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Abstract

Virtual reality (VR) platforms enable a wide range of applications,
however, pose unique privacy risks. In particular, VR devices are
equipped with a rich set of sensors that collect personal and sen-
sitive information (e.g., body motion, eye gaze, hand joints, and
facial expression). The data from these newly available sensors can
be used to uniquely identify a user, even in the absence of explicit
identifiers. In this paper, we seek to understand the extent to which
a user can be identified based solely on VR sensor data, within and
across real-world apps from diverse genres. We consider adversaries
with capabilities that range from observing APIs available within a
single app (app adversary) to observing all or selected sensor mea-
surements across multiple apps on the VR device (device adversary).
To that end, we introduce BEHAVR, a framework for collecting and
analyzing data from all sensor groups collected by multiple apps
running on a VR device. We use BEHAVR to collect data from real
users that interact with 20 popular real-world apps. We use that
data to build machine learning models for user identification within
and across apps, with features extracted from available sensor data.
We show that these models can identify users with an accuracy of
up to 100%, and we reveal the most important features and sensor
groups, depending on the functionality of the app and the adver-
sary. To the best of our knowledge, BEHAVR is the first to analyze
user identification in VR comprehensively, i.e., considering all sen-
sor measurements available on consumer VR devices, collected by
multiple real-world, as opposed to custom-made, apps.

1 Introduction

Virtual reality (VR) is a large and growing market [59] that enables
a wide range of apps, from gaming to education [49], and work [44].
Meta Quest, one of the most popular consumer VR devices, has
sold nearly 20 million units as of February 2023 [32]. SteamVR,
the largest VR gaming platform, has over 7,800 VR apps as of May
2024 [67]. The VR ecosystem also comes with privacy concerns.
Recent work showed that Oculus VR and its apps already collect
personally identifying information [73], and can further infer sensi-
tive attributes [56]. Some of this tracking and profiling are similar
to practices in other app ecosystems, such as mobile [16, 64], smart
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Figure 1: BEHAVR problem space spans several dimensions:
users, apps, and sensors. We consider four sensor groups:
body motion (BM), eye gaze (EG), hand joints (HJ), facial
expression (FE). We consider 20 real-world apps covering
vast domains of VR apps. We have two types of adversaries:
the app adversary has access only to one app; the device
adversary has access across multiple apps. We further define
App Groups as having similar activities and emotional states.

TV [55, 80], web [10], etc. with some differences: the VR ecosystem
is younger, more centralized, and not driven by ads, yet [73].

User Identification.VR has access to a rich set of sensors that
capture sensitive, personal information. Consumer VR devices
(e.g., Meta Quest Pro), including their headsets and controllers,
are equipped with sensors that collect measurements about head
and body motion (“BM”) [29, 50], eye gaze (“EG”) [25, 45], hand
joints (“HJ”) [26, 46], and facial expression (“FE”) [28, 51]. All these
measurements are available on the device itself (e.g., Quest Pro), can
be sent to the platform (Meta), and a subset can be made available
to app developers via APIs. Recent works [53, 57] have shown that
some of these measurements can indeed be used for unique iden-
tification. The privacy implication is that a user’s behavior in VR
creates implicit identifiers! that can be used to identify users in the
virtual world, even in the absence of explicit identifiers (e.g., device
IDs or user accounts) that are often well protected by permissions.
Such implicit identifiers based on sensor measurements may remain
effective in the case of shared devices (e.g., shared among family
members, coworkers, or public platforms), multiple accounts or

The combination of features extracted from the VR sensor data streams can produce
unique fingerprints, such as behavioral biometrics (or “behaviometrics”) [60, 69].
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Figure 2: Overview of BEHAVR. (1) Data Collection Setup: every user interacts with each app using Quest Pro; each app (e.g.,
Beat Saber) runs on a PC and its VR environment is rendered on the Quest Pro headset; this enables the recording of sensor
data sent from Quest Pro to the PC; apps are grouped based on similarity of activities and emotional states. (2) Data Processing:
there are four groups of sensors, namely body motion, eye gaze, hand joints, and facial expression; we divide the time series
generated by every sensor group into blocks, and we compute 5 statistics per block as features. (3) Model Training & Evaluation:
using the previous features per block, we train different models (using data per app, across apps, even per group of apps) that

an adversary can use to uniquely identify users.

devices per user, anonymized and released VR sensor dataset etc.
(more details in Section 2.5). Identification using implicit identifiers
has explored in mobile platforms [9] and recently in VR [53, 57].
In this paper, we broadly refer to the sensor measurements col-
lected on VR devices, as well as to features extracted from them,
as VR sensor data. We are interested in understanding to what ex-
tent a user can be uniquely identified based on VR sensor data across
20 real-world apps from diverse genres, from social (e.g., VRChat)
to education/training (e.g., X-Plane 11), from entertainment (e.g.,
BeatSaber) to virtual offices (e.g., Job Simulator) among others; and
which are the top features, across real-world apps and sensor groups ,
for an adversary that wants to uniquely identify a user with minimal
effort. In particular, we consider two types of adversaries, depend-
ing on their vantage point for access to sensor data: (1) the app
adversary mimics an app developer who has access to sensor data
from APIs available within the app; and (2) the device adversary
can have access to sensor data collected across multiple apps (see
Section 2.5). The full problem space we consider is depicted in Fig. 1.

Comparison with Prior Work. Prior work has considered only
parts of our problem space. In terms of sensor groups, user identifi-
cation has been demonstrated based on body motion (e.g., positional
and rotational) sensor data from VR devices [53, 56, 57, 72], i.e., the
BM sensor group in our problem space. Newer VR devices, such
as the Meta Quest Pro and Apple Vision Pro, are equipped with
more sensors that track other body parts, including eyes, hands,
and face [45, 51, 82]. Privacy aspects of these sensors have been
studied before [39, 56], but their use for identification has not been,
and neither has been their comparison for identification purposes.
BEHAVR, for the first time, explore all available sensor groups for
identification. In terms of the experimental setup, prior work has
focused on either one specific app and task (e.g., Beat Saber in [57]),
or custom apps specifically designed for their studies [53, 56, 72].
In BEHAVR experiments, participants interact with 20 unmodified
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commercial VR apps, under limited guidance, better representing
real-world scenarios of user identification.

Approach. We introduce BEHAVR, a framework for collecting and
analyzing data from all available sensor groups (i.e., body motion,
eye gaze, hand joints, and facial expression), and performing user
identification within (i.e., app adversary) and across (i.e., device ad-
versary) apps. To the best of our knowledge, BEHAVR is the first to
analyze user identification in VR comprehensively, i.e., considering
all sensor measurements available on a VR device, and across multi-
ple commercial apps. Fig. 2 presents the overview of BEHAVR. Next,
we describe the BEHAVR components and we highlight method-
ological contributions along the way.

(1) Collection of sensor data from real-world apps on the VR device.
We develop an approach to observing, for the first time, all the
sensor data in real-time during gameplay. We instrument ALVR, an
open-source streaming app that is essential for Meta Quest devices
(and other popular VR headsets) to play SteamVR apps [3], to record
all sensor data by listening to the API calls. This gives visibility
into data collected by real-world apps running unmodified on the
VR device, which was not previously possible. Using the BEHAVR
setup, we perform a user study and collect a comprehensive dataset
that covers all four sensor groups, consisting of around 400 sensor
data records from users interacting with 20 popular apps on the
SteamVR store (see Section 3.2).

(2) Sensor Data Analysis and Feature Engineering. BEHAVR is the
first to explore all available sensor groups for identification in real-
world apps. The comprehensive sensor data and diverse app genres
pose unique challenges for data processing. First, unlike prior work
that focuses on specific tasks or deals with fixed time blocks [53]
BEHAVR dataset exhibits high variability in session time across
users, apps, and sensors. To process variable-length time series of
sensor data into time blocks we propose a new time block-division
approach that is robust to the variability (see Section 4.1). Second,
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in addition to the standard features extracted from the VR sensor
data [53, 57], we introduce data augmentation and selection that are
adapted for new sensor groups: for eye gaze, we add new features
that correlate left and right eye’s data; for facial expression, we
explore facial elements and their combinations that represent users’
emotions [18, 28] when interacting with an app. In addition, our
feature analysis reveals how activities and valence/arousal states
in different apps generate key identification features.

(3) Identification Models and Evaluation. We evaluate user identifica-
tion in diverse real-world scenarios that cover different adversary
capabilities. We train a Machine Learning model per sensor group
for user identification. The identification model predicts on each
time block and maximum voting [53] is used to produce the final
label per user. Depending on the adversary’s capability, the model is
trained on sensor data from one app (app adversary), one app group,
or all apps (device adversary) and evaluated on the same or differ-
ent setting (open-world-setting) of the same app; or a completely
different app (zero-day scenario) from same or different app groups
(Section 5). We discuss the generality of BEHAVR (Section 7.1) and
provide recommendations for privacy practitioners (Section 7.2).

Identification Insights. Section 5 presents a comprehensive eval-
uation across sensor groups, apps or groups of apps, and adversary
models, guided by the following research questions (RQs):

RQ1: How well a user can be identified using VR sensor data? We
find that the adversaries can achieve up to 100% accuracy for many
apps, especially using data from facial expression and body motion
that perform better than eye gaze and hand joints.

RQ2: How long does it take to identify a user? The app adversary
generally requires around 18 — 20 seconds of data across body
motion and facial expression for up to 90% , and ~50 seconds for
eye gaze for up to 85% accuracy. The device adversary requires less
data (~9 seconds on average), since it combines data across apps.

RQ3: What are the top features for identification w.r.t. various apps
and adversaries? We observe that for the unique identification, the
top features describe the unique interaction between users and VR
environment as well as user’s physical characteristics (e.g., height).

RQ4: Can we identify a user across different settings of same app
or across different apps? We find that app adversary can provide
60-100% accuracy with new app settings (i.e., open-world-settings).
Device Adversary can identify users in a new app (i.e., zero-day)
from the same (70-100%) or different (5-40%) app group.

RQ5: What are the most important sensor groups for identification?
Apps from different groups show sensor groups importance based
on app activity and emotional states. Knowing the relative impor-
tance of different sensor groups allows the adversary to effectively
train models or help users to decide which sensor groups to share.
Outline. The rest of the paper is structured as follows: Section 2
provides background and the problem setup. Section 3 presents the
experimental setup and data collection. Section 4 presents the data
analysis and model training. Section 5 presents the evaluation for
app and device adversaries, for all sensor and app groups. Section 6
reviews related work. Section 7 and 8 provides discussion and
conclusion respectively. The appendices provide additional results.
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2 Background and Problem Setup
2.1 VR Hardware and Platform

There are many different VR platforms and setups that require
varied software and hardware combinations. In this paper, we focus
on SteamVR, the most popular VR gaming platform with over 7,800
VR apps [67] and millions of users [5]. In the SteamVR setup, the
VR apps run on a personal computer (with either Windows or Linux
system), and a compatible VR device is connected to stream the
graphics and track user actions via its sensors. A streaming software
needs to be installed on the PC and the VR device to transmit the
graphics and sensor data [3, 4, 79].

In our experimental setup, we use ALVR [3] as the streaming app.
ALVR is open-source and thus eases the instrumentation (see Sec-
tion 3). As for the hardware, we choose Meta Quest Pro for testing 2
because the headset is equipped with the most comprehensive VR
sensors, including body motion and eye gaze (which are supported
by older VR devices like Quest 2), as well as hand joints and facial
expression data (which are increasingly supported by newer gener-
ations of VR devices). BEHAVR leverages SteamVR to run apps and
ALVR [3] to record all sensor data by listening to the API calls (see
Section 3). SteamVR (and ALVR) supports for many other consumer
VR devices, notably HTC Vive Focus, ByteDance Pico and Apple
Vision Pro [3]. We expect that our study is generalizable to any
devices supported by SteamVR.

