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Abstract—With the rapid growth of Internet of Vehicles (IoV)
applications and the advancement of edge computing, resource-
limited vehicles (and other IoT devices) increasingly rely on
external servers to handle diverse and complex computational
tasks. However, this dependence on external servers, which may
be malicious or compromised, introduces significant security
risks. Replication-based verifiable computing has been proposed
as a solution to verify the accuracy of task results, but these
approaches are vulnerable to collusion, where compromised
servers return identical incorrect results to mislead the vehicle.
Existing defenses against collusion either cannot ensure complete
protection or become ineffective as the number of colluding
servers rises. In this paper, we introduce CoVFeFE, a collusion-
resilient verification framework designed to detect and mitigate
collusion, even when the majority of servers are compromised.
Our framework integrates a rapid detection mechanism that
monitors computational conflicts, alongside a heuristic mitigation
strategy that identifies and neutralizes colluding servers. Simu-
lation results demonstrate that CoVFeFE outperforms existing
solutions by successfully identifying all colluding servers, even
when they constitute a majority >50%) of the network.

Index Terms—Verifiable Computing, Internet of Vehicles, Edge
Computing, Collusion

I. INTRODUCTION

The Internet of Vehicles (IoV), a key component of the
Internet of Things (IoT), has been proposed to enable secure
and intelligent transportation within smart cities [1]. However,
many vehicles lack the computational resources to process data
locally. For instance, autonomous vehicles typically offload
their computational tasks to remote servers, such as remote
cloud/edge infrastructure (e.g., roadside units) or to a self driv-
ing compute device located in the vehicle. This outsourcing
model alleviates the resource constraints but introduces new
challenges, particularly related to trust and security [2].

Verifiable computing, which ensures the correctness of
outsourced computational results without requiring local (re-
)execution, has been extensively studied in recent years [3].
Existing approaches generally fall into one of three cate-
gories: (i) using probabilistically checkable proofs to identify
incorrect results with high confidence [4], (ii) employing
Trusted Execution Environments (TEEs), such as Intel SGX,
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to guarantee the integrity of computation [5], and (iii) using
replication-based schemes, where the same task is redundantly
processed by multiple servers, and majority voting is used to
determine the correct result [6]. While proof-based and TEE-
based solutions often designed to work on specific applications
or hardware, replication-based solutions are more widespread
due to their simplicity and ease of implementation [7].

However, most replication-based approaches are vulnerable
to collusion, where malicious servers cooperate to return
identical incorrect results [8]. To combat this, various collu-
sion prevention and detection techniques have been proposed.
Prevention methods typically involve increasing the number
of replicas [9] or incentivizing rational servers to expose col-
luders [10], while spot-checking methods utilize trusted tasks
to randomly verify servers’ behavior, offering an additional
layer of protection [11]. Despite these measures, prevention
strategies cannot fully eliminate the risk of collusion. As a
result, detection and mitigation techniques have been devel-
oped to identify colluding servers [6], [12]-[14]. To the best
of our knowledge, most existing methods assume that fewer
than half of the servers in the network are colluding, rendering
them ineffective if the majority of servers are compromised.
In contrast, our work introduces a novel approach that detects
and mitigates collusion even when the majority (i.e., >50%)
of servers in the network are malicious.

In this paper, we propose CoVFeFE, a collusion-
resilient replication-based verification framework for resource-
constrained devices at network edge. CoVFeFE is a client-side
framework that runs on resource-constrained devices at the
edge network, where the majority of servers can be malicious
and colluding. Our contributions are summarized as follows:
(i) CoVFeFE offers continuous detection and mitigation of
collusion with high accuracy and minimal latency. Unlike
existing solutions, it identifies collusion regardless of the
percentage of malicious servers in the network by monitoring
discrepancies in computation results from two different groups
of servers processing the same task. Once a conflict is detected,
a heuristic mitigation mechanism is triggered to identify the
colluding servers, discard tasks with erroneous results, and
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correct any misclassification of benign servers. CoVFeFE
compute its own trusted task list to enhance the efficiency
of collusion mitigation; and (ii) we implement CoVFeFE and
evaluate its performance through a series of experiments using
the ns-3 network simulator. We compare CoVFeFE against two
state-of-the-art replication-based solutions: baseline replication
(R_baseline) and collusion-prevention replication (R_Kupcu).
Our experimental results demonstrate that CoVFeFE outper-
forms both alternatives, successfully identifying all colluding
servers even when the majority of servers are compromised,
where the other two solutions fail as the number of colluding
servers increases. Additionally, CoVFeFE significantly reduces
overhead, achieving up to an 8x and 100x reduction com-
pared to R_baseline and R_Kupcu, respectively.

