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Model pruning has been proposed as a technique for reducing the size and complexity of Federated learning (FL) models. By

making local models coarser, pruning is intuitively expected to improve protection against privacy attacks. However, the level

of this expected privacy protection has not been previously characterized, or optimized jointly with utility.

In this paper, we irst characterize the privacy ofered by pruning. We establish information-theoretic upper bounds on

the information leakage from pruned FL and we experimentally validate them under state-of-the-art privacy attacks across

diferent FL pruning schemes. Second, we introduce PriPruneś a privacy-aware algorithm for pruning in FL. PriPrune uses

defense pruning masks, which can be applied locally after any pruning algorithm, and adapts the defense pruning rate to

jointly optimize privacy and accuracy. Another key idea in the design of PriPrune is Pseudo-Pruning: it undergoes defense

pruning within the local model and only sends the pruned model to the server; while the weights pruned out by defense mask

are withheld locally for future local training rather than being removed. We show that PriPrune signiicantly improves the

privacy-accuracy tradeof compared to state-of-the-art pruned FL schemes. For example, on the FEMNIST dataset, PriPrune

improves the privacy of PruneFL by 45.5% without reducing accuracy.

CCS Concepts: · Security and privacy → Distributed systems security; · Computing methodologies → Machine

learning; · Theory of computation → Theory and algorithms for application domains.

Additional Key Words and Phrases: Federated Learning, Privacy, Model Pruning

1 Introduction

Federated Learning (FL) has emerged as the predominant paradigm for distributed machine learning across a
multitude of user devices [18, 26]. It is known to have several beneits in terms of reducing the communication,
computation and storage costs for the users, training better global models, and raising the bar for privacy by not
sharing the local data. FL allows users to train models locally on their (user) devices without revealing their local
data but instead collaborate by sharing only model updates that can be combined to build a global model through
a central server. A typical FL scenario involves numerous users and resource-constrained devices [23] making it
challenging to perform resource-intensive tasks like training Deep Neural Networks (DNNs) on them.
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In parallel, signiicant eforts have been put toward optimizing sparse DNNs to create lightweight models
suitable for training on edge devices [6, 14, 24]. Model pruning, which involves the removal of a certain percentage
of parameters, has gained signiicant attention [13, 20, 28]. Its primary objective is to derive a sparse DNNs model
that decreases the computational requirements and enhances eiciency without compromising accuracy [10].
Several model pruning techniques have been developed for FL to optimize model sparsity under given constraints
on the processing and communication capabilities of devices, especially under heterogeneous clients, [3, 17].

It is intuitively expected that by reducing the number of weights of FL models, the pruning method should, as
a side-efect, also improve their resistance to reconstruction attacks. These attacks aim at using these weights
to reverse-engineer the model and obtain information about the input data; a.k.a. gradient inversion attacks
launched by the server. Prior work on model pruning focuses solely on the scalability/accuracy trade-of and thus
neither considers nor quantiies the privacy impact of pruning on FL. To the best of our knowledge, our paper is
the irst to consider privacy in the context of FL model pruning, and to address the following key questions: Q1.
Can we quantify privacy in FL model pruning? Q2. How can we further optimize pruning for privacy, and jointly

with accuracy? To address these questions, we make the following two contributions.
First,we theoretically and empirically quantify privacy leakage inmodel pruning.Wederive information-

theoretic upper bounds on the amount of information revealed about any single user’s dataset via model updates,
in any pruned FL scheme. This is the irst theoretical characterization of privacy leakage in pruned FL models.
We also conduct a comprehensive empirical evaluation that quantiies the actual amount of privacy leakage of
six diferent pruning schemes, considering several state-of-the-art privacy attacks. Within the family of gradient
inversion attacks (including Deep Leakage from Gradients [45] and Gradient Inversion (GI) [11]), we also design
a novel privacy attack (referred to as Sparse Gradient Inversion, or SGI), speciically tailored to exploit vulnerabil-
ities inherent in FL model pruning. This evaluation combined with our theoretical analysis provides valuable
insights into the choices and parameters that afect the privacy provided by pruning.

Building upon these insights, we make our second contribution: we design PriPruneś a privacy-preserving

pruningmechanism. PriPrune defends against gradient inversion attacks in pruned FL, by performing additional
local (defense) pruning, after any (base) FL pruning scheme. PriPrune applies a personalized defense mask and
adapts the defense pruning rate, so as to jointly optimize model accuracy and privacy, using back-propagation
augmented with Gumbel Softmax Sampling. Another key idea in the design of PriPrune is what we refer to as
Pseudo-Pruning: it entails pruning with the defense mask within the local model and transmitting the pruned
model to the server, thereby enhancing privacy. However, the weights pruned out by the defense mask in the
local model are not discarded; instead, they are retained locally for subsequent rounds of local training, thereby
preserving model accuracy. We evaluate PriPrune via comprehensive experiments across various FL pruning
schemes, a state-of-the-art attack and several benchmark datasets. We show that it achieves a signiicantly better
privacy-accuracy tradeof than privacy-unaware pruned FL baselines. For example, on the FEMNIST dataset,
PriPrune improves the privacy PruneFL [17] by 45.5% without imposing any accuracy loss.

2 Related Work

Model Pruning in FL. State-of-the-art research for model pruning in FL utilizes two main approaches: one
involves the pruning mask being decided on the server side and the client only using this mask without changing
it, and the other involves the collaborative selection of the pruning mask by both the user and the server
side. PruneFL [17] follows the irst approach., aiming to reduce the size and complexity of FL models without
compromising accuracy. It achieves this by removing less important weights and connections in each layer of the
neural network based on their magnitude and importance scores. However, the pruning mask is only decided by
the server without considering user-side local representations. LotteryFL [22] belongs to the second approach,
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Fig. 1. FL with model pruning, under a privacy atack by an honest-but-curious server. Step 1: the server broadcasts the global

model with weight�� to users. Step 2: Ater local training, user � employs base pruning with pruning mask �̄�
� , resulting in a

pruned model with weights �̄�
� . The user then applies a defense pruning technique, yielding a pruned model with weights

�̂�
� . Step 3, the server aggregates the model updates and launches a gradient inversion atack upon receiving �̂�

� . Step 4: the

server applies global pruning with pruning mask �̄� , and updates the global model accordingly. Notice Base pruning can be

any FL pruning scheme. Defense pruning is introduced, in this paper, specifically to protect against privacy atacks.

introducing a method that allows users to maintain local representations by selecting a subset of the global
network using personalized masks. However, the system of sparse models it produces performs well only on local
datasets. FedDST [3] involves dynamic sparse training on both the client and server sides, extracting and training
sparse sub-networks. Other recent state-of-the-art studies have introduced various gradient-based one-shot
pruning algorithms at initialization. Snip [21] leverages connection sensitivity to retain critical connections and
remove less signiicant ones, aiming to limit the loss due to pruning. On the other hand, GraSP [38] focuses on
preserving the gradient low through the network by scoring weights based on the Hessian-gradient product.
SynFlow [34], being a data-agnostic pruning algorithm, emphasizes preserving the total low of synaptic strengths
through the neural network to achieve Maximal Critical Compression during initialization. More importantly,
none of them considered privacy implications in their design, as PriPrune does.

Reconstruction Attacks in FL. In terms of privacy leakage, communicating gradients throughout the training
process in federated learning can reveal sensitive information about the participants. Deep leakage from gradients

(DLG) [45] demonstrated that sharing the gradients can leak private training data, including images and text.
Improved DLG (iDLG) [44], presented an analytical procedure to extract the ground-truth labels from the shared
gradients and showed the advantages of iDLG over DLG. Inverting Gradients [11] introduced cosine similarity as
a cost function in their reconstruction attacks and employed total variation loss LTV as an image prior. Inverting
Gradients [11] and GradInversion [41] demonstrated the capability to reconstruct high-resolution images with
increased batch sizes. The reconstruction quality of the attack was improved in Reconstruction From Obfuscated

ACM Trans. Model. Perform. Eval. Comput. Syst.



4 • T. Chu et al.

Gradient (ROG) [42]. ROG [42] proposed conducting the reconstruction optimization in low dimensional space
and trained a neural network as a postprocessing module.

While these privacy attacks have demonstrated the privacy vulnerabilities of standard federated learning, none
of them has considered pruned federated learning. Therefore, we do not currently know how efective existing
attacks are against the sparser models from pruned FL.

