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A B S T R A C T

This paper develops models of a bus route in which (i) stop spacing can vary; (ii) trip lengths are
heterogeneous; (iii) demand is elastic; and (iv) passengers delay the bus. Since wider spacings
make sufficiently long trips faster, and sufficiently short trips slower, they induce long trips and
repel short trips. We explore two continuum-approximation models: one with fixed headways
and another in which headways depend on the spacing. The pattern of induced/repelled trips
means the ridership-maximizing spacing is shorter than the one that maximizes passenger-km
traveled. The same pattern also makes the average trip length endogenous to spacing. In the
model with endogenous headways, when spacing is very narrow, a rise in spacing can reduce the
expected wait time by more than it increases the expected walk time. We draw several lessons
for practice and use a discrete simulation to confirm results from the continuous approximation
models.

1. Introduction

1.1. Background

In June 2022, the Metropolitan Transportation Authority began removing almost 400 bus stops in the Bronx (about 18% of the
rior total) as part of the Bronx Bus Network Redesign (Moloney, 2021). The borough thereby joins the list of places which have,
ince 2010, systematically eliminated large numbers of bus stops—a practice called ‘‘stop consolidation’’ (El-Geneidy et al., 2006)
or sometimes ‘‘stop rebalancing’’ Miatkowski and Hovenkotter, 2019). These places include Portland, OR (El-Geneidy et al., 2006),
an Francisco (Gordon, 2010), Dallas (Macon, 2021), Providence (Miatkowski and Hovenkotter, 2019), Pittsburgh (Blazina, 2020),
Dallas (Garnham, 2020) and Cincinnati (Cincinnati Metro, 2022).

What motivates stop consolidation? Each time a bus stops, it loses some time (relative to its path without the stop) to braking,
pening/closing doors and then accelerating from a stop. Call this time stop delay. Since the stop delay is non-zero, stop removal
aves passengers in-vehicle time and could let agencies squeeze more service from a given fleet. The downside of consolidation is
hat fewer stops mean wider stop spacings (distances between consecutive stops), so passengers must cover more ground to and from
he bus.

∗ Corresponding author.
E-mail address: lehe@illinois.edu (L.J. Lehe).
https://doi.org/10.1016/j.trb.2024.103022
Received 16 January 2024; Received in revised form 18 April 2024; Accepted 2 July 2024
vailable online 14 July 2024 
191-2615/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license 
 http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/trb
https://www.elsevier.com/locate/trb
mailto:lehe@illinois.edu
https://doi.org/10.1016/j.trb.2024.103022
https://doi.org/10.1016/j.trb.2024.103022
http://crossmark.crossref.org/dialog/?doi=10.1016/j.trb.2024.103022&domain=pdf
http://creativecommons.org/licenses/by/4.0/


A. Pandey and L.J. Lehe Transportation Research Part B 189 (2024) 103022 
Table 1
Classification of the literature.
Study Demand Heterogeneous trip length Passenger delay

Vuchic and Newell (1968) Fixed Heterogeneous
Mohring (1972) Fixed Uniform ✓

Kikuchi and Vuchic (1982) Fixed Uniform ✓

Wirasinghe (1980) Fixed Heterogeneous
Wirasinghe and Ghoneim (1981) Fixed Heterogeneous ✓

Kuah and Perl (1988) Fixed Heterogeneous
Chien and Schonfeld (1998) Fixed Heterogeneous
Van Nes and Bovy (2000) Elastic Uniform
Daganzo (2010) Fixed Heterogeneous ✓

Tirachini and Hensher (2011) Fixed Uniform ✓

Basso et al. (2011) Elastic Uniform ✓

Basso and Silva (2014) Elastic Uniform ✓

Tirachini (2014) Fixed Uniform ✓

Ouyang et al. (2014) Fixed Heterogeneous
Daganzo and Ouyang (2019, Ch. 5) Fixed Heterogeneous

1.2. Contribution

Starting with early studies such as Vuchic and Newell (1968) and Mohring (1972), this tradeoff between access and in-vehicle
time has remained at the heart of a large theoretical literature1 about the agency’s choice of stop spacing. This paper contributes
to this theoretical literature. To clarify how, it will help to characterize prior studies. Table 1 lists theoretical studies featuring a
choice of stop spacing according to three properties:

• Whether demand is fixed or elastic: When demand is fixed, riders make the same trips regardless of what the stop spacing is.
By contrast, elastic demand means riders choose whether to ride based on the quality of service. Fixed demand is the more
common assumption.

• Whether trip lengths are uniform or heterogeneous: About half the studies reviewed feature some heterogeneity of trips lengths.
In all such studies listed, this heterogeneity obtains because there are demands among various origin–destination pairs lying at
different distances from one another. Other studies consider only the in-vehicle travel time of a trip with a particular length.
Usually that length is stated to be an exogenously-given ‘‘average’’ trip length (e.g., Mohring, 1972; Tirachini and Hensher,
2011), but the analysis only winds up considering how stop spacing affects a trip of average length—rather than aggregating
over how it affects all the trip lengths which determine the average.

• Whether passengers cause delays. There are at least two ways passengers delay the bus. First, passengers impose ‘‘boarding’’ and
‘‘alighting’’ delays when they get on and off the bus. Second, if the bus operates according to an ‘‘on call’’ stopping regime
(i.e., if it stops only when people want to alight or board), then as ridership rises the bus stops more often (Kikuchi and Vuchic,
1982).

This paper explores stylized models of a bus route with (i) elastic demand; (ii) heterogeneous trip lengths; and (iii) passenger
delays. Note that no studies in Table 1 exhibit this combination2 of properties. We incorporate (i) and (ii) by introducing a demand
density function (similar to a probability density function) which gives the density of demand by trip length and falls with the travel
time of a given trip length. The ridership in any interval of trip lengths is derived by integrating the demand density function, taking
into account the travel time each trip length faces. But the aim of the paper is not only to improve on the realism of existing models
nor introduce methodological innovations. Rather, the aims are to demonstrate and deduce the consequences of a general point: that
the choice of stop spacing influences the quantity and lengths of the trips people make. This is plausible, because (a) passengers choose
whether to ride; and (b) certain spacings are superior for serving certain trip lengths (as we show below). By contrast, in studies
with fixed demands, the set of trips taken is exogenous; and in studies with uniform trip lengths, the quantity of trips may change
with spacings (if demand is elastic) but the lengths of those trips will not.

The models also feature passenger delays, in order to ensure the conclusions are robust. We incorporate passenger delays by
introducing a generally-specified delay function which rises with ridership and falls with the spacing. As we will see, pairing passenger
delays with elastic demands leads to interesting equilibrium phenomenon—as feedback arises between ridership and travel times.

1.3. Plan of paper

The paper proceeds as follows:

1 Sec. 2 of Tirachini (2014) provides a thorough literature review.
2 There are three algorithmic studies that have this combination: Dell’Olio et al. (2006), Ibeas et al. (2010) and Alonso et al. (2011). All three show how

bi-level optimization algorithms may be used to place bus stops in Santander, Spain when demands between different origin/destination pairs are given by logit

models. A difference between those studies and this one is our emphasis on analytical results.
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Table 2
Variables, units and definitions.
Variable Definition Units

𝑅 Route length km
𝑥 Trip length km
𝑠 Stop spacing km/stop
𝑡 Door-to-door travel time h
𝑞 Ridership pax/h
𝑣𝑏 Bus speed (between stops) km/h
𝑣𝑎 Access speed km/h
𝐵 Fleet size bus
𝐶 Cycle time (time to complete route) h
𝐻 Headway (time between buses) h/bus

Functions

𝜆(𝑥, 𝑡) Demand density pax/km-h
𝑇 (𝑥, 𝑠, 𝑞) Door-to-door travel time h
𝑄(𝑠) Equilibrium ridership/demand pax/h
𝐾(𝑠) Equilibrium pax-km traveled pax-km/h
𝑈 (𝑠) Equilibrium unit travel time h/km
𝜂(𝑞, 𝑠) Delay per km h/km

• Section 2 sets up a continuum approximation model of an isotropic bus route. It is a continuum approximation insofar as some
discrete quantities (such as the number of passengers, the number of vehicles) may take non-integer values, and passengers do
not necessarily travel integer numbers of spacings. The route is isotropic in the sense that conditions are uniform over locations,
and the route is characterized by aggregates. For this setting, we show that when spacing rises, the travel time of trips longer
(shorter) than a critical trip length falls (rises). In turn, because demand is elastic, the number of trips above (below) the critical
trip length rises (falls).

• Section 3 extends Section 2 model (which assumes headways are fixed) by supposing there is a fixed number of buses on the
route. Thus, headways (and wait times) become endogenous to the choice of spacing, since at wider spacings buses finish
the route sooner and can visit each stop more often. This assumption leads to a new result: when spacings are shorter than
a threshold, a rise in spacing may cut wait times more quickly than it increases access times. In this case, the door-to-door
travel time of every trip length declines with a marginal increase in the stop spacing.

• Section 4 derives general lessons from the models of Sections 2 and 3.
• Section 5 uses a simulation to check whether our theoretical results also hold when stops are discrete points, and when
passengers travel an integer number of stops.

