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Abstract

This study was grounded in the spatial computational thinking model developed by the
3D Weather project funded by the NSF STEM+C program. The model reflects a
discipline-based perspective towards computational thinking and captures the spatial
nature of computational thinking in meteorology and the reliance of computational
thinking on spatial thinking for geospatial analysis. The research was conducted among
nineteen teachers attending the summer workshop offered by the project in its third
project year to prepare them for teaching spatial computational thinking with IDV
(Integrated Data Viewer, downloadable at https://www.unidata.ucar.edu/software/idv/)
visualization of weather data. Quantitative survey data were collected measuring these
teachers’ meteorology content knowledge, spatial computational thinking, self-efficacy
for teaching spatial computational thinking, and epistemic cognition of teaching me-
teorology. The data were analyzed to examine the effects of the workshop in terms of
these variables and the correlations among them were also explored.
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Introduction

Wing argues in her seminal article of 2006 that computational thinking (CT) is a
fundamental skill to be taught to all students alongside reading, writing, and mathe-
matics. Ever since then, computational thinking has received considerable attention
from STEM educators and researchers with continued efforts to teach it to K-12
students as an important problem-solving skill set. In the same year, the National
Research Council (2006) published the report Learning to Think Spatially highlighting
spatial thinking as the thought process that “is integral to everyday work of engineers
and scientists” and “has underpinned many scientific and technical breakthroughs” (p.
5). This report has sparked a new interest among researchers to examine spatial thinking
in STEM education, especially in those spatially demanding STEM disciplines, such as
geoscience, chemistry, and mechanics (Hegarty, 2010). Although recent years have
seen emerging efforts (e.g., Citta et al., 2019; Ham, 2022; Moschella & Basso, 2020) to
put computational thinking and spatial thinking under the same lens, they are mostly
treated as separate thinking processes in the K-12 STEM education arena.

What’s missing in the landscape of computational thinking and spatial thinking
research is a discipline-based perspective that recognizes the reliance of computational
thinking on spatial thinking in some STEM disciplines, such as meteorology. Mete-
orologists can envision atmospheric movement, forecast upcoming weather, and
predict weather events by analyzing and interpreting two-dimensional weather maps
and satellite imagery, and visualizing large scale weather data obtained through a mix of
weather satellites and on-the-ground weather sensors. Besides meteorological
knowledge, computational thinking alone does not explain how meteorologists make
sense of three-dimensional atmospheric processes because the maps, images, and
numerical data they use encode a large amount of spatial information that needs to be
processed by thinking spatially. The three-dimensional nature of the atmosphere and
the consequent spatial nature of the tasks undertaken by meteorologists in geospatial
analysis determine that computational thinking in meteorology takes place in spatial
contexts and builds on spatial thinking. This is a special type of computational thinking
referred to as “spatial computational thinking” by the 3D Weather project.

Funded by NSF STEM+C program', the 3D Weather project designed and de-
veloped IDV visualization modules to teach spatial computational thinking through
visualization of real weather data with IDV. Summer workshops were offered to prepare
teachers for using the modules to teach spatial computational thinking. The research
reported in this paper was conducted on the teachers who attended the project’s third
year summer workshop for the purpose of assessing the workshop’s impact on these
teachers in terms of spatial computational thinking, epistemic cognition of teaching
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meteorology, and self-efficacy in teaching spatial computational thinking with IDV
visualization of weather data.

Background

K-12 Computational Thinking Education: A Lack of
Discipline-Based Perspective

Computational thinking is defined as an approach to problem solving that draws on
concepts and mental tools in computer science (Brennan & Resnick, 2012; Grover &
Pea, 2013; Wing, 2006). Ever since Wing’s paper, computational thinking has become a
buzzword in the K-12 education research field driving researchers to define it and
identify its skill set. There is a lack of consensus on the skills that fall within the domain
of computational thinking. We reviewed 15 computational thinking frameworks or
models (including Wing’s) that are highly cited in the literature: Angeli et al.(2016),
Atmatzidou and Demetriadis (2016), Barr and Stephenson (2011), Brennan and
Resnick (2012), Gouws et al. (2013), Grover and Pea (2018), KaleliOglu et al.
(2016), Moreno-Le6n et al. (2015), National Research Council NRC (2010), Palts
and Pedaste (2020), Selby and Woollard (2013), Shute et al. (2017), Weintrop et al.
(2016), Wing (2006), Yadav et al. (2014). Table 1 lists the top 15 computational
thinking skills in these reviewed frameworks or models.

Wing’s (20006) article ignited the K-12 educational enthusiasm in computational
thinking over the past 16 years, but the term “computational thinking” was first used by

Table I. Top I5 Computational Thinking Skills Based on Literature Review.

Comeputational Thinking Skills

¢ Abstraction

* Decomposition

Algorithms (algorithmic thinking/design)

* Debugging

» Data (management, collection, manipulation, analysis, representation, visualization)
* Generalization

Parallelism (parallelization)

¢ Automation

Iteration

Simulation (modelling and simulation)
Evaluation

Logical thinking (logic)

* Pattern recognition

* Procedures

* Modularization (modularity)
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Seymour Papert in 1980 (Citta et al., 2019; Lodi & Martini, 2021). According to Lodi
and Martini (2021), Papert’s CT has a different nuance of meaning related to his
constructionist approach emphasizing the social and affective involvement of students
in constructing computational artifacts. Despite the difference, both Papert’s CT and
Wing’s CT carry the idea that competencies acquired as computational thinking in
computer science will transfer easily or even automatically to other disciplines. This
unverified claim, explaining the appeal of CT in K-12 education (Lodi & Martini,
2021), has unfortunately led to the widespread practice of (1) using the values, norms,
and practices in computer science to shape the discourse around CT integrated STEM
education curriculum and pedagogy, and (2) ignoring how CT is practiced by prac-
titioners in other STEM disciplines. Unsurprisingly, the extensive use of programming
to teach CT in K-12 and a history in research of using programming for CT skill
development have perpetuated the confusion that CT is the same as programming and
has to, at least, involve programming (Voogt et al., 2015).

