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Abstract—Security is a critical concern in shared spectrum
environments, where attacks can degrade service and influence
market interactions between competing service providers (SPs).
This paper examines market models in shared spectrum defense,
focusing on the strategic interplay between SPs and attackers
within licensed shared bands. We develop models to study SPs’
investments in security against revenue-minimizing attackers, i.e.,
attackers that account for the underlying competition between
SPs and seek to minimize the revenue they obtain in this
market. We further consider both competitive and collaborative
settings. In the competitive setting, we characterize equilibrium
investment outcomes, while in the collaborative case, we consider
the investments made by a central planner. Our numerical results
show that at times the competitive setting can lead to over-
investment.

I. INTRODUCTION

Spectrum sharing is a promising approach for enabling new
spectrum uses while retaining incumbent users. Notable im-
plementations include the Citizens Broadband Radio Service
(CBRS) in the U.S. 3.5 GHz band [1] and the Automated Fre-
quency Coordination (AFC) in the 6 GHz band [2]. However,
as noted in [3], [4] and [5], shared spectrum environments are
potentially more susceptible to security attacks compared to
traditional exclusively licensed spectrum. Attacks in these en-
vironments can affect service availability and the competitive
behavior of service providers (SPs) in the market. This paper
explores these issues by studying market models for shared
spectrum defense, focusing on strategic defense investments
by SPs against such attacks.

Our approach is based in part on [6], which models the
competition between wireless SPs with shared spectrum using
a framework of Cournot competition with congestible and
intermittent spectrum resources. In this approach, SPs compete
by determining the number of customers they can serve on
their spectrum. These quantities, in turn, determine a market
clearing price for their services and a latency cost that their
customers experience (modeling the congestible nature of the
spectrum). Here, the intermittent nature of the resources is
modeling a band of spectrum that is temporally shared with
an incumbent, as in the CBRS system, so it may not always
be available to use by an SP. Building on this framework in
[7], we considered a model with a single attacker that seeks
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to disrupt the spectrum by making it less available. This can
model different types of denial-of-service (DoS) attacks, such
as primary emulation attacks [8] and jamming attacks [9].
Here, we again consider such an attacker but also consider the
possibility that SPs can invest to improve the defense of their
networks.

We consider a scenario where there are two competing SPs,
each serving customers using a given band of licensed shared
spectrum, meaning that each SP has exclusive access to their
band of spectrum when it is not being used by an incumbent
(similar to PAL spectrum in the CBRS system). Compared to
[6] and [7], we assume that this is the only spectrum band
available to each SP so that they can not offload traffic into
other bands. As in [7], we consider an attacker that seeks to
disrupt the market by minimizing the total revenue obtained
by the two SPs. However, our approach could be adapted to
other objectives.

We adopt a three-stage game model. In the first stage,
SPs simultaneously decide their investment levels aiming to
minimize their loss due to an attack. In the second stage, the
attacker adjusts its tactics based on these investments. In the
third stage, SPs decide on the quantity of consumers to serve.
We characterize the sub-game perfect Nash equilibrium.

Our analysis shows that SP investments have two effects:
they can reduce the impact of an attack on their spectrum and
can redirect the attacker to the other SP, creating a compli-
cated strategic interaction. We also compare the equilibrium
outcome with that obtained by a planner who jointly decides
on investment levels and seeks to minimize the revenue
loss due to attacks and the investment cost. We find that
in some instances, the competitive outcome leads to over-
investment compared to the planner, suggesting that SPs may
be incentivized to cooperate on security investments.

In terms of related work, we add to the existing literature
that explores shared spectrum from a market perspective,
including [10], [11], [12], [13], and [14]. However, these
studies didn’t address security issues. Additionally, there is a
significant body of work applying game-theoretic approaches
to model attacks and defenses, as seen in [15], [16],
[17], [18] [19], and [20]. Yet, these studies often do not
consider the broader market implications of such cybersecurity
challenges. Instead of looking into specific attack methods, our
work abstracts them to a broader market perspective, offering
insights for SPs and social planners.



II. MARKET MODEL WITH SECURITY INVESTMENT

In this section, we introduce the market model we use to
study the SPs’ security investments. In Section III, we will
subsequently specialize this to the case of licensed shared
spectrum.

We consider a scenario in which two SPs compete for a
common pool of customers. Additionally, there is an attacker
whose objective is to minimize the overall SP revenue, similar
to [7]. This can be motivated by a setting in which an attacker
seeks to extract the maximum payment that it can collect from
the SPs for not attacking. Meanwhile, SPs can make defensive
investments to shield themselves from potential attacks, albeit
at a cost.

We model this as a game with the following stages:

1) The SPs decide the investment levels.
2) The attacker decides how to attack.
3) The SPs decide on the quantity of consumers to serve.