2.2 Sensor Groups

We explore all VR sensors available on today’s consumer VR de-
vices, i.e., the following four groups: body motion (BM) [29, 50], eye
gaze (EG) [25, 45], hand joints (HJ) [26, 46], and facial expression
(FE) [28, 51]. These sensors are available to developers through
device-independent OpenXR APIs [24], as well as captured by
ALVR [3] in the BEHAVR setup. Depending on the device and plat-
form, additional permissions may be required to access specific
sensors, e.g., Quest Pro requires permissions for EG, and FE. How-
ever, in the SteamVR setup [78] that we use, apps run on PC and
there is no permission check for collecting sensor data. On the
Quest Pro, the ALVR app [3] requests initial permissions for FE and
EG during installation. Thereafter, it operates without additional
runtime permission requests for all 20 apps in our experiment.
We follow the data structure definitions from the OpenXR stan-
dards [24]. The main elements of the data structures are position,
rotation, linear and angular velocities. Position, and linear and an-
gular velocities are expressed in x, y, and z values of the Cartesian
right-handed coordinate system, and rotation is expressed in x, y,
z, and w values of the Quaternion coordinate system. Additional
information regarding sensor groups is provided in the Appendix A.

2.3 VR Apps

App Selection. Starting from the top 100 apps from the “Most
played VR games” list on Steam [68], we select 20 VR apps based on
several criteria. First, we exclude apps that may cause inconvenience
to most users, e.g., horror or violence genre. This first criterion is
mandated in 45 CFR § 46.111(a)(1) to minimize the experimental risk

2Note that SteamVR differs from Oculus VR, Meta’s VR platform that runs VR apps
natively on its Android-based system [35].
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Table 1: Grouping apps (ai, .., az listed in Table 6, Appendix B) based on their similarity of activities and emotional states
(arousal/valence). Sensor Groups: BM, EG, HJ, FE. Emotional States: LA = low arousal, HA = high arousal, PV = positive valence,

NV = negative valence.

App Groups App No. App-Specific Activities Arousal/Valence Important Sensors
Social aiz, ais, aig Walking, waving, grabbing and sightseeing/exploring virtual environment LA/PV, HA/PV BM, EG, FE, HJ]
Flight Simulation as, aig, azo Holding onto the airplane control stick, interacting with control panel/buttons in an ~ LA/NV, HA/NV, LA/PV BM, HJ, FE

airplane cockpit
Golfing ag Slow walk, holding a golf stick, and put the ball towards hole LA/PV, HA/PV BM
Interactive Navigation az, ag, aip, ail, aie, A17 Grabbing, moving objects, opening doors, i.e., frequent interaction with virtual objects Neutral, LA/PV, LA/NV BM, EG, HJ
Knuckle-walking az Walking using an open fist like a gorilla, sightseeing/exploring virtual environment LA/PV, HA/PV, LA/NV BM, HJ, FE
Rhythm a Dancing-like moves and cutting objects in quick pace All BM, HJ, FE, EG
Shooting & Archery ais, ais, as Grabbing and holding a gun/arrow, aiming and shooting at objects LA/NV, HA/NV BM, EG, FE, H]
Teleportation ay, ag sightseeing by teleportation (instead of walking) i.e., without extensive body movement All FE

(e.g., physical or psychological harm) on our study participants [23].
Second, we exclude apps without complete VR support, like those
for VR devices other than Quest Pro or needing both VR controllers
and a PC keyboard for input. Finally, we attempt to compile a rich
set of apps from various genres, e.g., social, entertainment, flight,
gaming etc. The list of 20 SteamVR apps is shown in Table 6 in
Appendix B, referred to as aj, .., ag, throughout the paper.

Apps Grouping. We group apps based on the similarity of their
activities and emotional states, considering an adversarial point
of view. Our motivation is to leverage app similarities for cross-
app identification and zero-day scenarios, i.e.,, using data from
multiple similar apps to better identify users within the same group.
Although heuristic, our app grouping performs well (see Section
5.5.2 and Table 2) and serves as proof of concept, however, an
adversary can further optimize it. We propose app grouping in
Table 1. For BM and HJ, we group apps according to similar app-
specific activities; e.g., social apps require walking, waving, and
exploring, contrarily shooting apps require targeting and shooting
objects — leading to different motion patterns. Note that, even within
same group, differences exist; e.g., for shooting group, a;3 requires
teleporting, while a;4 requires walking.

For facial expression only, app grouping further considers emo-
tional arousal (e.g., how calm or active an emotion is) and valence
(i.e., how positive or negative an emotion is) states induced by
the VR environment of an app; we use the approach proposed
in [7, 38, 70]. There are four types of arousal-valence states we
have considered in our study, namely high arousal positive valence
(HA/PV), e.g., happiness; low arousal positive valence (LA/PV), e.g.,
surprise; high arousal negative valence (HA/NV), e.g., fear/stress;
and finally low arousal negative valence (LA/NV), e.g., sadness.
Different app environment may induce any of these states. For
example, we observe that social apps induce mostly joy or surprise
(i.e., HA/PV), and flying/shooting apps induce mostly fear/stress
(i.e, HA/NV). Furthermore, one app can induce multiple emotions
(e.g., when completing a level in a game, users feel happy if they
succeed and sad if they fail). See Table 1 for detailed lists of app
groups and their associated valence/arousal states.

The last column in Table 1 lists the important sensor groups for
each app group. Sensor group importance arises from app-specific
activities and emotional states, which increase with the active use of
specific sensor groups or are influenced by strong valence/arousal
states of the app. Consequently, these data are adequately avail-
able to the adversaries. For example, in flight apps, users use con-
troller/hands and induce emotions like surprise, fear thus, body
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motion, hand joints and facial expression are listed as the important
sensor groups for them. The importance of these sensor groups for
user identification is confirmed in the evaluation (see Section 5.6.2).

2.4 Current Practices Regarding VR Sensor Data

Different VR platforms and apps have different practices regarding
sensor data collection, use, and sharing. We looked into privacy
policies and permissions to better understand those practices.

24.1 VR Sensor Data in App’s Privacy Policies. Privacy laws, such
as GDPR [17] and CCPA [66], require disclosure of data collection,
use and sharing practices. Both CCPA (in §1798.140(c)) and GDPR
(Article 4(14)) define behavioral characteristics as part of “biometric
information” or “biometric data” that can uniquely identify a person.
This motivates us to look into real-world VR apps and platforms
and their disclosure of VR sensor data.

We look at the top 100 apps from the “Most played VR games”
list on Steam [68] and download their privacy policies. As of May
2023, only 60 apps provided a privacy policy. Our authors first read
and check all privacy policies to understand how they disclose
the collection of VR sensor data. We looked for statements on
“biometric data” or “sensory data”, as well as more specific types
(e.g., “head movement”) in any of the sections. Then, we used string
matching and ChatGPT to scan the whole text again to ensure that
we do not miss any content. We found that only a few (10 out of
60) privacy policies discuss the collection of VR sensor data, and
some make conflicting statements. Additional details can be found
in Appendix C. These observations are aligned with the findings
in [73], that many VR apps did not provide a privacy policy or
did not disclose VR sensory data collection adequately. Meta, the
maker of Quest Pro, indicates in its privacy policy that they collect
data and use it for personalization [34]. Unity, the top game engine
that many VR apps build on, claims the collection of biometric
information for the purpose of identifying an individual. Unity
explicitly mentions “hand and face geometry” (HJ and FE sensor
groups) as examples of biometrics that may be collected [75]. This
further motivates us to study how well real-world VR apps and VR
platforms can identify users based on their VR activities.

24.2 VR Sensor Data Permissions. What sensor groups an app has
permission to access depends on the platform.

The BEHAVR study in this paper, is based on 20 apps from the
SteamVR Store [77]. Our review of each app’s website on SteamVR
revealed no information about which sensor data are collected or
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what their collection purposes are. Furthermore, as detailed in Sec-
tion 2.1, SteamVR apps do not have runtime permission constraints
that prevent apps from reading any sensor data, whether the app
needs them for functionality or not.

We also looked at how these same 20 apps are used beyond the
SteamVR Store, on other popular platforms, particularly MetaQuest
Store [48]. We found 10 of our 20 apps available there. Of these,
6 apps disclose the types of sensor data they collect. All 6 reports
are collecting BM data by default. One app, VRChat (a;s) discloses
collecting EG, HJ, and FE data, and another app, RecRoom (a;s),
collects FE data only. We also identified that the Job Simulator app
(ay) discloses the collecting of HJ data. Meta apps have runtime
permission checks to protect FE, HJ, and EG [34], while BM is more
widely available without permission checks.

2.5 Threat Model

2.5.1 VR Threat Scenarios. The adversary’s goal is to identify users
based on VR sensor data. During training, the adversary observes
users in VR apps, records and analyzes their sensor data streams,
and creates models for user identification. During evaluation, the
adversary observes new sensor data streams and uses the trained
models to identify the user who generated them.

It is worth noting that if explicit identifiers (such as device IDs,
user accounts, or software IDs) are available, they are straightfor-
ward to use for user identification. Instead, our focus is on using
VR sensor data alone as implicit identifiers for user identification.
Unique identification without explicit identifiers has been stud-
ied using different data in the past, ranging from mobile location
data [9], to body motion data in VR recently [53, 57]. It has also
privacy implications: an adversary can identify and track a user
based on the VR sensor data alone, w/o necessarily having access
to the explicit identifiers; i.e., the adversary can obtain access to
VR sensor data in various ways: directly (an honest-but-curious
developer or 3rd party library without access to device IDs as they
are often well protected by permissions), or by compromising any
of the above, or through an anonymized and released dataset. The
question has also implications for anonymity (or lack thereof) in
the virtual world®: even if a user changes their VR device, account,
app, or avatar, they can still be (re-)identified based on their sensor
data. On a positive note, the uniqueness of VR sensor data can
potentially be used for authentication [43].

2.5.2 BEHAVR Adversaries. Next, we define two types of adver-
saries, depending on their vantage points and sensor data access,
described next and depicted in “(0)” in Fig. 2. Both adversaries
build models using individual sensor groups for identification. This
emphasizes the importance of considering scenarios where an ad-
versary may have access to only one sensor group rather than all
sensor groups. Other scenarios include the adversary aiming to
minimize its effort by utilizing fewer data or users may not use
certain sensor groups; e.g., for H] models, we assume the adversary

3Several scenarios where implicit identifiers can be useful are:(1) unlike mobile devices
that are personal, VR devices and user accounts can be shared by a group of people (e.g.,
among family members, friends, public VR game-stores or education platforms [61],
among coworkers [37]); (2) one user may use multiple accounts for one or multiple
apps, multiple devices or avatars for privacy or other reasons.
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only utilizes HJ sensor groups for identification, not other groups
such as BM, EG, or FE. ¢ BEHAVR adversaries are as follows:

App Adversary. The app adversary (adv,y,,) has access to sensor
data collected from APIs available within a single app. This mimics
an app developer and any third party that has the same permissions
and receives the data from the app, e.g., Unity[76]. When ALVR app
[3] grants full sensor permissions, the SteamVR apps do not request
any runtime permission. Therefore, we assume that SteamVR apps
may access or collect all sensor groups (see more details in Section
2.1 and 2.2). The app adversary corresponds to the client adversary
in the taxonomy in [22] and has been previously studied for unique
identification [53, 56, 57, 72].

Device Adversary. The device adversary (advge,) has access to all
four sensors collected from multiple VR apps. Realistic examples
of the device adversary include the device manufacturer, a game
company that releases multiple apps, third parties with access to
multiple apps’ data (e.g., Unity [76], SteamVR[78]), or malware that
records sensor data. Additionally, its capabilities are available to
the VR device (e.g., Quest Pro) and its operating system, as well
as to the PC in our SteamVR setup or a compromised library with
functionality similar to ALVR. The device adversary corresponds
to the hardware or client adversaries in the taxonomy in [22]. To
the best of our knowledge, it has not been previously studied for
identification in VR, since collecting sensor data across multiple
real-world apps was not previously possible.