Such confusion originates from and reflects the lack of a disciplined-based per-
spective towards CT that goes against providing students with authentic CT experi-
ences as taking place in real world STEM fields. Although recent years have seen more
science educators using science content (such as ecosystem) and scientific practices
(such as modeling) as contexts for CT development (Yang, et al., 2021), spatial thinking
as meaningful contexts for computational thinking and CT development is still a
missing piece in K-12 STEM+CT education and research.

Spatial Thinking and Spatially Demanding STEM Disciplines

Spatial thinking represents our spatial ability to generate, retain, retrieve, and transform
well-structured visual images (Lohman, 1993). Compared with computational
thinking, spatial thinking has much longer research history especially in the field of
cognitive psychology. More than 100 years’ psychology research focused on identi-
fying the skill set of spatial ability has made it one of the most researched human
cognitive processes (Carroll, 1993). According to Lohman (1993), spatial ability “is not
a unitary construct, and there are, in fact, several spatial abilities, each emphasizing
different aspects of the process of image generation, storage, retrieval, and transfor-
mation” (p. 3). Lohman’s definition highlights the dynamic and multidimensional
nature of spatial ability that has driven psychology research for more than a century.
Prior research using the psychometric approach of factor analysis yielded different
factor structures of spatial ability, such as the three-factor structure by Lohman (1979)
(i.e., spatial relations, spatial orientation, and spatial visualization) and Linn and
Petersen (1985) (i.e., spatial perception, mental rotation, and spatial visualization);
and the five factor-structure by Carroll (1993) (i.e., visualization, spatial relations,
speed of closure, flexibility, and perceptual speed). Uttal and his colleagues (Uttal et al.,
2013) identified five spatial sub-skills based on their analysis of 217 research studies:
mental rotation, spatial visualization, spatial perception, perspective taking, and
disembedding.
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Parallel to the above psychometric research path are research efforts on the rela-
tionship between spatial ability and STEM education. Invited by NSF 65 years ago,
Super and Bachrach (1957) worked with an advisory panel to review published
research and theories and identified and emphasized spatial ability, throughout their
advisory panel report, as one of the essential aptitudes of scientists, mathematicians,
and engineers. Ever since then, research evidence has accumulated supporting a
positive link between spatial ability and creativity, achievement, and expertise de-
velopment in STEM fields (e.g., Cheng & Mix, 2014; Lowrie et al., 2017; Rochford,
1985; Small & Morton, 1983; Sorby et al., 2013; Uttal et al., 2013). Longitudinal
studies (e.g., Austin & Hanisch, 1990; Shea et al., 2001; Wai et al., 2009; Webb et al.,
2007) provide further evidence confirming the positive link between spatial ability and
educational-occupational achievements in STEM.

The National Research Council (2006) published the report Learning to Think
Spatially that approaches the nature of spatial thinking from its three elements: spatial
concepts, tools of representation, and processes of reasoning. The report delivers a clear
discipline-based perspective on spatial thinking by acknowledging that, though spatial
thinking is a universal mode of thinking, it has distinctly different manifestations in
different disciplines: while there are general spatial concepts and spatial reasoning
processes common across the STEM disciplines, these three elements can also be
discipline-specific for different STEM disciplines. As such, expertise in spatial thinking
is also discipline-specific (National Research Council, 2006):

® Expertise in spatial thinking draws on both general spatial skills that cross many
domains of knowledge and spatial skills that are a particular domain of
knowledge.

® Expertise in spatial thinking develops in the context of specific disciplines and
becomes transformed and refined through training and extensive practice. (p. 5)

Reflecting the discipline-based perspective of spatial thinking from the National
Research Council report is the disciplined-focused lens used by Atit et al. (2020) in
their review of (1) research on spatial thinking skills used by experts in structural
geology, surgery, and chemistry, and (2) their personal experiences and research as
experts in these disciplines. Findings reported by Atit et al. (2020) regarding spatial
thinking in STEM discipline include: (1) solving spatial problems require using domain
knowledge, and spatial thinking in STEM is context-dependent and domain
knowledge-integrated; (2) spatial problems occurring in STEM contexts are more
complex than those spatial tasks in psychometric spatial skill tests and, consequently,
spatial thinking as practiced by STEM practitioners in solving spatial problems is of
greater complexity as compared to the thinking processes captured by psychometric
measures of spatial thinking skills; (3) spatial skills that involve using and interpreting
specific tools of representation reflect disciplinary core ideas of a STEM discipline and
are important for reasoning and understanding within the discipline.
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Spatial Computational Thinking and 3D Weather IDV
Visualization Modules

Research has indicated that spatial thinking and spatial ability play an important role in
many STEM fields, including physics, chemistry, mathematics, engineering, geo-
science, and medicine (Atit et al., 2020; Kastens & Ishikawa, 2006). While space
becomes the unifying theme across such spatially demanding STEM disciplines, spatial
thinking is discipline-specific in terms its contexts, domain knowledge, and tools of
representation (Atit et al., 2020). Meteorology is the scientific study of the atmosphere
that focuses on weather processes and forecasting, and it is highly spatial due to the
atmosphere being a thick “ocean” of air moving in different and constantly changing
directions. In geospatial analysis for understanding, interpreting, and predicting at-
mospheric processes, meteorologists analyze and visualize geographically distributed
weather data displayed through representations of 2D or 3D maps, charts, plots, and
images. Spatial thinking sits at the core of the cognitive processes during geospatial
analysis. The highly spatial nature of the tasks in geospatial analysis dictates that
meteorologists’ computational thinking for problem solving relies on their ability to
think spatially.