II. RELATED WORK

Verifiable computing solutions are often classified into
three main categories: (i) proof-based solutions using prob-
abilistically checkable proofs (PCPs) generated by servers
together with computation results [4], [15], [16]; (ii) TEE-
based solutions deploy remote attestation for a client to verify
the launching of the trusted execution using isolated tamper-
resistant environments, such as Intel SGX [17] and ARM
TrustZone [18]; and (iii) replication-based solutions, famous
for their generic use, outsource same computation tasks to
multiple servers and verify the correctness using consensus
protocols (e.g., majority voting) on the returned results [19],
[20]. Research has reduced the overhead of redundant com-
munication by limiting task replicas [6], [21], but the risk and
danger posed by colluding servers have long been pointed out,
and remain a difficult challenge to address [22].

While collusion defense solutions have been mainly pro-
posed for replication-based verification schemes, there have
been few proof-based and TEE-based collusion research dis-
cussions and solutions [3]. Proof-based collusion is limited to
the risk of delegating verification or proof setup to a colluding
third party [23], whereas the collusion for TEE-based solutions
is mainly due to a rogue remote attestation [24].

State-of-the-art replication-based collusion defense ap-
proaches have focused on either prevention [9], [10], [19],
[25], [26] or detection [11]-[14], [27], [28] of collusion.
Prevention approaches aim to discourage or reduce collusion
occurrences by enlarging the number of replicas [9], deploying
game theory-based fine and reward contracts to incentivize “ra-
tional” servers to betray collusion [10], or spot checking [11]
by a list of trust tasks. While prevention can help reduce
collusion, it cannot be avoided, hence detection and mitigation
are necessary when collusion occurs.

Detection and mitigation solutions have focused on opti-
mizing the detection of colluding servers [12], [13]. Silaghi
et al. [12] used two-step algorithms to identify a majority
pool of servers which will be considered benign and used
for detecting colluding servers, while Staab et al. [13] applied
a one-step graph clustering algorithm to identify both benign
and colluding servers. However, all these solutions are able
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Fig. 1: Client sends task T} to any of five servers and receives
aresult: S (benign), S; — S5 (malicious performing erroneous
execution, evasive strategy and collusion attacks)

to identify benign servers only while assuming that colluding
servers represent a minority in the network.

Unlike other collusion detection and mitigation schemes,
CoVFeFE is able to detect and mitigate collusion even in the
presence of more colluding than benign servers in the network.
It uses a heuristic to determine the existence of collusion, then
identifies and isolates the colluding servers.

III. SYSTEM AND THREAT MODEL
A. System Model and Assumptions

We consider an edge network, where multiple client devices
(which we refer to as clients) rely on an edge computing
infrastructure to execute any client task 7; at time ¢ requiring
remote execution. This compute infrastructure consists of S, a
set of edge computing servers (servers for short), where each
server S, 7 = {1,---, Ng}. We assume that clients connect
and send all computation tasks to the closest server at any
given time. We refer to this closest server selected by the
client as the current compute server with respect to the client.

We model each task 7; sent by a client at time ¢, and
also assume that each task 7} has a unique correct result R,
associated with it. We also assume that a client is incapable
of knowing R; prior, thus requests execution of the task from
remote servers and relies solely on the results returned by these
servers. Note that results returned by servers after execution
of any task may or may not be correct (refer to threat model
for more attack details).

B. Threat Model

Here we present the edge computing threat vectors that CoV-
FeFE will help address. Servers may not be reliable or trust-
worthy [29], hence outsourcing computations to these servers
may return erroneous results, particularly with misbehaving
malicious edge nodes. We refer to this attack as the erroneous
execution attack where malicious servers will always return an
erroneous result Rt # R, for a given task T;. This attack can
be performed by skipping the execution of the task altogether
or maliciously swapping the correct result. Replication-based
verification can address the erroneous execution attack, but
servers may implement extra strategies to evade verification.
We consider that malicious servers can implement an evasive
strategy that aims at identifying a verification mechanism
in action and implementing a countermeasure. For instance,
servers implementing an evasive strategy can return ; when
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Fig. 2: Framework Overview: CoVFeFE performs task ver-
ification on the current compute server and detect/mitigate
collusion using the tasks from the pre-approved task table.

verification is identified and Rt otherwise for any task 73.
We also consider a collusion attack, where servers always
collaborate to share the exact erroneous result Rt for the
same task T;. We consider that colluding servers are irrational
(i.e., cannot be incentivized with money or credit) and cheat
clients by tricking them into accepting incorrect results of
erroneous execution. Our design aims for resiliency against
all or any combination of these three malicious intents: (i)
erroneous execution, (i) evasive strategy, and (iii) collusion
attack, which significantly degrade the performance of edge
computing-aided IoV applications. Fig. 1 depicts a scenario
where a client sends task 7; for remote execution to any
server located at the edge of the network; in this example,
five servers are available: one benign (S7) and four malicious
servers performing erroneous execution (Ss), evasive strategy
(S3) and collusion attack (S; and Ss). Finally, we assume in
this paper that collusion is temporal, and there exists a time
when the network is free of collusion.