Both adversaries collect users’ sensor data trace D from the four
sensor groups discussed in Section 2.2. Both train models to identify
a user u; among n users (i, .., u,). Their main difference is, that the
app adversary has access to data from one app, while the device
adversary has access to multiple apps’ data. Both adversaries train
one model per sensor group, which predict the label for each sensor
data block and can combine all labels of blocks through max voting
per user [11]. Furthermore, the device adversary may train on data
from all apps, or groups of similar apps as defined in Section 2.3.
See Section 4.2 for details on the models * and 5 for their evaluation.

3 Experimental Setup

3.1 Using ALVR as a Vantage Point

In our study, we used Quest Pro, the latest state-of-the-art VR device
from Meta, released in November, 2022. While other VR devices
also work with SteamVR [78], Quest Pro collects eye gaze and facial
expression data [45, 51], in addition to body motion and hand joints
data [46]—-collected by older VR devices; e.g., Meta Quest 2.

The BEHAVR data collection system is depicted in “(2)” in Fig. 2.
Although Oculus OS on Quest Pro can natively run VR apps, we
use the SteamVR setup [78] that allows us to intercept and record
sensor data. In BEHAVR, Quest Pro sends sensor data to a PC that
runs a VR app and the Quest Pro and PC are connected via WiFi.
BEHAVR integrates the ALVR [3], an open-source software that can
run VR apps on a PC. With the help of SteamVR, ALVR can run
Steam apps that provide VR support on Quest Pro: the sensor data

4The adversary cannot utilize BM and HJ simultaneously since users use the controller
and hand alternatively in VR. As a result, the adversary may receive zero or corrupted
values from controllers (part of the BM sensor group) while using a hand. In addition,
we project the scenario where FE/EG can be disabled by users as well.

SWe use the terms “adversary” and “model” interchangeably.
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sent from Quest Pro are received by ALVR and become input to the
app to process and render the app’s VR environment in real-time.
Finally, the app sends the rendering results back to the Quest Pro,
so the headset displays the VR environment to the user. While, the
SteamVR was intended to enhance VR performance by performing
heavy tasks on PC, we use it for passive data monitoring, for the
first time. We instrument parts of ALVR’s source code that receive
sensor data from the Quest Pro (i.e., by creating hooks on the four
sensor groups data streams) and save the data as time series.

3.2 User Study and Data Collection

We conducted an IRB-approved user-study from our institution’s
IRB review committee. We recruited participants aged 20-40, with
an equal gender split to better represent the diverse demographic
of VR users [6]. Please see the participant distribution summary in
Appendix D. The data collection was performed by three authors
and required ~ 5 — 6 hours per participant (including briefing and
training) to collect ~ 400 sensor data records (20 real-world apps
per user, ~3 months in total for 20 users). Each participant was
compensated $10/h, declared in IRB and participant consent form.

Each user was asked to wear a Quest Pro headset, and interact
with all 20 apps in our corpus (see Table 6 in Appendix B). A research
team member provided rough prompts to the VR user during user-
app interaction.’ These prompts guide users in interacting with each
app, according to the purpose of the app, but users have freedom
to interact with the app in their own way and pace. Meanwhile,
BEHAVR (i.e., the instrumented version of ALVR) was running
and recording sensor data from Quest Pro. For each app, a user
completes the app-specific activity twice (i.e., two sessions) and we
collect two data traces, whose duration was typically ~ 3—4 minutes:
the first trace is for model training & validation. For evaluation, we
utilize few/all (seconds) data from second session of the same app,
or from new/different settings of the same app, or from different
apps based on our adversarial set-up (see Section 4.2).

3.2.1 Dataset Summary and Size. The number of participants in
our user study (20) is on-par with most prior user studies that
collected data from participants, e.g., [41, 54, 56, 60, 72] considered
16-50 participants. This number is smaller than 500 participants in
[53], who however, performed simple tasks compared to our work
that considers multiple real-world apps. It is also smaller than 50K
users in [57], in which the authors considered one popular real-
world app (Beat Saber) and body motion data, in a dataset provided
by BeatLeader [62]; this number of users is obviously impossible to
involve in in-person user studies. In terms of duration, we recorded
around 3 — 4 minutes per user for two sessions (see Fig. 3), which
compares to [57] (median of ~3 minutes per session) and [53] (five
20-second videos for a total of 1 minute 40 seconds).

4 Data Analysis and Model Training

This section presents the BEHAVR pipeline for processing the sensor
data (Section 4.1, also see “(2)” in Fig. 2) and for model training
(Section 4.2, also see “(3)” in Fig. 2) .

SFor example, in Golf It! (ag), we give users the prompt: “Please putt the golf ball into
the hole, in the beginning with controller, then with bare hands”. It is up to the user in
what way and how many times they putt the ball.
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Figure 3: Durations of sessions. There are 20 users, each in-
teracts with 20 apps. Colors represent app groups.

4.1 Sensor Data Summarization

Here we convert the sensor data streams into feature vectors, which
are suitable for a non-sequential model (e.g., Random Forest).

4.1.1 Insight: Variability. The BEHAVR dataset exhibits variability
across users, apps, and sensors, even when they perform the same
activity w.r.t. the same app. Designing for variability was a decision
we made on purpose to capture users’ natural behavior. From a
user perspective, the user has the freedom on how, and at what
pace, to perform the activity in each app. From the app perspective,
variability is caused by different apps having different activities.
From the sensor perspective, variability occurs as the four sensor
groups operate with different sampling rates and time spans.

To illustrate the variability in session duration across users and
apps, we plot the distribution of total durations of sessions per app
(Fig. 3a) and per user (Fig. 3b). In Fig. 3a, We observe that users
interact with the same app for varying durations: while average
durations differ across apps, the variance for each app is relatively
small. In Fig. 3b, we observe that the average durations are closer
to each other, but have larger variance for each user. Thus, we
summarize the sensor data on per app and per sensor group basis.

4.1.2 Data Processing. Next, we describe data processing. The de-
tails regarding data processing are available in Appendix E.1. The
goal of this step is to segment sensor data into time blocks and
summarizing each as a feature vector for model input. One chal-
lenge is to choose the length of the block. For block division, we
first experimented with fixed-block length (FBL)—also been used
in [53]. FBL divides time series data into blocks: each block has
a fixed length (e.g., 1 or 2 seconds), and it ignores the variability
of users, apps, and sensors. Since there is much variability in Be-
HAVR dataset, we develop an intuitive but robust method, refer as
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Figure 4: FBA illustration for the x value of headset rotation
from the BM sensor group.

fixed-block amount (or FBA), guided by previous observations on
variability across apps and users. FBA divides time series into a
fixed amount (number) of blocks for each sensor group per app (
e.g., unlike FBL, FBA takes variability into account). FBA works
comparatively better in our case (See Fig. 7 in Appendix E.2).

Fig. 4 shows FBA applied to BM, processing a headset rotation
value (x) for app a;. With session durations of 3.6, 4.1, and 4.6
seconds for 3 users, the average duration is 4.1 seconds, rounded
down to 4 blocks. Each user’s time series is divided into 4 blocks of
~1 second. A parameter r € (0, 2] to adjust block division: Nrpa; =
r-Nj, increasing r increases block count and decreases block length.
Finally, we summarize the time series of each reading in each block
with a vector of five statistics, i.e., maximum, minimum, mean,
standard deviation, and median. This summarization previously
was used in [53] and [57] for BM.

4.1.3 Feature Selection and Engineering. Next, we select and aug-
ment the features, as follows:

Body Motion. We use all 33 BM sensor readings, including 3 posi-
tion and 4 rotation readings from each controller and the headset,
and 3 linear velocity and 3 angular velocity’ readings from each
controller. After computing five statistics (max, min, mean, stdev,
median) for each reading, we obtain 165 BM features per block.

Eye Gaze. The EG features are derived from one position and 3
rotation readings per eye®. From position readings, we derive the
interpupillary distance (IPD, i.e., the x position difference between
two eyes). Prior work has shown that IPD is a top feature for gen-
der identification [56]. Inspired by this, we also augment rotation
readings by calculating the differences in the same reading between
two eyes. By calculating the five statistics for 3 rotation readings
per eye (6 total) and the 3 differential values, and including IPD as
a separate feature’, we obtain 46 EG features per block.

Hand Joints. There are 182 readings per hand that describe 3 posi-
tion and 4 rotation readings from each of 26 joints. After calculating
five statistics, we have 1,820 HJ features per block for two hands. In
order to limit model complexity and reduce run time, we reduce the

7Unlike prior works [53, 54, 57] that focused only on position and rotation, we addi-
tionally consider angular and linear velocity.

8The EG position y, z and rotation z are always zero, presumably because eyes cannot
move in these directions relative to the headset.

“We do not compute statistics for position, since they do not change much over time.
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number of features, using information gain [42] — a popular tech-
nique for feature selection [31, 65] employed in prior work [53, 57].
We compute the information gain based on the model’s perfor-
mance on the training data. We exclude features with negligible
importance and choose the top 400 HJ features per block.

Facial Expression. BEHAVR captures 64 sensor readings (see Ap-
pendix A). After calculating five statistics per reading, we obtain
320 FE features per block for model training and evaluation (see
Section 5.4). Next, we select FE readings that describe emotion-
related actions (i.e., Action Units, AU) for each emotion (see Table
5) [18]. For example, there are 4 sensor readings corresponding to
happiness, described by AU6 (facial elements 5 and 6) and AU12
(facial elements 33 and 34). After computing five statistics per read-
ing for each emotion, we obtain the final features for that emotion.
For example, for happiness, the final feature set consists of 20 FE
features after computing the statistics. Final features for each emo-
tion are utilized to train and evaluate individual models for each
specific emotion in Section 5.4.1. Additionally, we selected 25 FE
readings for all emotions, resulting in 125 FE features, to evaluate a
model on all facial emotions combined.

Final Features. After data processing and feature engineering, we
obtain the final set of features per group, summarized in Table 8
Appendix E.2. These are used to train and apply the adversary
models, described next.

4.2 User Identification Models

4.2.1 Classification Task. We perform a multi-class classification
task to uniquely identify user u; among the set of n (i.e., 20) users.

Train-Test Split. We gathered sensor data from users in two ses-
sions per app, with each session involving the completion of app-
specific activities (see details in Section 3.2). Data from the first
session were split, with 90% for training (Dy4in) and 10% for valida-
tion (Dypg;). For evaluation, data from the same app (under similar
or different settings) or a completely different app can be used.

Model Architecture and Hyperparameters Tuning. We ex-
plored models including Random Forest (RF) [40], Gradient Boost-
ing (XGB) [19], Support Vector Machine (SVM) [8], and Long Short-
Term Memory Networks (LSTM) [33]. We found that RF and XGB
performed best on the BEHAVR dataset; this aligns with the clos-
est prior works [53, 57]. More details on algorithm selection and
hyperparameter tuning can be found in Appendix E.2 and E.3.
Model Training. FBA is applied to divide each session into Nrpa;
blocks per user in an app aj, i.e., [by, by, ..., bngy, . |. The duration
per session per user is T, and each block’s duration is . All blocks
from the first session is used for training (Dyy4in). For evaluation, we
pick s number of blocks per user from second session; s represents
a sub-session that has [by, bs, ..., bs] blocks, where s < NrBa;- St for
the sub-session is s X t. S; allows us to investigate the minimum time
we need per sensor group per user for identification. S; equals to
the whole evaluation session per user when s = NFBAj and S; =T.
Finally, we perform a classification task for each block (i.e., predict
the label for each by, by, ..., bs) and use maximum voting [11] across
all blocks to determine the final label for each user.

4.2.2 Different Adversaries and Their Models. In this section, we
describe the experimental setup (e.g., model) for different adversary.
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App Adversary Models. The app adversary trains an app model on

each app’s data. Initially, we assume that the app models are trained
and tested in similar app settings (e.g., difficulty level, virtual rooms,
songs) from the two different logins of the same user.