The SPs seek to maximize their profit given by:

R; = z;p; — Ci(Ly), (D

where z;, p;, I;, and C;(I;) denote the consumer quantity, the
service price, the investment level, and the investment cost
of SP ¢ at I;, respectively. In stage 3, given their investment
levels and the attacker’s choice, the SPs compete via Cournot
competition to determine the quantity of users served and the
service price. The details of this competition will be discussed
in the following section.

We consider an attacker with a total attack power @), which
models their ability to attack the SPs’ spectrum. Let ¢; denote
the portion of this power used to attacked SP ¢’s spectrum,
where

Y a<Q )

We assume that the SPs are using intermittently available
spectrum that is available with probability « in the absence of
an attack. This models a temporal spectrum sharing scheme
as in CBRS, where the intermittency is due to the activity of
an incumbent user. The impact of an attack (and of the SP’s
security investment) is to change this availability to tildeq;
given by:

a; = oy — G(I)g;. 3

Here, G(I) models the investment effectiveness as a function
of the vector of investment levels of each SP i, I, where, in
general, larger levels of investment will lead to lower values
of G(I) and thus make attacks less effective. We will consider
the more specific form of this in the following sections. As
discussed in the following section, the SPs’ revenue in stage 3
will, in turn, be impacted by this availability. Hence, given the
SP’s investment levels in stage 1, the attacker will distribute
its attack power to minimize the sum of revenue.

To optimize revenue, an SP in stage 1 seeks to decide
their investments to minimize the sum of revenue loss and
investment cost:

min Rijtoss(1i,qi) = AR; + Cy(1y), 4)

where AR; = R;(a;)— R;(&;) depicts the revenue loss caused
by the resulting attack. Notice that this change can be negative
if the revenue gets boosted. Also note that we are modeling
this as a full information game so that in stage 1, the SPs are
investing by anticipating the resulting attack in stage 2, i.e., it
is a setting where the attacker’s motives are known.

III. LICENSED SHARED BANDWIDTH DEFENSE

Next, we consider a market where each SP 7 has its own
band of licensed shared spectrum with bandwidth w;, meaning
that only the SP ¢ can use the band when it is available.
With some abuse of notation, we assume the investment
effectiveness is given by

) =1-T, 5)

and the cost of investment, C(I;) = c;I?, where I; € [0,1]
represents the investment by service provider ¢ and ¢; > 0 is
a constant. This assumption models a case where each SP’s

investment only impacts its own band of spectrum.

A. Competition model

With licensed shared spectrum, in stage 3, the SPs compete
via Cournot competition, in which they announce quantities
of users to serve that determine a delivered price given by:

pa=1-> . ©6)

This corresponds to a market clearing price with a linear
demand curve. Consumers also experience a latency cost for
using SP 7’s spectrum given by I; = 7t so that the net service

price that SP ¢ can charge is given by
pi = &;(pa — 1), (7

here we assume that customers only pay for the fraction of
time that the spectrum is available (hence, the use of ¢&; in
this expression). The net price can also be expressed as

~ Xy
pi:ai<1_l’i_$i_l)- ¥
Wy
For this model, it can be shown that in equilibrium, we
have:!

o a;(w; + 1) (w—; +2)
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Note that in these expressions, x; does not depend on a;,
while p; is linear in this quantity. This means an attack will
not change the quantity of customers an SP serves but will
reduce its price.

Similar to [7], as long as x; and p; are non-increasing in g;
and if @ is small enough, the optimal strategy for the attacker
is to attack only one of the SPs. In this case, ¢; € {0,Q},
which we assume in the following. In this case, we introduce
the following lemma:

'We use the subscript —i to denote a quantity corresponding to SP j # i.



Lemma 1. Without any investment, the attacker would choose
to attack SP i if the following condition is satisfied:

(1-L)K;
— >1 10
where K; is defined as:
K; = wi(w; + 1) (w_; +2)2. (11)

Proof. Assume there is an attack. Compare the revenue
changes of two SPs:

AR; _ (ai - dz)Kz _ (1 - Iz)KZ
AR_; (Oz_i — d_i)K_i (1 — I—i)K—i ’
Under the condition assumed in the lemma, the potential

revenue change AR; > AR_;, which means attacking the SP
1 is better for the attacker. O

(12)

Note if (10) is met with equality, the attacker is indifferent
between attacking the two SPs. In this case, for convenience,
we assume that it attacks SP1.

The following corollary to Lemma
interplay of the SPs:

1 characterizes the

Corollary 1. To incentivize the attacker to switch targets, the
investment of a service provider i, denoted as I;, must satisfy
the following condition:

1—-1 K_;

1-1_, K;

Note that for each SP 4, from (11), it follows that M; swiich
is a constant dependent solely on the bandwidth allocations.

