnn), or (3)
heavy engineering to reimplement the same DL computation
in different DL libraries. Unfortunately, Keras 2 (used in [25],
[27], [28], [59]) no longer supports multiple backends. The new
Keras 3 supports three DL backends, i.e., JAX, TensorFlow,
and PyTorch. However, cross-checking different libraries is not
possible for distributed parameters that only exist in one DL
library. For example, sharder types and sharding types are two
distributed parameters that only exist in PyTorch/TorchRec but
not in TensorFlow. It is not possible to detect bugs caused
by the two distributed parameters by cross-checking different
DL libraries. One could use MMdnn [61] or ONNX [62] to
transfer models across DL libraries, however only a few popular
layers are supported by MMdnn (e.g., RNN layers are not
supported) and one of the most popular DL libraries, PyTorch,
cannot execute ONNX models. Srisakaokul et al. [57] only
reimplements two ML algorithms (K-Nearest Neighbours and
Naive Bayes) when using differential testing on Weka, Rapid
Miner, and KNIME. Ramos [52] summarizes the API mapping
rule for model initialization methods. Gandalf [60] adopts
the context-free grammar and designed a series of equivalent
metamorphic relationships to generate equivalent models in
different DL libraries. However, those papers implement a
subset of DL computation in different frameworks and require
heavy engineering. In contrast, similar to EAGLE, D3 uses
the equivalence rule to find bugs in DL frameworks, which
is not limited by third-party libraries (converter or high-level
API support).

Fuzzing DL libraries Another popular approach to testing
DL libraries is fuzzing. Classic fuzzing techniques [63], [64],
[65] find some crash bugs, while more DL-specific fuzzing
techniques have been proposed [47], [66], [67], [68]. However,
they only focus on detecting crashes and testing API-level
functions.

Recent work fuzzes [46], [69], [70] or generates [28], [71]
DL models to test DL libraries. However, no prior work
generates distributed settings to test distributed DL software. D3

applies DL model generation using multiple model templates
along with the distributed differential testing rule to test DL
libraries code that handles distributed computation.

Other work testing DL libraries Static analysis has been
used to detect specific types of bugs (e.g., shape-related bugs)
in DL systems [72]. D3 finds very diverse bugs in DL systems
(Section V-B) that are hard to find without equivalent distributed
settings and model generation. Metamorphic testing has also
been used to test DL compilers [73] which focuses on finding
bugs at the lower level in DL compilers. Other work also applies

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 1, JANUARY 2025 14

metamorphic testing to validate ML classifiers [74], [75], [76],
[77]. These approaches have only found injected bugs in ML
systems, and previous work shows that injected bugs often
only have a weak correlation with real-world bugs [78].
Differential Testing of DL Models Prior work [21], [22],
[23], [24] applies differential testing to test the trained DL
models (i.e., the trained weights) instead of the underlying
DL libraries that implement machine learning algorithms.
For example, DeepXplore [22] introduces neuron coverage
to measure testing coverage in CNN models and guide test
input generation or OGMA [23] adapts a grammar-based input
generation method to test NLP models. These approaches are
orthogonal to our work because they test the correctness of
DL models, while we test the correctness of DL libraries, i.e.,
software implementations of models. These prior techniques
are not designed to detect bugs in DL libraries, because they
compare the output of similar DL models to detect model bugs,
which manifest by input instances that make these models
generate incorrect output. On the other hand, our work focuses
on comparing the output of the same model under different
distributed settings to detect library implementation bugs.
Existing work addresses neither the challenge of identifying
equivalent distributed settings, nor the challenge of testing
distributed DL training. For the latter, the bug in Figure 1 is
hard to detect for multiple reasons including generating the
specific sharding scheme (Section I-B) for example.
Differential testing for compilers Differential testing has been
used for testing compilers [79], [80], [81], [82]. Instead of
equivalent graphs, these work generate equivalent programs
modulo input (EMI). The key in EMI is to create a collection
of correct programs that have the same output given the same
input (but might have different output for other input. Our work
is different since program compilation is a different problem
than DL graph execution which presents its own challenges.