• Section 6 concludes by drawing practical lessons for optimal system design and offering paths for future research.

2. Model with fixed headways

2.1. Setup

First, we establish the model’s setting. Units used are: km for distance, h for time and pax for passengers. The setting is a closed-
loop bus route of length 𝑅 (km). It has a uniform spacing 𝑠 (km/stop) between any two stops. The route is fully characterized by
aggregates (e.g., bus speed, spacing, ridership, etc.). Table 2 lists variables used, their meanings and their units. Throughout the
paper, we indicate partial derivatives by way of an integer subscript. Thus, given the function 𝜂(𝑞, 𝑠), 𝜂1 is the partial derivative of
𝜂 with respect to its first argument, 𝑞.

2.2. Travel time

We start out by deriving the travel times for trips of various lengths. The travel time has three components: access time, wait
time and in-vehicle time.

Access time is the time passengers spend walking (or otherwise traveling) to and from stops. In deriving the out-of-vehicle time
we make assumptions that are standard3 in the literature. Trip origins and destinations are distributed uniformly along the route.
Every passenger boards a bus at the stop closest to their origin and alights at the stop nearest to their destination. Thus, the average
passenger travels a total of 𝑠∕2 (km) (𝑠∕4 to their boarding stop and 𝑠∕4 from their alighting stop). Passengers travel to/from stops
at the access speed, 𝑣𝑎 (km/h). Thus, the expected access time is 𝑠∕(2𝑣𝑎), which does not vary with trip length.

Wait time is the time a passenger spends waiting at a stop for a bus to arrive. For routes with reasonably high frequency,
passengers can be assumed to not use time tables but rather to show up at the stop and wait. Hence, the expected wait time
depends on the route’s headway, 𝐻 (h/bus). If passengers arrive at stops randomly, without regard to the schedule, then the average

3 See the review in Jara-Diaz and Gschwender (2003).
3 
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passenger’s wait time is 𝐻∕2 (Dial, 1967; Wirasinghe, 1980; Tian et al., 2012; Ansari Esfeh et al., 2021).4 Regarding the headway,
in this section we assume5

Assumption A1 (Fixed Headway). The headway is fixed at 𝐻 (h/bus) regardless of the spacing.

The last component of travel time, in-vehicle time, clearly depends on how far a passenger travels and on how quickly the bus
moves. Let 𝑣𝑏 (km/h) be the travel time of a bus between stops, so that 1∕𝑣𝑏 (h) is the time it would take a bus to traverse one
kilometer without stopping. Let 𝑞 (pax/h) be the route’s ridership. Let 𝜂(𝑞, 𝑠) (h/km) be the delay function which gives the time lost
to stops per km; it obeys:

Assumption A2 (Delay Function). 𝜂(𝑞, 𝑠) has the following properties:

(i) Delay is positive: 𝜂(𝑞, 𝑠) > 0 for finite 𝑞, 𝑠.
(ii) Delay is non-decreasing with ridership: 𝜂1 ≥ 0.
(iii) Delay is convex and decreasing over 𝑠: 𝜂2 < 0, 𝜂22 > 0.
(iv) 𝜂 → 0 as 𝑠 → ∞.
(v) 𝜂 → ∞, 𝜂2 → −∞ as 𝑠 → 0

This specification of delays is intended to be general enough to encompass various theories of passenger delays (e.g., from
boarding and alighting or from requesting stops) while capturing some intuitive properties. For example, per (v), as spacing tends
to infinity, the bus ceases to stop and so there is no delay. Since 𝜂(𝑞, 𝑠) is given generally, we will give an example6 of a particular
specification with its properties.

Example E1 (Specification of 𝜂 Under Assumption A1). First, suppose each passenger delays the bus by 𝜃 (h/pax). It can be shown
that the bus picks up and drops off 𝐻𝑞∕𝑅 pax/km as it moves along the route, so passengers delay the bus by 𝜃𝐻𝑞∕𝑅 h/km. Second,
suppose the bus stops at every stop and thereby suffers a stop delay of 𝜏 (h/stop). In this case, the bus incurs stop delay at a rate of
𝜏∕𝑠 (h/km). Putting the two delays together, we have

𝜂(𝑞, 𝑠) = 𝜏∕𝑠 +𝐻𝜃𝑞∕𝑅 (h/km) (1)

It is easy to verify that 𝜏∕𝑠 +𝐻𝜃𝑞∕𝑅 satisfies all five properties of Assumption A2.

The average speed 𝑣𝑏 and the delay function 𝜂(𝑞, 𝑠) determine the bus’ unit travel time: the time it takes to traverse one km. Given
𝑞 and 𝑠, the unit travel time is 1∕𝑣𝑏 + 𝜂(𝑞, 𝑠). The distance a passenger travels once on the bus is a random variable 𝑥 (km) that we
call the trip length. Thus, a trip of length 𝑥 has an in-vehicle time of 𝑥

[

1∕𝑣𝑏 + 𝜂(𝑞, 𝑠)
]

. As stated earlier, 𝑥 does not have to be an
integer multiple of 𝑠.

Adding our three components together, the function

𝑇 (𝑥, 𝑠, 𝑞) = 𝐻∕2
⏟⏟⏟
wait time

+ 𝑠∕(2𝑣𝑎)
⏟⏟⏟
access time

+ 𝑥
[

1
𝑣𝑏

+ 𝜂(𝑞, 𝑠)
]

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
in-vehicle time

(h) (2)

gives the door-to-door travel time for a trip of length 𝑥 (km) when the stop spacing is 𝑠 (km/stop) and the ridership is 𝑞 (pax/h).

2.3. Demand and equilibrium

Demand for trips of different lengths is endogenous. Let 𝜆(𝑥, 𝑡) (pax/km-h) be a demand density function: it gives the density (per
km) of the demand (pax/h) for trips of length 𝑥 (km) when the travel time of such trips is 𝑡 (h). Thus, if the ridership is 𝑞 and
spacing is 𝑠, so that 𝑡 = 𝑇 (𝑥, 𝑠, 𝑞), then the demand7 for trips with lengths 𝑥 ∈ [𝑥′, 𝑥′′] is

∫

𝑥′′

𝑥′
𝜆[𝑥, 𝑇 (𝑥, 𝑠, 𝑞)]d𝑥 (pax/h).

The demand density function obeys the following assumption:

4 See Ansari Esfeh et al. (2021) for a more through review of the relationship between headways and waiting times.
5 This assumption makes the most sense if buses are allocated across a large network in such a way that headways on the route under analysis do not
epend on its stop spacing. Removing stops on one route will let buses complete the route more quickly, but if the saved bus-hours are redistributed across
any routes, the change in frequency on any particular route may be small enough to ignore.
6 Note the paper’s results do not depend on this particular account of passenger delays. The paper is not committed to an ‘‘all stop’’ regime nor to a perfectly

inear account of boarding/alighting times.
7 Note we have assumed door-to-door travel time determines demand. It is more accurate to weight access time, in-vehicle time and waiting time
ifferently (Mohring et al., 1987). But doing so adds parameters without qualitatively changing any results, so we have ignored weighting for brevity’s sake.
ome terms in our expressions could be interpreted in such a way as to bake in a weighting factor. For example, rather than multiplying the access time 1∕(2𝑣𝑎)
y a weighting coefficient 𝛽access, one could think of 𝑣𝑎 as equal to the actual access speed divided by 𝛽access. Daganzo (2010) does so, writing ‘‘We reduce
alking time to riding time by using a low walking speed, 𝑤 = 2 km/h...This low value recognizes both the discomfort associated with walking and the natural
elays that pedestrians encounter when crossing streets’’.
4 
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Assumption A3 (Elastic Demand). For all 𝑥, 𝜆(𝑥, 𝑡) falls with 𝑡 whenever 𝜆(𝑥, 𝑡) > 0: i.e., 𝜆(𝑥, 𝑡) > 0 ⇒ 𝜆2(𝑥, 𝑡) < 0.