Next, we relax some constraints of app adversary and show that
user identification works even in more open-world scenarios, where
the app models are trained and tested in separate settings of the
same app. We refer to this as open world settings for app adversary.
We chose five representative apps from five distinct app groups.
In the case of Beatsaber(a,), a popular rhythm app, training, and
testing data were collected from different songs and difficulty levels
based on users’ preferences. For RecRoom (a;5), a social app, we
gather training and testing data from separate virtual locations
such as MacDonald’s virtual restaurant, virtual campus or party
venue. Similarly, in the case of Gorilla Tag (a7), a knuckle-walking
app, training, and testing data were collected in separate virtual
spaces. For Elven Assasin (as), belonging to shoot.& archery app
group, training, and testing occur across different difficulty levels of
the gameplay. Finally, for Chess (a;7), an interactive navigation app,
training, and testing data were gathered across different gaming
rounds, while the users freely moved chess pieces.

Device Adversary Models. The device adversary has access to
multiple apps’ data. As device adversary aims to identify users
across different apps, this setting undergoes open world settings for
across app evaluation. We start from the universal model that uses
data from all apps (ay, ..., az); adversary can choose to train on a
subset—a group model for an app group (see details in Section 2.3).
Suppose an app group (e.g., social) has ny number of apps. The
device adversary trains an app group model on all n, apps’ training
data. First, we consider the scenario where the adversary identifies
a user of an app in a similar app group: the adversary can apply the
model on each app’s test data to identify users. We identify users
across different app groups (n,) by evaluating the app group model
with an average data representation (am,g).10

Next, device adversary can initiate attacks under zero-day sce-
nario, where the adversary attempts to identify a user from an app
that it has not previously trained on. To that end, we train an app
group model with n, — 1 apps’ training data and test on n;h app (n;h
app’s data is not in D;y4;,). We refer this type of attack as zero-day
attack. We perform leave one out method and report the average
accuracy to report effectiveness of zero-day attack.

Top Features. For each model, we analyze the feature importance
for RF and XGB using information gain [42]. This helps both an
adversary or privacy designer who wants to minimize its work.

5 Evaluation Results

In this section, we evaluate the performance of BEHAVR’s adver-

saries. Table 2 summarizes the results. For each sensor group (in

Sections 5.1, 5.2, 5.3, and 5.4), we evaluate 20 models (i.e., one model

per app) guided by the following research questions (RQs):

® RQ1 (Accuracy): How well can a user be identified using different
VR sensor group? How do these groups compare to each other?

® RQ2 (Sub-session Time S;): How long does identification take?

0For example, with 3 apps in a group, we use 33.33% S, from each app for evaluation.
This is to make a fair comparison using the same amount of data for evaluation.
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o RQ3 (Top Features): What are the top features for identification
w.r.t. various apps and adversaries?
In Section 5.5, we evaluate our open-world experiment, discussed

in Sections 2.3 and 4.2, answering the following:

® RQ4 (Open-World Setting): Can we identify a user across different
settings within same app or a user across similar or different apps
(app groups)? What if the app is not included in the training of
the in adversary’s model (zero-day scenario)?

Next, Section 5.6 discusses relative sensor group importance (among

sensor groups and w.r.t. app groups) by answering the following:

o RQ5 (Sensor Group Importance): What are the most important
sensor groups in general, and as they relate to particular app
groups? Moreover, can combining weak sensor models help to
generate a comparatively stronger attack?

5.1 Body Motion Models Evaluation

RQ1 (Accuracy). The identification accuracy for body motion app
models is 100% in 3 apps and >95% (i.e., at most 1 out of 20 users is
falsely identified) in 14 apps (see advgy, results from BM column
of Table 2). These results are consistent with previous studies (see
Section 6). Most apps, such as Beat Saber (a;; extensively studied
in [57]), archery (as), and shooting (a;3), demand significant body
motion (headset and controllers movement). Other apps that require
less body motion (e.g., in a4, users move through teleportation)
provide ~70-80% accuracy. As the device adversary considers a
larger amount of data and tasks for training, the accuracy is up to
100% (see advge,, Table 2) compared to a single app.

RQ2 (Sub-session Time S;). For the app models, accuracy is ~80%
with an average user sub-session time (S;) of 4s. The app models
require at least 16s of S; to reach 90% accuracy (see Fig. 8a in Appen-
dix F). The device model achieves higher accuracy with similar S;
by training on all 20 apps (see Fig. 8e in Appendix F), accumulating
comprehensive user behavior knowledge.

RQ3 (Top Features). In Appendix F, Table 10 presents the top-3 fea-
tures for identification for each app. The top features are influenced
by app-specific activities and user measurements; e.g., flight apps
require users to sit and make left-right head movements to control
flight making the x-position of the headset (left-right movements)
as top feature. Shoot.& archery apps (e.g.,as) require both headset
and controller movement/velocity that influence as top features.
For the device model, the y, x, and z positions of the headset are top
features (see Fig. 9a in Appendix F), indicating height, left-right and
forward-backward extent of the head movements influence identi-
fication. Fig. 10a in Appendix F shows the importance of headset
features: 5% to 35% higher accuracy compared to controller features
alone (~21% on average) across all apps.

Key Takeaways. BM identification relies on both app-activity
specific and users unique measurement (e.g., height) features.

5.2 Eye Gaze Models Evaluation

RQ1 (Accuracy). App models provide >90% accuracy for 8 apps,
>85% for 12 apps, >75% for the remaining. We observe that identi-
fication accuracy is influenced by frequent object-eye interactions,
e.g., Beat Saber (a;) model gives 95% as users frequently look at
and follow the movement of virtual objects in this app. Similarly,
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Table 2: Identification accuracy (%) for app adversary (adv,,,) and device adversary (advg.,) w.r.t. sensor groups. The app
adversary (adv,,,) trains and evaluates an app model on sensors data from a single app (listed in App No column). The device
adversary (advge,) has two rows. The first row (e.g., a1z, ais, a13) reports results from advg,, training a group model on all apps in
that group and evaluating on each individual app. The second row for advg,, reports results from training a group model and
evaluating on average data of that group (e.g., aq, indicates each app contributes 50% of the data if n; = 2). Each group, Golfing,
Rhythm, and Knuckle-walking has exactly one app; thus, adv,,, and advg., are the same (filled with “both” in Adver. column).

Sensor Group

App Group ‘ Adver.

App No. l

[ BM EG HJ FE
advapp aiz, ais, aig 85,95, 95 80, 90, 90 60, 65, 75 95, 100, 100
Social a2, ais, ais 95, 95, 95 75, 90, 85 70, 85, 75 100, 100, 100
advge, Aavg 100 95 90 100
advapp as, a9, azo 95, 100, 95 85, 90, 75 80, 75, 75 100, 95, 95
Flight Sim. ado as, a9, azo 95, 100, 100 90, 90, 90 80, 80, 75 100, 100, 95
dev aaog 100 95 95 100
Interactive advapp | az, a9, aip, ai1,ais a1y | 95,80, 95,95,95,100 | 80,80,85,95,75,80 | 60,40, 60, 60, 70,90 | 100, 100, 90, 95, 100, 100
Naviration wdo az, ag, al9, a11, a16, a17 | 95,85, 90, 95, 95, 100 | 75, 60, 80, 80, 60, 75 | 65, 40, 60, 75, 75,90 | 100, 100, 95,100,100,100
& dev davg 100 95 85 100
Shooting & advapp as, ai3, aiq 95, 90, 100 85, 75, 90 70, 60, 80 90, 100, 100
Archery adug as, a3, a4 95,100, 100 85, 80, 90 70, 65, 80 90, 100, 100
ev Aavg 100 90 85 100
advapp a4, ag 70, 80 90, 70 35, 45 95, 95
aq, ag 75, 85 90, 75 35, 50 100, 95
Teleport. advge, aog a5 00 50 100
Golfing | both | ag | 80 | 70 | 50 | 90
Rhythm | both | a | 95 | 90 | 75 | 100
Knu.-walk. | both | az \ 95 \ 80 \ 65 \ 100
All ‘ adogey ‘ ay, az, ..., az 90 — 100 50 — 80 45-95 100

Aavg

100

archery, shooting, and flight simulation app models show high ac-
curacy due to frequent eye-object interaction. The device model’s
accuracy can be up to 100% (see EG column in Table 2).

RQ2 (Sub-session Time S; ). The app models accuracy is ~50% with
5s of S; per user on average. It increases to ~70% with 19s of S;
(accuracy may vary depending on apps, see Fig. 8b in Appendix F).
Device model (Fig. 8e in Appendix F) shows 80% with 17s of S;.
RQ3 (Top Features). For both app and device models (see Table 10,
Appendix F and Fig. 9b, Appendix F) show that augmented features
contribute the most to user identification for EG. The top features
are the y-rotation that correlates left and right eyes (i.e., “Quat.y
Left Right”), that matches our intuition: for EG, augmented features
(i.e., fi) are important for unique identification. Fig. 10b in Appen-
dix F shows that augmented features (f%) improve model accuracy
significantly (5 — 35% or ~20% on average) across all apps.

Key Takeaways. Augmenting the standard features with the dis-
tance between the eyes improves identification accuracy.

5.3 Hand Joints Models Evaluation

RQ1 (Accuracy). The app models provide >70% accuracy for 9 apps,
which involve diverse hand movements and gestures (see Table 6);
e.g.,in a; (Beat Saber), users swing light sabers using hands, involve
claw position and frequent hand movements; for a;7 (chess), users
grab and move chess pieces. Conversely, several app groups, such
as teleportation, lack hand-specific activities that cause low identi-
fication accuracys; e.g., teleportation provides the lowest accuracy
(~35%). For the device models, the accuracy is >85% in most cases.
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RQ2 (Sub-session Time S; ). For the app models, the accuracy is > 60%
with S; of at least 20s (see Fig. 8c in Appendix F). For the device
model, accuracy is 90% with 120s of S; (see Fig. 8f in Appendix F).

RQ3 (Top Features). For app models, (see Table 10, Appendix F)
shows that the top features are influenced by app-activities. See
Table 3 for description.e.g., for a; (Beat Saber), top features are the
positions of joints 1 and 3 (thumb metacarpal and palm) of the right
and joint 24 (little intermediate) of the left hand. These joints are
exercised when making a fist for holding sabers. For a;7 (chess),
joints 22 and 25 (little metacarpal and distal) of right hand (use
for moving chess pieces) are top features. For device model (see
Fig. 9¢, Appendix F), positions of left-hand joints 1 (palm), 2 (wrist),
7 (index metacarpal), and right-hand joints 3 (palm), 2 (wrist) and 5
(thumb distal) are top features. They represent users natural hand
positions, emphasizing joint positions (e.g., making an open fist)
and activities—emphasizing joint rotations (grabbing, waving, etc.).
Key Takeaways. Apps with more hand-related activities show
higher attack accuracy using HJ sensor group.

5.4 Facial Expression Models Evaluation

RQ1 (Accuracy). Facial Expression is highly effective for user iden-
tification; the app models provide > 95% accuracy for 17 and 90%
for the remaining 3 apps. The device models achieve up to 100%,
consistent with other sensor groups (see FE column of Table 2).

RQ2 (Sub-session Time S; ). For app adversary, most apps provide
>85% accuracy with S; of only 5s, and >90% accuracy with 18s (see
Fig. 8d in Appendix F). For the device model, accuracy is 95% with
just 3s and 100% within 17s (see Fig. 8e in Appendix F), demonstrat-
ing the high effectiveness of FE.
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RQ3 (Top Features). Facial features are correlated to the app-specific
activities (e.g., in aq:job simulation, users eat a doughnut, relates to
element 27—jaw movement as a top feature) and valence/arousal
states (e.g., social, thythm: elements 5 and 6, which correspond to
AU6—action unit for happiness) (see Table 10 in Appendix F). See
Table 4 for description. For the device model (see Fig. 9d in Appen-
dix F), both emotions and natural expressions are key features, e.g.,
elements 5 (cheek raiser), 6 (jaw drop), and 25 (jaw thrust) are part
of user expression of joy and surprise respectively; 28 (jaw thrust)
and 51 (lips toward) contribute to natural expressions representing
the outward (lower lip) and opening (both lips) movements.