Hence, the amount of investment needed to switch the attack
is given by

< Mi,swilch = (13)

I sw(I—;) = max (0,1 — M; switen(1 — I—5)), (14)

which depends on the amount of investment by the other SP.
Hence, an SP’s investment can be to either protect itself

against the attack or switch the attack to the other SP. First,

we consider the case where an SP does not switch the attack,

in which case, its investment will minimize the loss in (4),

which can be rewritten as

Ri,lOSS(Ii7 Q) = (1 - Il)thpL

2
+ Cili .
Q;

15)
The optimal investment for an SP to minimize this objective

is given by
Qxip; >
1].

(16)

Ii,best = min ,
QOéiCZ‘

SP ¢ would only make this investment if it resulted in a lower
loss, i.e., if

Ri,loss(Ii,sw(I—i)a 0) < Ri,loss<Ii,best(I—i)a Q)

Note if I; 5y (I—;) < I; pest this inequality is always satisfied.
Similarly, the other SP can also try to switch the attack
back. So, the strategic interaction between the SPs involves
determining which SP is attacked as well as the defense level
of that SP. Switching introduces a non-linearity in the SP’s

a7

best responses, which in some cases prevents an equilibrium
from existing.

Lemma 2. If an equilibrium exists, then the following condi-
tions must be satisfied if SP; is attacked:

o Ii =1 pest-
o I, =1_;(Lipess) or I_; =0.

Proof. The first condition directly follows (16). Then, if the
one being attacked did switch the attack, I_; = I_; o (I pest)-
If the one being attacked did not switch the attack, then /_; =
0, which gives the second condition. O

Taking Lemma 2 into account, the following proposition
summarizes the competition model:

Proposition 1. Assuming wy > waq, which implies that SP1 is
the larger provider, the following cases for equilibrium exist
in the game:

Case 1: Ile,loss(Il,bestyQ) < Rl,loss(-ll,sw(o)70)’ then the
equilibrium is Iy = I pey and Iy = 0. In this case, the
investment to switch the attack is not profitable for SP1 and,
knowing this, SP2 has no incentive to invest.

Case 2: If

Rl,loss(Il,besh Q) > Rl,loss(Il,sw(IZ,besl)a 0),
R2,loss(I2,besr7 Q) < R2,1055(12,sw(Il,sw(-[2,best))7 0);

then the equilibrium is Iy = I (12 pest) and Iy = I3 pes. In
this case, SPI switches the attack.

Proof. Both cases directly follow Corollary 1 and Lemma 2.
There might be another case when SP1 has the incentive to
invest higher than I je to switch the attack. SP2 estimated
this switch and has the incentive to switch back. Then SP1
finally found it would be best for them only to invest I peg.
Suppose this case exists and is noted as Case 3. The conditions
are:

Il,best > Il,sw(0)>
R2,loss (12,sw (Il,best)v 0) < RQ,IOSS(IZ,best; Q)v
Rl,loss(ll,sw(Ist (Il,best))7 0) > Rl,loss(Il,best; Q)7

However, It can be shown that the third inequality in Case

3 can be held only if Ij pes; > 1, which is a contradiction

to the definition given in 16. Thus, Case 3 is non-existent,

preventing further iterative interplay between the SPs. Hence,
the proposition is proven.

O

B. Social Planner

In this section, we consider a social planner that seeks to
minimize the sum of the loss terms across the two SPs, i.e.,
its objective is?

min Riﬁloss(lizqi)- (18)

I, I =
K3

2Note that the planner is setting the investment levels but not the quantity
of customers served by the two SPs, which is still determined via competition.



This problem can be formulated as the following mixed-
integer nonlinear program:

(67

2
min 3 GI)QThy, + Cy(1;)
i=1

19)

Note here that the binary variables y; are used to indicate
which SP is attacked. In the following section, we will
numerically compare the solution to this problem with the
equilibrium outcome in the game.

IV. NUMERICAL RESULTS

We provide numerical examples showing the equilibrium
outcome and the planner’s decisions. These examples show
that when ¢ is small, the game has an equilibrium that falls
into Case 2 in Proposition 1, while when c is large, a Case
1 equilibrium exists. For the intermediate value of ¢, an
equilibrium does not exist. Also, it can be noted that the
planner often decides on a lower level of investment compared
to that in the game, suggesting that the strategic interaction
of the SPs can lead to over-investment, resulting in a larger
revenue loss, especially when the attack is relatively minor.
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Fig. 1. Equilibrium outcome: (a) Investment decisions (b) Revenue loss in
the game (c) Revenue loss by the planner (d) Revenue loss compare.
Constants: @ = 0.8, a1 = as =1, w3 =5, wa = 1.
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V. CONCLUSIONS

We presented an initial study of how shared licensed
spectrum might influence security investment decisions by
strategic competing service providers. These investments serve
two roles: to reduce the damage of an attack and to redirect
an attacker to the other SP, leading to intricate strategic

interactions. Numerical results show that, in some cases, this
competition can result in no equilibrium and over-investment
in security compared to that of a social planner. Possible future
directions include considering other spectrum sharing models
and other attack models.
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