Since passengers delay the bus, which in turn affects the demand for travel, ridership arises as an equilibrium. The same concept
appears – though without the stop spacing element – in Zhang et al. (2020) and Lehe and Pandey (2024). Given a spacing 𝑠, the
route is in equilibrium at a ridership 𝑞 = 𝑞𝑒 (pax/h) such that

𝑞𝑒 = ∫

∞

0
𝜆
[

𝑥, 𝑇 (𝑥, 𝑠, 𝑞𝑒)
]

d𝑥 (pax/h). (3)

This is to say: the travel times created by a ridership 𝑞𝑒 invite a ridership of 𝑞𝑒. Since the RHS of (3) is non-negative and non-
ncreasing with 𝑞𝑒, a unique 𝑞𝑒 ≥ 0 solves (3). Since 𝑞𝑒 is unique, we can write it as a function of 𝑠, 𝑄(𝑠), by the implicit definition8

𝑄(𝑠) = ∫

∞

0
𝜆[𝑥, 𝑇 (𝑥, 𝑠,𝑄(𝑠))]d𝑥 (pax/h). (4)

(𝑠) (pax/h) is the rate at which trips start and end in the unique equilibrium that arises when stop spacing is 𝑠 (km).
Consider now the derivative of 𝑄(𝑠):

𝑄′(𝑠) = d
d𝑠 ∫

∞

0
𝜆[𝑥, 𝑇 (𝑠, 𝑥,𝑄(𝑠))]d𝑥 (5)

𝑄′(𝑠) = ∫

∞

0
𝜆2 ⋅

[

1
2𝑣𝑎

+ 𝑥𝑄′(𝑠)𝜂1 + 𝑥𝜂2

]

d𝑥 expanding 𝑇 ′ from (2) (6)

𝑄′(𝑠) =
∫ ∞
0 𝜆2 ⋅

(

1∕2𝑣𝑎 + 𝑥𝜂2
)

d𝑥
1 − 𝜂1 ∫

∞
0 𝑥𝜆2d𝑥

. (7)

Per Assumptions A2 and A3, the denominator on the RHS of (7) is no smaller than one (because 𝜆2 ≤ 0 and 𝜂1 ≥ 0). The denominator
can be thought of as a damping factor : any first-round change in ridership is muted by a change in travel time of the opposite sign. A
change in spacing that increases (decreases) demand leads to a rise (fall) in travel times that, in turn, decreases (increases) ridership.

Next, let

𝑈 (𝑠) ∶= 1∕𝑣𝑏 + 𝜂[𝑄(𝑠), 𝑠] (h/km) (8)

give the unit travel time in the unique equilibrium that arises when the spacing is 𝑠. Differentiating yields

𝑈 ′(𝑠) = 𝜂1𝑄
′(𝑠) + 𝜂2 (9)

𝑈 ′(𝑠) =
𝜂2 + 𝜂1∕2𝑣𝑎 ⋅ ∫

∞
0 𝜆2𝑑𝑥

1 − 𝜂1 ∫
∞
0 𝑥𝜆2d𝑥

(expanding 𝑄′ from (7)) (10)

Since 𝜂1 ≥ 0, 𝜂2 < 0, 𝜆2 ≤ 0, it follows that

Proposition P1. Under Assumptions A1–A3, 𝑈 ′(𝑠) < 0.

Thus, in spite of the feedback and boarding times, an increase in spacing always speeds up the bus (decreases the unit travel
time).

2.4. Critical trip length

We now consider how changes in spacings affect trips of different lengths. It is most illustrative to do so graphically. Consider
a pair of spacings 𝑠0 and 𝑠1 with 𝑠1 > 𝑠0. Now define a pair of lines

𝑇𝑖(𝑥) ∶= 𝑇
[

𝑥, 𝑠𝑖, 𝑄(𝑠𝑖)
]

= 𝑠𝑖∕2𝑣𝑎 +𝐻∕2 + 𝑥𝑈 (𝑠𝑖) for 𝑖 = 0, 1. (11)

For 𝑖 = 0, 1, 𝑇𝑖(𝑥) gives the travel time of a trip of length 𝑥 in equilibrium, given a spacing 𝑠𝑖. The slope of 𝑇𝑖(𝑥) is 𝑈 (𝑠𝑖), and its
ntercept is the out-of-vehicle time 𝐻∕2 + 𝑠𝑖∕2𝑣𝑎.
Fig. 1 shows 𝑇1(𝑥) and 𝑇2(𝑥). Per Proposition P1, the unit travel time at the wider 𝑠1 is smaller than at 𝑠0, but the access time

and hence the intercept) is larger. Thus, the two lines necessarily intersect at a positive value of 𝑥 that we will call the critical
trip length, 𝑥̂ (km). A widening 𝑠0 → 𝑠1 will raise (lower) the travel time of all trips shorter (longer) than the critical trip length.
By solving 𝑇

[

𝑥̂, 𝑠0, 𝑄(𝑠0)
]

= 𝑇
[

𝑥̂, 𝑠1, 𝑄(𝑠1)
]

, we can formalize this result as a proposition:

Proposition P2. Define

𝑥̂ = 1
2𝑣𝑎

⋅
𝑠1 − 𝑠0

𝑈 (𝑠0) − 𝑈 (𝑠1)
(km). (12)

Under Assumptions A1–A3, if 𝑠0 < 𝑠1, then

8 Note the upper bounds of the integrals defining 𝑄(𝑠) and 𝐾(𝑠) are ∞. But realistically, we would not expect there to be any trips longer than 𝑅
(i.e., 𝜆(𝑥, 𝑇 (𝑥, 𝑠, 𝑞)) = 0 ∀𝑥 > 𝑅, 𝑠 ≥ 0, 𝑞 ≥ 0) because there are no transfers to other routes involved in the model. So one could instead write 𝑄(𝑠) and

(𝑠) with 𝑅 as the integral’s upper bound without changing the situation.

5 
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Fig. 1. Travel times by trip length for 𝑠0 and 𝑠1 > 𝑠0.

(i) 𝑇
[

𝑥, 𝑠0, 𝑄(𝑠0)
]

> 𝑇
[

𝑥, 𝑠1, 𝑄(𝑠1)
]

for 𝑥 > 𝑥̂

(ii) 𝑇
[

𝑥, 𝑠0, 𝑄(𝑠0)
]

< 𝑇
[

𝑥, 𝑠1, 𝑄(𝑠1)
]

for 𝑥 < 𝑥̂

(iii) 𝑥̂ > 0

The critical trip length 𝑥̂ divides trip lengths that would be harmed by the move 𝑠0 → 𝑠1 from those that would benefit. In turn,
ince Assumption A3 makes demand depend on travel time, an increase in spacing will ‘‘repel’’ trips with lengths 𝑥 < 𝑥̂ (i.e., cause
he number of such trips taken to fall) and ‘‘induce’’ trips with lengths 𝑥 > 𝑥̂ (i.e., cause their number to rise). By a similar logic, Lehe
(2017) shows that imposing a ‘‘cordon toll’’ on downtown car trips repels short trips and induces long ones.

3. Model with fixed fleet size

In addition to saving passengers’ in-vehicle time, another claimed advantage of stop consolidation is that it frees up bus-hrs (Saka,
2001; El-Geneidy et al., 2006; Stewart and El-Geneidy, 2016). These saved bus-hrs can be used to various ends. One use is to reduce
headways (and hence wait times). In this section, we relax Assumption A1 (Fixed headways) to link stop spacing to headways
formally. The novel result is that now Pareto improvements are possible: it is possible for an increase in spacing to make every rider
better off.

3.1. Setup

Let 𝐵 stand for the fleet size: the number of buses assigned to the route. Discard Assumption A1 (Fixed headways) and replace
it with a new assumption:

Assumption A4 (Fixed Fleet Size). 𝐵 is fixed; the agency does not alter the number of buses as it changes the stop spacing.

Given 𝑠 and 𝑞, the time required for a bus to complete the route is

𝐶 ∶= 𝑅 ⋅
{

1
𝑣𝑏

+ 𝜂(𝑞, 𝑠)
}

(h). (13)

Thus, per Little’s Law, the headway is

𝐻 = 𝐶
𝐵

= 𝑅
𝐵

{

1
𝑣𝑏

+ 𝜂(𝑞, 𝑠)
}

(bus/h), (14)

where the quotient 𝑅∕𝐵 (km/bus) is the mean distance between two buses. 𝜂(𝑞, 𝑠) is still assumed to obey A2. As in Section 2, we
will give an example specification of 𝜂:

Example E2. Suppose as in Example E1 that the bus is delayed 𝜏 (h/stop) by each stop and 𝜃 (h/pax) by each passenger, so that
= 𝜏∕𝑠 +𝐻𝑞𝜃∕𝑅 but now 𝐻 is given by (14). Hence,

𝜂(𝑞, 𝑠) = 𝜏∕𝑠 + 𝑅
𝐵

{

1
𝑣𝑏

+ 𝜂(𝑞, 𝑠)
}

𝑞𝜃∕𝑅 =
𝜏∕𝑠 + 𝑞𝜃∕𝐵𝑣𝑏
1 − 𝑞𝜃∕𝐵

The reader may verify that this satisfies all the properties of Assumption A2.
With endogenous headways, travel time is now given by

𝑇 (𝑥, 𝑠, 𝑞) ∶= 𝑠 +
( 𝑅 + 𝑥

)

{

1 + 𝜂(𝑞, 𝑠)
}

(h) (15)

2𝑣𝑎 2𝐵 𝑣𝑏
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Fig. 2. Travel times by trip length for 𝑠0 and 𝑠1 > 𝑠0 with endogenous headways.

or a trip of length 𝑥 when ridership is 𝑞 and spacing is 𝑠. The equilibrium demand is still given by the implicit function 𝑄(𝑠) defined
y (4), but with the new 𝑇 (𝑥, 𝑠, 𝑞). Its derivative is now

𝑄′(𝑠) =
∫ ∞
0 𝜆2 ⋅

[

1∕2𝑣𝑎 + (𝑅∕2𝐵 + 𝑥)𝜂2
]

d𝑥
1 − 𝜂1 ∫

∞
0 𝜆2 ⋅ (𝑅∕2𝐵 + 𝑥)d𝑥

. (16)

Plugging this derivative into (9) yields

𝑈 ′(𝑠) = 𝜂1𝑄
′(𝑠) + 𝜂2 =

𝜂2 + 𝜂1∕2𝑣𝑎 ⋅ ∫
∞
0 𝜆2𝑑𝑥

1 − 𝜂1 ∫
∞
0 𝜆2 ⋅ (𝑅∕2𝐵 + 𝑥)d𝑥

(17)

As before, since 𝜂1 ≥ 0, 𝜂2 < 0, 𝜆2 ≤ 0, it follows that

Proposition P3. Under Assumptions A2, A3, and A4, 𝑈 ′(𝑠) < 0.