Embracing a discipline-based perspective towards computational thinking and
spatial thinking in meteorology, the 3D Weather project followed three learning design
principles in developing its IDV Visualization Modules: (1) having a spatial com-
putational thinking model that captures the spatial nature of computational thinking in
meteorology; (2) grounding computational thinking on domain knowledge-based
contexts of meteorology, and (3) involving the use of a tool of representation that
is important for reasoning and understanding within meteorology. Following these
principles, the project team developed the 3D Weather Spatial Computational Thinking

Computational Thinking

Task Decomposition
+ Pattern recognition
* Generalization

* Systems thinking

Figure |. 3D Weather spatial computational thinking model.
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Model (Figure 1) through a literature review of computational thinking and spatial
thinking skills and a Delphi study (Linstone & Turoff, 1975). Specifically, the project
team (1) identified a list of computational thinking and spatial thinking skills based on a
literature review of computational thinking (see Table 1) and spatial thinking (e.g.,
Carroll, 1993; Ekstrom et al., 1976; Gagnier et al., 2017; Hegarty, 1992; Hegarty &
Sims, 1994; Hsi et al., 1997; Linn & Petersen, 1985; Lohman, 1979, 1996; Uttal et al.,
2013; Voyer et al., 2007) with special attention paid to spatial thinking research in
geosciences (e.g., Kali & Orion, 1996; Kastens & Ishikawa, 2006; McNeal, 2017;
McNeal et al., 2019; Reynolds, 2012); (2) created a survey including these compu-
tational thinking and spatial thinking skills and their definitions; (3) sent the survey to
the geosciences faculty at Mississippi State University asking them to identify
computational thinking and spatial thinking skills relevant to geospatial analysis in
meteorology; and (4) finalized the 3D Weather Spatial Computational Thinking Model
based on the survey responses.

The computational thinking and spatial thinking skills in the above model are not
two separate sets of cognitive skills. Instead, they represent two inseparable cognitive
dimensions in geospatial analysis or weather data visualization tasks. The “Compu-
tational Thinking” dimension reflects the nature of problem solving in weather data
visualization tasks undertaken by meteorologists: diagnosing a complex weather
system by decomposing tasks or interactions that contribute to the weather system (i.e.,
task decomposition) while taking into consideration various relationships and inter-
actions among the components (e.g., atmosphere, water, solar energy) in the Earth and
climate systems (i.e., systems thinking) for the purpose of recognizing patterns in
weather phenomena or atmospheric processes (i.e., pattern recognition), and identi-
fying shared features in these weather patterns and using them for understanding and
predicting future weather conditions (i.e., generalization). The “Spatial Thinking”
dimension represents the spatial thinking skills (i.e., spatial visualization, mental
animation, perspective taking, object location memory, spatial reasoning, visual
penetrative ability, spatial orientation/spatial perception, and disembedding) that are
essential to use with computational thinking for problem solving in visualization tasks.
Table 2 lists the definitions of the spatial thinking skills in the 3D Weather Spatial
Computational Thinking Model.

The 3D Weather project team developed 24 IDV visualization modules (Table 3)
that require using the computational thinking skills along with the spatial thinking skills
in Figure 1 for weather data visualization tasks. These tasks are authentic in nature
reflecting realistic and messy problems dealt by meteorologist that demand using
multiple computational thinking skills and spatial thinking skills at the same time. This
authentic nature distinguishes the 3D Weather IDV visualization modules from those
traditional K-12 computational thinking activities or spatial thinking psychometric tests
that involve one specific skill at a time. Figure 2 offers an overview of an IDV vi-
sualization task from Module 11 that focuses on wind and pressure patterns of the
“1993 Super Storm” on March 13, 1993.
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Table 2. Spatial Thinking Skills and Their Definitions.

Spatial Thinking Skill Definition

Spatial visualization The ability to generate a mental image and operate various mental
manipulations (such as rotation) to the image

Mental animation The ability to infer motion from information given in static 2D or
3D images

Perspective taking The ability to envision how something would appear from different

vantage points, orient oneself to the external framework of the
surrounding environment, and coordinate spatial relationships
from different viewpoints

Object location memory The ability to remember the spatial locations of previously seen
objects or phenomena

Spatial reasoning The ability to construct mental presentations for spatial objects
and reason about their relationships and transformations
Visual penetrative ability The ability to visualize the cross section of the interior of an object
as it is sliced at different locations and at different angles
Spatial orientation/spatial The ability to identify the position or direction of objects or points
perception in space (Benton & Tranel, 1993), and to recognize and

comprehend the relationship between one’s location in space
and objects in the external environment

Disembedding The ability to process visual information in a complex or chaotic
display by selectively focusing on specific important features or
patterns (“the signal”) and ignoring those distracting,
nonessential ones (“the noise”)

As demonstrated in the example in Figure 2, the visualization task involves using
multiple computational thinking skills (i.e., task decomposition, pattern recognition,
and systems thinking) and spatial thinking skills (i.e., spatial visualization, mental
animation, object location, spatial orientation/spatial perception, and disembedding).
The term “spatial computational thinking” has been used in the 3D Weather project and
this paper to capture (1) the reliance of computational thinking on spatial thinking for
problem solving in spatial demanding contexts, and (2) the cognitive process and
ability to apply computational thinking and spatial thinking effectively for completing
weather data visualization tasks.

Each of the 24 IDV visualization modules includes a .xidv file that was created using
publicly available NWP (Numerical Weather Predication) model data. Table 3 lists the
24 1DV visualization modules and their data sources. The first 12 modules are
structured into four units corresponding to the four themes of temperature (modules 1—
3), atmospheric moisture (modules 4-6), pressure and wind (modules 7-9), and mid-
latitude cyclones and fronts (modules 10-12). Each of the four units contains two
individual lecture-type presentations that cover various topics to furnish teachers and
students with necessary domain knowledge-based contexts for completing the IDV
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Table 3. 3D Weather IDV Visualization Modules and Data Sources.