VIII. CONCLUSION

We propose D3, a new differential testing approach that
uses distributed equivalence rule and model generation to test
distributed deep learning software. We collected and fuzzed six
distributed parameters that can generate equivalent distributed
settings under which the same model and model input trained
should produce equivalent prediction results. We evaluated D3

on the two most popular DL libraries, PyTorch/TorchRec and
TensorFlow, and found 21 bugs, 12 of which are previously
unknown bugs. Future work includes extending our approach
to fuzz other distributed components e.g., the cluster setup, to
detect more types of bugs such as configuration bugs in the
distributed deep learning software.

ACKNOWLEDGEMENT

The authors thank the anonymous reviewers for their
invaluable feedback. The research is partially supported by NSF
1901242, NSF 2006688, and a Facebook Research Award.

REFERENCES

[1] X. Yi, J. Yang, L. Hong, D. Z. Cheng, L. Heldt, A. A. Kumthekar,
Z. Zhao, L. Wei, and E. Chi, Eds., Sampling-Bias-Corrected Neural
Modeling for Large Corpus Item Recommendations, 2019.

[2] M. Naumov, D. Mudigere, H. M. Shi, J. Huang, N. Sundaraman,
J. Park, X. Wang, U. Gupta, C. Wu, A. G. Azzolini, D. Dzhulgakov,
A. Mallevich, I. Cherniavskii, Y. Lu, R. Krishnamoorthi, A. Yu,
V. Kondratenko, S. Pereira, X. Chen, W. Chen, V. Rao, B. Jia,
L. Xiong, and M. Smelyanskiy, “Deep learning recommendation
model for personalization and recommendation systems,” CoRR,
vol. abs/1906.00091, 2019. [Online]. Available: https://arxiv.org/abs/
1906.00091

[3] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in 2015 IEEE
International Conference on Computer Vision (ICCV), 2015, pp. 2722–
2730.

[4] M. Popel and J. e. a. Tomkova, M.and Tomek, “Transforming machine
translation: a deep learning system reaches news translation quality
comparable to human professionals,” 2020.

[5] T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan, “Coconut:
combining context-aware neural translation models using ensemble for
program repair,” in Proceedings of the 29th ACM SIGSOFT international
symposium on software testing and analysis, 2020, pp. 101–114.

[6] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). Minneapolis,
Minnesota: Association for Computational Linguistics, Jun. 2019, pp.
4171–4186. [Online]. Available: https://aclanthology.org/N19-1423

[7] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and
D. Amodei, “Language models are few-shot learners,” in Advances in
Neural Information Processing Systems, H. Larochelle, M. Ranzato,
R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc.,
2020, pp. 1877–1901. [Online]. Available: https://proceedings.neurips.cc/
paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[8] D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary,
V. Korthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro,
A. Phanishayee, and M. Zaharia, “Efficient large-scale language
model training on gpu clusters using megatron-lm,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’21. New York, NY,
USA: Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3458817.3476209

[9] J. Wei, X. Zhang, Z. Ji, J. Li, and Z. Wei, “Deploying and scaling
distributed parallel deep neural networks on the tianhe-3 prototype
system,” Scientific Reports, vol. 11, no. 1, p. 20244, 2021. [Online].
Available: https://doi.org/10.1038/s41598-021-98794-z

[10] Y. Jiang, F. Fu, X. Miao, X. Nie, and B. Cui, “Osdp: Optimal sharded
data parallel for distributed deep learning,” in Proceedings of the
Thirty-Second International Joint Conference on Artificial Intelligence,
IJCAI-23, E. Elkind, Ed. International Joint Conferences on Artificial
Intelligence Organization, 8 2023, pp. 2142–2150, main Track. [Online].
Available: https://doi.org/10.24963/ijcai.2023/238

[11] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed deep
learning: An in-depth concurrency analysis,” ACM Comput. Surv., vol. 52,
no. 4, aug 2019. [Online]. Available: https://doi.org/10.1145/3320060

[12] TensorFlow, “TensorFlow GitHub issues,” https://github.com/tensorflow/
tensorflow/issues, Accessed: 2022.

[13] TensorFlow, “TensorFlow GitHub pull requests,” https://github.com/
tensorflow/tensorflow/pulls, Accessed: 2022.