3.2. Critical trip length

We now return to the situation covered in Section 2.4: a comparison between a spacing 𝑠0 and a wider one 𝑠1. As before, we
define a pair of lines

𝑇𝑖(𝑥) ∶= 𝑇
[

𝑥, 𝑠𝑖, 𝑄(𝑠𝑖)
]

= 𝑠𝑖∕2𝑣𝑎 +
( 𝑅
2𝐵

+ 𝑥
)

𝑈 (𝑠𝑖) for 𝑖 = 0, 1 (18)

ach giving the travel time of a trip of length 𝑥 in the equilibrium with spacing 𝑠𝑖. See Fig. 2(a), which is an update of Fig. 1.
s before, the slope of each line is the corresponding unit travel time, and this slope is lower for 𝑇1 than for 𝑇0. Note that the
ntercept of each line is different: the 𝐻∕2 has been replaced by 𝑈 (𝑠𝑖)∕2𝐵. While the access time is certainly longer at 𝑠1 than at 𝑠0
i.e., 𝑠1∕2𝑣𝑎 > 𝑠0∕2𝑣𝑎), the wait time is certainly lower (i.e., 𝑈 (𝑠1)𝑅∕2𝐵 < 𝑈 (𝑠0)𝑅∕2𝐵).
In Fig. 2(a), the out-of-vehicle time (intercept) at 𝑠1 is still higher than at 𝑠0 (just as in Fig. 1). However, nothing in our

ssumptions keeps the total out-of-vehicle time from being lower at the wider spacing. If the widening 𝑠0 → 𝑠1 cuts wait times
ore than it increases access times, then the intercept of 𝑇1 will exceed 𝑇0’s intercept. Fig. 2(b) shows this situation. In this case,
he two lines will intersect at a negative value of 𝑥. Solving 𝑇1(𝑥̂) = 𝑇0(𝑥̂) yields a modified version of Proposition P2:

roposition P4. Define

𝑥̂ = 1
2𝑣𝑎

⋅
𝑠1 − 𝑠0

𝑈 (𝑠0) − 𝑈 (𝑠1)
− 𝑅

2𝐵
(km) (19)

Under Assumptions A2–A4, if 𝑠0 < 𝑠1, then:

1. 𝑇
[

𝑥, 𝑠0, 𝑄(𝑠0)
]

> 𝑇
[

𝑥, 𝑠1, 𝑄(𝑠1)
]

∀𝑥 > 𝑥̂
2. 𝑇

[

𝑥, 𝑠0, 𝑄(𝑠0)
]

< 𝑇
[

𝑥, 𝑠1, 𝑄(𝑠1)
]

∀𝑥 < 𝑥̂

Unlike in Proposition P2, this proposition makes no claim that the critical trip length is strictly positive. Obviously, there are
no negative trip lengths, so whenever a move 𝑠0 → 𝑠1 yields a negative 𝑥̂, a ‘‘Pareto improvement’’ occurs: trips of every length
experience a lower travel time. This occurs because wait times fall by more than access times rise.

It turns out that such Pareto improvements are only possible when the initial spacing is sufficiently small.
7 
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Fig. 3. Contour plot of 𝑠̃ from Example E3.

Proposition P5. Under Assumptions A2, A3, and A4, there exists some 𝑠̃ > 0 such that

𝑠 < 𝑠̃ ⟹
d
d𝑠

𝑇
[

𝑥, 𝑠,𝑄(𝑠)
]

< 0 ∀𝑥 ≥ 0. (20)

The proof is given in Appendix. This is to say that there exists some spacing so narrow that a marginal rise in spacing will benefit
passengers of every trip length, because it will cut headways more than it raises access times. 𝑠̃ is a sort of ‘‘threshold’’: when 𝑠 < 𝑠̃,
the stops are so close together that removing stops reduces wait times faster than it increases access times.

While the idea of a Pareto improvement may seem fanciful, it turns out that 𝑠̃ may plausibly be in the neighborhood of actual
average stop spacings in certain places, as the example below demonstrates:

Example E3. For the sake of illustration, this example ignores changes in demand due to a marginal change in spacing. Hence,
we can treat buses as incurring a fixed stop delay of 𝜏 (h/stop). The delay function becomes 𝜂(𝑞, 𝑠) = 𝜏∕𝑠 (h/km), and travel time is
given by

𝑇 (𝑥, 𝑠, 𝑞) = 𝑠
2𝑣𝑎

+
( 𝑅
2𝐵

+ 𝑥
)

{

1
𝑣𝑏

+ 𝜏
𝑠

}

(h).

(Here the time lost to boarding/alighting may be considered included in 𝑣𝑏). Differentiating yields

d𝑇 ∕d𝑠 = 1∕2𝑣𝑎 − (𝑅∕2𝐵 + 𝑥)𝜏∕𝑠2.

Since d𝑇 ∕d𝑠 falls with 𝑥, if d𝑇 ∕d𝑠 < 0 at 𝑥 = 0 then d𝑇 ∕d𝑠 < 0 for all 𝑥 > 0 (i.e., then all trip lengths see travel time fall from a
marginal increase in spacing). At 𝑥 = 0, d𝑇 ∕d𝑠 = 1∕2𝑣𝑎 − (𝑅∕2𝐵)𝜏∕𝑠2 < 0 if and only if 𝑠 < 𝑠̃, where

𝑠̃ =
√

𝜏𝑣𝑎𝑅∕𝐵 (km/stop).

e now apply this formula to Route 8 of the Chicago Transit Authority over a range of plausible 𝑣𝑎 and 𝜏 values. Using the gtfs-
egments Python package (Devunuri and Lehe, 2024), we find Route 8 has an average spacing of 𝑠̄ = 230 (m) and a ratio 𝑅∕𝐵 = 3.65.
able 2 of Alves et al. (2020) shows walk speeds varying between 2.88 to 4.8 km/h, so consider 𝑣𝑎 ∈ [2, 5] (km/h). Metropolitan
ransportation Authority (2022) assumes 𝜏 = 20 (s/stop) for the Queens Bus Network Redesign, so consider 𝜏 ∈

[

10∕3600, 40∕3600
]

h/stop). Fig. 3 uses the formula 𝑠̃ =
√

𝜏𝑣𝑎𝑅∕𝐵 to draw contours of 𝑠̃ in (𝑣𝑎, 𝜏) space. Since 𝑠̃ exceeds the true average (𝑠̄ = 0.23) for
many (𝑣𝑎, 𝜏) combinations, it is plausible that marginal increases in spacing could yield Pareto improvements on Route 8.

4. General lessons

This section derives two lessons which apply under either assumption about headways.

4.1. Rivalrous metrics

The fact that stop consolidation induces sufficiently long trips, and repels trips shorter than these, makes ridership and passenger-
km traveled rivalrous. By ‘‘rivalrous’’ we mean that one can only be achieved by sacrificing the other. Both are performance metrics
8 
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Fig. 4. Ridership and travel over a range of spacings.

used for US transit agencies (Talley, 1988), who report both annually to the country’s National Transit Database. Let

𝐾(𝑠) ∶= ∫

∞

0
𝑥𝜆[𝑥, 𝑇 {𝑥, 𝑠,𝑄(𝑠)}]d𝑥 (pax-km/h) (21)

give the passenger-km traveled in equilibrium, given 𝑠. Fig. 4 shows hypothetical examples of 𝑄(𝑠) and 𝐾(𝑠). They are drawn falling
to zero as 𝑠 → 0 and as 𝑠 → ∞. This is sensible: the travel time of a trip of any length becomes infinite at these limits.

Observe that the curves are drawn such that 𝐾(𝑠) achieves its global maximum at a larger spacing than 𝑄(𝑠). This ordering is
not accidental but can be proven.

Proposition P6. Letting 𝑠∗𝑄 be the largest spacing at which 𝑄 achieves its global maximum and 𝑠∗𝐾 the smallest spacing at which 𝐾 achieves
its global maximum, it is true that 𝑠∗𝐾 ≥ 𝑠∗𝑄.

(The proof is in the Appendix.)
We can actually say something stronger than Proposition P6 under most circumstances.

roposition P7. If at 𝑠 = 𝑠∗𝑄, there are trips of more than one length being made, then 𝑠∗𝐾 > 𝑠∗𝑄.

(The proof is in the Appendix.)
Thus, unless there is only one trip length being made, ridership will be maximized at a strictly smaller spacing than passenger-km

raveled.