IV. FRAMEWORK OVERVIEW

As shown in Fig. 2, CoVFeFE interacts with any replication-
based verification mechanisms by building its own list of pre-
approved tasks and overwriting verification in the presence of
server collusion. Note that this plug-and-play method, requires
little to no overhead when there is no server collusion detected.

CoVFeFE’s design is centered around the detection and
mitigation of server collusion even when the majority of
servers in the network are colluding. When most servers are
colluding, monitoring result consensus can be misleading, and
detection may fail. Thus, unlike other state-of-the-art solutions,
which monitor a large list of tasks CoVFeFE, selects a list of
verification tasks (pre-approved task table), and checks each
task used for verification and detects collusion existence as
soon as two different clusters of results are shown.

While detection can be efficient, CoVFeFE is unable to
determine which cluster contains colluding servers and which
one is benign. Thus, it implements a mitigation mechanism
that aims at (1) identifying colluding servers, (2) removing
the list of erroneous results caused by collusion consensus,
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Fig. 3: Example of pre-approved task table statuses prior to
and after collusion; A task “BBMC” in the pre-approved task
table refers to a task that received results from two benign (B),
one malicious (M), and one colluding (C) servers. Detection
of collusion occurs when the client has verified two group of
results in the poisoned task, T5.

and (3) updating the list of benign servers which may have
suffered from the detected collusion attack.

V. CoVFeFE’S COLLUSION DETECTION AND MITIGATION

CoVFeFE implements two main methods, namely the de-
tection of collusion and the mitigation of colluding servers,
which includes identifying the servers colluding and revoking
any poisoned task and/or reputation miscalculation.

A. Detection of Collusion

CoVFeFE implements an efficient detection function that
determines the presence of collusion after each verification.
Once a task T; is sent to verify a server S;, CoVFeFE invokes
the CollusionEwxists(T;, R;) function as soon as S; returns
the result R; for this verification (Alg. 1, L1). The function
performs a lookup on all returned results for task 73!, and
detects collusion if and only if there exists another server
returning the same result R; for this task, while another group
of servers (> 2) share a different result R} # R, (this task
called a poison task). Note that this detection function can
only guarantee collusion presence but cannot determine if the
verified server is colluding or benign. An example is depicted
in Fig. 3 showing how a sample pre-approved task table may
look prior to collusion and during collusion. The collusion
is detected at time t3, at status 3, where the client uses a
poisoned task (T5g) to verify two benign servers (denoted by
‘B’ in Fig. 3). Note that detection can also occur if the client
uses a non-poisoned task for verification, e.g., Ty in Fig. 3
to verify a colluding server (denoted by ‘C’ in Fig. 3).

B. Mitigation of Collusion

As soon as collusion is detected, CoVFeFE triggers a
mitigation process that aims to mitigate and correct any
damage caused by colluding servers. Specifically, CoVFeFE
identifies colluding servers, removes poisoned tasks from the
pre-approved task table, and recovers the reputation of benign
servers in the following steps:

Two-Phase Identification of Colluding Servers: In the first
phase, CoVFeFE overrides the verification framework to verify

TAll results and the corresponding servers returning them are stored for
each task in pre-approved task table.
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all servers at once using a minimal number of “trusted” non-
poisoned tasks. CoVFeFE uses a heuristic to select these
trusted tasks. The heuristic consists of selecting tasks that were
generated as early as possible before the time of collusion
detection (while in section IIT we assumed the collusion does
not start from the beginning).

We model the selection of the minimum number of “trusted”
pre-approved tasks as a set cover problem [30]. Given that
the problem is NP-hard, we apply the greedy heuristic algo-
rithm [31] to find the minimal set, but we modify its searching
strategy. CoVFeFE selects the tasks that are generated as early
as possible before the time of collusion while sharing the same
largest coverage of servers that never received the task. For
instance, if collusion is detected at a given time ¢, the earlier
the task was created before this time ¢, the higher the chance
it is not poisoned. For example, as shown in Fig. 3 status
tolts, task Tsp, which has been gathered after collusion, is
more likely to be poisoned compared to task 75, gathered prior
to collusion. Algorithm, SelectTasksGreedy(S) searches the
list of all servers S and returns 7, the minimum set of tasks
along with the list of servers to be verified using each task.