Privacy-Preserving Techniques in FL. FL is particularly vulnerable to the aforementioned inverting-the-gradient
type of reconstruction attacks, since it relies on gradient updates to operate. There exists a large body of literature
on privacy-enhancing methods that protect against this type of attacks in FL. The adversary is typically an
łhonest-but-curiousž server, i.e., a server that participates correctly in the FL protocol, but tries to infer training
data of individual clients based on their gradient updates. One family of defense approaches is based on diferential
privacy (DP) [7, 8, 12, 36, 40, 43], which can be applied locally (at the clients), centrally (at the server), or in a
distributed way. In the local DP model for FL, each client adds noise to the local update before sharing with
the server, which makes it diicult for the server to invert the true gradient and infer the client’s training data.
However, local DP is known to signiicantly degrade utility, in this case model accuracy. Another defense approach
applied to FL is Secure Aggregation (SecAgg) [4, 32, 33, 37, 39]. SecAgg ensures that individual updates are
encrypted (thus preventing the server from inverting the gradients of individual users), while their aggregate can
still be decrypted (thus enabling the server to train a good model). SecAgg is powerful but has computational
overhead, although signiicant advances have been done recently.

Both DP and SecAgg are important but orthogonal to the underlying FL and can be combined with a number
of FL protocols, including all the pruning protocols we consider as base in this study. Our proposed PriPrune can
also be combined with DP and/or SecAgg. For instance, after applying PriPrune to base pruning, clients can add
local DP noise to the pruned updates before sending them to the server, and/or encrypt them to enable SecAgg
following standard protocols. We focus on pruning itself and the privacy-utility tradeof that can be achieved,
before adding orthogonal defense techniques. Future work could explore adding DP and/or SecAgg, which are
out of the scope of this paper.
Recent works like FedMap [15] and Fed-LTP [30] discuss privacy speciically in the context of pruned FL.

FedMap, which appeared after this submission, enhances privacy by training models from scratch and by avoiding
the sharing of detailed pruning masks. However, it does not quantify the privacy leakage that may still occur
from the pruned models. FedMap can be considered as a base pruning technique, and PriPrune can still be applied
to protect it. Fed-LTP, on the other hand, combines Lottery Ticket Pruning with Zero-concentrated Diferential
Privacy (zCDP) to enhance privacy. Integrating zCDP, or any type of DP, with our proposed PriPrune is orthogonal
to our core contribution, as discussed above, and can be explored as part of future research.

3 Problem Setup

Federated Learning (FL) with Pruning.We consider a general FL system with multiple users and one server,
employing any model pruning scheme on the users and/or the server. We refer to pruning at this stage as base
pruning with base pruning rate �̄ , and it can be any state-of-the-art pruning FL scheme [3, 17]. This is depicted
in Fig. 1 and formalized in Algorithm 1.

The goal is to train a global model � (D,�) through FL. At the beginning of round � , user � with the local data
D� and labels �� has local model weights��

� ; the server broadcasts the most recent global model � (D,�� ) to all
participating users. Then the round proceeds as follows:

ACM Trans. Model. Perform. Eval. Comput. Syst.
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Algorithm 1 FL with Pruning under Privacy Attack

1: Given:� number of global training rounds; � number of users indexed by �; � number of local epochs; the server aims to

reconstruct the local data of the target user.

Server executes:

2: Initialize�0

3: for � ← 1 to � do

4: for each user � ∈ � in parallel do

5: �̂
�
� ← UserUpdate(��−1,��−1, �)

6: if user � is targeted then

7: ∇�̂�
� ← �̂

�
� − �̂

�−1
�

8: Privacy Attack on (� (D� ; �̂
�
� ), �̂

�
� , ∇�̂

�
� )

9: end if

10: end for

11: �
� ←

(∑�
�=1

∥D� ∥
∥D∥

�̂
�
�

)
⊙ �̄

� ;

12: end for

function UserUpdate(��−1,��−1, �):

13: for local epoch � ← 1 to � do

14: Local Training and Base Pruning: �̄�
� ← Eq. (1)

15: Defense Pruning: �̂�
� ← �̄

�
� ⊙ �̂

�
�

16: end for

17: Return �̂
�
� to server

Local Training and Base Pruning: Each user � utilizes base pruning strategy P� (·) with base pruning masks �̄�
� on

its trained local model � (D� ,�
�
� ) :

�̄
�
� :=

(
�
� − �

�ℓ�
(
� (D� ,�

� ⊙ �̄
� ), ��

)
���

)
⊙ �̄

�
� (1)

Where �̄�
� = P� (�

�
� ), � is the learning rate and ⊙ is the Hadamard product. The base pruning mask �̄

�
� exhibits

variability across diferent base pruning schemes, relecting the diverse pruning strategy P� (·) employed.
Server: The server receives model updates �̂�

� from all participating users and aggregates to update the global
model, as it is typical in FL. We do not consider secure aggregation [33], diferential privacy [27], or other defenses
known in the literature.1

Threat Model. We consider an honest-but-curious server, which correctly follows the FL protocol but uses
model updates to infer private information, by launching privacy attacks against target user(s), as shown in
Algorithm 1. In our case, the server has full visibility of all masked local models and, upon receiving an update
from a target user, it attempts to reconstruct the user’s training data. We consider reconstruction attacks that
invert gradients, including Deep-Leakage-from-Gradients (DLG) [45], Gradient Inversion (GI) [11], and a custom
attack SGI described in Section 4.2. We focus on single-round attacks, i.e., attacks that invert gradients observed
at a single round2.

1We consider those defenses as out-of-the-scope for this paper, since they are orthogonal to pruning. They can be implemented on top/combined

with our pruning-based defense methods.
2To the best of our knowledge, there are currently no known practical multi-round inverting-the-gradient types of attacks that combine

information from multiple rounds. There is theoretical analysis of upper bounds of multi-round information leakage, including [9, 32] and

we derive our own multi-round leakage in Section 4.1.2. Designing a practical multi-round attack is orthogonal to our contribution, which

focuses on quantifying the leakage and designing an add-on defense, for existing attacks.
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Defense via Pruning: In this paper, we propose to defend against privacy attacks, via pruning itself. One
could speciically design an entire pruning scheme not only for accuracy and eiciency but also for privacy, and
the defense would then be optimized jointly with the particular base pruning scheme e.g., PruneFL [17] and
FedDST [3].

In this paper, we take a modular and universal approach: we consider any given state-of-the-art base pruning
scheme (with rate �̄� and mask �̄

�
� ) without any modiication. Then, we introduce additional local defense

pruning, with mask �̂
�
� and pruning rate �̂� , speciically designed for protecting each user � from privacy attacks.

User � eventually sends back to the server weights after applying both base (�̄�
� ) and defense (�̂�

� ) pruning:
�̂
�
� = �̄

�
� ⊙ �̂

�
� ⊙�

�
� . This is depicted in Fig. 1 and Algorithm 1 (see Line 15 and 16), and elaborated upon on Fig. 7.

Given a base pruning (�̄�
� ), there are many possible defense pruning strategies (�̂�

� ). In Section 5.2, we propose
PriPrune for �̂�

� , to optimize the accuracy-vs-privacy tradeof.

4 uantifying Privacy in FL Model Pruning

In this section, to address question Q1, we provide a theoretical and empirical quantiication of privacy leakage
in FL model pruning. We aim to assess the server’s ability to infer information about an individual user’s local
dataset D� . We employ Mutual Information (MI) as the metric for quantifying privacy leakage:

I (� ;� ) =

∫
X×Y

���
�P�,� (�,�)

�P� (�) ⊗ P� (�)
�P�,� (�,�)

= H(� ) + H(� ) − H(�,� ) (2)

Where (� ;� ) is a pair of random variables with values over the spaceX×Y. Their joint distribution isP�,� (�,�)

and the marginal distributions are P� (�) and P� (�).
This concept, rooted in information theory and Shannon entropy, captures the interdependence between two

random variables. It is very powerful for privacy analysis, given its applicability across various domains and
tasks [1, 2]. This applicability extends across various datasets, pruning schemes, and attack scenarios, as recently
demonstrated in the quantiication of privacy within the context of FL aggregation [9].