.2. Changing average trip length

Models with differing features (e.g., Kikuchi and Vuchic, 1982; Kuah and Perl, 1988; Chien and Schonfeld, 1998) derive an
optimal stop spacing which scales with either the square root of an average trip length or else with the square root of a linear
transform of average trip length. Here, the average trip length in an equilibrium with spacing 𝑠 is

𝑥̄(𝑠) ∶= 𝐾(𝑠)∕𝑄(𝑠) (km). (22)

Its derivative is

d𝑥̄(𝑥)∕d𝑠 = 1
𝑄(𝑠)

[

𝐾 ′(𝑠) − 𝑥̄(𝑠)𝑄′(𝑠)
]

. (23)

There is no reason to expect that the term in square brackets will be zero, so in general 𝑥̄ should change with 𝑠. In the following
example, 𝑥̄(𝑠) is necessarily rising.

Example E4. Suppose that A1 (fixed headway) holds and that the demand density function has an exponential form

𝜆(𝑥, 𝑡) ∶= 𝑓 (𝑥) exp(−𝛽𝑡), (24)

where 𝛽 > 0 measures the sensitivity of demand to travel time and 𝑓 (𝑥) (pax/km-h) is the maximum possible demand density at 𝑥.
Expanding 𝐾 ′ and 𝑄′ from (23), and noting 𝑇2 = 1∕2𝑣𝑎 + 𝑥𝑈 ′(𝑠) (per A1), yields

𝑥̄′(𝑠) = 1
2𝑣𝑎𝑄(𝑠)

[

∫

∞

0
𝑥𝜆2d𝑥 − 𝑥̄∫

∞

0
𝜆2d𝑥

]

+
𝑈 ′(𝑠)
𝑄(𝑠)

[

∫

∞

0
𝑥2𝜆2d𝑥 − 𝑥̄∫

∞

0
𝑥𝜆2d𝑥

]

. (25)

Since 𝜆(𝑥, 𝑡) = 𝑓 (𝑥) exp(−𝛽𝑡) implies 𝜆2 = −𝛽𝜆, the integrands become

𝑥̄′(𝑠) = −
𝛽 [ ∞

𝑥𝜆d𝑥 − 𝑥̄
∞
𝜆d𝑥

]

−
𝛽𝑈 ′(𝑠) [ ∞

𝑥2𝜆d𝑥 − 𝑥̄
∞
𝑥𝜆d𝑥

]

(26)

2𝑣𝑎𝑄(𝑠) ∫0 ∫0 𝑄(𝑠) ∫0 ∫0
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Fig. 5. Bus network with heterogeneous spacings.

hich reduces to

𝑥̄′(𝑠) = −
𝛽𝑈 ′(𝑠)
𝑄(𝑠)

[

∫

∞

0
𝑥2𝜆d𝑥 − 𝑥̄∫

∞

0
𝑥𝜆d𝑥

]

(27)

𝑥̄′(𝑠) = −𝛽𝑈 ′(𝑠)
[

𝐸(𝑥2) − (𝑥̄)2
]

, (28)

where 𝐸(𝑥2) is the expected value of 𝑥2. The difference 𝐸
(

𝑥2
)

− (𝑥̄) is simply the variance of 𝑥, which is positive. Hence, since
𝑈 ′(𝑠) < 0, 𝑥̄(𝑠) is rising.

When average trip length changes with spacing, the application of a formula with an average trip length will chase a ‘‘moving
target’’. After applying the formula, the average trip length itself will update. The following example illustrates.

Example E5. Consider an instance of Section 2 model with route length 𝑅 = 10 (km), headway 𝐻 = 1∕6 (h), access speed 𝑣𝑎 = 3
(km/h) and demand density

𝜆(𝑥, 𝑡) = 1000 exp(−5𝑡) for 𝑥 ∈ (0, 10). (29)

The delay function 𝜂(𝑞, 𝑠) takes the functional from Example E1 with 𝜃 = 7∕3600 (h/pax), 𝜏 = 20∕3600 (h/stop) and 𝐻 = 1∕6.
Suppose the initial spacing is only 𝑠0 = 0.15 (km/stop). At this spacing, we can calculate that the average trip length in equilibrium

s 𝑥̄0 = 2.56 (km) and the ridership is 1664 (pax/h).
Suppose the operator wants to optimize spacing, but they treat demand as fixed and apply the formula for optimal spacing

rom Kikuchi and Vuchic (1982, Eq. 22): 𝑠∗ =
√

2𝑥̄𝑣𝑎𝜏. Given 𝑥̄0 = 2.56, this formula gives 𝑠∗ =
√

2 ⋅ 2.56 ⋅ 3 ⋅ 20∕3600 = 0.29
km/stop). The widening from 0.15 to 0.29 km/stop yields a critical trip length 𝑥̂ = 1.5 (km), repelling trips below this length and
nducing ones above. Thus, after the widening, the new average trip length is 𝑥̄1 = 3.03 and the new ridership is 1804 (pax/h).

. Discrete simulation

This section sets up a simulation that takes two steps toward realism:

(i) It drops the continuous approximation context. Stops, origins and destinations are at particular locations. Passengers travel
an integer number of stops to their before alighting.

(ii) It drops the uniform spacing assumption. Now the distances among stops are heterogeneous.

The idea behind undertaking the simulation is to see whether the simulation reproduces results from the above derivations.
hile the route does not have one single stop spacing, 𝑠, the average stop spacing, 𝑠̄, can still be used to characterize the route.
e posit that the relationships in Propositions P6, P7 and P5 should hold reasonably well when we replace 𝑠 with 𝑠̄ to account for
eterogeneous stop spacings.

.1. Setup

The setting is similar to the setting in Sections 2 and 3. Buses run along a ring of length 𝑅 (km) with a speed of 𝑣𝑏 (km/h) between

tops. They stop at every stop on the route and lose 𝜏 (h/stop) at each stop. Each passenger delays the bus by 𝜃𝑏 (hour/pax) while

10 
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boarding and 𝜃𝑎 (hour/pax) while alighting. Unlike Sections 2 and 3, stop spacing is not equal along the whole route and a transit
network cannot be uniquely described using the stop spacing, 𝑠. See Fig. 5. The bus route is defined by a set of real numbers giving
he locations of all the stops on the route, . If there are 𝑁 stops along a route, the average stop spacing is 𝑅∕𝑁 (km).

𝑄𝑜() and 𝑄𝑑 () are the sets of number of trips originating and ending at different stops, i.e., the 𝑖th element, 𝑄𝑖
𝑜() (pax/h), is

he number of trips originating at stop 𝑖 ∈ . A trip’s door-to-door travel time depends on its origin and length. Let 𝑙 ∈ [0, 𝑅] (km)
be the origin for a trip of length 𝑥 (km). The door-to-door travel time, given , is

𝑇𝑙(𝑥,) =
‖𝑙 − OS‖

𝑣𝑏
+

‖OS − DS‖
𝑣𝑏

+ 𝜏 ⋅ #{OS − DS}

+ 𝐻𝜃𝑏 ⋅ #𝑄𝑜{OS − DS} +𝐻𝜃𝑎 ⋅ #𝑄𝑑{OS − DS} +
‖𝑥 + 𝑙 − DS‖

𝑣𝑎
+ 𝐻

2
(h), (30)

where 𝐻 is the headway, OS, DS ∈  are origin and destination bus stops, ‖𝑎−𝑏‖ is the distance between points 𝑎 and 𝑏, #{OS − DS}
s the number of bus stops between OS and DS, #𝑄𝑜{OS − DS} is the number of passengers boarding and #𝑄𝑑{OS − DS} is the number
f passengers alighting between OS and DS:

#𝑄𝑜{OS − DS} =
DS
∑

𝑖=OS

[

𝑄𝑖
𝑜()

]

, #𝑄𝑑{OS − DS} =
DS
∑

𝑖=OS

[

𝑄𝑖
𝑑 ()

]

. (31)

he headway, 𝐻 (h), is fixed for the fixed headway model. When the fleet size is fixed at 𝐵, the headway is endogenous. Recall
is the number of stops (i.e., the number of elements in ). Thus 𝑅∕𝑣𝑏 +𝑁𝜏 + 𝜃𝑏

∑

𝑄𝑜() + 𝜃𝑎
∑

𝑄𝑑 () is the cycle time, and the
eadway is 𝐻 =

[

𝑅∕𝑣𝑏 +𝑁𝜏 + 𝜃𝑏
∑

𝑄𝑜() + 𝜃𝑎
∑

𝑄𝑑 ()
]

∕𝐵.

.2. Equilibrium

Recall the demand density function 𝜆(𝑥, 𝑡) gave the demand density over trip lengths. Here, assume that every point on the route
s the same as far as demand is concerned, and let 𝛾(𝑥, 𝑡) (pax/km2-h) give the demand-density at every point on the route for a trip
f length 𝑥 (km), given travel time 𝑡. At origin 𝑙, the demand for trips with lengths 𝑥 ∈ [𝑥′, 𝑥′′] is

∫

𝑥′′

𝑥′
𝛾
[

𝑥, 𝑇𝑙(𝑥,)
]

d𝑥 (pax/km-h).

hus the total demand for trips of lengths 𝑥 ∈
[

𝑥′, 𝑥′′
]

can be found by integrating over all origins:

∫

𝑅

0 ∫

𝑥′′

𝑥′
𝛾
[

𝑥, 𝑇𝑙(𝑥,)
]

d𝑥d𝑙 (pax/h).