Then CoVFeFE sends all tasks in 7 to the corresponding
servers and compares the results returned by servers to the
pre-approved results. Servers that return incorrect results are
tagged as colluding and added to a list of colluding servers C as
shown in Alg. 1, L3, IdentifyColludingServers(T ). Note
that this step may identify non-colluding malicious servers as
colluding due to wrongly selection of 7, thus overestimating
the number of colluding servers. We choose this conservative
approach to identify all colluding servers.

While this first mitigation phase is fast and identifies a group
of colluding servers, smarter colluding servers can easily evade
this step using an advanced evasive strategy (as described in
Section III). Therefore, CoVFeFE uses a second mitigation
phase to identify each server individually, as shown in Alg. 1,
L4, VerifyBenignServers(C,S). It verifies each “benign”
server (i.e., a server passing the first phase successfully)
with the most similar “trusted” task to each server to avoid
verification detection and evasion. We present and describe
this selection process in detail in Section VI-B. By selecting
these tasks, colluding servers will return incorrect results and
therefore get identified and be added to C.

Estimation of Collusion Start Time: CoVFeFE estimates the
time when the collusion starts in the network to identify the
set of tasks that may be poisoned, and further investigate/clean
them. Those unlikely to be poisoned can be used for future
collusion detection and mitigation if needed. While CoVFeFE
can detect collusion at time ¢4, collusion must have started
earlier in the network. CoVFeFE estimates the collusion start
time by measuring the ratio of colluding servers in the
network (a higher server collusion ratio is often proportional
to the percentage of tasks returned by colluding servers), thus
shorter collusion detection delays (as per CoVFeFE’s detection
mechanism). To this end, we estimate the delay preceding the
collusion detection as t; = t4 — 0 x l%', where 0 is the error
tuning parameter. While this estimation of the start of collusion

may not be accurate or precise, this conservative estimation is
only used to reduce the overhead of looking up poisoned tasks
and revoking incorrect results for a smaller list of tasks instead
of the entire pre-approved task table.

Algorithm 1 Collusion detection and mitigation after a veri-
fication using task 7} at time ¢

1. if CollusionExists(T;, R:) then

2. T + SelectTasksGreedy(S)

3. C < IdentifyColludingServers(T)

4. C + VerifyBenignServers(C,S)

5. ts ¢ EstimateCollusionStartTime(|C|,|S|)
6:  RemovePoisonedTasks(ts,C)

7. for all server S; € C do

8: Isolate(S;)

9:  end for

10: end if

Removal of Poisoned Tasks and Update of Server Repu-
tations: CoVFeFE performs poisoned task removal to clean
up the pre-approved task table using the identified colluding
servers, C, and updates the reputation scores of misclassified
benign servers or/and identified colluding servers. Specifically,
the task removal function (Alg. 1, L6) locates any poisoned
task, T}, if and only if the stored pre-approved result, Ry
satisfies the following two conditions: (i) Ry is identical to
the result shared by any identified colluding server, and (ii)
Ry, is different from the result shared by any benign server
(if exists). The second condition is required because identified
colluding servers may have been benign (at any given time),
thus their task results, generated prior to colluding, may have
been “correct”. After each task removal, CoVFeFE identifies
the list of benign servers impacted by the miss-classification
of this task and performs a revocation of the benign server,
and update list of colluding servers.

Finally, CoVFeFE isolates the colluding servers in the list C
and remove it from list of servers, as shown in Alg. 1 (L7-9).

Once the mitigation process is complete, clients resume the
detection phase to monitor potential future collusion.

VI. EFFICIENCY ENHANCEMENT OF CoVFeFE

Considering the constrained resources of client devices,
CoVFeFE implements a scheme to reduce overhead while
ensuring the efficiency of collusion detection and mitigation
using adaptive server probing to maintain a proper size of pre-
approved task table. Moreover, CoVFeFE deploys a mecha-
nism called verification masquerading, which aims at masking
the verification process with tasks that look like legitimate
client computation requests.