[14] PyTorch, “PyTorch GitHub issues,” https://github.com/pytorch/pytorch/
issues, Accessed: 2022.

[15] PyTorch, “PyTorch GitHub pull requests,” https://github.com/pytorch/
pytorch/pulls, Accessed: 2022.

[16] TorchRec, “TorchRec GitHub issues,” https://github.com/pytorch/
torchrec/issues, Accessed: 2022.

[17] TorchRec, “TorchRec GitHub pull requests,” https://github.com/pytorch/
torchrec/pulls, Accessed: 2022.

[18] Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An
empirical study on tensorflow program bugs,” in Proceedings of the
27th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2018. New York, NY, USA: Association
for Computing Machinery, 2018, p. 129–140. [Online]. Available:
https://doi.org/10.1145/3213846.3213866

[19] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, “A comprehensive
study on deep learning bug characteristics,” in Proceedings of the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 1, JANUARY 2025 15

2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2019. New York, NY, USA: Association for
Computing Machinery, 2019, p. 510–520. [Online]. Available:
https://doi.org/10.1145/3338906.3338955

[20] Y. Yang, T. He, Z. Xia, and Y. Feng, “A comprehensive empirical study
on bug characteristics of deep learning frameworks,” Information and
Software Technology, vol. 151, p. 107004, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584922001306

[21] J. Guo, Y. Zhao, H. Song, and Y. Jiang, “Coverage guided differential
adversarial testing of deep learning systems,” IEEE Transactions on
Network Science and Engineering, vol. 8, no. 2, pp. 933–942, 2021.

[22] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” Commun. ACM, vol. 62, no. 11, p.
137–145, oct 2019. [Online]. Available: https://doi.org/10.1145/3361566

[23] S. Udeshi and S. Chattopadhyay, “Grammar based directed testing of
machine learning systems,” 02 2019.

[24] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing of
deep-neural-network-driven autonomous cars,” in Proceedings of the
40th International Conference on Software Engineering, ser. ICSE ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
303–314. [Online]. Available: https://doi.org/10.1145/3180155.3180220

[25] H. V. Pham, T. Lutellier, W. Qi, and L. Tan, “Cradle: Cross-backend
validation to detect and localize bugs in deep learning libraries,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), 2019, pp. 1027–1038.

[26] J. Wang, T. Lutellier, S. Qian, H. V. Pham, and L. Tan, “Eagle: Creating
equivalent graphs to test deep learning libraries,” in Proceedings of the
44th International Conference on Software Engineering, ser. ICSE ’22,
2022, p. 798–810.

[27] Q. Guo, X. Xie, Y. Li, X. Zhang, Y. Liu, X. Li, and C. Shen,
“Audee: Automated testing for deep learning frameworks,” in 2020 35th
IEEE/ACM International Conference on Automated Software Engineering
(ASE), 2020, pp. 486–498.

[28] Z. Wang, M. Yan, J. Chen, S. Liu, and D. Zhang, “Deep learning library
testing via effective model generation,” in ESEC/SIGSOFT FSE. ACM,
2020, pp. 788–799.

[29] A. Wei, Y. Deng, C. Yang, and L. Zhang, “Free lunch for testing:
Fuzzing deep-learning libraries from open source,” in Proceedings of the
44th International Conference on Software Engineering, ser. ICSE ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
995–1007. [Online]. Available: https://doi.org/10.1145/3510003.3510041

[30] Y. Deng, C. Yang, A. Wei, and L. Zhang, “Fuzzing deep-learning libraries
via automated relational api inference,” in Proceedings of the 30th ACM
Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ser. ESEC/FSE 2022. New
York, NY, USA: Association for Computing Machinery, 2022, p. 44–56.
[Online]. Available: https://doi.org/10.1145/3540250.3549085

[31] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style,
high-performance deep learning library,” in Advances in Neural
Information Processing Systems 32, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
Eds. Curran Associates, Inc., 2019, pp. 8024–8035. [Online].
Available: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf

[32] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[33] TorchRec, “TorchRec,” https://github.com/pytorch/torchrec, Accessed:
2022.

[34] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[35] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[36] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 06 2016, pp. 770–778.