Given , we need to calculate 𝑄𝑜() and 𝑄𝑑 () at equilibrium. Passengers walk to their nearest stop, hence, zone served by a
top is demarcated by the midpoints between the stop and its two adjacent stops, as shown in Fig. 5. Let those points be 𝑏−𝑖 and
+𝑖. The, the demand originating from stop 𝑖 is

𝑄𝑖
𝑜() = ∫

𝑏+𝑖

𝑏−𝑖
∫

𝑅+𝑏−𝑖+𝑙

𝑏+𝑖−𝑙
𝛾
[

𝑥, 𝑇𝑙(𝑥,)
]

d𝑥d𝑙 (pax/h). (32)

he limits
{

𝑏−𝑖, 𝑏+𝑖
}

give the catchment area of stop 𝑖. If a trip is too short, it will not be served by transit as both the origin
nd destination will be in the catchment area of the same stop. Thus, the minimum allowable trip length is 𝑏−𝑖 − 𝑙. Similarly, the
aximum allowable trip length is 𝑅 + 𝑏+𝑖 − 𝑙. This is different from the CA model where we integrate over all trips from length 0
o 𝑅. Similarly, the demand alighting at stop 𝑖 is

𝑄𝑖
𝑑 () = ∫

𝑅+𝑏−𝑖

𝑏+𝑖
∫

𝑅+𝑏+𝑖−𝑙

𝑅+𝑏−𝑖−𝑙
𝛾
[

𝑥, 𝑇𝑙(𝑥,)
]

d𝑥d𝑙 (pax/h). (33)

o calculate the number of passengers alighting at stop 𝑖, we need to integrate over all trips originating outside the catchment area
f stop 𝑖, with trip lengths such that the trip ends inside the catchment of stop 𝑖. Simultaneously solving (32) and (33) for all 𝑖 ∈ 
ill give us the equilibrium values of 𝑄𝑜() and 𝑄𝑑 (), i.e., we need to solve 100 non-linear simultaneous equations for a route
ith 50 stops. We solve these equations iteratively. We start with an initial guess for 𝑄𝑜() and 𝑄𝑑 (). Find the function 𝑇𝑙(𝑥,)
or all 𝑙 ∈ . Then, using (32) and (33), we calculate the new values of 𝑄𝑜() and 𝑄𝑑 (). We repeat this process until the values of
𝑜() and 𝑄𝑑 () converge to a fixed point.
Once we have the equilibrium, we can calculate the total demand simply by summing over all stops:

𝑄() =
∑

𝑖∈
𝑄𝑖

𝑜() =
∑

𝑖∈
𝑄𝑖

𝑑 () (pax/h). (34)

assenger-km demanded is calculated by multiplying 𝑥 to the integrand of (32) and (33) and then summing over all stops:

𝐾() =
∑

∫

𝑏+𝑖

∫

𝑅+𝑏−𝑖+𝑙
𝑥 ⋅ 𝛾

[

𝑥, 𝑇𝑙(𝑥,)
]

d𝑥d𝑙 (pax-km/h). (35)

𝑖∈ 𝑏−𝑖 𝑏+𝑖−𝑙

11 
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Fig. 6. Example networks for different simulations.

.3. Varying spacings

The route is now described by particular locations, but we would like to check if earlier Propositions about 𝑠 hold up in this
more realistic setting. We do so by interpreting 𝑠 as the average stop spacing and evaluating 𝑄(𝑠) and 𝐾(𝑠) as the average spacing
varies.

There are two ways to vary average spacing. The first way is what we call ‘‘random generation’’. For each 𝑁 of stops considered
and thus each average spacing considered), we randomly generate 𝑁 locations of different stops and then calculate ridership and
assenger-km traveled. This is to say  is generated from scratch for each average spacing. The second way we call ‘‘consolidation’’.
t involves generating an initial  randomly and then removing one stop at a time without changing the locations of other stops.
t each iteration, the stop chosen for removal is the stop responsible for the narrowest extant spacing on the route.
Fig. 6 shows example networks generated using each method. The stop locations are plotted along concentric circles9 to show

he relationship between different networks. Average spacing is increasing as we go closer to the center of the circle. As the figures
how, random generation produces completely different routes as spacing rises, and consolidation shows a particular route being
radually pruned.

.4. Results

We now present the results10 of the simulations. The simulations are conducted with 𝑣𝑎 = 3 (km/h), 𝑣𝑏 = 30 (km/h), 𝑅 = 10 (km),
nd 𝛾(𝑥, 𝑡) = 25 exp(−4𝑡) pax/km2-h. The walk speed 𝑣𝑎 is taken from Alves et al. (2020). We set the stop delay 𝜏 = 20∕3600 (h/stop),
hich is used in the Queens Bus Network Redesign by the Metropolitan Transportation Authority (Metropolitan Transportation
uthority, 2022). Note some other studies have lower values (e.g., Glick and Figliozzi (2017) estimate about 16 s in Portland). For
oarding and alighting delays, we choose 𝜃𝑏 = 5∕3600 (hour/pax), and 𝜃𝑎 = 2∕3600 (hour/pax), which are in the middle of the range
reported by Rajbhandari et al. (2003).

For the fixed headway model, we set 𝐻 = 1∕6 (h). For the fixed fleet size model, we set 𝐵 = 6. We evaluate 𝑄() and 𝐾()
over a range of 𝑠 from .1 to 1 (km/stop) (i.e., from 𝑁 = 100 to 𝑁 = 10). We cover this range ten different times for each model
fixed headway vs. fixed fleet size) and for each method (random generation vs. consolidation). Fig. 7 plots the resulting demand
nd passenger-km by spacing. The results of particular simulations are drawn as (semi-transparent) dots, and the average values,
rouped by 𝑠, are connected together as a line.
The simulations with random generation show more variance in ridership and passenger-km when stop spacing is large. This is

ecause different networks with same stop spacing can vary a lot in how those stops are distributed, and hence in how trips are
ade. The simulations with consolidation show less variance because all networks start with a small spacing and are very similar;
hese networks are then pruned to increase the average spacing. Since the networks are similar to begin with, the resulting networks
re also similar and the ridership and passenger-km do not vary much.

9 Note that all networks have the same route. The circumference does not represent the route length.
10 https://github.com/UTEL-UIUC/heterogeneous-trip-lengths hosts the code used to run the simulation.
12 

https://github.com/UTEL-UIUC/heterogeneous-trip-lengths


A. Pandey and L.J. Lehe

l
P
o
i

a
r
o

Transportation Research Part B 189 (2024) 103022 
Fig. 7. 𝑄 and 𝐾 with 𝑠̄.

In Fig. 7, the vertical lines labeled 𝑠∗𝑄 and 𝑠∗𝐾 show the ridership and passenger-kilometers maximizing spacings for each set of
simulations. As expected from the discussion above, all the simulations show that 𝑠∗𝐾 substantially larger than 𝑠∗𝑄. We can compute
these optimum spacings analytically for the demand function and parameters used in the simulation. For the fixed 𝐻 model, the
simulation with random generation gives 𝑠∗𝑄 = 0.29 (km/stop) and 𝑠∗𝐾 = 0.42 (km/stop); the consolidation simulation gives 𝑠∗𝑄 = 0.29
(km/stop) and 𝑠∗𝐾 = 0.43 (km/stop); the analytical solution gives 𝑠∗𝑄 = 0.32 (km/stop) and 𝑠∗𝐾 = 0.44 (km/stop). This means that the
difference between the simulated and analytical 𝑠∗𝑄 is only 10%. Similarly, the passenger-km maximizing spacing only has an error
of 3%. This can partly be explained by the fact that the analytical solution allows for the number of stops to take any real value,
while the simulations only have a natural number of stops. For our 10 km route, 35 stops maximize ridership for both random
generation and consolidation, while analytically the optimal number of stops is 31.68. Similarly for maximizing passenger-km,
random generation gives 24 stops and consolidation gives 23 stops, while the analytical solution says 22.55 stops.

For the fixed 𝐵 model, the simulation with random generation maximizes ridership when spacing is 0.31 (km/stop), consolidation
simulation maximizes it at 0.38 (km/stop), and analytically the optimal spacing is 0.41 (km/stop). This error is much larger
at about 25% for random generation and 7% for consolidation. For maximizing passenger-km, the spacings are 0.48, 0.50, and
0.53, with random generation, consolidation, and analytically; yielding an error of 10%. Hence, the analytical solution consistently
overestimates the optimal spacing by a small amount. The simulations do confirm that 𝑠∗𝐾 is always greater than 𝑠∗𝑄, as proved in
Proposition P7.