4.1 Theoretical uantification

We seek to quantify how much information the server can infer about the private data D� of user � over � global
training rounds, based on the pruned updates

{
�
�
� ⊙ �̄

�
�

}
� ∈[� ]

submitted by user � , via:

I� = I

(
D� ;

{
�
�
� ⊙ �̄

�
�

}
� ∈[� ]

)
(3)

where I represents mutual information between D� and
{
�
�
� ⊙ �̄

�
�

}
� ∈[� ]

,��
� ∈ R

� is the local model weights of

user � at round � .
This quantiication is based on two mild assumptions:

Assumption 1. The random vector �̂�
(
�
�
� , �

)
has non-singular covariance matrix Σ� and mean 0.

Here, �̂�
(
�
�
� , �

)
∈ R

�∗
is the largest sub-vector of the ��

(
�
�
� , �

)
, where �∗ is the rank of ��

(
�
�
� , �

)
, �∗ ≤ � , � is the

model size, � denotes the size of the random samples. �� (�
�
� , �) denotes the stochastic estimate of the gradient of

the local loss function for user � , computed based on a random sample �, and B
�
� is a data batch of size � sampled

uniformly at random from it local dataset D� .

Assumption 2. �̄� the pruning rate of user � remains unchanged throughout the training process.

ACM Trans. Model. Perform. Eval. Comput. Syst.
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Building upon Equation 2, Equation 3 can be written as:

I� ≤

�︁

�=1

(
I

(
x�� ;�

�
� ⊙ �̄

�
�

���{��
� ⊙ �̄

�
�

}
�∈[�−1]

))
(4)

Where x�� =
�ℓ� (�̄

�−1
� ;D� )

��
=

1
�

∑
�∈B��

��
(
�
�
� , �

)
.

To that end, we irst characterize the privacy leakage for a single round � :

I

(
x�� ;�

�
� ⊙ �̄

�
�

���{��
� ⊙ �̄

�
�

}
�∈[�−1]

)
(5)

Under these two mild assumptions, we obtain our main theoretical result; the proof is deferred to Appendix
A.1.

4.1.1 Upper Bound for Privacy Leakage in a Single Round. We now provide an upper bound for Equation 5, i.e.,
for the privacy leakage in a single round.

Theorem 4.1 (Single Round Leakage). Under Assumption 1 and 2, we have an upper bound of I�� for a single

round:

I
�
� ≤ 1 −

�̄� − 1

2 ln 2
+ 2 log

1

�
+ 2Δ + �∗ log (2��) (6)

where Δ = log
���det(Σ− 1

2

�

)���.
Proof. Based on Equation 2, we have

I

(
x�� ;�

�
� ⊙ �̄

�
�

���{��
� ⊙ �̄

�
�

}
�∈[�−1]

)
≤ H

(
�
�
� ⊙ �̄

�
�

���{��
� ⊙ �̄

�
�

}
�∈[�−1]

)
︸                                   ︷︷                                   ︸

A

+ H

(
x��

���{��
� ⊙ �̄

�
�

}
�∈[�−1]

)
︸                           ︷︷                           ︸

B

(7)

For part A, based on the chain rule of entropy, we have

A = H

(
�
�
� ⊙ �̄

�
�

���{��
� ⊙ �̄

�
�

}
�∈[�−1]

)
+ H

(
�
�
� , �̄

�
�

���{��
� ⊙ �̄

�
�

}
�∈[� ]

)
≥ 0 (8)

Due to H

(
�
�
� ⊙ �̄

�
�

�����
� , �̄

�
� ,
{
�
�
� ⊙ �̄

�
�

}
�∈[�−1]

)
= 0, and H

(
�
�
� , �̄

�
�

���{��
� ⊙ �̄

�
�

}
�∈[� ]

)
≥ 0, we have

H

(
�
�
� ⊙ �̄

�
�

���{��
� ⊙ �̄

�
�

}
�∈[�−1]

)
≤ H

(
x��

���{��
� ⊙ �̄

�
�

}
�∈[�−1]

)
︸                           ︷︷                           ︸

B

+ 1 −
�̄� − 1

2 ln 2
(9)

The proof is shown in the Appendix A.1.

B = H
©­«
1

�

︁
�∈B��

��
(
�
�
� , �

) ������
{
�
�
� ⊙ �̄

�
�

}
�∈[�−1]

ª®¬
(10)

Let � =
∑

�∈B��
��

(
�
�
� , �

)
, � =

{
�
�
� ⊙ �̄

�
�

}
�∈[�−1]

, � =
1
�
� . ��,� (�, �) and ��,� (�, �) are the corresponding joint

probability density functions.
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Then Equation 10 can be written as follows:

H (� |� ) = H
©­«
︁
�∈B��

��
(
�
�
� , �

) ������
{
�
�
� ⊙ �̄

�
�

}
�∈[�−1]

ª®¬︸                                          ︷︷                                          ︸
C

+ log
1

�
(11)

The proof is shown in the Appendix A.1.
In recent theoretical results for analyzing the behaviour of SGD, the SGD vector is approximated by a distri-

bution with independent components or by a multivariate Gaussian vector [46]. Based on the ZCA whitening

transformation and Assumption 1, we have �̂�
(
�
�
� , �

)
= Σ

− 1
2

� �, where � has zero mean and I�∗ convariance matrix.

For the part C, we set � =
∑

�∈B��
� and � = Σ

− 1
2

� �, then we have:

C = H
©­«
︁
�∈B��

�̂�
(
�
�
� , �

) ������
{
�
�
� ⊙ �̄

�
�

}
�∈[�−1]

ª®¬
= H

©­«
Σ
− 1

2

�

︁
�∈B��

�

������
{
�
�
� ⊙ �̄

�
�

}
�∈[�−1]

ª®¬
= −

∫
PU (�) logPU (�) d�

(�)
= −

∫
PV (�)���det(Σ− 1

2

�

)��� log
©­­«

PV (�)���det(Σ− 1
2

�

)���
ª®®¬
���det(Σ− 1

2

�

)��� d� = log
���det(Σ− 1

2

�

)��� + H
©­«
︁
�∈B��

�

������
{
�
�
� ⊙ �̄

�
�

}
�∈[�−1]

ª®¬︸                                ︷︷                                ︸
D

(12)

where (a) is based on the transformation of random vectors. Based on the Maximum Entropy Upper Bound [35],
which the continuous distribution X with prescribed variance V(X) maximizing the entropy is the Gaussian
distribution of same variance. Since the entropy of amultivariate Gaussian distributionwithmean � and covariance
��, � is

h(N� (�, �)) =
1

2
log (2��)� |� |

where |� | denotes the determinant of � . Hence, the maximum entropy upper bound for part D is

D ≤
1

2
log (2��)�

∗

|I�∗ | =
�∗

2
log (2��) (13)

Therefore, by combining Equation 12 and Equation 13, the upper bound for part B is

B ≤ log
1

�
+ log

���det(Σ− 1
2

�

)��� + �∗

2
log (2��) (14)

By adding parts A and B, we establish the upper bound for privacy leakage for a single round as in Theorem
4.1.

4.1.2 Upper Bound for Privacy Leakage across Multiple Rounds. Using Equation 4, we can also obtain an upper
bound for Equation 3, i.e., how much information the aggregated model over � global training rounds could leak
about the private data:

Corollary 4.2 (Multiple Rounds Leakage). Continuing with Theorem 4.1, we can upper bound I� after �

global training rounds as follows:

I� ≤ �

(
1 −

�̄� − 1

2 ln 2
+ 2 log

1

�
+ 2Δ + �∗ log (2��)

)
(15)
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Algorithm 2 Sparse Gradient Inversion (SGI) Attack

1: Input: � (D� ; �̂
�
� ): model at round � from targeted user �; learning rate � for inverting gradient optimizer; � : max iterations

for attack; � : regularization term for cosine loss in inverting gradient attack; ���� :the recovery mask generated by server;

� :the model size

2: Output: reconstructed training data (D� , �� ) at round �

���� [ �] �∈� =

{
1 if �̂�

� [ �] ≠ 0

0 if �̂�
� [ �] = 0

3: ∇�̂�
� ←

(
�̂
�
� − �̂

�−1
�

)
⊙ ����

4: Initialize D′
0 ← N (0,1), �′0 ← ������� (0,��� (�))

5: for � ← 0 to � − 1 do

6: ∇�′
� ← �ℓ (� (D′

� , �̂
�
� ), �

′
� )/��̂

�
�

7: L′
� ← 1 −

∇�̂�
� ·∇�

′
�

∥∇�̂�
� ∥ ∥∇�

′
� ∥

+ �

8: D′
�+1 ← D′

� − �∇D′
�
L′
� , �

′
�+1 ← �′� − �∇�′

�
L′
�

9: end for

10: Return D′
�
, �′

�

This shows that increasing the number of global training rounds (� ) leads to a proportional rise in the upper
bound of information leakage from the user’s local training model.
Importance of the Upper Bounds: The derived upper bounds are important for several reasons.