IDV Visualization Module

Weather Data Source*

Module I: Global temperature patterns
Module 2: Seasonal temperature cycle

Module 3: Diurnal temperature cycle
Module 4: Global moisture Distribution

Module5: Visualizing Cloud

Module 6: 3D structure of moisture
transport

Module 7: Visualize global pressure and
wind patterns

Module 8: Visualize pressure and wind
fields at different levels

Module 9: Visualize the jet stream

Module 10: Temperature structure of a
mid-latitude cyclone

Module | I: Wind and pressure patterns in
a mid-latitude cyclone

Module 12: Evolution of a mid-latitude
cyclone

Module 13: Katrina versus Tip

Module 14: Hurricane sandy

Module

5: Indian monsoon

Module

6: ITCZ

Module
Module

17:
18:

Heat wave
Blizzard

Module 19: 2010 Nashville flood
Module 20: 201 | tornado outbreak

Module 21: ENSO — Defining Module22:
Teleconnections

Module 22: ENSO — Weather impacts US

Module 23: Polar vortex

Module 24: Southern hemisphere polar
jet

I° x ° GFS output for Jun 5, 2020 @ 0000 UTC

I° x 1° GFS output for 1 day of each month for
2018 @ 0000 UTC [I2 files]

I3-km RAP output for May 15, 2019 from 0000 -
2300 UTC [24 files]

I° x |° GFS output for Ist day of each month for
2018 @ 0000 UTC [I2 files]

I° % 1° GFS output for Jun 5, 2020 @ 0000 UTC

12-km NAM output for Apr 30 — May 4, 2010 @
0000 UTC for each day [5 files]

.5° x 0.5° GFS output for Jan 22,2018 @ 1200 UTC

12-km NAM output for Jan 22, 2018 @ 1200 UTC

12-km NAM output for Jan 22, 2018 @ 1200 UTC
32-km NARR output for Mar 13, 1993 @ 1200 UTC

32-km NARR output for Mar 13, 1993 @ 1200 UTC

32-km NARR output for Mar 10-14, 1993 @ 1200
UTC for each day [5 files]

.25° x .25° GFS output for Aug 29, 2005 @ 0000
uTC

.25° x 25° GFS output for Oct 25, 2012 @ 1800
uTC

.25° % .25° GFS output for Jan 7th, 2018 @ 1800
UTC and Jul 7th, 2018 @ 1800 UTC [2 files]

.25° % .25° GFS output for Oct 19, 2021 @ 1200
uTC

12-km NAM output for Jul 7, 2021 @ 0000 UTC

.25° x .25° GFS output for Sep 30, 2021 @ 0000
uTC

12-km NAM output for May Ist, 2021 @ 1200 UTC

12-km NAM output for Apr 27,2021 @ 0600 UTC

I° % 1° GFS output for Feb 12, 2011 and Feb 12,
2019 @ 1800 UTC [2 files]

.25° x .25° GFS output for Jan |, 2016 (EI Nino) @
0000 UTC and Dec 26, 2017 (La Nina) @ 0000
uTC

.25° x .25° GFS output for Jan 3,2019 @ 0600 UTC
.25° % .25° GFS output for Jun 10, 2019 @ 1800

UTC
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*Note: Data source description includes the spatial resolution and model type, as well as the valid date and
time for each output file (UTC = Coordinated Universal Time). The acronyms for the model types are as
follows: GFS = Global Forecast System; RAP = Rapid Refresh; NAM = North American Mesoscale; NARR =
North American Regional Reanalysis. For modules using more than one file, the total number of files is listed
in brackets. All model files are in gridded binary format.

The displays in the Legend box include: (1) Maps (Blue Marble underlay; world and country, World country
outlines): (2) Plan View: color-shaded geopotential heights maps at 300, 500, 850, and 1000 hPa; and (3) Plan
View: Wind vectors at 300, 500, 850, and 1000 hPa. Visualization Overview: The geopotential height map at the
surface (1000 hPa) shows the cut-off low pressure center of the cyclone (Image D). Overlaying the height map
with the corresponding wind vectors at 1000 hPa reveals the cyclonic flow around the low-pressure center (Image
E). Visualizing the geopotential height maps from 1000hPa and going up in altitude reveals the pattern that the
center of the cyclone tilts towards west with increasing height and the ““closed™ cyclonic flow at the 1000-850 hPa
levels becomes not-closed and wave-like at higher levels as shown in Image F with all four height maps visible.
1= BT e ———  Legens

Image D

Image E

Figure 2. Visualizing wind and pressure patterns of “1993 super storm” on 3/13/1993.

visualization modules. The lecture-type presentations were developed by the subject
matter expert on the project using a variety of sources from textbooks, internet sources,
and other educational materials. The topics covered in the presentations are listed
below. As shown in Table 3, modules 13-24 are based on extreme weather events in
history and were developed as comprehensive applications of knowledge and spatial
and computational thinking skills developed in modules 1-12.

> Unit 1: Temperature
Presentation 1: Global Temperature Patterns (Topics: global energy balance,
energy balance over oceans and land, and vertical temperature pattern)
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Presentation 2: Daily Seasonal Temperature Variations (Topics: understanding
sun angle, seasonal temperature cycles, and diurnal temperature cycles)

> Unit 2: Atmospheric Moisture
Presentation 1: Defining Moisture and Saturation (Topics: What is “air”?, the
three phrases of water, and what is “humidity”?)
Presentation 2: Measures of Atmospheric Moisture (Topics: measures of at-
mospheric moisture, relative humidity, and dew point)

> Unit 3: Pressure and Wind
Presentation 1: Overview of Pressure and Wind (Topics: What is atmospheric
pressure?, What causes changes in air pressure?, and What causes wind?)
Presentation 2: Pressure and wind at different atmospheric levels (Topics: surface
pressure and wind patterns, Why does wind speed increase with height?, and
What are atmospheric jets and why do they exist?)