5.4.1 Facial Emotion Models Evaluation. In this section, we focus
on facial elements/AU combinations that represent an emotion (see
descriptions in [18, 28] and results in Table 11 in Appendix F), rather
than all/other facial expression. We argue that arousal/valence
states in VR may induce certain emotions, similar to what happens
in the real world. For example, socializing, whether in-person or vir-
tually, can make a person happy (HA/PV), or seeing a positive/new
environment can induce joy/surprise (PV). From Table 1, we pick
one or two apps from seven groups, representing the rest of the
apps and groups to evaluate our hypothesis.

Our results confirm that facial elements/AUs indicating emo-
tions can be used for identification, correlating strongly with the
app’s arousal/valence states. Social apps’ models use AU combina-
tions that represent happiness and surprise, provide >95%. Flight
simulation or shooting apps induce mostly negative valence, thus
identification based on happiness facial elements induce low accu-
racy, i.e., apps a4 (shooting) and ay (flight simulation), give 80%
and 75% respectively, however, both apps provide >90% based on
facial elements/AUs representing fear. In some apps, app-specific ac-
tivities and arousal/valence states may induce mixed emotions. For
instance, in Beat Saber (a;), users may experience happiness due to
the music/beat, fear from the tension of cutting blocks or avoiding
obstacles, and even sadness or anger when missing some blocks.
The models for these apps achieve high accuracy by considering al-
most all emotions. Apps with mostly neutral arousal/valence states
(e.g., interactive navigation apps) may achieve low accuracy (~80%)
for high arousal emotions, such as happiness/sadness as the VR
environment may not strongly induce these emotions.

Finally, combining all AUs representing all emotions provides
high accuracy across all apps (i.e., 290% for most apps). Fig. 10d in
Appendix F shows that AU combinations representing emotions
provide better accuracy compared to other facial expression AUs
(that do not represent emotions) by 5—25% in most apps (with some
exceptions) and 5% on average; e.g., considering arousal/valence,
accuracy improves by 25% for ajy—flight and 10% for a;4—shooting.
Key Takeaways. Our findings suggest that an adversary can select
AU combinations that represent emotions w.r.t. the app’s arousal/
valence state, to identify a user with low effort.!!

5.5 Open-World Setting Evaluation

Next, we relax some constraints of Section 5.1- 5.4 and train and
test on data from different settings and activities within and across
apps, referred as Open-World setting (see Section 4.2.2). We show

HFor example, adversary can use a few facial features (e.g., 20 for happiness in social
apps) instead of all (i.e., 325) facial features for adequate unique identification.
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that users can be identified, not only across similar sessions of the
same app (Sections 5.1 - 5.4), also across different settings of the
same app (Section 5.5.1) and across different apps (Section 5.5.2).

5.5.1 User Identification across Different Settings in the Same App.
In this section, we have considered different settings (e.g., difficulty
levels, virtual spaces, songs) in the same app and as a proof of con-
cept, we performed additional experiments for five representative
apps from five app groups (see experiment details on 4.2.2).

Body Motion For BM, accuracy of open-world ranges from 80-100%
(close to 5.1 results), showing that users can be reliably identified
across various settings within same app. Since motion patterns
are unique to users and their activities within apps can be similar
across different settings (not identical which adds variability that
results in negligible accuracy drops) making identification feasible.

Eye Gaze For EG, the identification accuracy is between 60-80%.

Hand Joints For HJ, accuracy ranges from 60-80%. Accuracy is
slightly lower in the open-world-setting compared to 5.3 due to
added variability from different settings of the same app as BM.

Facial Expression For FE, accuracy is higher (90-100%) compared
to other sensor groups as it relies heavily on facial emotion (see
Fig. 10d), influenced by app’s arousal/valence (see Section 2.3). If
different app settings maintain a consistent arousal-valence state,
users remain in similar emotional conditions, minimizing variability
for FE and thus accuracy varies less across settings.

5.5.2  User Identification across App Groups. To address RQ4, we
conduct experimental evaluation (see advge, row in Table 2) for
each app group described in Table 1 and for the zero-day scenario
(see Fig. 5) defined in Section 4.2.

Body Motion. The performance of the app group models (trained
on all apps data within a group) and the universal device model
(trained on all apps) using BM is comparable, e.g., both achieve
up to 100% accuracy using aq.y. The group models outperform the
app models in general, which encourage the device adversary to
choose a group model over app models; e.g., for a3, shoot.&arch.
group model provides 10% higher accuracy than app model. In the
zero-day scenario, Fig. 5a shows that models evaluated on new apps
in the same group perform well (75 — 95% accuracy), but performs
poorly on different groups (i.e., 0 — 50% accuracy). This evaluation
confirms that group models are effective in zero-day scenarios.

Eye Gaze. No app grouping based on eye gaze is observed due
to the lack of app-specific activity. Table 2 indicates that group
models perform similarly to app models. However, in the zero-day
scenario, grouping can be valuable as within similar groups, there
is a higher occurrence of eye-object interactions that potentially
help to identify users within a new app. Fig. 5b shows a diagonal
in the heatmap with adequate accuracy, supporting our claim.

Hand Joints. For hand joints, app group models and the universal
device model have comparable performance, e.g., using aqy, the
accuracy difference is within the range of 10 — 15% mostly. Akin to
BM, HJ group models outperform the app models, e.g., the social
group model provides 20% higher accuracy for a;s than the app
model. For zero-day scenario, a group model evaluated on its native
apps provides higher accuracy (40 — 75%) compared to an app from
different groups (~20%) (see Fig. 5¢).
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Figure 5: Identification accuracy (in percent) in the zero-day scenario. The adversary trains on the data from other apps in a
group, and tests in a new app (for which it did not have training data) in the same group. The diagonal shows the accuracy for
apps within the same group, whereas the other values show the accuracy for apps from other app groups.

Facial Expression. Both the app group and the universal models
achieve up to 100% accuracy using FE data, with group models
performing similarly or better than app models. For the zero-day
scenario, a model tested on apps from the same group provides
higher accuracy (70 — 100%) than apps from different groups (20 —
65%) for most of the cases (see Fig. 5d). However, several apps
provide high accuracy within different groups; e.g., social group
model accurately predicts a; with 85%, the shooting&archery group
model provides 90% when tested on flight apps (e.g., az) as they
share similar arousal/valence states (LA/NV, HA/NV) (see Table 1).

5.6 Sensor Group Importance Evaluation

We compare the importance of different sensor groups, in general
(Section 5.6.1) and for specific app groups (Section 5.6.2). Finally, we
evaluate whether combining multiple weaker sensor group models
(ensemble) can enhance attack performance (see Section 5.6.3).

5.6.1 Model Accuracy across Sensor Groups. This section partly
addresses RQ5. FE and BM sensor groups outperform the EG and
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HJ. For BM, 14 out of 20, and for FE, 17 out of 20 apps achieve an
accuracy of > 95%. Conversely, only 5 out of 20 apps offer >90%
for EG, which is intuitive since BM and FE cover more diverse
activities compared to EG. HJ shows low attack performance in
specific context: 9 among 20 apps provide 70 — 90% due to a lack
of HJ-based activities in several apps. Both app and device models
for EG and H]J require longer S; (see RQ2 of Sections 5.1-5.4) than
BM, FE. Therefore, from an attacker’s perspective, if the goal is to
minimize effort and given that the attacker has access to any of the
sensor groups, FE would be the optimal choice.

5.6.2 Important Sensors per App Group. This section partly ad-
dresses RQ5 by discussing the importance of individual sensor
groups relative to app groups. This comparison is useful: (1) for
attackers to optimize which sensor groups’ data to train and test
models on, to efficiently utilize resources and maintain accuracy;
and (2) for defense strategies regarding users’ decisions to share sen-
sor data, e.g., users can revoke permissions for some sensor groups
(including BM [47]) that are not essential for that app group.
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Body Motion. Most app groups require body motion for app-
specific activities. For example, social app groups involve walking
and exploring, rhythm apps require dance-like continuous move-
ments. Consequently, BM and its associated motion features are
available to adversaries in those apps and thus provide >85% accu-
racy in most app groups. Contrarily, BM is less crucial for certain
groups e.g., teleportation since minimal body movement occurs for
teleporting to different virtual locations, providing <80% accuracy.

Eye Gaze. For EG, there are no defined app-specific activities for our
selected apps. Meta indicates EG is employed for realistic avatars
and to estimate directions of where users are looking[52]. Intu-
itively, certain app groups require frequent eye-object interactions
while performing app activities; e.g., in shoot.&archery or rhythm,
users aim to shoot/cut, resulting in frequent eye-object interactions.
Consequently, they provide high identification accuracy (85 — 95%)
and important from adversarial perspective. Conversely, certain
groups require minimal eye-object interactions as users mostly
sightseeing in those apps (e.g., knuckle-walking, provides 70 — 80%
accuracy). Thus, we can argue that, EG is optional from a user’s per-
spective for our app groups except social. Thus given the available
permission system, users might disable it.

Hand Joints. HJ for certain app groups that require active hand
movements/gestures (e.g., archery, flight, interactive navigation,
& rhythm) provide higher accuracy (see Table 2), e.g., flight apps
models provide 75 — 80% as require lots of hand activities for con-
trolling flight. Conversely, H] models for the teleportation group
lack hand-related activities and achieve 35 — 45%. However, users
may prefer to turn off HJ in certain groups where hand movements
are optional (teleportation) and presumably prefer HJ in groups,
where hand movements are crucial (e.g., interactive navigation ).

Facial Expression. Facial Expression or FE is crucial for iden-
tification in all app groups, as apps’ arousal/valence states can
trigger specific facial expression. Thus, FE achieves > 90% accuracy
across all groups. Sharing FE data is particularly relevant in app-
groups where user interaction is significant and realistic avatars
enhance the experience (e.g., social, job simulator). However, in
groups where the realistic avatars are unnecessary, specifically in
single user mode, where multi user interaction is not necessary,
(e.g., Rhythm, Flight), users may disable FE.

5.6.3 Sensor Group Model Ensemble. So far, our study assumes the
adversaries use individual sensor groups to identify users (from
Section 5.1 to 5.6.2). Next, we consider settings where the adversary
combines multiple sensor group models to improve attack accuracy
from individual sensor group models (i.e., < 90%). In this experi-
ment, we excluded FE as an attacker may exploit FE alone for a
successful attack (with > 90% accuracy) or users may disable FE
(see Section 5.6.2). Moreover, we did not consider any combination
of BM and HJ since the adversary can not collect data from both
simultaneously. For combining multiple models, we used the model
ensemble technique [21], where the final identification result is
obtained through multiple sensor models using maximum voting
mechanisms [11] of blocks per user.

Body Motion and Eye Gaze Model Ensemble. The adversary
may consider combining BM and EG, given that, it has access to
both BM and EG but not FE and HJ, and individual model accuracy
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of BM and EG are relatively low (e.g., 80% and 70% for ag, see Table
2). Our results show that ensembling EG and BM together can
improve attack accuracy up to 10% (see Appendix F, Table 13).

Eye Gaze and Hand Joints Model Ensemble. Adversary con-
siders combining HJ and EG, assuming they have access to both
sensor groups; and BM/FE is unavailable (i.e., not used by users) or
corrupted. Under this assumption, if individual sensor models for
EG and H] yield low identification accuracy (70% and 45% for e.g.,
as, see Table 2), ensemble techniques using both sensor models can
enhance attack accuracy by 5-10% (see Appendix F and Table 13).