A. Adaptive Server Probing

To balance the overhead of maintaining the pre-approved
task table and the sufficiency of pre-approved tasks for verifi-
cation and collusion mitigation, CoVFeFE employs an adaptive
probing scheme that periodically sends the current computa-
tion task 73, to multiple compute servers besides the current

Authorized licensed use limited to: New Mexico State University. Downloaded on April 28,2025 at 03:14:39 UTC from IEEE Xplore. Restrictions apply.



compute server, gathers all results returned, and performs
majority voting on them to determine the pre-approved result
R, for task T;. This scheme adopts a high probing frequency if
any server has a shortage of potential tasks used for verification
(e.g., when CoVFeFE just starts up) or a low probing frequency
when sufficient tasks are gathered. Note that the exact strategy
to adjust probing frequency can be decided by users without
interfering with the efficacy of CoVFeFE. We omit the details
from this paper for clarity.

B. Verification Masquerading

To make a robust solution for detection and mitigation
approach, CoVFeFE implements a task recommendation al-
gorithm that selects the most efficient task from pre-approved
task table to verify any server. We consider that this task must
satisfy the following two rules:

R1: not previously sent to the same server. Tasks in the pre-
approved task table previously received by servers are easily
identifiable if they are sent to the same servers again (note
that these tasks have been sent for probing or may already be
used for verification). Thus, the most efficient task 7T} must
ensure the current compute server is not in the set of servers
that have previously received Tj.

R2: presenting realistic features. Recognizing tasks used for
verification can be achieved if the servers monitor the envi-
ronmental contexts (e.g., time of the day, weather, etc.) when
receiving a new task and store the states (e.g., road condition,
location, etc.) of the recently received task, then profile them as
a set of features, F, to identify if the new task is realistic that
presents very similar features compared to F. For instance,
the selected task should be gathered at a similar time on a
rainy day in a nearby location of recent tasks. Otherwise,
the malicious servers may suspect an “unrealistic” task as
verification and behave honestly to evade it.

Therefore, we develop a task recommendation algorithm
that selects the most efficient task, 7}, following R1 and
R2, while minimizing the probability of selecting a poisoned
task. Specifically, CoVFeFE sets a similarity threshold, and
measures the similarity score between the client’s current (i.e.,
real world) task 7} and each task in the pre-approved task table
in a lookup order from the earliest to most recently gathered
tasks. The lookup will stop if any T} is found with a similarity
score higher or equal to the threshold and obeys RI1. If no
such task exists, the first one is picked. In this paper, we
adopt normalized L1-norm [32] as an example for evaluation
purposes, which is a common metric used to measure feature
similarity of multimedia tasks (e.g., video, audio, or text):
P = A

FxM
where |-| returns the L1-norm distance between two vectors, F
and M are the size and the value range of the feature vectors,
respectively. We assume all tasks have the same feature vector
size F' and value range M — they can be achieved by zeroing
the features (which are not applicable for a given task) and
value normalization. The L1-norm can be replaced with other
metrics that most fit client applications.

ss(k,t) = (1 ) x 100, (1)

VII. EVALUATION

In this section, we describe our experiment setup, metrics,
and evaluation results in absence and presence of colluding
servers at the network edge.

A. Experimental Setup

We use the network simulator ns-3 [33] to implement
CoVFeFE and create experimental networks. The simulation
runs on a laptop with an Intel i5 quad-core 2GHz CPU and
16GB memory.

1) Implementation Scope: We implement a client appli-
cation running CoVFeFE as described in Section IV, and
a server application, which processes computing requests.
Servers return correct result if they are benign, random result if
they are malicious, or same random result if they are colluding
servers.

We compare CoVFeFE to two state-of-the-art replication-
based verification solutions: (i) baseline replication-based [34]
(used in BOINC system for result validation), which we
refer to as R_baseline, and (ii) collusion-resistant replication-
based [9], which we refer to as R_Kupcu. R_baseline performs
a strict majority voting on results of every task and identifies
malicious nodes if their results disagree with the majority
vote. Otherwise, the execution of task and verification is
regarded as failed. R_Kupcu, however, requires unanimous
agreement on the results and repeats the verification until all
results returned by servers are unanimous. It employs a budget
scheme distributing fines to servers disagreeing with each other
to identify malicious and colluding servers. We consider 50%
of malicious servers implementing an evasive strategy, which
check if task similarity score is larger than 80 (as threshold
for potential most efficient tasks) as described in Section III.
In this paper, we do not quantitatively compare our method
to other collusion detection methods [12], [13] because they
fail in the case that more than half of servers are colluding,
otherwise their detection accuracy varies depending on the
amount of outsourced computation tasks.

TABLE I: Evaluation setup; Numbers in bold are nominal
(default) values used when the value of a parameter is fixed.