• They provide a theoretical upper limit to the amount of information that can potentially be leaked from
model updates in pruned models. To the best of our knowledge, this has not been previously characterized
for pruned models.

• Because they are information-theoretical in nature, these bounds are universally applicable. They apply to
any learning task, any data distribution, any pruning scheme, and any privacy attack. The attacker is the
server that sees the pruned updates

{
�
�
� ⊙ �̄

�
�

}
� ∈[� ]

from client � , and infers information about the local

training Data D� of that client. Regardless of the exact reconstruction strategy, the inferred information is
at most the mutual information I� between the update and the local data, quantiied in Equation 3. The
derivation of the bounds assumes the existence of a pruning mask but does not depend on how this mask
was generated, e.g., whether through magnitude-based pruning, gradient-based pruning, or any other
pruning method.

• Theorem 1 expresses the bound in terms of important parameters (e.g., the pruning rate � , model size � ,
etc), which provides insights into the choices and parameters that afect the privacy provided by pruning
in practical algorithms. However, the bounds may or may not be tight compared to the actual information
leakage, depending on the real-world scenario. In fact, these bounds are necessarily conservative since they
are universal. This is why, in the next section, we complement the theoretical analysis with experimental
evaluations in speciic settings (i.e., considering speciic base pruning, attack and defense schemes, speciic
data sets, and learning tasks).

4.2 Empirical uantification

We perform an experimental evaluation to quantify the exact amount of privacy loss in concrete settings. This
allows us to compare the theoretical bounds to experimental results and show that they are qualitatively aligned.
It also allows us to obtain insights (in Section 5.1) that inform the design of defense pruning (in Section 5.2). More
evaluation results are provided in Section 6.

ACM Trans. Model. Perform. Eval. Comput. Syst.
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(a) Normalized Mutual Information (NMI).
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(b) Peak Signal-to-Noise Ratio (PSNR).

Fig. 2. Impact of varying pruning rate on privacy leakage using key metrics: Normalized Mutual Information (NMI) displayed

on (a) and Peak Signal-to-Noise Ratio (PSNR) shown on (b) under a Sparse Gradient Inversion atack (SGI) in FEMNIST for

five pruning methods under varying the base pruning rate.

4.2.1 Privacy Metrics. To quantify the extent of privacy leakage, we use the Normalized Mutual Information
(NMI) between the training data and the reconstructed data. For two vectors � , � ∈ R� , NMI is computed

as follows. The entropy of � is calculated by � (� ) = −
∑ |� |

�=1 � (�) log(� (�)), where � (�) = |�� |/� . The Mutual

Information between � and � is given by � (� ;� ) =
∑ |� |

�=1

∑ |� |
�=1

|��∩�� |

�
log

(
� |��∩�� |

|�� | |�� |

)
. NMI is then measured as

� (� ;� )
mean(� (� ),� (� ) )

.

For image data, prior research [9] has shown that NMI aligns well with the Peak Signal-to-Noise Ratio (PSNR).
This is also the case here: we see an agreement between NMI and PSNR with increasing pruning rates in Fig.
2 and Fig. A1, both showing a similar decreasing trend. In the rest of the paper, we use both NMI and PSNR
as metrics to quantify the success of a reconstruction attack. Intuitively, the higher the NMI, the higher the
privacy leakage, the more successful the reconstruction attack. The higher the PSNR, the closer the original and
reconstructed images and the more successful the attack. Hence, Fig. 2 and Fig. A1 compare the NMI and PSNR
metrics and show that that increasing pruning rate reduces the success of the privacy attack.

4.2.2 Reconstruction Atack Algorithms. We irst implement the classic Gradient Inversion (GI) attack [11] from
the DLG attack family. However, due to the unique sparsity patterns introduced by model pruning in FL, we
identify the potential for further optimizing this attack to speciically exploit the sparsity. Consequently, we
introduce an advanced attack tailored for the context of model pruning in FL, the Sparse Gradient Inversion (SGI)
attack. This attack is designed to recover the pruning mask within the pruned model. Moreover, its adaptability
allows seamless integration with existing privacy attacks in FL, thereby amplifying their efectiveness.

The SGI attack is provided in Algorithm 2. In each iteration � , the SGI algorithm proceeds as follows: (i) Based
on the user �’ local model weights ��

� , the server attempts to recover the pruning mask of user � (Line 2). The
recovered mask is then integrated into the calculation of gradient, allowing the server to obtain a gradient ∇�̂�

�

that closely approximates the true gradients of user �; (ii) The SGI attack randomly initializes a set of dummy data,
comprising dummy inputs D′

0 and dummy labels �′0. (iii) After the dummy gradient � ′ is acquired, the server
then updates the dummy data in the direction that minimizes the cosine distance between the dummy gradient
and the gradient ∇�̂�

� .

ACM Trans. Model. Perform. Eval. Comput. Syst.
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Method Pruning Criteria
Pruning
Cycles

Pruning
at Server

Pruning
at Client

SNIP [21] gradient-based one shot ✓ ✗

SynFlow [34] gradient-based one shot ✓ ✗

Random Pruning magnitude-based iterative ✓ ✓

FedDST [3] magnitude-based iterative ✓ ✓

PruneFL [17] magnitude-based iterative ✓ ✓

Table 1. Comparison for Evaluated Methods

(a) SGI atack. (b) GI atack.

Fig. 3. Comparison between the SGI (Sparse Gradient Inversion) atack and the GI (Gradient Inversion) atack on the

FEMNIST dataset for five pruning methods under varying the base pruning rate. In addition to the NMI metric, we show the

corresponding recovered images, which show the degradation with an increasing pruning rate.

4.2.3 Base Pruning Schemes under Atack. We subject a set of well-established FL pruning methods to the privacy
attack to assess their vulnerabilities and efectiveness in protecting user privacy. The pruning methods under
evaluation include Random pruning, Snip [21], SynFlow [34], FedDST [3], and PruneFL [17], all of which are
discussed in Related Work (Section 2). We present an overview of the pruning criteria, cycles, and schedules
employed by the six evaluated methods. These speciics are elaborated in Table 1. By scrutinizing the table, we
discern notable trends: three of the methods execute pruning exclusively at the server side, while the remaining
methods engage in pruning activities at both the server and client sides. The latter approaches adopt an iterative
pruning strategy throughout the course of the FL process.

We compare the efectiveness of the Sparse Gradient Inversion (SGI) attack with the Gradient Inversion attack
under varying the base pruning rate. Our evaluation is based on the normalized mutual information (NMI) metric.
Speciically, we analyze the NMI achieved by each attack for diferent pruning methods. Figure 3 demonstrates
that the SGI attack consistently outperforms the Gradient Inversion attack by inferring a larger amount of
information (as captured by NMI) at each pruning rate level, across all tested pruning methods. This is because the
SGI attack exploits the sparsity inherent to model pruning, ultimately allowing better reconstruction attacks. In
the rest of the paper, we use the SGI attack as a baseline, with a learning rate of 0.01 and 10,000 attack iterations.

ACM Trans. Model. Perform. Eval. Comput. Syst.
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(a) Varying base pruning rate �̄ . (b) Varying base pruning rate �̄ .

(c) Varying the batch size �. (d) Varying the batch size �.

Fig. 4. Impact of varying base pruning rate �̄ and batch size � on privacy leakage. We consider the Normalized Mutual

Information (NMI) as privacy metric. We launch a Sparse Gradient Inversion (SGI) atack against 5 base pruning methods

(Random, SNIP, SynFlow, FedDST, and PruneFL), over two datasets (FEMNIST in the First Column and CIFAR-10 in the

Second Column).