[37] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
p. 84–90, may 2017. [Online]. Available: https://doi.org/10.1145/3065386

[38] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao,
M. a. Ranzato, A. Senior, P. Tucker, K. Yang, Q. Le, and A. Ng,
“Large scale distributed deep networks,” in Advances in Neural
Information Processing Systems, F. Pereira, C. Burges, L. Bottou,
and K. Weinberger, Eds., vol. 25. Curran Associates, Inc., 2012.
[Online]. Available: https://proceedings.neurips.cc/paper files/paper/
2012/file/6aca97005c68f1206823815f66102863-Paper.pdf

[39] M. Zinkevich, M. Weimer, L. Li, and A. Smola, “Parallelized
stochastic gradient descent,” in Advances in Neural Information
Processing Systems, J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel,
and A. Culotta, Eds., vol. 23. Curran Associates, Inc., 2010.
[Online]. Available: https://proceedings.neurips.cc/paper files/paper/
2010/file/abea47ba24142ed16b7d8fbf2c740e0d-Paper.pdf

[40] R. McDonald, K. Hall, and G. Mann, “Distributed training strategies for
the structured perceptron,” 12 2010, pp. 456–464.

[41] Y. Huang, Y. Cheng, A. Bapna, O. Firat, M. X. Chen, D. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu, and Z. Chen, GPipe: Efficient Training of
Giant Neural Networks Using Pipeline Parallelism. Red Hook, NY,
USA: Curran Associates Inc., 2019.

[42] S. Fan, Y. Rong, C. Meng, Z. Cao, S. Wang, Z. Zheng, C. Wu, G. Long,
J. Yang, L. Xia, L. Diao, X. Liu, and W. Lin, “Dapple: A pipelined
data parallel approach for training large models,” in Proceedings of the
26th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 431–445. [Online]. Available:
https://doi.org/10.1145/3437801.3441593

[43] H. V. Pham, S. Qian, J. Wang, T. Lutellier, J. Rosenthal, L. Tan,
Y. Yu, and N. Nagappan, “Problems and opportunities in training deep
learning software systems: An analysis of variance,” in Proceedings of
the 35th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’20. New York, NY, USA: Association
for Computing Machinery, 2021, p. 771–783. [Online]. Available:
https://doi.org/10.1145/3324884.3416545

[44] PyTorch, “Pytorch reproducibility,” https://pytorch.org/docs/stable/notes/
randomness.html##reproducibility, Accessed: 2022.

[45] K. Kallas, F. Niksic, C. Stanford, and R. Alur, “Diffstream:
Differential output testing for stream processing programs,” Proc. ACM
Program. Lang., vol. 4, no. OOPSLA, nov 2020. [Online]. Available:
https://doi.org/10.1145/3428221

[46] J. Gu, X. Luo, Y. Zhou, and X. Wang, “Muffin: Testing deep
learning libraries via neural architecture fuzzing,” in Proceedings of
the 44th International Conference on Software Engineering, ser. ICSE
’22. New York, NY, USA: Association for Computing Machinery,
2022, p. 1418–1430. [Online]. Available: https://doi.org/10.1145/
3510003.3510092

[47] D. Xie, Y. Li, M. Kim, H. V. Pham, L. Tan, X. Zhang, and M. W. Godfrey,
“Docter: Documentation-guided fuzzing for testing deep learning api
functions,” in Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA 2022. New
York, NY, USA: Association for Computing Machinery, 2022, p.
176–188. [Online]. Available: https://doi.org/10.1145/3533767.3534220

[48] C. Yang, Y. Deng, J. Yao, Y. Tu, H. Li, and L. Zhang, “Fuzzing
automatic differentiation in deep-learning libraries,” in Proceedings
of the 45th International Conference on Software Engineering, ser.
ICSE ’23. IEEE Press, 2023, p. 1174–1186. [Online]. Available:
https://doi.org/10.1109/ICSE48619.2023.00105

[49] Y. Deng, C. S. Xia, C. Yang, S. D. Zhang, S. Yang, and L. Zhang,
“Large language models are edge-case generators: Crafting unusual
programs for fuzzing deep learning libraries,” in Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering, ser.
ICSE ’24. New York, NY, USA: Association for Computing Machinery,
2024. [Online]. Available: https://doi.org/10.1145/3597503.3623343