Parameter

CoVFeFE Specifications
Interval of client changing servers N(30,2)

Number of task features (F') 4

Value Range of task features [0, 100] (M = 100)

Value Range

Parameter of collusion start estimation (6) | 200

Network Topology

Number of clients 20

Number of compute servers 20

Number of ISP routers 10

Percentage (%) of malicious servers {20,...,60, ...,100}
Bandwidth of all networking links SMbps

Propagation delay of all networking links 20ms

2) Network Topology: Our simulations use random perva-
sive edge network topologies, all consisting of 50 nodes, in-
cluding 20 clients, 20 compute servers, and 10 ISP routers. The
network topology is random, and the link type is P2P Ethernet.

Authorized licensed use limited to: New Mexico State University. Downloaded on April 28,2025 at 03:14:39 UTC from IEEE Xplore. Restrictions apply.



We set the bandwidth and delay of all links to 5M bps [35] and
20ms [36], respectively. To simulate computation outsourcing,
each client sends a computation task to its current compute
server or multiple servers per second. We model user mobility,
where each client changes its direct connection to a random
ISP router which reroutes new tasks to the closest edge server
(refer to Table I for detailed parameters).

3) Performance Metrics: We consider the following metrics
to evaluate the performance of CoVFeFE: (i) Malicious server
detection accuracy (accuracy): this metric is measured as the
ratio of the number of correctly identified malicious servers to
the total number of malicious servers. (ii) Malicious server
detection false positive ratio (FPR): is measured as the
ratio of the number of “benign” servers which have been
classified as “malicious” to the total number of benign servers.
Note that accuracy and FPR are both important to evaluate
the performance of any verification algorithm. (iii) Detection
delay: we measure the delay in time (seconds) or in the total
number of verification attempts elapsed from when the client
first communicates with a malicious server as the current
compute server to the time client identifies the server as
“malicious” (infinite is no server). (iv) Overhead: is measured
as the ratio of the number of messages sent for pre-approved
tasks (e.g., probing) and verifying servers (e.g., verification)
to the total number of computation tasks the client needs to
outsource.

All metrics shown in this subsection are measured as an
average of 100 simulation runs. Each simulation run uses a
different network topology and runs for 3,000 seconds.

B. Performance in Absence of Collusion

We first study the performance of CoVFeFE in the absence
of any collusion: servers can be benign or malicious at the be-
ginning of simulation, where malicious servers do not collude
but may deploy evasive strategies. We investigate the impact of
the percentage of malicious servers on the detection accuracy
of CoVFeFE, and then compare the detection accuracy, delay
and overhead of our solution to R_baseline and R_Kupcu.

1) Impact of Percentage of Servers’ Maliciousness: When
the percentage of malicious servers increases, most replication-
based verifiable computing schemes exhibit limitations such
as overhead or long delays of detection. We investigate the
impact of the percentage of malicious servers in the network
on CoVFeFE’s performance in Fig. 4. We show, in Fig. 4a,
that CoVFeFE’s accuracy increases at different rates depending
on the two main factors: when the percentage of malicious
servers increases, (i) clients tend to switch to and thus verify
them more often, and (ii) the size of pre-approved task table
increases more slowly, resulting in slower detection (using
tasks with lower similarity scores). In fact, we show that for
80% malicious servers, the detection is faster by almost 20
verification steps compared to 20% malicious servers, when
both cases achieve 0.8 accuracy. Moreover, in case 80% of
the servers are malicious, detection accuracy is slower at the
beginning of the simulation, where the pre-approved task table
is filling up, then ramps up very quickly as the probability

of selecting a malicious server is much higher than lower
maliciousness levels. Note that while CoVFeFE’s accuracy
increment steps may vary, CoVFeFE achieves 100% accuracy
for almost all considered maliciousness levels?, however, if
the number of benign servers is less than two (the minimum
number for majority voting), such as in the case of 100%
maliciousness, the pre-approved task table remains empty, thus
detection becomes impossible.

We plot in Fig. 4b, the cumulative distribution function
(CDF) of malicious server detection delays in seconds as we
vary the level of maliciousness in the network. This figure
further emphasizes the effects of running CoVFeFE with fewer
tasks in pre-approved task table on the performance, where the
increase of maliciousness in the network causes an increase in
detection delay of up to 10x in the case of 80% maliciousness
compared to 20%. Fewer tasks in the pre-approved task table
result in failing to verify servers in any given verification
cycle and/or choosing a task with a low similarity score which
will be inefficient as we assume all our servers run evasive
strategies to evade verification using these tasks. Note that
CoVFeFE’s detection delay remains very low with little to no
variation when maliciousness in the network is less than 60%.