4.2.4 Atack Performance. We launch the SGI attack on the aforementioned FL pruning schemes, on the FEMNIST
and CIFAR10 datasets, to assess how FL parameters inluence privacy leakage. The experimental results in Fig. 4
and Fig. 5 demonstrate that the impact of the parameters �̄ , �, � , and � qualitatively align with our theoretical
indings.
Impact of Pruning Rate (�̄). Fig. 4a and Fig. 4b illustrate that a higher pruning rate generally leads to a decrease
in NMI. This is intuitively expected as pruning removes information and makes it more diicult to attack the
original model. The efect is clearer for large pruning rates (e.g., above 0.5). Image reconstruction is clearer in
FEMNIST than CIFAR, consistently with prior work.
Impact of Batch Size (�). Fig. 4c and Fig. 4d show increasing the batch size � contributes to reducing information
leakage from the local training model. Larger batch sizes enable more data to be added during model training,
which can help obscure single data and increase privacy protection.
Impact of Model Size (�). We consider 3 architecture of the models for FEMNIST dataset: Conv-1, Conv-2,
Conv-4, featuring 1, 2, 4 convolutional layers, along with 2 linear layers. These models encompass 626720, 6601504
and 13077392 parameters, respectively. We consider 3 diferent model architectures for CIFAR 10 dataset: VGG-4,
VGG-6, and VGG-11. These models consist of 1 convolutional layer and 2 linear layers, 4 convolutional layers

ACM Trans. Model. Perform. Eval. Comput. Syst.
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(c) Varying training round � .
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(d) Varying training round � .

Fig. 5. Impact of varying model size � and training rounds� on privacy leakage using Normalized Mutual Information (NMI)

under a Sparse Gradient Inversion (SGI) atack for 5 base pruning methods (Random, SNIP, SynFlow, FedDST, and PruneFL),

over two datasets (FEMNIST in the First Column and CIFAR-10 in the Second Column).

and 2 linear layers, and 8 convolutional layers with 3 linear layers, respectively. These models encompass 268464,
624048 and 9747136 parameters, respectively. Figure 5a and Figure 5b depicts the relationship between the model
size (�) and the corresponding information leakage. The x-axis in the igure represents the number of layers
in each model. Fig. 5a and Fig. 5b show the upper bounds on information leakage increase as �∗ increases.
Interestingly, the impact of model size � on information leakage is not linear. In the case of over-parameterised
models, some parameters may not contribute to the model’s performance or information retention. Therefore,
increasing the size of such models may not proportionally afect information leakage.
Impact of Global Training Rounds (� ). Fig. 5c and Fig. 5d show that increasing the global training rounds (� )
leads to a proportional rise in the upper bound of information leakage. As the training progresses over multiple
rounds, the user’s model updates are repeatedly exposed to the central server. This repeated exposure increases
the risk of potential memorization of private training information by the server.
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Improved

Privacy-Utility 

Tradeoff

Pruning

Pseudo-Pruning

Fig. 6. Tradeof of privacy vs. accuracy with three defense strategies: Largest (red), Random (green), andMix (yellow), and

their enhanced versions incorporating Pseudo-Pruning (Pseudo). Pseudo could improve the overall tradeof by elevating model

accuracy and Largest ofers the highest level of privacy protection among all defense methods.

5 Design of Defense Pruning

5.1 Insights from Privacy uantification

As shown above, pruning designed only with model accuracy and model size in mind, does not suiciently protect
against privacy attacks. Next, we describe three insights gained in the process of privacy quantiication that
inform our design of privacy-aware FL model pruning (PriPrune described in Section 5.2).
Insight 1: Largest Weights Matter. Pruning weights with large gradients improves privacy the most, but also
hurts model accuracy the most. The intuition is that (base) pruning criteria, as used e.g., in PruneFL and FedDST,
avoid pruning model weights with the largest gradients, in order to preserve the most valuable information
for the model. These gradients can then be exploited by gradient inversion attacks. Fig. 4a and Fig. 4b conirm
empirically that, as more weights with large gradients are pruned, the attack is less successful.
This implies that the defense should strategically prune certain weights with large gradients, in addition to

those pruned by the base pruning scheme. We explored three defense strategies for weights to prune: (1) weights
with the top-� largest gradients (denoted as Largest), (2) random weight pruning (denoted as Random), and
(3) a hybrid approach combining the Largest and Random (denoted as Mix). We compared the three strategies
for the same defense pruning rate �̂� (set 0.3) on top of the base method (PruneFL) and details are provided
in Appendix C.1. The results in Fig. 6, within the Pruning oval, show the tradeof achieved between privacy
and accuracy: the žLargestž method achieves the best privacy and the worst model accuracy. This is because
pruning weights with large gradients, removes valuable information, thus improving privacy but also signiicantly
reducing model accuracy. Therefore, to improve this tradeof and preserve privacy without harming accuracy, we
need to introduce an additional mechanism.
Insight 2: Pseudo-Pruning. Users can prune weights with large magnitude gradients when they communicate
with the server (which helps privacy) and still keep these weights for their local training (which maintains
accuracy).

We refer to this idea as Pseudo-Pruning. and illustrate it in Fig. 7. Before sending the weights �̄�
� to the server

user � conducts Pseudo-Pruning with defense mask �̂
�
� . The weights pruned out by defense pruning with large

gradients �̃�
� (= �̄

�
� ⊙ �̃

�
� ) are withheld locally, thus preserving accuracy. Meanwhile, the weights remaining after

the defense pruning without large gradients, �̂�
� (= �̄

�
� ⊙ �̂

�
� ), are transmitted to the server, thus preserving privacy.
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Local Training

Base Pruningഥ������ ⊙ ഥ���

Pseudo Pruning

ෝ��� ഥ���⊙ ෝ���
⊙

ഥ���⊙ ෥���
Load ෥���−�

Global model ��

Locally save as ෥���

Send ෝ���
Defense Pruning

Fig. 7. Illustration of local pruning at user � with Pseudo-Pruning defense: First user applies base pruning with base mask

�̄� to derive a pruned model�̄�
� . Then, defense pruning is conducted with mask �̂� . Defense pruning is implemented as

Pseudo-Pruning, where the remaining weights �̂�
� (= �̄

�
� ⊙ �̂

�
� ) are sent to the server; while the pruned weights �̃�

� (= �̄
�
� ⊙ �̃

�
�

) are locally saved for future local training. Notably, these weights pruned by defense are not actually pruned, hence the term

"Pseudo-Pruning."

Here, �̃ is the bit-wise complement matrix of �̂. In the next round, after user � receives the global model��+1,
the locally saved weights �̃�

� are loaded into the global model, serving as the local initial model.
We combine Pseudo-Pruning with each of the three strategies (Largest, Random, and Mix) in Insight 1, and

we show the evaluation results within the Pseudo-Pruning dashed oval in Fig. 6. Fig. 6 shows that the model
accuracy is notably better with Pseudo-Pruning than real pruning, with the same mask. Furthermore, combining
the two insights into Largest (Pseudo) ofers the most efective privacy guarantee among all defenses discussed
above. Hence, we adopt Largest (Pseudo) as our defense strategy. Additional evaluation details are available in
Appendix C. Still, a remaining shortcoming of the defense considered so far, is that their pruning rate is manually
selected and remains ixed.
Insight 3: Adapt.

The defense pruning rate (�̂� ) should adapt to the model weights, to jointly optimize privacy and model accuracy.
A ixed defense rate is unable to capture the evolving dynamics of the training process. The defense strategy
should adapt to the changing dynamics of the training process by employing an adaptive defense pruning rate,
enabling a more efective optimization of the tradeof between privacy and accuracy.

5.2 The PriPrune Mechanism

Combining all aforementioned insights, we introduce the defense strategy, PriPrune, which dynamically adapts
the Pseudo-Pruning defense mask �̂ to jointly optimize accuracy and privacy throughout the FL training process.
Loss Function. The objective of user � is to minimize a loss function that combines privacy and accuracy:

L����� = ����L��� + ����L��� + ��ℎ�

︁
�∈�,�∈��

�
�
� (�,� )

(16)

Here, L��� represents the local model training loss, L��� represents the local privacy loss, and
∑

�∈�,�∈��

�
�
� (�,� )

serves

as the privacy regularization term, where � �
� (�,� )

represents the probability of user � not sharing the �-th parameter
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in �-th layer with the server at round � . � represents the total number of layers in the model, and �� refers to the
number of parameters in the �-th layer. Additionally, ���� , ���� , and ��ℎ� act as weights for accuracy loss, privacy
loss, and the privacy regularization term, respectively.