Fig. 8 plots the critical trip length, 𝑥̂(𝑠𝑖, 𝑠𝑖+1), between consecutive stop spacings 𝑠𝑖 and 𝑠𝑖+1 for our simulation. The critical trip
ength is increasing for both fixed headway and fixed fleet size models, and for both random generation and consolidation methods.
lot 9(b) shows that the critical trip length is negative when 𝑠𝑖 is very small. A negative 𝑥̂ indicates that the travel time of trips
f all lengths is decreasing as the spacing increases, resulting in a Pareto improvement consistent with Proposition P5. The Pareto
mproving threshold is around 𝑠̃ ≈ 150 (m), for both the random generation and consolidation methods.
We also plot the average trip length for all four simulations in Fig. 9. As proved in Example E4, the simulation confirms that the

verage trip length is always increasing for exponential demand, for both fixed headway and fixed fleet size models, and for both
andom generation and consolidation methods. While this simulation can always be extended to include more realistic features, we

nly use it to show that the general lessons hold even without assumptions of continuous approximation.

13 
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Fig. 8. Critical trip length: 𝑥̂(𝑠𝑖 , 𝑠𝑖+1).

Fig. 9. Average trip lengths.

6. Conclusion

This paper has explored macroscopic, continuum-approximation models of a bus route with the following features: (i) stop
spacing is a design variable; (ii) heterogeneous trip lengths; (iii) elastic demand; (iv) passenger delays. These features are analyzed
in a model with fixed headways (Section 2) and another with endogenous headways (Section 3). We then produced a simulation
which confirmed key results of the analysis for both models (Section 5).

The paper’s models greatly simplify reality. There are no discussions of bus size or crowding inside the bus, financial costs
or fares, road congestion, line spacing or transfers (since there is only one route). The models could be made more realistic by
incorporating these elements. Still, the paper derives useful points which seem broadly plausible:

(i) An increase in spacing generally (exception discussed below) results in a ‘‘critical trip length’’, such that travel times of trips
above the critical trip length rise and those below it fall (Propositions P2 and P4).

(ii) This pattern of travel times rising and falling can induce trips longer than the critical trip length and repel trips shorter
than the critical trip length. Consequently, the stop spacing that maximizes passenger-km traveled is at least as large as the
one that maximizes ridership (Proposition P6) and almost certainly strictly larger (Proposition P7). This is true across both
models.

(iii) The average trip length almost certainly changes with spacing (Section 4.2). Thus, optimality formulae which depend on
an average trip length need to be ‘‘handled with care’’. An agency which optimizes spacings for its current trips will face a
‘‘moving target’’, insofar as the spacing influences what trips are made.
14 
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(iv) If headways fall with spacing (Section 3), and if the spacing is smaller than a threshold 𝑠̃, then a rise in spacing may
reduce expected wait time more than it increases expected access time, which lowers the travel time of every trip length
(Proposition P5).

We conclude with three directions the authors believe to be especially promising extensions of the work.

.1. Case studies

Future work could test the paper’s insights against real-life cases studies. The literature on stop spacing includes not only
heoretical studies but also case studies with precise levels of detail collected from real cities and surveys (e.g., Furth and Rahbee,
000; El-Geneidy et al., 2006; Li and Bertini, 2009; Stewart and El-Geneidy, 2016; Wu et al., 2022). By modeling various stop
spacings with a travel demand model, it may be possible to obtain estimates of the 𝑄(𝑠) and 𝐾(𝑠) functions. Or, if surveys were
collected before and after a stop consolidation, the data may be analyzed to check if the average trip length changed.

6.2. Optimization

The paper’s mode of analysis has been mainly positive rather than normative—that is, to derive certain broad descriptions of
how the world works under declared assumptions, rather than to propose solutions. Still, the work has some obvious implications for
optimal system design. One application where elasticity and trip length heterogeneity would matter is the design of ‘‘hierarchical’’
bus systems. The model of Daganzo and Ouyang (2019, Ch. 5) mentioned in the introduction is part of a larger exposition about
the advantages of having local and express routes to serve passengers of different lengths. Incorporating elastic demand into such
a model would probably show that bifurcating service between local and express routes probably also induces shorter trips (onto
locals) and longer trips (onto express routes). The overall implications of that fact are ambiguous.

Another line of inquiry might involve mode choice. We have made demand elastic but not been specific about what riders do if
they do not ride the bus. In reality, travelers choose walking, cycling, driving and a proliferating menu of ‘‘micromobility’’ modes.
Since driving tends to have a higher fixed cost but cover ground faster, a rough view would suggest wider spacings tend to draw
would-be drivers on longer trips; and, conversely, that narrower spacings draw would-be walkers taking shorter trips. One declared
motivation for subsidizing bus systems is to reduce car traffic, and so such logic ought to bear on system design.

6.3. Other types of passenger heterogeneity

Recall from the introduction that there is now a trend toward bus stop consolidation. The trend reflects a consensus that many
cities have erred too far on the side of reducing access time at the expense of in-vehicle time. This perception is due in part to simple
comparison: some US cities have much narrower mean spacings than others (Pandey et al., 2021; Devunuri et al., 2024). Also, case
studies analyzing stop spacings in real cities (Furth and Rahbee, 2000; Li and Bertini, 2009; Stewart and El-Geneidy, 2016) tend to
recommend consolidation. Stewart and El-Geneidy (2016) suggests removing about 2000 of Montreal’s stops (23% of the total).

It does not take long to remove stops and change bus schedules, but the consolidation trend has been gradual, and one
reason is that agencies face considerations mostly ignored in the theoretical work on stop spacing—specifically, heterogeneous
passengers. Berez (2015) (a survey of best practices for stop consolidation in the US) reports: ‘‘All planners interviewed for this
study said that concerns related to elderly and disabled passengers were among the primary objections to bus stop consolidation’’.
To address these concerns, the model in this paper could be extended to incorporate heterogeneity of access speed. Instead of all
passengers having a universal 𝑣𝑎, there would be a bivariate distribution of trip length and access speed. Passengers with mobility
concerns (such as the elderly and disabled) would be characterized by low values of 𝑣𝑎. But age and disability are not the only
source of heterogeneity: mean urban walking speeds vary substantially among countries (Levine and Norenzayan, 1999), and a few
pedestrian studies have plotted continuous distributions of walking speeds for particular contexts (e.g., Chandra and Bharti, 2013).

One consequence of access speed heterogeneity is that there will not be a singular critical trip length. The critical trip length will
be a function of access speed, rather than a value. The sets of trips that gain and lose travel time following a change in spacing will
compose two-dimensional regions of a (𝑣𝑎, 𝑥) plane, rather than intervals of 𝑥. Fig. 10 illustrates what this would look like for the
fixed headway model. Sufficiently slow walkers with any trip length will see door-to-door travel time rise from 𝑠0 → 𝑠1. So wider
spacing favors longer trips and fast walkers (or, equivalently, people who do not mind walking). In turn, we ought to expect that
the current spacing attracts people with certain access speeds.
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Fig. 10. Regions of the (𝑣𝑎 , 𝑥) plane where travel time rises and falls from a rise in spacing 𝑠0 → 𝑠1.

Appendix

Proof of Proposition P5. Note that
d𝑇 {𝑥, 𝑠,𝑄(𝑠)}

d𝑠
= 1

2𝑣𝑎
+
[ 𝑅
2𝐵

+ 𝑥
]d𝜂
d𝑠

. (A.1)

As 𝑠 increases, in-vehicle and wait times decrease, and access time increases. Since the decrease in in-vehicle time depends on trip
length, we can write the maximum change in travel time as

max
𝑥≥0

d𝑇 {𝑥, 𝑠,𝑄(𝑠)}
d𝑠

= 1
2𝑣𝑎

+ 𝑅
2𝐵

d𝜂
d𝑠

. (A.2)

At 𝑠 = 0, any increase in stop spacing makes the delay fall from infinity to a finite value. Hence,
d𝜂
d𝑠

= −∞ ⟹ max d𝑇
d𝑠

|

|

|

|𝑠=0
< 0. (A.3)

Next, 𝜂2 is increasing and approaches zero as 𝑠 → ∞. Using the intermediate value theorem, we write,

∃ 𝑠𝑐 > 0 such that 𝜂2 = − 1
2𝑣𝑎

1
𝑅∕2𝐵

. (A.4)

When 𝑠 ∈
[

0, 𝑠𝑐
]

𝜂2 ≤ − 1
2𝑣𝑎

1
𝑅∕2𝐵

(A.5)

⟹
1
2𝑣𝑎

+
( 𝑅
2𝐵

+ 𝑥
)

𝜂2 < 0 ∀𝑥 ≥ 0. (A.6)

Since 𝜆2 < 0, 𝜂1 ≥ 0, and ∫ ∞
0 𝜆2(𝑅∕2𝐵 + 𝑥)𝜂2 < 0, we can use (16) to show that

𝑄′ =
∫ ∞
0 𝜆2 ⋅

[

1∕2𝑣𝑎 + (𝑅∕2𝐵 + 𝑥)𝜂2
]

d𝑥
1 − ∫ ∞

0 𝜆2 ⋅ (𝑅∕2𝐵 + 𝑥)𝜂1d𝑥
> 0. (A.7)