[50] Y. Deng, C. S. Xia, H. Peng, C. Yang, and L. Zhang, “Large
language models are zero-shot fuzzers: Fuzzing deep-learning
libraries via large language models,” in Proceedings of the 32nd
ACM SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA 2023. New York, NY, USA: Association
for Computing Machinery, 2023, p. 423–435. [Online]. Available:
https://doi.org/10.1145/3597926.3598067

[51] J. Liu, J. Peng, Y. Wang, and L. Zhang, “Neuri: Diversifying dnn
generation via inductive rule inference,” in Proceedings of the 31st ACM
Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2023. New York,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 1, JANUARY 2025 16

NY, USA: Association for Computing Machinery, 2023, p. 657–669.
[Online]. Available: https://doi.org/10.1145/3611643.3616337

[52] Y. Zou, H. Sun, C. Fang, J. Liu, and Z. Zhang, “Deep learning framework
testing via hierarchical and heuristic model generation,” Journal of
Systems and Software, vol. 201, p. 111681, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121223000766

[53] Z. Wang, P. Nie, X. Miao, Y. Chen, C. Wan, L. Bu, and J. Zhao,
“Gencog: A dsl-based approach to generating computation graphs for
tvm testing,” in Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA 2023. New
York, NY, USA: Association for Computing Machinery, 2023, p.
904–916. [Online]. Available: https://doi.org/10.1145/3597926.3598105

[54] H. Ma, Q. Shen, Y. Tian, J. Chen, and S.-C. Cheung, “Fuzzing
deep learning compilers with hirgen,” in Proceedings of the 32nd
ACM SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA 2023. New York, NY, USA: Association
for Computing Machinery, 2023, p. 248–260. [Online]. Available:
https://doi.org/10.1145/3597926.3598053

[55] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning
testing: Survey, landscapes and horizons,” IEEE Transactions on Software
Engineering, vol. 48, no. 1, pp. 1–36, 2022.

[56] S. Dutta, O. Legunsen, Z. Huang, and S. Misailovic, “Testing probabilistic
programming systems,” in Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2018, pp. 574–586.

[57] S. Srisakaokul, Z. Wu, A. Astorga, O. Alebiosu, and T. Xie, “Multiple-
implementation testing of supervised learning software,” in Workshops
at the Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[58] J. Vanover, X. Deng, and C. Rubio-González, “Discovering discrepancies
in numerical libraries,” in Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2020, pp.
488–501.

[59] M. Nejadgholi and J. Yang, “A study of oracle approximations in
testing deep learning libraries,” in 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2019,
pp. 785–796.

[60] J. Liu, Y. Huang, Z. Wang, L. Ma, C. Fang, M. Gu, X. Zhang,
and Z. Chen, “Generation-based differential fuzzing for deep learning
libraries,” ACM Trans. Softw. Eng. Methodol., vol. 33, no. 2, dec 2023.
[Online]. Available: https://doi.org/10.1145/3628159

[61] Y. Liu, C. Chen, R. Zhang, T. Qin, X. Ji, H. Lin, and M. Yang,
“Enhancing the interoperability between deep learning frameworks by
model conversion,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2020, pp. 1320–1330.

[62] J. Bai, F. Lu, K. Zhang et al., “Onnx: Open neural network exchange,”
https://github.com/onnx/onnx, 2019.

[63] Google. (2021) Oss-fuzz. [Online]. Available: https://github.com/google/
oss-fuzz

[64] C. Pacheco and M. D. Ernst, “Randoop: feedback-directed random testing
for java,” in Companion to the 22nd ACM SIGPLAN conference on Object-
oriented programming systems and applications companion, 2007, pp.
815–816.

[65] LLVM, “libfuzzer – a library for coverage-guided fuzz testing,” 2021.
[Online]. Available: http://llvm.org/docs/LibFuzzer.html

[66] X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao, B. Li,
J. Yin, and S. See, “Deephunter: a coverage-guided fuzz testing framework
for deep neural networks,” in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2019, pp.
146–157.

[67] A. Odena, C. Olsson, D. Andersen, and I. Goodfellow, “Tensorfuzz: De-
bugging neural networks with coverage-guided fuzzing,” in International
Conference on Machine Learning. PMLR, 2019, pp. 4901–4911.