> Unit 4: Mid-latitude Cyclones and Fronts
Presentation 1: Cold and Warm Fronts (Topics: air masses, structure of a worm
front, and structure of a cold front)
Presentation 2: Life cycle of a Mid-latitude cyclone (Topics: What is a mid-
latitude cyclone?, stages of a mid-latitude cyclone, and structure of a mid-latitude
cyclone)

In accordance with the third learning design principle mentioned earlier, IDV was
the tool of representation chosen by the project team for developing the visualization
modules. Although a variety of software packages exist that allow for visualization of
gridded scientific data, IDV meets both the project’s and teachers’ needs because it is
freely available, has a broad variety of visualization tools within a relatively compact
graphical user interface (GUI) environment, is purpose-built for meteorological data so
that it can ingest common NWP model files, and is flexible across platforms as a Java-
based software program. With the visualization tools available in IDV and the real
weather data used for visualization, 3D Weather IDV Visualization Modules provide
unique learning experience for developing computational and spatial thinking skills.
This is authentic learning (Strobel et al., 2013; Sun et al., 2019) anchored in mete-
orology and reflecting what professionals do in geospatial analysis.

3D Weather Summer Workshop

The 3D Weather project offered summer workshops to help teachers teach spatial
computational thinking to their students with the IDV Visualization Modules. The
workshop reported in this paper was the third-year summer workshop in 2022. This is a
two-week workshop with the first week being online through a self-paced Canvas
course and the second week in-person. While the first week online course covered the
lectures of domain knowledge in the four units of temperature, atmospheric moisture,
pressure and wind, and mid-latitude cyclones and fronts, and an overview of the spatial
computational thinking skills (Figure 1), the second week in-person training provided
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ample hands-on opportunities for teachers to explore IDV visualization of weather data
and for teaching spatial computational thinking. Specifically, the in-person training
consisted of three major components for the first four days from Monday to Thursday:

(1) the IDV visualization of weather data component led by the subject matter
expert that included: exploring the visualization features in IDV, using IDV to
visualize atmospheric processes or patterns in modules 1-12, introducing
weather-event-based modules, and creating . xidv files of the teachers’ own
choice of weather data.

(2) the teaching spatial computational thinking with IDV visualization component
led by the STEM education researcher in the project team that included:
exploring the computational thinking and spatial thinking skills in the 3D
Weather Spatial Computational Thinking Model through specific examples,
discussing the teacher’s guides created by the project team on teaching spatial
computational thinking with IDV visualization of weather data, and learning
how to teach with the “Engage, Observe, and Explain & Communicate”
pedagogy as modeled in the IDV visualization activities in the teacher’s guides.

(3) the lesson planning component that allowed the teachers time to create their
lesson plans for teaching spatial computational thinking with IDV visualization
in the Fall and Spring semesters following the workshop and work in seven
groups to prepare their group mini lessons for Friday.

On the Friday of the in-person training week, each of the seven groups taught their
mini lesson of about 15 minutes followed by a discussion and feedback session with the
project team.

Theoretical Framework

Embracing a discipline-based perspective towards computational thinking and spatial
thinking, 3D Weather IDV Visualization Modules (1) introduced a new pedagogy for
teaching spatial computational thinking contextualized in meteorology, and (2) created
an innovative science education opportunity for leveraging the positive link between
spatial ability and educational-occupational achievements in STEM. Teachers are the
active agent whose competency and willingness will determine if the pedagogy and the
science education opportunity can take place in K-12 classrooms. Therefore, the
research in this study focused on examining and understanding the effects of the 3D
Weather summer workshop on teachers. The research was guided by the teacher
knowledge and belief framework built on a teacher knowledge-based perspective and a
teacher belief-based perspective. From the teacher knowledge-based perspective, the
study focused on teachers’ domain knowledge in meteorology and spatial computa-
tional thinking skills to quantify their relationship and to investigate the effects of the
summer workshop.
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From the teacher belief-based perspective, the study specifically looked at two
teacher related constructs: epistemic cognition and teacher self-efficacy. Epistemic
cognition refers to people’s beliefs about knowledge and the process of knowing, and it
“concerns how people acquire, understand, justify, change, and use knowledge in
formal and informal contexts” (Greene et al., 2016, p. 1). Teachers’ epistemic cognition
provides insight into their development as teachers and their teaching practices (e.g.,
Lunn Brownlee et al., 2011, 2016) and can be classified according to different de-
velopmental levels that are subject to change (Feucht, 2011). It has been revealed that
teachers with availing epistemic cognition are receptive to epistemic development and
less resistant to educational reform, which in turn influences teaching practices, stu-
dents’ epistemic cognition, and the epistemic climate of the classroom (Feucht, 2011).
Compared to epistemic cognition, the construct of teacher self-efficacy is more
straightforward: while self-efficacy, in general, is people’s belief in their capabilities to
organize and execute the courses of action to produce given attainments (Bandura,
1997), a teacher’s self-efficacy refers to his/her ability to successfully cope with
teaching and learning related tasks and challenges (Caprara et al., 2006; Lazarides &
Warner, 2020). Research has shown that teachers with higher levels of teacher self-
efficacy are more open to new teaching methods and more willing to deal with
challenges and adjust teaching strategies when facing difficulties (Lazarides & Warner,
2020). In the context of 3D Weather summer workshop, the study quantitatively
examined teachers’ epistemic cognition of teaching meteorology and their self-efficacy
of teaching spatial computational thinking with IDV visualization to reveal the effects
of the workshop on these two constructs and their relationship with teachers’ domain
knowledge and spatial computational thinking skills.

Methodology

Research Design

Adopting a quantitative survey research design, this study collected data from the
teachers who attended the 3D Weather summer workshop in 2022. The data were
analyzed to answer the research questions: (1) How does the summer workshop affect
teachers’ spatial computational thinking, self-efficacy in teaching spatial computational
thinking with IDV visualization of weather data, and epistemic cognition of teaching
meteorology? and (2) How is teachers’ domain knowledge in meteorology related to
their spatial computational thinking and self-efficacy in teaching spatial computational
thinking with IDV visualization of weather data?