6 Related Work

Privacy in VR. Adams et al. studied the awareness of users and de-
velopers on data collection practices on VR devices [2]. Trimananda
etal. [73] analyzed the network traffic generated popular Oculus VR
apps, and reported personal information (device and user identifiers
and some VR sensory data) collection and their inconsistencies with
app’s privacy policies [73]. Recently, Nair et al. developed an ad-
versarial app to demonstrate tasks that can harvest users’ personal
information; e.g., physical characteristics, location, gender [56]. The
privacy of sensor data and APIs receives growing attention. VREED
demonstrates emotion recognition in VR through eye tracking and
physiological signals [71]. Kaleido introduces Differential Privacy
(DP) for safeguarding eye tracking, emphasizing user interests re-
vealed in eye gaze heatmaps [39]. MetaGuard [58] safeguards user
privacy using DP through feature obfuscation.

User Identification in VR. Most closely related to this paper is a
body of prior works that focuses on identification based on sensor
data collected on VR [12, 41, 53, 54, 56, 57, 60, 72, 81]. Most prior
works focused on identifying users using BM within pre-defined
tasks/custom apps. In [69], Stephenson et al. compared various au-
thentication mechanisms for AR/VR, which include head/hand/eye
biometrics. Tricomi et al. identified users in VR/AR based on body
motion and eye movements [72]. Pfeuffer et al. focused on identifi-
cation in various controlled tasks (i.e., pointing, grabbing, walking)
as correlated body and eye tracking data together [60]. Miller et
al. used body motion for identification as users randomly select
and watch 360-degree videos on VR [53]. Next, Miller et al. used
spatial features from head and controller identification [54]. Nair et
al. [57] analyzed a large dataset (50K users) of one commercial app
(BeatSaber [20]), provided by the BeatLeader scoreboard [62]. They
utilized body motion and contextual features for identification.

7 Discussion

7.1 BEHAVR in Perspective

To the best of our knowledge, BEHAVR is the first to analyze user
identification in VR comprehensively, i.e., considering (1) all VR
sensors available (including HJ, FE, in addition to BM, EG); (2)
data we collected from several real-world, unmodified apps and (3)
considering identifiability within and across different apps, allow
us covering a wide range of adversarial settings.

Generalization. Although our study is limited to 20 real-world
apps, we believe that our methodology and evaluation results are
generalizable. First, as explained in Sections 2.1 and 3.1, BEHAVR
is capable of collecting all sensor data from any of the thousands
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of SteamVR apps that are compatible with ALVR setup. Second,
BEHAVR analyzes sensor data through device-independent standard
OpenXR APIs. Thus, our user identification models and evaluations
work with any apps and VR platforms that support the APIs. Finally,
zero-day-attack and sensor and feature importance analysis can be
applied to other apps if they fall under our app groups (based on
activities and emotional states) as described in Section 2.3.

7.2 Recommendations for Mitigation

Based on our experience with BEHAVR, we provide some recom-
mendations for best practices and mitigation, including setting
up permissions across VR platforms, auditing sensor data collec-
tion to offer users recommendations on data sharing practices, and
implementing privacy-preserving mechanisms.

Use Permissions on all Platforms. While modern VR platforms
such as Oculus VR have provided additional permission checks to
protect FE, HJ and EG [34, 63], SteamVR apps lack any permission
system and disclosure about sensor data collection in their websites
(see Section 2.4.2), leaving users with no control over these sensor
data (see Section 2.2). We recommend that all VR platforms and
app developers (specifically SteamVR platform and apps) should
implement permission systems for collecting sensor data, similar to
Oculus VR. Additionally, we recommend that developers should dis-
close clearly which sensor data they collect, and limit that collection
to what is needed for the functionality of the apps.

Provide Privacy Recommendation Systems for Users. Not all
sensor groups are necessary for users to share for every app group
(see Section 5.6). For example, FE is crucial for generating realistic
avatars, is important for social apps but not for flight or interactive
navigation apps. Moreover, certain sensor groups pose high identifi-
cation accuracy; e.g., FE, thus users may avoid sharing FE in general
(for privacy reasons) or in later app groups (not necessary for app
activities). Users can also decide to share less privacy-sensitive
sensor groups; e.g., for flight simulation, controller (parts of BM)
can be replaced by HJ as later shows low attack accuracy (see Fig.
10a and 10c). Default recommendations can be offered to users via
privacy nudges [1] or implementation of privacy recommendation
systems based on static or policy analysis of apps (to analyze what
they actually collect for which purpose) [30] guided by BEHAVR.

Need for Privacy Preserving Mechanisms. We hope that our
observations, particularly our feature analysis across different apps
and sensor groups (see Section 5), can guide the design of defense
mechanisms. One potential defense strategy could be to obfuscate
sensor data. This can be implemented, for example, locally through
local differential privacy (LDP) [13] either at the (1) device firmware
level, before the sensor data leaves the device, or (2) software level,
before the sensor data is transmitted to the server, as outlined in the
framework described in [22]. The design depends on the adversary
type: if the device is trusted, (2) is sufficient, if the adversary can
intercept the device, (1) needs to be implemented, to be effective
against the threat model described in Section 2.5.2. Guided by our
feature analysis (Section 5), LDP can be applied to top features,
which significantly contribute to user identification. For example,
obfuscating the y-axis positional readings from the headset in the
BM sensor group, which is the top feature, can significantly reduce
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identification accuracy. Future work can optimize the privacy-utility
trade-off of this defense approach.

7.3 Limitations and Future Work

Study Size. A limitation of the user study, described in Section 3.2,
is the number of participants (20). This number is on par with
similar studies [54, 56, 72], but smaller than in [53] (500 users, one
task) or [57] (50K users, crowd-sourced)!?. The limitation in the
number of participants comes from the time-consuming nature
of our experiments, interacting with several real-world apps for a
significant amount of time, in-person, under IRB guidelines; see
Section 3.2 for details. A related limitation is that our dataset may
not be representative of all VR users, such as younger users (age
< 18), older adults (age > 40), or w.r.t. other demographics. These
factors may introduce bias and limit the generality of the results.

While acknowledging the study size as a limitation, we hope
this work provides new insights into VR privacy by expanding the
problem space in other dimensions, i.e., several sensors (4 groups,
475 readings) and diverse real-world apps (20 from 8 groups). We
will make the BEHAVR system available to enable future research
to expand the study to a larger scale, if so desired.

Auditing Data Collection. On SteamVR, apps are neither re-
stricted by permissions nor required to disclose the collection of
sensor data on their store pages (see Sections 2.1 and 2.4.2). There-
fore, an app adversary may technically collect any sensor data with-
out restrictions from the platform. However, we do not claim that
individual apps do so. Auditing the data collection would involve
network or program analysis [73] beyond the scope of BEHAVR.
We leave this as future work.

Advanced User Identification and Profiling. Although RF and
XGB models can already achieve good performance (see Section 5),
an adversary may minimize its work by feature minimization or
leveraging more powerful models. Furthermore, given the rich be-
havioral information embedded in the sensor data, an adversary
may go beyond identification and draw more inferences about (i.e.,
profile) users, such as demographics, physical conditions, and pref-
erences. A natural next step is to exploit our dataset for profiling.

8 Conclusion

We present BEHAVR, a framework for collecting and analyzing VR
sensor data from four sensor groups. We applied it to Quest Pro and
conducted a user study where real users interacted with real-world
VR apps. We build models that an adversary can use to identify
users within similar or different settings of an app, across different
apps, or within a group of similar apps. We show that these models
perform well, and we compare their performance across different
sensor groups and apps. We also investigate the minimum time and
top features for identification, and the importance of sensor groups
on the apps or app groups. Additionally, we provide insights on
how BEHAVR can be generalized and effective for diverse studies in
VR, and recommend strategies for privacy practitioners, including
setting permissions and implementing privacy measures.

12\e show that accuracy does not drop significantly with varying participant numbers,
align with prior studies with 500 [53] or 5000 [57] participants (see Appendix D).
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A Details on Sensor Groups

In this appendix, we expand on Sections 2.2 and 4.1.3 and provide
additional details and discussion of the sensor groups.

Body Motion (BM). BEHAVR captures the position (x, y, z), rota-
tion (x,y, z, w), angular (x,y,z) and linear velocity (x,y,z) from
the two controllers and only position and rotation from the head-
set [29]. This sensor group has received much attention in prior
work [41, 53, 54, 57, 81]. However, the focus was only on position
and rotation values.

Eye Gaze (EG). BEHAVR captures the position and rotation of eye
gaze for both left and right eyes (7 values per eye) [25, 74]. Some
of the prior work has also looked into eye data, but from different
angles [60, 72]. In [60], the authors analyzed eye gaze data together
with body motion data. Meanwhile, [72] looked into eye parameters
(i.e., pupil size and eye openness). In BEHAVR, we analyze eye gaze
as an independent sensor group (see Section 4.1.3).

Hand Joints (HJ). The OpenXR standard tracks the motion of each
hand as a composition of 26 individually articulated joints. See Table
3 for the full list and descriptions that follows data structure of
the XrHandJointEXT in [27]. BEHAVR captures the position and
rotation of each joint [26] for each hand.

Facial Expression (FE). The OpenXR standard tracks 64 facial
elements. See Table 4 to find full list and descriptions derived from
the data structure of the XrFaceExpressionFB [28]. The 64 facial
elements can be mapped to 31 Action Units (AUs) as per the Facial
Action Coding System (FACS) [14]. Each AU in the FACS standard
represents one facial muscle movement. The combinations of the
AUs may correspond to a particular emotion. For example, the
combination of AU6 (Cheek Raiser) and AU12 (Lip Corner Puller)
may indicate a person smiling, which can be correlated with the
emotion happiness [18]. Details regarding OpenXR facial expression
elements [28] mapping to emotion AUs are in Table 5.

B List of SteamVR Apps

In Section 3, we discuss our experimental setup that includes how
we choose 20 SteamVR apps from the list of top 100 SteamVR apps.
Table 6 lists the 20 SteamVR apps and the activity that users perform
during data collection.

C Privacy Policy Reading

In Section 2.4.1, we discuss our findings in privacy policies of 100
most played VR games. Here, we present additional details.
Availability of privacy policies. For the top 100 apps from the
“Most played VR games” list on Steam, we manually visit their
websites and locate the link to their privacy policies. We find that
60 of them provide privacy policies.

Reading privacy policies. We read each privacy policy and look
for statements on “biometric data” or “sensory data”, as well as
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Table 3: List of 26 joints in the hand joints data structure per OpenXR convention [26].

No. OpenXR Data Structure Joint Name No. OpenXR Data Structure Joint Name
1. XRHAND JOINT PALM EXT Palm 14.  XR HAND JOINT MIDDLE INTERMEDIATE EXT  Middle Intermediate
2. XR HAND JOINT WRIST EXT Wrist 15.  XR HAND JOINT MIDDLE DISTAL EXT Middle Distal
3. XRHAND JOINT THUMB METACARPAL EXT ~ Thumb Metacarpal 16.  XR HAND JOINT MIDDLE TIP EXT Middle Tip
4. XRHAND JOINT THUMB PROXIMAL EXT Thumb Proximal 17.  XR HAND JOINT RING METACARPAL EXT Ring Metacarpal
5. XR HAND JOINT THUMB DISTAL EXT Thumb Distal 18.  XR HAND JOINT RING PROXIMAL EXT Ring Proximal
6. XRHAND JOINT THUMB TIP EXT Thumb Tip 19.  XR HAND JOINT RING INTERMEDIATE EXT Ring Intermediate
7. XR HAND JOINT INDEX METACARPAL EXT Index Metacarpal 20. XR HAND JOINT RING DISTAL EXT Ring Distal
8. XR HAND JOINT INDEX PROXIMAL EXT Index Proximal 21.  XRHAND JOINT RING TIP EXT Ring Tip
9. XR HAND JOINT INDEX INTERMEDIATE EXT  Index Intermediate 22.  XRHAND JOINT LITTLE METACARPAL EXT Little Metacarpal
10.  XR HAND JOINT INDEX DISTAL EXT Index Distal 23.  XRHAND JOINT LITTLE PROXIMAL EXT Little Proximal
11.  XR HAND JOINT INDEX TIP EXT Index Tip 24.  XRHAND JOINT LITTLE INTERMEDIATE EXT  Little Intermediate

—
s

XR HAND JOINT MIDDLE METACARPAL EXT
XR HAND JOINT MIDDLE PROXIMAL EXT

Middle Metacarpal
Middle Proximal

—-
i

Little Distal
Little Tip

25.
26.