The similarity of tasks for verification is presented in Fig. 4c
with box plots. This figure proves that the higher percentage
of malicious servers would cause that less similar tasks are
selected for verification, where the case of 80% maliciousness
has 5% lower similarity scores (on average) and 2x larger
score variance than 20% maliciousness. Moreover, we observe
that when the maliciousness is less than 60%, CoVFeFE can
maintain a high level of task similarity (i.e., minimum score>
85) by employing adaptive probing frequency. However, as the
percentage further increases, the similarity is sharply reduced
to lower than 10 (on average) when the maliciousness is larger
than 90%, because very few tasks are valid for verifying
benign servers after all malicious servers are detected (i.e.,
the tasks have been sent to benign servers when populating
the pre-approved task table).

To summarize, CoVFeFE helps ensure high accuracy values
and no false positives even when the percentage of malicious
servers is close to 100% of compute servers in the network.
This performance is achieved by selecting the best tasks
previously stored and maintained.

2) Comparing CoVFeFE fto State-of-the-Art Replication
Based Verification Solutions: We compare CoVFeFE per-
formance to R_baseline and R_Kupcu, when 60% of the
servers are malicious in the network (i.e., under high server
maliciousness).

Fig. 5 compares the (a) accuracy, (b) delay, and (c) overhead
(similar trends were found for different maliciousness levels
but are omitted from this paper for clarity). CoVFeFE outper-
forms R_baseline and R_Kupcu for almost all metrics and all
parameters studied. For malicious server detection accuracy,
while all three solutions achieve 100% accuracy by the end of

2false positive rates for all considered maliciousness levels are also zero
(results were omitted for this no collusion case for space/clarity reasons)
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the simulation, however, CoVFeFE takes almost 10x smaller
number of verification steps to identify all malicious servers
as shown in Fig. 5a. Specifically, CoVFeFE identifies all mali-
cious servers within 81 verification attempts, while R_baseline
and R_Kupcu requires more than 1,000 to identify the same
malicious servers. R_Kupcu has a slower accuracy increment
than R_baseline at the beginning of simulation due to the
all-matching result voting but catches up quickly because
more servers are selected and verified. Note that Fig. 5a
plots the 95% confidence interval (shade around the lines
plots) emphasizing the lower variance of CoVFeFE’s accuracy
measurements across all simulations. This accuracy gain is
explained by the fact that CoVFeFE accurately detects any ma-
licious server with a single verification step, while R_baseline
or R_Kupcu takes up to 35 or 400 steps, respectively, to detect
all malicious servers as shown in the outer figure of Fig. 5b.
While CoVFeFE takes only one verification step, the detection
delay in time can be longer than R_baseline/R_Kupcu’s delays,
as shown in the inner figure of Fig. 5b, due to the adaptive
verification frequency deployed by CoVFeFE to reduce the
overhead. The frequency can be tuned if the client favors
delay performance versus overhead, since CoVFeFE requires
no more than one single verification step.

Delay-overhead trade-off is further highlighted in Fig. Sc,
where we plot the average overhead of CoVFeFE, R_baseline,
and R_Kupcu using different verification intervals ranging
from 1 to 15 seconds (1s by default for R_baseline and
R_Kupcu). While CoVFeFE uses adaptive probing and ver-
ification which reduces its overhead cost as the simulation
advances (note that we run the simulation for 70,000s in
this figure), R_baseline’s overhead remains constant over time
and increases as the verification interval increases. Moreover,

R_Kupcu introduces 100x more overhead due to repeated
task outsourcing for determining correct results and extra
communication with servers to request their budgets. Further-
more, we show that CoVFeFE achieves similar detection delay
performance as R_baseline (2.6s verification interval), while
having 8x less total overhead.

C. Impact of Server Collusion on Verification Performance

We evaluate the performance of CoVFeFE in the presence
of various percentages of colluding servers. We simulate a
scenario where the network starts with no collusion and server
collusion is introduced at the time 1,000 seconds. Specifically,
at time 1,000s, some benign servers turn malicious and collud-
ing. Accordingly, the performance metrics are measured after
collusion. We also compare CoVFeFE to both R_baseline and
R_Kupcu, which shows pros and cons in the cases of varied
collusion percentages.

1) CoVFeFE’s Collusion Mitigation: We measure the col-
lusion detection delay as the time elapsed between the start
of the collusion (1,000s in our simulation), and the time each
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Fig. 6: Impact of the percentage of colluding servers in the
network on CoVFeFE.
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TABLE II: Cleaning-up the pre-approved task table: prior vs.
post collusion mitigation. Num: number of poisoned tasks;
Percentage (%): percentage of poisoned tasks; Rate: number
of poisoned tasks selected for verification per minute.