Participants

The project team reached out to the six partner school districts in Mississippi listed in
the original grant proposal to recruit teachers. Nineteen teachers from 12 schools in
these school districts were recruited on a voluntary basis to attend the 3D Weather 2022
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summer workshop that included one-week online Canvas course and one-week in
person training. These teachers completed the assessment tests in the Canvas course
and responded to the pre- and post-surveys. Their assessment test results and responses
to the surveys were analyzed to answer the research questions. The demographic
information regarding these teachers’ gender, race, subject area & grade level, and years
of teaching experience was presented in Table 4.

Instruments

The instruments used in this study included (1) four knowledge assessment tests
corresponding to the four units of temperature (24 questions), atmospheric moisture (24
questions), pressure and wind (32 questions), and mid-latitude cyclones and fronts (27
questions), and (2) an online survey that includes questions about teachers’ demo-
graphic information and three subscales: subscale I of spatial computational thinking
(13 items), subscale II of epistemic cognition of teaching meteorology (23 items), and
subscale III of self-efficacy of teaching spatial computational thinking with IDV vi-
sualization (7 items). Each of the four knowledge assessment tests has a total score of

Table 4. 3D Weather 2022 Summer Workshop Teachers’ Demographic Information.

S

Category

Gender Male
Female |
Race African american
Caucasian |
Subject area & grade level All subjects (K-6)
Math & science (3™ — 5 grades)
Gifted (all subjects) (37 — 8%)
Highly gifted (all subjects) (2™ - 5
Math (5% and 6™ grades)
Math (6%, 7, or 8™)
Science (6™)
Science (7™ & 8%)
Science (special ed) (7%, 8™, & 10%)
Math, science, & English (special ed) (11™ & 12%)
ELA and math (6™ — 8%)
ELA interventions

Years of teaching experience -5 years

6 — 10 years

Il =15 years

16 — 20 years

2] — 25 years

26 — 30 years

More than 30 years

NNWAWRA— —————— A ———U1— NN ®—
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100 points. All items in the three subscales use a 6-point Liker scale from “strongly
disagree” (scored as “17) to “strongly agree” (scored as 6). Of the 23 items in subscale
II, 10 items reflect the epistemic cognition of teaching meteorology with traditional
method (i.e., scientific facts and rote learning based), 7 items reflect the epistemic
cognition of teaching meteorology with computational thinking and practices (i.e.,
practices involving using computational tools, such as IDV, for weather data visual-
ization), and 6 items reflect the epistemic cognition of teaching meteorology with
scientific practices (i.e., practices reflected in such science education methods as hands-
on science experiences, project-based science learning, and inquiry-based science
learning).

Measures and Data Analysis

The teachers took each of the four knowledge assessment tests after completing the
corresponding unit on Canvas during the first week of the summer workshop. The mean
of the four knowledge assessment tests was calculated to give each teacher a knowledge
score. The survey was administered to the teachers both before and after the summer
workshop. The mean item score was calculated respectively for subscale I and subscale
III both for pre- and post-workshop survey responses. For subscale II, the mean item
score for each of three types of epistemic cognition was calculated for both pre- and
post-workshop surveys. Table 5 summarizes the variables measured in this study and
their operational definitions. Spearman correlation tests, Friedman rank-sum tests, and
Wilcoxon signed rank tests were conducted using SPSS (version 28) for data analysis.

Results

All variables in Table 5, except Knowledge Score, were dependent variables (DV) and
had both pre- and post-workshop data. Knowledge Score was an independent variable
(IV) and had only post-workshop data. The descriptive statistics of the pre- and post-
workshop data are reported in Table 6 below.

Impact of Summer Workshop on Spatial Computational Thinking Score

A Wilcoxon signed rank test was conducted to compare the pre- and post-workshop
S-CT Scores. The test result indicates that post-workshop S-CT scores (MD =4.77, n=
19) were significantly higher than pre-workshop S-CT scores (MD =4.00, n =19), z=
3.42, p < .001.

Impact of Summer Workshop on Self-Efficacy Score

To compare the pre- and post-workshop Self-efficacy Scores, another Wilcoxon signed
rank test was conducted. The test result indicates that post-workshop Self-efficacy



1076 Journal of Educational Computing Research 62(4)

Table 5. Variables and Operational Definitions.

Variable (IV or DV) Operational Definition

Knowledge score (IV) This variable represents teachers’ knowledge of the
meteorology content presented in the units of
temperature, atmospheric moisture, pressure & wind,
and mid-latitude cyclone & fronts and is measured as the
mean score of the four knowledge assessment tests

Spatial computational thinking (S- The variable represents teachers’ spatial computational

CT) score (DV) thinking ability contextualized in meteorology and IDV
visualization and is measured as the mean score of the 13
items in subscale |

Epistemic cognition Score-1 (DV) This variable represents teachers’ epistemic cognition of
teaching meteorology with traditional science education
method and is measured as the mean score of 10 items
out of the 23 items in subscale II.

Epistemic cognition score-2 (DV) This variable represents teachers’ epistemic cognition of
teaching meteorology with computational thinking and
practices and is measured as the mean score of 7 items out
of the 23 items in subscale II.

Epistemic cognition score-3 (DV) This variable represents teachers’ epistemic cognition of
teaching meteorology with scientific practices and is
measured as the mean score of 6 items out of the 23 items
in subscale II.

Self-efficacy score (DV) This variable represents teachers’ perception of their
efficacy in teaching spatial computational thinking with
IDV visualization and is measured as the mean score of the
7 items in subscale Ill.

Scores (MD = 4.43, n = 19) were significantly higher than pre-workshop Self-efficacy
Scores (MD = 3.00, n = 19), z = 3.83, p < .001.

Correlation Between Spatial Computational Thinking Score and
Self-Efficacy Score

Two Spearman correlation tests were conducted with one on pre-workshop S-CT Score
and Self-efficacy Score data and the other on post-workshop S-CT Score and Self-
efficacy Score data. The results indicate that: (1) there was a significant positive
correlation between pre-workshop S-CT Score (MD = 4.00, n = 19) and Self-efficacy
Score (MD = 3.00, n = 19), g (17) = .626, p = .004, and (2) there was no significant
correlation between post-workshop S-CT Score (MD =4.77, n = 19) and Self-efficacy
Score (MD = 4.43, n = 19), 1, (17) = .336, p = .160.