XR HAND JOINT LITTLE DISTAL EXT
XR HAND JOINT LITTLE TIP EXT

Table 4: List of elements in the facial expression data structure as per OpenXR convention [28] mapped into Action Units (AU).
There are a total of 64 elements of facial expression that are mapped into 31 AUs.

No. Facial Elements in OpenXR Data Structure Action Unit (AU)  AU# No. Facial Elements in OpenXR Data Structure Action Unit (AU) AU#
1. XR FACE EXPRESSION BROW LOWERER L FB Brow Lowerer AU4 33. XR FACE EXPRESSION LIP CORNER PULLER L FB Lip Corner Puller AU12
2. XR FACE EXPRESSION BROW LOWERER R FB 34. XR FACE EXPRESSION LIP CORNER PULLER R FB
3. XR FACE EXPRESSION CHEEK PUFF L FB Cheek Puff AU34 35, XR FACE EXPRESSION LIP FUNNELER LB FB Lip Funneler AU22
4. XR FACE EXPRESSION CHEEK PUFF R FB 36. XR FACE EXPRESSION LIP FUNNELER LT FB
5. XR FACE EXPRESSION CHEEK RAISER L FB Cheek Raiser AU6 37. XR FACE EXPRESSION LIP FUNNELER RB FB
6. XR FACE EXPRESSION CHEEK RAISER R FB 38. XR FACE EXPRESSION LIP FUNNELER RT FB
7. XR FACE EXPRESSION CHEEK SUCK L FB Cheek Suck AU35 39. XR FACE EXPRESSION LIP PRESSOR L FB Lip Pressor AU24
8. XR FACE EXPRESSION CHEEK SUCK R FB 40. XR FACE EXPRESSION LIP PRESSOR R FB
9. XR FACE EXPRESSION CHIN RAISER B FB Chin Raiser AU17 41. XR FACE EXPRESSION LIP PUCKER L FB Lip Pucker AU18

10. XR FACE EXPRESSION CHIN RAISER T FB 42. XR FACE EXPRESSION LIP PUCKER R FB

11. XR FACE EXPRESSION DIMPLER L FB Dimpler AU14 43. XR FACE EXPRESSION LIP STRETCHER L FB Lip Stretcher AU20
12. XR FACE EXPRESSION DIMPLER R FB 44. XR FACE EXPRESSION LIP STRETCHER R FB

13. XR FACE EXPRESSION EYES CLOSED L FB Eyes Closed AU43  45. XR FACE EXPRESSION LIP SUCK LB FB Lip Suck AU28
14. XR FACE EXPRESSION EYES CLOSED R FB 46. XR FACE EXPRESSION LIP SUCK LT FB

15. XR FACE EXPRESSION EYES LOOK DOWN L FB Eyes Look Down AU64 47. XR FACE EXPRESSION LIP SUCK RB FB

16. XR FACE EXPRESSION EYES LOOK DOWN R FB 48. XR FACE EXPRESSION LIP SUCK RT FB

17. XR FACE EXPRESSION EYES LOOK LEFT L FB Eyes Look Left AU61 49. XR FACE EXPRESSION LIP TIGHTENER L FB Lip Tightener AU23
18. XR FACE EXPRESSION EYES LOOK LEFT R FB 50. XR FACE EXPRESSION LIP TIGHTENER R FB

19. XR FACE EXPRESSION EYES LOOK RIGHT L FB Eyes Look Right AU62 51. XR FACE EXPRESSION LIPS TOWARD FB Lips Toward AU8
20. XR FACE EXPRESSION EYES LOOK RIGHT R FB 52. XR FACE EXPRESSION LOWER LIP DEPRESSOR L FB Lip Depressor AU16
21. XR FACE EXPRESSION EYES LOOK UP L FB Eyes Look Up AU63 53. XR FACE EXPRESSION LOWER LIP DEPRESSOR R FB

22. XR FACE EXPRESSION EYES LOOK UP R FB 54. XR FACE EXPRESSION MOUTH LEFT FB Mouth Stretch AU27
23. XR FACE EXPRESSION INNER BROW RAISER L FB Inner Brow Raiser AU1 55. XR FACE EXPRESSION MOUTH RIGHT FB

24. XR FACE EXPRESSION INNER BROW RAISER R FB 56. XR FACE EXPRESSION NOSE WRINKLER L FB Nose Wrinkler AU9
25. XR FACE EXPRESSION JAW DROP FB Jaw Drop AU26 57. XR FACE EXPRESSION NOSE WRINKLER R FB

26. XR FACE EXPRESSION JAW SIDEWAYS LEFT FB Jaw Sideways AU30 58. XR FACE EXPRESSION OUTER BROW RAISERL FB  Outer Brow Raiser AU2
27. XR FACE EXPRESSION JAW SIDEWAYS RIGHT FB 59. XR FACE EXPRESSION OUTER BROW RAISER R FB

28. XR FACE EXPRESSION JAW THRUST FB Jaw Thrust AU29 60. XR FACE EXPRESSION UPPER LID RAISER L FB Upper Lid Raiser ~ AU5
29. XR FACE EXPRESSION LID TIGHTENER L FB Lid Tightener AU7  61. XR FACE EXPRESSION UPPER LID RAISER R FB

30. XR FACE EXPRESSION LID TIGHTENER R FB 62. XR FACE EXPRESSION UPPER LIP RAISER L FB Upper Lip Raiser AU10
31. XR FACE EXPRESSION LIP CORNER DEPRESSOR L FB ™ Lip Corner Depressor AU15 _63. XR FACE EXPRESSION UPPER LIP RAISER R FB

32. XR FACE EXPRESSION LIP CORNER DEPRESSOR R FB 64. XR FACE EXPRESSION COUNT FB Count

Table 5: Mapping between emotions, arousal/valence states (LA = low arousal, HA = high arousal, PV = positive valence, NV =
negative valence), from Table 4 derived from OpenXR facial expression elements [28], and Action Units (AU) [15].

Emotion Arousal/Valence  Facial Element No. AUs No.

Happiness ~ HA/PV (5,6) + (33,34) AU6 + AU12

Surprise LA/PV (23,24) + (58,59) + (60,61) + (25) AU1 + AU2 + AU5 + AU26

Anger HA/NV (1,2) + (60,61) + (29,30) + (49, 50) AU4 + AUS5 + AU7 + AU23

Contempt ~ HA/NV 33+ (11,12) AU12 + AU14

Disgust HA/NV (56,57) + (31,32) + (52,53) AU9 + AU15 + AU16

Fear LA/NV (23,24) + (58,59) + (1,2) + (60, 61) + (29,30) + (43,44) + (25) AU1 + AUZ + AU4 + AU5 + AU7 + AU20 + AU26
Sadness LA/NV (23,24) + (1,2) + (31,32) AU1 + AU4 + AU15

All All All emotion elements All AUs

specific types (e.g., “head movement”) in relevant sections about
data collection, use and sharing. However, human reading is prone
to omission due to the lengthy text and extra work required to
reveal some contents (e.g., collapsible text). In addition, 4 privacy
policies are not in English. To complement the reading, we write
a script to call the ChatGPT (GPT-4) model to read the whole text
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and ask it to report any statements about data types of interest. We
also use simple string matching to search for relevant content.

VR sensor data in apps’ privacy policies. Among 60 games
that provide privacy policies, we find that 10 of them discuss the
collection of sensor data. Table 7 shows the list of 10 apps and
what sensor data they disclose to collect. We find that only seven
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Table 6: List of 20 VR apps in the BEHAVR app corpus.

App No. | App Title ‘ Tasks
ap Beat Saber Cut objects with light-sabers: with the controllers and then with bare hands.
az BONEWORKS Explore the welcome scene; in front of a shelf, the user is prompted to grab dumbbells with bare hands and exercise.
as DCS World Steam Edition Fly a military aircraft: the user first control the aircraft with controllers and then with bare hands.
ay Derail Valley Explore the scene in a train station; in front of a table, the user is interacting with a book and a walkie-talkie using bare hands.
as Elven Assasin Shoot arrows to monsters: with the controllers and then with bare hands.
ag Golf It! Putt a golf ball with the controllers; once it gets close to the hole, the user is prompted to continue with bare hands.
a7 | Gorilla Tag Perform gorilla movement (walk like gorilla to explore the environment): first with the controllers, then with bare hands.
ag Hot Dogs, Horseshoes & Hand Grenades | Explore a virtual park; in front of a vending machine, the user will interact with it with bare hands.
ag | Job Simulator Explore office-worker simulation; The user is to interact with a virtual office objects with controllers and then with bare hands.
aio Keep Talking and Nobody Explodes Defusing a bomb with the controllers; then, the user is prompted to defuse the bomb with bare hands.
an McOsu Explore the welcome scene; The user is also asked to interact with the virtual objects with bare hands.
an Neos VR Explore a futuristic building; the user interacts with books in a bookshelf first using the controllers and then with bare hands.
a;s No Man'’s Sky Explore an unknown planet by teleporting; the user interacts with a laser gun (shoot targets) with controllers and then with bare hands.
aig | Pavlov VR Play & practice the basic and shootings; The user is interacting with a panel with bare hands.
ais Rec Room Explore a school or a McDonald or virtual recreation center; The user will wave their hands at an avatar with bare hands.
aie | Space Engine Explore a virtual planetarium by teleporting to space objects (e.g., planets, stars, etc.); the user is asked to interact with the planetarium first with
the controllers and then with bare hands.
ayy Tabletop Simulator Move chess pieces: first with the controllers and then with bare hands.
ag VRChat Explore the virtual scene by walking around; The user will wave or greet with bare hands.
aig VTOL VR Fly a helicopter; The user interact with the control panel and stick with controller and then with bare hands.
azo X-Plane 11 Fly a civilian aircraft and interact with the virtual objects with the controllers and with bare hands.

Table 7: Sensory and biometric data types discussed in the
privacy policies of the top 100 VR apps on Steam.

App Collected Data Types

iRacing

sensory data, biometric data

Arizona Sunshine motion sensor information, motion tracker information

Rec Room sensory data, head movement, facial expressions
DeoVR Video Player motion sensor events
Gorilla Tag movement data (hands and head)

Microsoft Flight Simulator

(2 app versions) skeletal tracking data, sensor data

VRChat sensory information, biometric information (ambiguous)
One-armed Cook biometric information (ambiguous)
WGT Golf biometric information (ambiguous)

privacy policies clearly mention the collection of “biometric data”
and/or “sensory data”. Some of them mention more specific data
types, such as “head and hand movement”, “facial expressions”, and
“skeletal tracking”. In addition, three privacy policies give ambigu-
ous statements about the collection of these data. For example, in
VRChat’s privacy policy [36], “California Resident Privacy Notice”
table marks no collection and disclosure in the row “sensory in-
formation”, but the “Disclosure of Personal Information” section
states “sensory information” is shared with vendors.

VR sensor data in Meta’s privacy policy. We additionally read
the privacy policy of Meta, the vendor of Quest Pro. In contrast to
the scarce discussion of sensor data in VR apps’ privacy policies,
Meta provides a long list of sensor and biometric data that are
collected in its privacy policy and supplemental articles [34, 46,
51]. In the paragraph of “Physical characteristics and movements”,
it discloses the collection of the position and orientation of the
headset and controllers, the speed of controller movement, hand
tracking, eye tracking, facial expression and other data types. The
list clearly covers the types of sensor data explored in this work.
Indeed, as the platform, Meta has the best vantage point to collect
these data, which can potentially be used for user identification,
i.e., personalization [34].
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Figure 6: Visualization of identification accuracy changes by
varying number of users.

D More about the User Study Participants

In this appendix, we expand Section 3.2 and provide additional
details regarding BEHAVR user study participants.