Next, we explain the terms of the loss function of the user in Equation 16 and their rationale. First, the accuracy

loss is given by:L��� = L
(
D� ; �̂

�
� |�

�
�,����

)
. The initial local weight is computed as:��

�,���� = �
� ⊙�̂�−1

� +�̄�−1
� ⊙�̃�−1

� ,

where �̃ denotes the bit-wise complement matrix of �̂. It is the composition of locally saved weights with global
weights through the utilization of the defense mask �̂.

Then, the privacy loss L��� is given by:

L��� =

︁
�∈�,�∈��

−
��∑

�∈�

��

|��, � |∑
�∈��

|��, � |
log� �

� (�,� )
(17)

�� indicates the number of weights in �-th layer, |��, � | represents the magnitude of the gradient for the �-th
parameter in �-th layer. The privacy loss is designed to discourage sharing weights with large gradients inspired by
Insight 1, aiming to mitigate information leakage. Therefore, we assign higher weights to parameters with larger
gradients in the loss function. Through this process, during the optimization of the privacy loss, the algorithm
updates a higher � �

� associated with the larger weight term. This higher � �
� signiies a higher probability of

not sharing the parameters with larger gradients with the server, thus promoting the sharing of less valuable
information with the server. Moreover, we also distribute constraints to �-th layer based on its parameter count
�� , in proportion to the total model weights, which ensures uniform layer-wise sparsity.
The term

∑
�∈�,�∈��

�
�
� (�,� )

introduces a privacy penalty based on the magnitude of � �
� . The optimization process

aims to minimize the sum of � �
� , resulting in a decrease in the overall probability of not sharing parameters.

This, in turn, leads to an increase in the total probability of sharing parameters. Thus, while the privacy loss
discourages the sharing of parameters with larger gradients with the server, this term encourages the sharing of
parameters with smaller gradients, thus preserving accuracy while maintaining privacy.
Optimization. In PriPrune, we optimize the defense mask �̂ and model weights �̄� jointly through gradient
descent based on our designed loss function. To overcome the discrete and non-diferentiable nature of the defense
mask �̂, we employ Gumbel-Softmax sampling [16, 25] to substitute the original non-diferentiable sample with
a diferentiable sample. Speciically, �̂ is parameterized by a distribution vector ��, � = [� �

� (�,� )
, 1 − �

�
� (�,� )

]. ��, �
represents the soft Pseudo-Pruning decision for the �-th parameter in layer � . The reparameterization trick is used
for diferentiable training:

��, � (�) =
exp

(
(log��, � (�) +��, � (�))/�

)
∑

�∈{0,1}
exp

(
(log��, � (�) +��, � (�))/�

) (18)

where��, � = − log
(
− log��, �

)
is Gumbel distribution with��, � sampled from a uniform i.i.d. distribution Unif(0, 1),

� is the temperature of the softmax and� ∈ {0, 1}. We apply the hard sample trick introduced by PyTorch document
[29] to acquire the defense mask �̂ and the main trick is to do �ℎ��� − ������������� (��� � � ) + ��� � � .
PriPrune. The PriPrune algorithm is descibed in Algorithm 3, which updates the UserUpdate function of Algo-
rithm 1. As depicted in Algorithm 3, in each FL round, after user � receives the latest global model��

� from the
server, they sample their defense mask �̂� using Equation 18. The defense mask �̂� is then employed to combine
the global model �� and the user’s locally saved �̃�−1

� to generate the local initial model ��
�,���� . Following this

composition step, the user initiates local training based on Equation 16, leading to updates in �̄
�
� , �̃

�
� , and �

�
� .
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Algorithm 3 PriPrune

1: function UserUpdate (�� ,�� , �):

2: Load �̃�
� from local storage of user �

3: Initialize � �
� = �

�−1
�

4: for local epoch e ∈ � do

5: Sample defense mask �̂�
� by Equation 18 with �

�
�

6: Combine local and global model by:

�
�
� [ �] �∈� =

{
�̃
�
� [ �] if �̂�

� [ �] = 0

�
�
� [ �] if �̂�

� [ �] = 1

7: Base Pruning: �̄�
� ← �

�
� ⊙ �̄

�
�

8: L����� ← ��������16.
9: Model parameter update:

�̄
�
� ← �̄

�
� − �∇L����� (�̄

�
� ,�

�
� )

10: Defense mask parameter update:

�
�
� ← �

�
� − �∇L����� (�̄

�
� ,�

�
� )

11: end for

12: �̂�
� ← ������ (� �

� , 1 − �
�
� )

13: Defense Pruning: �̂�
� ← �̄

�
� ⊙ �̂

�
� , �̃

�
� ← �̄

�
� ⊙ �̃

�
�

14: Return �̂
�
� to server, locally save �̃�

�

Then user � conducts defense pruning, retaining the non-shared weights �̃�
� locally, and transmits the shared

weights �̂�
� to the server.

6 Experimental Evaluation

6.1 Experimental Setup

Datasets andModels.We evaluate models Conv-2 [5] and VGG-11 [31] ) along with their corresponding datasets
FEMNIST [5] and CIFAR-10 [19]), which are commonly employed in FL studies.
Implementation details. In each round of training, we randomly select 10 clients from a pool of 193 users for
the FEMNIST and 100 clients for the CIFAR-10. The training process involves 20,000 iterations, with a batch size
of 20 for the FEMNIST and CIFAR-10. We employ 1 local training and initialize the learning rate at 0.25 with
the base pruning rate set to 0.3. The details regarding the data split, resource and conigurations are provided in
Appendix B.1.
Performance Metrics. To assess the efectiveness of the evaluated pruning methods, we employ the privacy
metrics and utility metrics. For privacy assessment, we use the Normalized Mutual Information (NMI) between
the training data and the reconstructed data as the privacy metric. Higher values of NMI indicate a higher risk of
privacy leakage. Additionally, the Peak Signal-to-Noise Ratio (PSNR) is employed as a well-established metric
for image quality evaluation. The comparison of NMI and PSNR can be found in Fig. 2. See Appendix B.2 for
additional evaluation results. The utility metric relies on model accuracy (ACC) to gauge model performance.
Ideally, we want improved privacy, without signiicantly compromising accuracy.
Hyper-parameter Selection.We conducted a search for our main parameter, the defense rate �̂� , from 0.1 to
0.6, as depicted in Fig. 8c. With regards to our hyperparameters in loss functions, we search ���� in the list of
[1, 5, 10], ���� in the list of [1, 10, 15] and ��ℎ� in the list of [2e-06, 2e-05, 2e-04]. Detailed results are deferred to
Appendix C.3.
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Fig. 8. Performance evaluation of PriPrune with adaptive defense rate and Largest (Pseudo) with 6 fixed defense rates, as

defense strategies, integrated with PruneFL (as the base pruning method), conducted over 20,000 training rounds across the

FEMNIST dataset. (a) Comparison of ACC over training rounds under these diferent defense strategies. (b) Comparison of

Privacy (NMI) over training rounds under these diferent defense strategies. (c) The Privacy-Utility tradeof, measured in

terms of NMI and ACC, respectively.(d) Change in the adaptive defense rate of PriPrune over training rounds.