Two new variables were created with S-CT Score Difference representing the
difference between post-workshop and pre-workshop S-CT Scores and Self-efficacy
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Table 6. Descriptive Statistics of the Variables.

Descriptive Statistics

Pre-Workshop Post-Workshop

Variable Mean MD SD Range Min Max Mean MD SD Range Min Max

Knowledge / / / / / / 92.07 92.50 425 195 7875 99.25
score

S-CT score 384 400 .69 254 231 485 476 477 45 162 392 554
Epistemic 341 350 52 210 220 430 346 330 .86 280 230 5.10
cognition

Score-|

Epistemic 507 500 .44 157 443 600 522 529 59 215 3.7 586
cognition

score-2

Epistemic 501 483 .38 1[50 433 583 503 500 46 216 367 583
cognition

score-3

Self-efficacy 289 300 98 343 1.00 443 423 443 .78 257 243 500
score

Score Difference representing the difference between post-workshop and pre-
workshop Self-efficacy Scores. The Spearman correlation tested conducted on these
two new variables indicate that S-CT Score Difference (MD = 1.00, n = 19) and Self-
efficacy Score Difference (MD = 1.14, n = 19) were significantly correlated, ry (17) =
.605, p = .006.

Correlation of Knowledge Score With Spatial Computational Thinking
Score, and Self-Efficacy Score

Two Spearman correlation tests were conducted to examine if Knowledge Score is
correlated with post-workshop S-CT Score and Self-efficacy Score. The results indicate
that: (1) there is no significant correlation between Knowledge Score and post-
workshop S-CT Score ry (17) = —.380, p = .108; and (2) there is no significant
correlation between Knowledge Score and post-workshop Self-efficacy Score rg
(17) = —.176, p = 472.

As shown in the normal Q-Q plot in Figure 3, there is an outlier in the Knowledge
Score data. The case associated with the outlier was deleted from the data set and two
Spearman correlation tests were conducted on the remaining 18 teachers’ Knowledge
Scores, post-workshop S-CT Scores, and Self-efficacy Scores. The results indicate that:
(1) there was a significant negative correlation between Knowledge Score and post-
workshop S-CT Score rg (16) = —.592, p = .010; and (2) there was still no significant
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Expected Normal

75 0 8s 0 95 100

Observed Value

Figure 3. Normal Q-Q plot of Knowledge Score.

correlation between Knowledge Score and post-workshop Self-efficacy Score r
(16) = —.233, p = .352.

Impact of Summer Workshop on Epistemic Cognition Scores

Epistemic Cognition Score-1, Epistemic Cognition Score-2, and Epistemic Cognition
Score-3 were treated as repeated measures for each teacher in both pre- and post-
surveys. A Friedman rank-sum test was conducted to compare the three epistemic
cognition scores from the pre-workshop survey. The result indicated a significant
difference in the three epistemic cognition scores, x> (2) = 28.74, p < .001. Three
subsequent Wilcoxon signed rank tests were conducted for pairwise comparisons of the
three scores with a Bonferroni adjusted o level of .017. The results indicated: (1)
Epistemic Cognition Scores 2 (MD = 5.00, n = 19) were significantly higher than
Epistemic Cognition Scores 1 (MD = 3.50, n =19), z=3.82, p <.001; (2) Epistemic
Cognition Scores 3 (MD = 4.83, n = 19) were significantly higher than Epistemic
Cognition Scores_1 (MD = 3.50, n =19), z=3.82, p <.001; (3) Epistemic Cognition
Scores 2 (MD = 5.00, n = 19) were not significantly different from Epistemic
Cognition Scores 3 (MD =4.83, n =19), z= 91, p = .37.

Another Friedman rank-sum test was conducted to compare the three epistemic
cognition scores from the post-workshop survey. The result indicated a significant
difference in the three epistemic cognition scores, x> (2) = 24.99, p < .001. Three
subsequent Wilcoxon signed rank tests were conducted for pairwise comparisons of the
three scores with a Bonferroni adjusted o level of .017. The results indicated: (1)
Epistemic Cognition Scores 2 (MD = 5.29, n = 19) were significantly higher than
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Epistemic Cognition Scores 1 (MD =3.30, n =19), z=3.66, p <.001; (2) Epistemic
Cognition Scores 3 (MD = 5.00, » = 19) were significantly higher than Epistemic
Cognition Scores_1 (MD =3.30, n = 19), z=3.70, p <.001; (3) Epistemic Cognition
Scores 2 (MD = 5.29, n = 19) were not significantly different from Epistemic
Cognition Scores 3 (MD = 5.00, n = 19), z = 2.24, p = .025.

Discussion

The statistically significant results from the two Wilcoxon signed rank tests comparing
the pre- and post-workshop S-CT scores and the pre- and post-workshop Self-efficacy
scores provided evidence that the 3D Weather summer workshop is effective in im-
proving teachers’ spatial computational thinking and self-efficacy in teaching spatial
computational thinking with IDV visualization. This effectiveness is also supported by
the result of teachers’ improvement in their spatial computational thinking through the
workshop being positively correlated with their improvement in self-efficacy of
teaching spatial computational thinking with IDV visualization of weather data. When
the pre-workshop and post-workshop data for S-CT Score and Self-efficacy Score were
analyzed separately with Spearman rank correlation, the results were different: the
correlation was statistically significant pre-workshop but not significant post-
workshop. The change from a significant correlation before the workshop to a non-
significant correlation after the workshop leads us to reflect how the teachers’ lived
experience in the workshop would affect their perceptions of their spatial computa-
tional thinking ability and their ability to teach spatial computational thinking with IDV
visualization. The relationship between these perceptions may mainly be affected by
teachers’ exiting knowledge and their beliefs of “what they are capable or not capable
of doing” before the workshop, but would be impacted by many of other factors that
were not captured by the surveys, such as their experience of using IDV for weather
data visualization, their understanding of the spatial nature of meteorology through the
IDV visualization experience, and their pedagogical judgement of the technology and
the visualization activities to be implemented in their classrooms. An understanding of
these factors through future qualitative research components (e.g., interviews and open-
ended survey questions) would shed light on the above-mentioned discrepancy in the
correlation analysis results of pre-workshop and post-workshop S-CT Score and Self-
efficacy Score data, and more importantly, would help learn and improve teachers’
lived experience in learning and understanding spatial computational thinking in
meteorology and IDV visualization of weather data as an effective tool for teaching
spatial computational thinking.