Percentage of Before Mitigation After Mitigation
Collusion Num Percentage | Rate Percentage
20% 1.666 0.9% 0.173 0.0
40% 5.045 2.7% 0.185 0.0
60% 10.041 5.8% 0.217 0.0
80% 13.840 8.6% 0.243 0.0
100% 15.363 9.8% 0.278 0.0

collusion mitigation agent detects the presence of collusion
(if any). We plot in Fig. 6a the distribution of collusion
detection delays for different collusion levels. Expectedly, as
the percentage of colluding servers increases in the network,
CoVFeFE’s collusion mitigation detects collusion faster as the
number of poisoned tasks in pre-approved task table increases
with higher rates (e.g., collusion detection is 10x faster on
average when comparing 20% and 80% collusion). While
slower collusion detection can delay the mitigation process,
however in the cases of low collusion, poisoned tasks do not
exceed 1% of the total tasks used for verification (as shown
in Table II), thus its impact on detection accuracy is minor.
We plot in Fig. 6b, the accuracy and FPR as a function of
simulation time for one sample simulation (i.e., not averaged
across multiple runs) to highlight the impact of collusion
detection on these metrics. We show that the longer the client
takes to detect collusion, the slower it detects all colluding
servers. As soon as CoVFeFE detects collusion, accuracy
jumps to 100% and FPR returns to 0 as the mitigation process
revokes the misclassification of benign servers. The collusion
mitigation performs simultaneous and concurrent verification
of all servers, which explains the sharp increase in accuracy
and drop in FPR. Note that if the percentage of colluding
servers is low in the network, CoVFeFE collusion detection
is slower, however, this low collusion does not impact the
accuracy of CoVFeFE which detects all malicious servers suc-
cessively. The effectiveness of collusion mitigation is further
presented in Table II showing that a higher percentage of
colluding servers introduce a larger number of poisoned tasks
into pre-approved task table, but they are successfully removed
after mitigation. Note that the percentage of poisoned tasks in

the table before mitigation indicates the maximal probability
of collusion that misleads a client to accept erroneous results
as correct. The percentage increases until the mitigation is
triggered and the poisoned tasks are removed. CoVFeFE’s
novelty is also highlighted as the percentage of colluding
servers increases in the network and where most existing
collusion defense strategies fail.

2) Collusion Mitigation of CoVFeFE vs. State-of-the-Art:
Next, we compare CoVFeFE to R_baseline and R_Kupcu in
the cases of varying percentages (i.e., from 20% to 100%)
of colluding servers. As shown in Fig. 7, CoVFeFE outper-
forms both considered solutions, achieving 100% accuracy and
faster verification latency (both in the number of verification
steps and in seconds) in detecting malicious servers as the
percentage of colluding servers increases in the network. We
plot in Fig. 7a, the CDF of detection delay in the number
of verification steps (outer figure) and in time (inner figure),
when 60% of the servers are colluding. CoVFeFE successively
detects colluding servers within one or two verification steps
and low latency (ranged from 0.1 to 20s), while R_baseline
and R_Kupcu may take more than 50x verification steps and
cannot guarantee to detect all colluding servers. This latency
registered by R_baseline and R_Kupcu also have a direct
impact on their high false positive rates as emphasized in
Fig. 7b. Particularly, the all-matching result voting mechanism
of R_Kupcu is a double-edged sword, which reduces the
probability of selecting all colluding servers when the number
of benign servers is larger than colluding servers, but this
mechanism amplifies the influence of collusion when colluding
servers are the majority. In contrast, CoVFeFE utilizes the pre-
approved tasks to detect and mitigate collusion in the whole
spectrum of percentages of colluding servers.

VIII. CONCLUSION

In this paper, we have proposed CoVFeFE, a collusion-
resilient verification framework for resource-limited edge de-
vices. CoVFeFE provides can detect collusion if the majority
of servers in the network are colluding. Then, a heuris-
tic mitigation mechanism is performed to identify colluding
servers, remove tasks with erroneous results, and revoke the
misclassification of benign servers. The results of evaluations
show that CoVFeFE can achieve fast detection and close
to 100% accuracy of identifying colluding servers. More-
over, CoVFeFE demonstrates high robustness against evasive
strategies and can reduce communication overhead of client
compared to the other two solutions. In the future, we will
improve CoVFeFE against more types of collusion, such as
servers probabilistically colluding or only colluding when they
ensure the win of result consensus.
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