[68] X. Zhang, N. Sun, C. Fang, J. Liu, J. Liu, D. Chai, J. Wang, and Z. Chen,
“Predoo: precision testing of deep learning operators,” in Proceedings of
the 30th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2021, pp. 400–412.

[69] J. Liu, Y. Wei, S. Yang, Y. Deng, and L. Zhang, “Coverage-guided
tensor compiler fuzzing with joint ir-pass mutation,” Proc. ACM
Program. Lang., vol. 6, no. OOPSLA1, apr 2022. [Online]. Available:
https://doi.org/10.1145/3527317

[70] W. Luo, D. Chai, X. Run, J. Wang, C. Fang, and Z. Chen, “Graph-based
fuzz testing for deep learning inference engines,” in Proceedings
of the 43rd International Conference on Software Engineering, ser.
ICSE ’21. IEEE Press, 2021, p. 288–299. [Online]. Available:
https://doi.org/10.1109/ICSE43902.2021.00037

[71] J. Liu, J. Lin, F. Ruffy, C. Tan, J. Li, A. Panda, and L. Zhang,
“Finding deep-learning compilation bugs with nnsmith,” CoRR, vol.
abs/2207.13066, 2022. [Online]. Available: https://doi.org/10.48550/
arXiv.2207.13066

[72] S. Lagouvardos, J. Dolby, N. Grech, A. Antoniadis, and Y. Smaragdakis,
“Static analysis of shape in tensorflow programs,” in 34th European
Conference on Object-Oriented Programming (ECOOP 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[73] D. Xiao, Z. LIU, Y. Yuan, Q. Pang, and S. Wang, “Metamorphic testing
of deep learning compilers,” vol. 6, no. 1, feb 2022. [Online]. Available:
https://doi.org/10.1145/3508035

[74] X. Xie, J. W. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y. Chen, “Testing
and validating machine learning classifiers by metamorphic testing,”
Journal of Systems and Software, vol. 84, no. 4, pp. 544–558, 2011.

[75] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortés, “A survey
on metamorphic testing,” IEEE Transactions on Software Engineering,
vol. 42, no. 9, pp. 805–824, 2016.

[76] J. Ding, X. Kang, and X.-H. Hu, “Validating a deep learning framework by
metamorphic testing,” in Proceedings of the 2nd International Workshop
on Metamorphic Testing, ser. MET ’17. IEEE Press, 2017, p. 28–34.

[77] A. Dwarakanath, M. Ahuja, S. Sikand, R. M. Rao, R. P. J. C.
Bose, N. Dubash, and S. Podder, “Identifying implementation bugs
in machine learning based image classifiers using metamorphic testing,”
in Proceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ser. ISSTA 2018. New York, NY, USA:
ACM, 2018, pp. 118–128.

[78] R. Gopinath, C. Jensen, and A. Groce, “Mutations: How close are they
to real faults?” in 2014 IEEE 25th International Symposium on Software
Reliability Engineering. IEEE, 2014, pp. 189–200.

[79] J. Chen, J. Patra, M. Pradel, Y. Xiong, H. Zhang, D. Hao, and L. Zhang,
“A survey of compiler testing,” ACM Comput. Surv., vol. 53, no. 1, feb
2020. [Online]. Available: https://doi.org/10.1145/3363562

[80] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” in Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’14.
New York, NY, USA: Association for Computing Machinery, 2014, p.
216–226. [Online]. Available: https://doi.org/10.1145/2594291.2594334

[81] V. Le, C. Sun, and Z. Su, “Finding deep compiler bugs via guided
stochastic program mutation,” in Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, ser. OOPSLA 2015. New York,
NY, USA: Association for Computing Machinery, 2015, p. 386–399.
[Online]. Available: https://doi.org/10.1145/2814270.2814319

[82] C. Sun, V. Le, and Z. Su, “Finding compiler bugs via live code
mutation,” in Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, ser. OOPSLA 2016. New York, NY, USA: Association
for Computing Machinery, 2016, p. 849–863. [Online]. Available:
https://doi.org/10.1145/2983990.2984038