From the discipline-based perspective of spatial thinking (Atit et al., 2020; National
Research Council, 2006) that emphasizes the importance of domain knowledge for
spatial thinking and solving spatial problems in a given STEM discipline, it seems
reasonable to expect a positive correlation between teachers’ Knowledge Scores
and their S-CT Scores. But this is not supported by the Spearman correlation test
results. While the Spearman correlation test on the original 19 teachers’ Knowledge
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Scores and post-workshop S-CT Scores did not yield significant correlation, the other
test excluding the teacher with the outlying knowledge score yielded a significant
negative correlation indicating that teachers’ domain knowledge in the four topics (i.e.,
temperature, atmospheric moisture, wind and pressure, and mid-latitude cyclone and
fronts) is negatively correlated with their spatial computational thinking skills con-
textualized in meteorology and IDV visualization. It is unknown if the outlying
knowledge score represents the natural variation in Knowledge Score data. But if yes,
this significant correlational result would not lead to a valid inference. Nonetheless,
both the test on the original 19 teachers’ data and the one on the remaining 18 teachers’
data yielded a negative correlation coefficient. Does the negative correlation suggest
that domain knowledge functions differently in a context that requires both compu-
tational thinking and spatial thinking? Or, spatial computational thinking in meteo-
rology, being totally new to teachers, does not fit into their intuition about weather that
has been shaped by domain knowledge in the past? Future research efforts are definitely
needed to provide answers to these questions and many others related to the relationship
between domain knowledge and spatial computational thinking in meteorology.

The results of the Friedman rank-sum tests comparing the teachers’ Epistemic
Cognition Score-1, Epistemic Cognition Score-2, and Epistemic Cognition Score-3
indicate that the patterns of teachers’ epistemic cognition of the three types of teaching
practices stay similar pre-workshop and post-workshop: with the preference for
teaching meteorology with computational thinking and practices or with scientific
practices over teaching meteorology with the traditional method. The statistical results
will lead us to the inference that teachers who are willing to participate in professional
development programs like 3D Weather summer workshop will be more likely to teach
meteorology with the methods of using computational thinking and practices or using
scientific practices rather than with the traditional method that emphasizes scientific
facts and rote learning. This inference aligns with the project team’s experience in
recruiting the teachers and working with them in the two week’s summer workshop.
Teaching meteorology with spatial computational thinking and IDV visualization is an
innovative pedagogy that reflects professional practices in real world settings. Ac-
cording to Rogers’ (2003) Diffusion of Innovation theory, there are five established
categories of adopters of an innovation (i.e., Innovators, Early Adopters, Early Ma-
jority, Late Majority, and Laggards) and people adopting an innovation early have
different characteristics than those adopting it later. If the teachers attending the 3D
Weather workshop can be identified as “Innovators” or “Early Adopters” based on
Rogers’ (2003) Diffusion of Innovation theory, the patterns of the pre-workshop and
post-work epistemic cognition from the Friedman rank-sum tests may represent one of
their characteristics as “Innovators” or “Early Adopters”. Future research exploring
other characteristics of such teachers and the characteristics of teachers who are late
adopters will lead to a better understanding of what will help or hinder adoption of this
innovation and thus provide valuable information about how to promote the innovation
among teachers.
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Conclusion, Limitations, and Implications

The 3D Weather summer workshop is a teacher professional development program to
prepare teachers for using the IDV Visualization Modules to teach spatial computational
thinking. The Wilcoxon signed rank test results revealed that this professional de-
velopment program is effective in improving teachers’ spatial computational thinking
and their self-efficacy of teaching spatial computational thinking with IDV visuali-
zation of weather data. This finding renders empirical evidence supporting the future
use of the hybrid training model (i.e., one week virtual and one week in person training)
and the professional development activities in the 3D Weather summer workshop for
preparing teachers to teach the IDV Visualization Modules and spatial computational
thinking.

Teachers’ self-efficacy of teaching spatial computational thinking with IDV visu-
alization, as indicated by the Spearman correlational analysis results, are not correlated
with their meteorology content knowledge and their spatial computational thinking
ability. Due to the limitation of this study focusing on quantitative methods, its findings
are not able to capture and reveal how other factors or the experiences in the workshop
may be related to the improvement of teachers’ self-efficacy. Another limitation of this
study is related to the teacher recruitment being limited to the six partner school districts
originally listed the grant proposal. This may consequently lead to the lack of rep-
resentativeness of these teachers recruited. It is envisioned that future research will
include more representative teacher samples and investigate the qualitative side of the
story to help teacher professional development programs like 3D Weather summer
workshop better prepare teachers for teaching spatial computational thinking with IDV
visualization.

3D Weather summer workshop is not a professional development program man-
dated by school districts and teachers’ participation in the program is voluntary. The
epistemic cognition data analysis results revealed that behind teachers’ willingness to
participate in the professional development program is the epistemic cognition that
reflect their receptiveness of teaching meteorology with spatial computational thinking
and practices. To encourage more teachers to adopt this approach, efforts need to be
made to effect epistemic cognition changes in those teachers whose beliefs about the
process of knowing in meteorology are still greatly framed by traditional science
teaching and learning methods. This practical implication from the study calls for future
research to furnish more insights about the characteristics of teachers’ epistemic
cognition about teaching meteorology and how to bring about positive changes in their
epistemic cognition to support the process of knowing that reflect real world pro-
fessional practices in the field of meteorology.
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