6.2 Performance of PriPrune

Recall that in Section 5.1, Insight 1, we initially assessed three defense strategies atop the base pruning method,
namely: Random, Largest, Random and Mix. The results in Figure 6 indicate that while these defense strategies
enhance privacy, they also degrade utility. Consequently, in Insight 2, we introduce Pseudo-Pruning to optimize
this tradeof. We evaluate the aforementioned three defense strategies both with and without Pseudo-Pruning,
revealing that their integration with Pseudo-Pruning leads to improved accuracy and enhanced privacy. Notably,
the Largest + Pseudo-Pruning strategy achieves the optimal balance between privacy and utility, thus emerging
as our preferred defense mechanism. In Insight 3, we tackle the challenge of a ixed defense rate by proposing
PriPrune, which incorporates Largest + Pseudo-Pruning (Largest (Pseudo) ) with an adaptive defense rate. The
evaluation of the privacy improvement achieved by each individual insight, in Section 5.1, essentially provides an
ablation study. In this section, we conduct comprehensive experiments to meticulously evaluate the performance
of the entire PriPrune across various pruning mechanisms and datasets.
First, we present a performance comparison between the Largest (Pseudo) with 6 ixed defense rates and

PriPrune with the adaptive defense rate, both are integrated with PruneFL (as the base pruning method).
Comparable Utility. Fig. 8a illustrates how the utility metrics, ACC, change over FL rounds. It shows the
convergence curve of PriPrune, with its model accuracy closely aligned with that of PruneFL. This alignment
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(a) PriPrune in FEMNIST (b) PriPrune in CIFAR-10

Fig. 9. Comparison of tradeofs between privacy-vs-accuracy among four base pruning mechanisms, both with and without

the integration of PriPrune, across the FEMNIST and CIFAR-10 datasets.

indicates that PriPrune maintains utility comparable to PruneFL. However, for the Largest (Pseudo) defense,
increasing its ixed defense rate from 10% to 60% results in decreased utility, rendering it unable to match the
ACC achieved by PruneFL.
Enhanced Privacy. Figure 8b illustrates the change in the privacy metric NMI across FL rounds. It shows
that PriPrune consistently maintains a low NMI throughout all FL training rounds, signiicantly outperforming
PruneFL. Moreover, its NMI is comparable to that of Largest (Pseudo) with a ixed defense rate of 60%.
Optimal Tradeof. Figure 8c illustrates the comparison of the privacy and utility tradeofs among the mentioned
defenses. It shows that increasing the defense rate of Largest (Pseudo) enhances privacy protection but at the
expense of model accuracy. Conversely, PriPrune achieves the optimal tradeof between privacy and accuracy.
This is attributed to the adaptive nature of PriPrune’s defense rate �̂ , which adjusts to the model weights and is
optimized jointly for privacy and model accuracy. The dynamic change of the defense rate of PriPrune is depicted
in Fig. 8d.

Communication Eiciency and Training Speed. We conduct experiments to compare communication and
training in PruneFL with and without PriPrune; details are deferred to Appendix C.2. When PriPrune is applied,
the number of model parameters is reduced by 32.20% ± 0.91% for FEMNIST and by 15.51% ± 0.17% for CIFAR-10,
thus signiicantly reducing the communication cost between clients and the server. This beneit is achieved
because of Pseudo-Pruning, which retains pseudo-pruned weights locally, but transmits fewer model updates.
When PriPrune is applied, the training time is increased by 0.18s ± 0.01s for FEMNIST and by 0.50s ± 0.01s for
CIFAR-10, this is a negligible increase in the training speed (due to updating the defense pruning rate).
We have demonstrated that PriPrune stands out as the best defense solution among other strategies. Subse-

quently, we present the privacy performance of PriPrune when integrated with various state-of-the-art base
pruning schemes in FL, such as SNIP, SynFlow, FedDST, and PruneFL, across both the FEMNIST and CIFAR-10
datasets.
PriPrune with State-of-the-Art Pruned FL. Figure 9 shows the results of using PriPrune for defense after a
number of state-of-the-art base pruning schemes. Across all base pruning methods, this integration consistently
enhances privacy while preserving accuracy. This highlight PriPrune’s efectiveness and versatility in achieving
an optimal tradeof between privacy and accuracy in diverse scenarios. This outcome is primarily due to the
nature of PriPrune, which not only actually prunes but also selectively retains certain critical weights for local
training (through Pseudo-Pruning). This mechanism allows the model to maintain or even improve accuracy while
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reducing the information leakage that could be exploited in privacy attacks, as also shown in Fig.6. Speciically,
PriPrune focuses on Pseudo-Pruning weights with large gradients that are most likely to leak sensitive information
and keep them for local training. This selective pruning can lead to a model that is more robust against privacy
attacks without a signiicant loss in accuracy. Additionally, the adaptive pruning rate in PriPrune is optimized for
the tradeof between privacy and accuracy, allowing the model to balance these two objectives efectively.

FEMNIST CIFAR-10

Methods Base Base + PriPrune Base Base + PriPrune

PruneFL 0.22 ± 0.008 0.12 ± 0.007 0.29 ± 0.009 0.24 ± 0.009
FedDST 0.21 ± 0.025 0.13 ± 0.007 0.25 ± 0.008 0.18 ± 0.006
SynFlow 0.22 ± 0.009 0.15 ± 0.005 0.25 ± 0.012 0.21 ± 0.018
SNIP 0.23 ± 0.012 0.13 ± 0.014 0.24 ± 0.004 0.22 ± 0.008

Table 2. Comparison of privacy levels (NMI) between Base and Base + PriPrune for FL pruning methods. A lower NMI

indicates a reduced risk of privacy leakage.

While Fig. 9 compares the tradeofs between privacy-vs-accuracy, Table 2 further elaborates on the privacy
improvement achieved by using PriPrune as defense after any base scheme, reporting results over three ex-
periments. Compared to the base approach alone, adding PriPrune as defense consistently reduces NMI, thus
improving privacy. For instance, on the FEMNIST dataset, PriPrune improves the privacy of PruneFL by 45.5%
without compromising accuracy; on the CIFAR-10 dataset, PriPrune improves privacy of FedDST by 28% while
maintaining accuracy.

7 Conclusion

In this paper, we revisit federated learning with model pruning, from the point of view of privacy. First, we
quantify the information leakage and privacy gain ofered for model pruning in FL, both theoretically and
experimentally. Inspired by insights obtained from our extensive privacy quantiication, we design PriPruneś
an adaptive privacy-preserving local pruning mechanism in FL, that is jointly optimized for privacy and model
performance. Our proposed mechanism achieves the best tradeof between privacy and accuracy across diverse
pruning methods and datasets under privacy attacks. One direction for our future work is to combine our
pruning-based defense with classic, orthogonal defenses in FL such as diferential privacy and secure aggregation,
to enhance privacy further.
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Appendix

This appendix extends the main paper, providing supplemental materials, including additional details and results,
which could not be included in the main paper, due to lack of space.

A Proof of Theorem

This section provides the proof of Theorem 4.1 in Section 4.1.

A.1 Proof

Equation 2 is the deinition of mutual information, which is:

I (� ;� ) =

∫
X×Y

���
�P�,� (�,�)

�P� (�) ⊗ P� (�)
�P�,� (�,�)

= H(� ) − H (� |� )

= H(� ) + H(� ) − H(�,� )
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Hence, Equation 3 can be written as:

I

(
D� ;

{
�
�
� ⊙ �̄

�
�

}
� ∈[� ]

) (�)
≤

�︁

�=1

I

(
D� ;�

�
� ⊙ �̄

�
�

���{��
� ⊙ �̄

�
�

}
�∈[�−1]

)

(� )
=

�︁

�=1

(
I

(
�
�
� ;�

�
� ⊙ �̄

�
�

���{��
� ⊙ �̄

�
�

}
�∈[�−1]

))
+

�︁

�=1

(
I

(
D� ;�

�
� ⊙ �̄

�
�

�����
� ,
{
�
�
� ⊙ �̄

�
�

}
�∈[�−1]

))

−

�︁

�=1

(
I

(
D� ;�

�
�

���{��
� ⊙ �̄

�
�

}
�∈[� ]

))

(� )
≤

�︁

�=1

(
I

(
�
�
� ;�

�
� ⊙ �̄

�
�

���{��
� ⊙ �̄

�
�

}
�∈[�−1]

))

=

�︁

�=1

(
H

(
�
�
�

���{��
� ⊙ �̄

�
�

}
�∈[�−1]

))
+

�︁

�=1

(
H

(
�
�
� ⊙ �̄

�
�

���{��
� ⊙ �̄

�
�

}
�∈[�−1]

))

−

�︁

�=1

(
H

(
�
�
� ,�

�
� ⊙ �̄

�
�

���{��
� ⊙ �̄

�
�

}
�∈[�−1]

))

(� )
=

�︁

�=1

(
I

(
x�� ;�

�
� ⊙ �̄

�
�

���{��
� ⊙ �̄

�
�

}
�∈[�−1]

))
(19)