Substituting 𝑄′𝜂1 > 0 in d𝜂∕d𝑠 = 𝑄′𝜂1 + 𝜂2, we show that
d𝜂
d𝑠

|

|

|

|𝑠∈[0,𝑠𝑐]
> 𝜂2. (A.8)

This means that d𝜂∕d𝑠 is trapped above 𝜂2 for 𝑠 ∈
[

0, 𝑠𝑐
]

. Hence, it crosses − 1
2𝑣𝑎

1
𝑅∕2𝐵 before 𝜂2. Consequently,

d𝜂
d𝑠

|

|

|

|𝑠=𝑠𝑐
> − 1

2𝑣𝑎
1

𝑅∕2𝐵
⟹ max d𝑇

d𝑠
|

|

|

|𝑠=𝑠𝑐
> 0. (A.9)

Using intermediate Value Theorem, (A.3) and (A.9), we know that there is a spacing where d𝜂∕d𝑠 crosses − 1
2𝑣𝑎

1
𝑅∕2𝐵 . Let 𝑠̃ ∈

[

0, 𝑠𝑐
]

be the smallest such spacing, then

max d𝑇
d𝑠

|

|

|

|∀𝑠<𝑠̃
< 0. (A.10)

Hence,

𝑠 < 𝑠̃ ⟹
d𝑇 {𝑥, 𝑠,𝑄(𝑠)}

< 0 ∀𝑥 ≥ 0. □ (A.11)

d𝑠
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Proof of P6. Consider some spacing 𝑠0 which is smaller than 𝑠∗𝑄. To prove the theorem, we will show that 𝐾(𝑠∗𝑄) is necessarily
arger than 𝐾(𝑠0). There are essentially two cases.

Case 1: Assumption A4 holds and the increase 𝑠0 → 𝑠∗𝑄 yields a negative 𝑥̂.
This is the Pareto improvement case. The move 𝑠0 → 𝑠∗𝑄 must not lower passenger-km traveled, because no trips are repelled.

Case 2: Otherwise. Either Assumption A1 holds (so 𝑥̂ is necessarily positive) or else Assumption A4 holds but 𝑠0 is such that 𝑠0 → 𝑠∗𝑄
yields a positive 𝑥̂. Since 𝑥̂ > 0, the move 𝑠0 → 𝑠∗𝑄 repels trips shorter than 𝑥̂ and induces trips longer than 𝑥̂. Thus, the
total difference in ridership, 𝛥𝑄 ∶= 𝑄(𝑠∗𝑄) −𝑄(𝑠0), and total difference in passenger-km traveled, 𝛥𝐾 ∶= 𝐾(𝑠∗𝑄) −𝐾(𝑠0), can
each be written as the sum of a weakly negative integral and a weakly positive one:

𝛥𝑄 = ∫

𝑥̂

0
𝜆
[

𝑥, 𝑇 (𝑥, 𝑠1, 𝑄1)
]

− 𝜆
[

𝑥, 𝑇 (𝑥, 𝑠0, 𝑄0)
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑄−≤0

d𝑥 + ∫

∞

𝑥̂
𝜆
[

𝑥, 𝑇 (𝑥, 𝑠1, 𝑄1)
]

− 𝜆
[

𝑥, 𝑇 (𝑥, 𝑠0, 𝑄0)
]

d𝑥
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑄+≥0

(A.12)

𝛥𝐾 = ∫

𝑥̂

0
𝑥
{

𝜆
[

𝑥, 𝑇 (𝑥, 𝑠1, 𝑄1)
]

− 𝜆
[

𝑥, 𝑇 (𝑥, 𝑠0, 𝑄0)
]

}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐾−≤0

d𝑥 + ∫

∞

𝑥̂
𝑥
{

𝜆
[

𝑥, 𝑇 (𝑥, 𝑠1, 𝑄1)
]

− 𝜆
[

𝑥, 𝑇 (𝑥, 𝑠0, 𝑄0)
]

}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐾+≥0

d𝑥. (A.13)

Indicating the terms by the labels below them, note 𝑥̂𝑄− ≤ 𝐾− and 𝑥̂𝑄+ ≤ 𝐾+. Thus,

𝑥̂𝛥𝑄 = 𝑥̂𝑄− + 𝑥̂𝑄+ ≤ 𝐾− +𝐾+ = 𝛥𝐾 (A.14)

By construction, 𝑠∗𝑄 is the largest value of 𝑠 that achieves the maximum value of 𝑄 and so 𝛥𝑄 ≥ 0. Per (A.14), 𝛥𝑄 ≥ 0 ⟹

𝛥𝐾 ≥ 0.

In either Case 1 or Case2, passenger-km traveled is at least as large at 𝑠∗𝑄 as at any narrower spacing. Thus, 𝑠∗𝐾 cannot be any
smaller than 𝑠∗𝑄. □

Proof of Proposition P7. To begin, we will establish that under either Assumptions A1 or A4, an infinitesimal rise in spacing at
𝑠∗𝑄 will result in a critical trip length 𝑥̂.

• First, suppose Assumption A1 holds. The derivative
d
d𝑠

|

|

|

|𝑠=𝑠∗𝑄

𝑇
[

𝑥, 𝑠,𝑄(𝑠)
]

= 1∕2𝑣𝑎 + 𝑥𝑈 ′(𝑠) (A.15)

is positive (negative) for 𝑥 smaller than (larger than) 𝑥̂ = −1∕2𝑣𝑎𝑈 ′(𝑠) > 0.
• Second, suppose that Assumption A4 holds. Now we have

d
d𝑠

|

|

|

|𝑠=𝑠∗𝑄

𝑇
[

𝑥, 𝑠,𝑄(𝑠)
]

= 1∕2𝑣𝑎 +
( 𝑅
2𝐵

+ 𝑥
)

𝑈 ′(𝑠). (A.16)

Per Proposition P5, if 𝑠 is larger than the threshold 𝑠̃ then this derivative will be positive (negative) for 𝑥 smaller than (larger
than) some strictly positive critical trip length 𝑥̂. We can assume that 𝑠∗𝑄 is larger than this 𝑠̃. Otherwise, the spacing could be
slightly increased and no trips would be repelled, in which case 𝑠∗𝑄 would not the largest spacing at which 𝑄(𝑠) is maximized.

In either case there exists a strictly positive 𝑥̂ dividing trips repelled from induced. Hence, the derivatives 𝑄′(𝑠∗𝑄) and 𝐾 ′(𝑠∗𝑄) can
be divided between repelled and induced trips:

𝑄′(𝑠∗𝑄) = ∫

𝑥̂

0
𝜆2
[

𝑥, 𝑇
{

𝑥, 𝑠∗𝑄, 𝑄(𝑠∗𝑄)
}]

𝑇2
{

𝑥, 𝑠∗𝑄, 𝑄(𝑠∗𝑄)
}

d𝑥
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑄−<0

+∫

∞

𝑥̂
𝜆2
[

𝑥, 𝑇
{

𝑥, 𝑠∗𝑄, 𝑄(𝑠∗𝑄)
}]

𝑇2
{

𝑥, 𝑠∗𝑄, 𝑄(𝑠∗𝑄)
}

d𝑥
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑄+>0

. (A.17)

𝐾 ′(𝑠∗𝑄) = ∫

𝑥̂

0
𝑥𝜆2

[

𝑥, 𝑇
{

𝑥, 𝑠∗𝑄, 𝑄(𝑠∗𝑄)
}]

𝑇2
{

𝑥, 𝑠∗𝑄, 𝑄(𝑠∗𝑄)
}

d𝑥
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐾−<0

+∫

∞

𝑥̂
𝑥𝜆2

[

𝑥, 𝑇
{

𝑥, 𝑠∗𝑄, 𝑄(𝑠∗𝑄)
}]

𝑇2
{

𝑥, 𝑠∗𝑄, 𝑄(𝑠∗𝑄)
}

d𝑥
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐾+>0

. (A.18)

If there are trips being made at 𝑠∗𝑄 with more than one length, some must have lengths other than 𝑥̂. If all were smaller (larger)
han 𝑥̂, then 𝑄′(𝑠∗𝑄) would be negative (positive). But the first-order condition on a maximum requires 𝑄′(𝑠∗𝑄) = 0. So there must be
rips made both shorter and larger than 𝑥̂: i.e., 𝑄− < 0 and 𝑄+ > 0. It follows from 𝑄− < 0 that 𝑥̂𝑄− < 𝐾− and from 𝑄+ > 0 that
+ > 𝑥̂𝑄+. Thus,

𝑥̂𝑄′(𝑠) = 𝑥̂𝑄− + 𝑥̂𝑄+ < 𝐾− +𝐾+ = 𝐾 ′(𝑠). (A.19)

Again, since 𝑠∗𝑄 is a maximum, 𝑄′(𝑠∗𝑄) = 0 and so 𝐾 ′(𝑠∗𝑄) > 0: i.e., 𝐾 is rising at 𝑠 = 𝑠∗𝑄. Since Proposition P6 shows 𝑠
∗
𝐾 ≥ 𝑠∗𝑄, it

∗ ∗
must be that 𝑠𝐾 > 𝑠𝑄. □
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