Where (a) and (b) are from the chain rule; (c) is from data processing inequality D� → �
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� denotes the size of the random samples.
Therefore, the privacy leakage for a single round � is Equation 5:
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For part A, based on the chain rule of entropy, we have
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(a) is from conditioning reduces entropy; (b) is from zero conditional entropy and the Taylor series of the binary
entropy function in a neighbourhood of 0.5 with the base pruning rate �̄� .
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In recent theoretical results for analyzing the behaviour of SGD, they approximate the SGD vector by a distribution
with independent components or by a multivariate Gaussian vector.
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(a) is based on the transformation of random vectors. Based on the Maximum Entropy Upper Bound [35], which
the continuous distribution X with prescribed varianceV(X) maximizing the entropy is the Gaussian distribution
of same variance. Since the entropy of a multivariate Gaussian distribution with mean � and covariance ��, � is

h(N� (�, �)) =
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2
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where |� | denotes the determinant of � . Hence, the maximum entropy upper bound for part D is
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Therefore, by combining Equation 22 and Equation 23, the upper bound for part B is
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After summing part A and part B, we derive the upper bound for the privacy leakage for the single round,
which is Equation 5:
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Based on Equation 4, we have the upper bound for objective function Equation 3, standing how much informa-
tion the aggregated model over � global training rounds could leak about the private data,
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For PruneFL, the upper bound for the single-round leakage is
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Fig. A1. Impact of varying pruning rate in FEMNIST on privacy leakage using key metrics: Normalized Mutual Information

(NMI) displayed on the let y-axis and Peak Signal-to-Noise Ratio (PSNR) shown on the right y-axis under a Gradient

Inversion atack for PruneFL.

B Privacy Atacks

B.1 Extra Implementation Details

Our algorithms are implemented by Pytorch and we implement experiments on two NVIDIA RTX A5000 and
two Xeon Silver 4316. Across all the examined methods, we employ 1 local training and initialize the learning
rate to 0.25 and The baseline pruning rate is set at 0.3 for all datasets.

Data Partitioning. Our data partitioning methodology is aligned with the FEMNIST dataset setting, utilizing its
inherent 193-user partition. As for the CIFAR-10 dataset, we divided it into 100 equal-sized, non-overlapping
users, following the methodology used in PruneFL [17].

B.2 Evaluation on both NMI and PSNR Metrics

To quantify the extent of privacy leakage, we utilized the Normalized Mutual Information (NMI) metric, which
has been demonstrated in prior research to align well with the Peak Signal-to-Noise Ratio (PSNR) [9] as an
efective measure of privacy leakage.
We examine the relationship between NMI and PSNR. The observed trend, depicted in Fig. A1, illustrates a

consistent decrease in both NMI and PSNR metrics with higher pruning rates. This result is consistent with
previous research, conirming the reliability of NMI as a measure of privacy leakage, which is comparable to the
widely accepted PSNR metric.

B.3 Image Reconstructions under Privacy Atacks

Figure A2 shows the recovered images under the SGI (Sparse Gradient Inversion) attack in the FEMNIST dataset,
for diferent base pruning methods and base pruning rates.

C Defense Details

C.1 Results of Insights

Within the scope of the three defense methods in the Insights from Evaluation Section, speciic conigurations
have been established. These settings are detailed below. For all three defense methods, the total pruning rate (�̂)
is uniformly set at 0.3, mirroring the original PruneFL’s pruning rate.
For each defense method:

ACM Trans. Model. Perform. Eval. Comput. Syst.
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Fig. A2. Impact of varying pruning rate on image reconstruction in FEMNIST using diferent base pruning methods.

(a) ACC vs NMI (b) ACC vs Atack Loss

Fig. A3. Comparison of Privacy-Accuracy Trade-Of with Varying Defense Rate (0% to 50%) in Largest Method based on

PruneFL using NMI and Atack Loss Privacy Metrics

• PruneFL + Largest: The defense strategy involves pruning based on the weights with top-� largest gradients,
with the defense pruning rate set to �̂������� = 0.3.

• PruneFL + Random: The defense strategy involves random pruning, with the defense pruning rate (�̂) set
to �̂������ = 0.3.

• PruneFL + Mix: This is a hybrid approach that combines both the largest gradient-based pruning and
random pruning. The defense pruning rate is determined as the sum of �̂������� = 0.15 and �̂������ = 0.15.

Figure A3 shows Privacy-Accuracy Trade-Of with Varying Defense Rate (0% to 50%) in Largest Method based
on PruneFL using NMI and Attack Loss Privacy Metrics.
The outcomes are indicative of a notable trend: as more weights associated with larger gradients are pruned,

privacy is enhanced at the expense of accuracy. This substantiates our Insight 1: Largest Weights Matter. Pruning
weights with large gradients improves privacy the most but also hurts model accuracy the most.

C.2 Communication Eficiency and Training Speed

Figure A4 demonstrates the communication cost in terms of the number of model parameters across 1000
iterations of FL. In PriPrune, we employ Pseudo-Pruning, where the pseudo-pruned weights are retained locally
for subsequent training rounds. Thus, PriPrune directly reduces communication costs by transmitting fewer
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(a) Conv-2 in FEMNIST

0 200 400 600 800 1000
Training Round

2

3

4

5

6

7

8

9

Nu
m

be
r o

f P
ar

am
te

rs

1e6

PruneFL PruneFL + PriPrune

(b) VGG-11 in CIFAR-10

Fig. A4. Comparison of the communication costs of PruneFL with and without PriPrune during the training process with

(a) representing FL training using the Conv-2 model on the FEMNIST dataset and (b) the VGG-11 model on the CIFAR-10

dataset.
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(a) Training speed in FEMNIST
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(b) Training speed in CIFAR-10

Fig. A5. Comparison of the training speed of PruneFL with and without PriPrune during the training process with (a)

representing FL training on the FEMNIST dataset and (b) on the CIFAR-10 dataset.

model parameters. Figure A4 shows a signiicant reduction in the number of model parameters communicated
between clients and the server with the application of PriPrune.
Figure A5 displays the training speed access through the total time of clients’ local training across 1000

iterations of FL. PriPrune involves additional steps of updating the defense pruning rate, which is computationally
lightweight. Figure A5 demonstrates that PriPrune introduces only a minor overhead and the additional steps
brought by PriPrune has a minimal impact on training speed.

C.3 Hyper-parameter Selection

Table A1 has searched ���� in the list of [1, 5, 10], ���� in the list of [1, 10, 15] and ��ℎ� in the list of [2e-06, 2e-05,
2e-04], which showing the comparisons of privacy levels during the hyper-parameter search. As shown in Table
A1, when we increase the ���� , the NMI value becomes lower, indicating better privacy protection. We explore
diferent combinations of hyper-parameters and inally utilize the best set of values that could achieve the best
privacy-accuracy tradeof.
For diferent pruning methods and diferent datasets, we are adopting diferent combinations of hyper-

parameters so as to achieve better privacy-utility tradeof, as detailed in Table A2.
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���� = 1 ���� = 10 ���� = 15

Parameter ��ℎ� = 2� − 04 ��ℎ� = 2� − 05 ��ℎ� = 2� − 06 ��ℎ� = 2� − 04 ��ℎ� = 2� − 05 ��ℎ� = 2� − 06 ��ℎ� = 2� − 04 ��ℎ� = 2� − 05 ��ℎ� = 2� − 06

���� = 1 0.166 0.171 0.156 0.138 0.153 0.154 0.138 0.159 0.151

���� = 5 0.154 0.158 0.136 0.125 0.121 0.123 0.135 0.123 0.130

���� = 10 0.148 0.142 0.140 0.132 0.126 0.118 0.135 0.132 0.140

Table A1. Comparison of privacy levels (NMI) during hyper-parameter selection: with regards to our hyperparameters in

loss functions, we search ���� in the list of [1, 5, 10], ���� in the list of [1, 10, 15] and ��ℎ� in the list of [2e-06, 2e-05, 2e-04].

Dataset Method ���� ��ℎ� ����

FEMNIST

PruneFL+PriPrune 15 2 × 10−5 5

Synlow+PriPrune 1 2 × 10−6 10

SNIP+PriPrune 1 2 × 10−6 10

FedDST+PriPrune 8 2 × 10−5 10

CIFAR-10

PruneFL+PriPrune 10 2 × 10−5 5

Synlow+PriPrune 1 2 × 10−6 5

SNIP+PriPrune 1 2 × 10−6 10

FedDST+PriPrune 10 2 × 10−5 10

Table A2. Parameter setings for ���� , ��ℎ� , and ���� in FEMNIST and CIFAR-10 datasets.
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