The demographic distributions of the participants are as follows:
female is 9 (45%), male is 11 (55%). The age ranges for the partic-
ipants is between 20-40 with a median age of 26 and mean age
of ~ 28. The nationality of the participants are 4 (20%) Indian , 3
(15%) Chinese , 6 (30%) other Asian , 3 (15%) American, 2 (10%)
European and 2 (10%) Undisclosed. Height distributions of the users
are, 4 users (20%) <160cm, 9 (45%) between 160 to 175cm, 5 (25%)
>175cm and 2 (10%) undisclosed. Dominant hand (using mostly left
or right hand to interact with virtual objects) of the users are 19
(95%) right-handed and 1 ambidextrous (5%).

Among them, 10 (50%) of users have prior VR experiences , 9
(45%) of them was trained during our study by the authors and 1
(5%) did not disclose his/her experience. Prior works show that even
with 500 [53] or 5000[57] users, the identification accuracy does not
drop with a significant amount using a simple RF or XGB models.
As a proof of concept, we conducted experiments on both the BM
and FE groups (for one app from each app group), varying the
number of users. Our results show that accuracy does not fluctuate
largely through varying numbers of users (See Fig. 6).
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Figure 7: Identification accuracy comparison between FBA
and FBL methods for the four sensor groups.

E More Details on Data Processing and User
Identification Models

This appendix expands Section 4.1.2, where we outlined the process
of converting time series data into feature blocks, and Section 4.2,
where we discussed building the BEHAVR models. Additionally, we
provide insights into optimizing FBA and how we select specific
model architecture for user identification in BEHAVR.

E.1 More about Data Processing

Pre-processing. This step aims to obtain valid time series data
with unique timestamps. First, we de-duplicate timestamps and
delete invalid columns (e.g., columns with only zeros). Next, we
check any data corruption (e.g., rows that contain error messages)
and replace the invalid values using neighboring rows.

Block Division. In order to be able to divide the time series in more
or less number of blocks, with much shorter or longer duration
than 1 second accordingly, we introduce parameter r € (0, 2], which
controls the final amount of blocks (“final block amount”) for each
app a;: NFBA]. =r - N;. When we increase the ratio r, we increase
the final block amount while decreasing the block length (amount
of time per block). Thus, to align r values across all sensor groups,
we choose r = 1. The key insight here is, unlike FBL, FBA takes into
account the variability across users to scale the number of blocks
for each app, Nrpa;, as to align similar user-app interactions in the
time series.

Summarization. We summarize the information in the time series
of each block with a vector of 5 statistics, i.e., maximum, minimum,
mean, standard deviation, and median within each block, which will
serve as features next. This summarization was originally proposed
in [53] for Body Motion and was also used in [57].
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Table 8: Feature dimensions and block counts for summa-
rized sensor data using the FBA method for different r, the
parameter that adjusts the block numbers as described in
Section 4.1.2. We report the (number of blocks, number of
features) for each sensor group and corresponding r.

Sensor Group | r=2 r=1 r=05 r=02 r=0.1
Body Motion (150658, 165) (75342, 165)  (37834,165) (15133, 165) (7468, 165)
Eye Gaze (168400, 46) (84200, 46)  (41920,46)  (16520,46) (8080, 46)
Hand Joints (58480, 400) (29240, 400) (14360, 400) (5480, 400) (2520, 400)
Facial Expression (168400, 320) (84200, 320) (41920, 320) (16520, 320) (8080, 320)

Table 9: Performance analysis for algorithm selection.

Algorithm | App No. | Accuracy (%)

[ BM EG HJ FE
RF a 100 100 100 100
RF ais 100 100 100 100
XGB a 100 100 100 100
XGB ais 85.71 85.71 71.42 100
SVM a 57.14 57.14 85.71 100
SVM ais 38.23 3823 7142 38.23

Block Post-Processing. In this step, we verify the block’s validity
by checking each block (rows) and then each feature (columns).
Initially, we eliminate invalid blocks and estimate missing values
(e.g., filling missing values in HJ data with related ones). Finally,
we refine the feature vectors for the four sensor groups by remov-
ing undesirable features (e.g., those with all zero/one values or
irrelevant to the classification task).

E.2 FBA Evaluation and Optimization

We evaluate and compare FBL and FBA in Figures 7a, 7b, 7c and 7d.
We can observe that FBA improves app model identification accu-
racy (5 — 15% for body motion, 5 — 25% for eye gaze, and 5 — 10%
for hand joints) for most apps compared to FBL, supporting the
decision to use FBA over FBL across our experiments.
Hyperparameter Tuning. In BEHAVR, for RF, first we tune hyper-
parameters by varying n-estimators and max-depth from (50, 200)
and (1, 20) respectively in five iterations. Then, we select the best
model based on five-fold cross-validation. Finally, based on the ac-
curacy obtained from the primary analysis, we choose the optimal
point of FBA ratio r: our evaluations rely on this final model.
Choosing Optimal Ratio r. The main challenge when using FBA
is finding the optimal FBA block division ratio r. If r is too high,
summarized data become noisy. On the contrary, if r is too low, im-
portant information would be missing from the summary. Finding
the right balance is crucial to preserve relevant information. We
perform a preliminary experiment based on 7 participants to find
the optimal value of r. For body motion and eye gaze, the results
suggest r = 1. For hand joints, the results suggest r = 0.5; this is
intuitive as a meaningful hand gesture can be captured in a longer
block length. For facial expression, the results suggest that any r
values will be optimal.

Data Summarization Output. Table 8 presents the dimensions of
the output of data summarization using FBA.
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Figure 8: User identification accuracy for app and device models across four sensor groups, with respect to the average sub-

session time (S, in seconds) per user.
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Figure 9: Top features for user identification for device adversary w.r.t. each of the four sensor groups.

E.3 Algorithm Selection

We initially explore various ML models such as Random Forest
(RF) [40], Gradient Boosting (XGB) [19], Support Vector Machine
(SVM) [8], and Long Short-Term Memory Networks (LSTM) [33]
across two apps : consist of one social app, namely Rec Room (a;s),
and rhythm app, namely Beat Saber (a;). We analyze the two apps
(out of 20), which are among the most popular VR apps, as they
contain common activities (e.g., walking, waving, grabbing, etc.).
Table 9 shows that RF achieves the highest identification accuracy;
We argue that LSTM is intended to perform sequence prediction,
whereas BEHAVR focuses on identification (i.e., a classification task);
LSTM performs poorly (~81% accuracy for body motion in app a;),
thus, we do not consider LSTM further in our evaluation.

F More Evaluation Results

In Section 5, we presented evaluation results of BEHAVR’s app and
device models for user identification. In this appendix, we present
additional tables and figures related to evaluation.
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Sub-session Time Characterization. Figures 8a, 8b, 8c, and 8d
(for app adversary); and Figures 8e and 8f (for device adversary)
show identification accuracy w.r.t. sub-session time.

Top Features. We list the top features for user identification us-
ing app models trained with data from the four sensor groups in
Table 10. Further, Figures 9a, 9b, 9¢, and 9d show the top features
for user identification for device adversary. In Figure 10a, 10b, 10c
and 10d shows importance of headset features for BM, augmented
features for EG, right-hand features of HJ and Finally, AUs/elements
of emotion for FE respectively.

Identification Accuracy Based on Emotion Action Units. In
Table 11 shows the identification accuracy based on combinations
of AUs that represent emotions based on different app groups.
Identification Accuracy for Open-World Settings. In Table
12, the identification accuracy for 5 representative apps from five
different app-groups is shown, given that the training and testing
data are collected from different settings, difficulty levels, or songs
(open world settings).
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Figure 10: Visualization of identification accuracy improvement for each of the four sensor groups w.r.t. top-features.

Table 10: Top-3 features in user identification for app models for each of the four sensor groups.

App No. Body Motion Eye Gaze Hand Joints Facial Expression
ay Position.z Mean Left Controller, Position.zMin ~ Quat.y Mean Left Right, Quat.y Median Left ~ Position.z[3] Max Right, Rotation.z[24] = Element[23] Min, Element[5] Median, Ele-
Headset’, Position.y Median Right Controller ~ Right, Quat.y Max Left Right Mean Left, Position.z[1] Max Right ment[6] Mean
as Position.x Max Headset, Position.y Max Head- ~ Quat.y Mean Left Right, Quat.y Median Left ~ Position.z[26] Med Left, Rotation.z[2] Element[5] Min, Element[57] Median, Ele-
set, Position.x Mean Headset Right, Quat.x Mean Right Med Right, Rotation.z[18] Min Left ment[5] Median
as Position.x Mean Headset, Position.z Max Head- ~ Quat.y Mean Left Right, Quat.y Mean Left,  Quat.y Mean Left Right, Quat.y Max Left =~ Element[28] Min, Element[51] Min, Ele-
set, Quat.y Median Headset Quat.x Max Right Right ment[51] Median
ay Position.z Min Headset, Position.y Max Head- ~ Quat.y Max Left Right, Quat.y Mean Left = Position.y Mean Right, Rotation.z[25] Element[30] Min, Element[29] Mean, Ele-
set, Position.z Max Headset Right, Rotation.w Med Left Max Right, Position.x[26] Mean Right ment[29] Min
as Position.y Min Left Controller, Lin.0 Std Right ~ Quat.y Min Left Right, Quat.y Mean Left  Position.x Mean Right, Rotation.z[3] Max ~ Element[6] Min, Element[57] Mean, Ele-
Controller, Quat.z Mean Right Controller Right, Quat.y Max Left Right Left, Rotation.z[11] Med Left ment[5] Mean
ag Position.x Min Headset, Position.x Max Head- ~ Quat.y Mean Left Right, Quat.y Median Left ~ Rotation.z Min Left, Rotation.x Max Left, ~ Element[26] Min, Element[57] Mean, Ele-
set, Quatw Max Headset Right, Quatw Mean Left Position.y Max Right ment[5] Mean
ay Quat.w Mean Headset, Position.x Mean Head- ~ Quat.y Mean Left Right, Quat.y Median Left Position.x Mean Left, Position.z Max Left, ~ Element[5] Median, Element[2] Min, Ele-
set, Quat.x Min Right Controller Right, Quat.y Max Left Right Rotation.y Min Left ment[6] Median
ag Position.y Max Headset, Position.y Mean  Quaty Mean Left Right, Quat.y Median Left =~ Rotation.z Max Right, Rotation.x Mean  Element[30] Min, Element[29] Min, Ele-
Headset, Position.y Median Headset Right, Quat.y Max Left Right Right, Position.x Min Right ment[6] Median
ag Quat.y Min Right Controller, Position.x Mean =~ Quat.y Mean Left Right, Quat.y Median Left ~ Position.z Max Left, Position.y Mean  Element[30] Min, Element[6] Mean, Ele-
Right Controller, Quat.x Max Right Controller ~ Right, Quat.y Max Left Right Right, Position.z[2] Max Left ment[27] Max
aio Position.x Median Headset, Positionx Max  Quat.y Mean Left Right, Quat.y Median Left ~ Position.y Mean Right, Rotation.y[12]  Element[29] Min, Element[25] Min, Ele-
Headset, Position.x Mean Headset Right, Quatw Mean Left Min Left, Rotation.z[6] Max Left ment[2] Min
a Position.y Max Headset, Position.y Mean  Quat.y Mean Left Right, Quat.y Median Left ~ Position.z Min Left, Position.x[11] Max  Element[51] Min, Element[51] Median, Posi-
Headset, Position.x Min Headset Right, Quat.y Max Left Right Right, Position.x Mean Left tion.x Mean Left
apn Position.y Max Headset, Position.y Mean  Quaty Mean Left Right, Quat.y Median Left ~ Position.x Min Right, Position.x[24] Mean ~ Element[51] Median, Element[51] Min, Ele-
Headset, Position.y Min Headset Right, Quat.y Max Left Right Right, Position.x[17] Min Right ment[51] Mean
as Position.y Max Headset, Position.x Mean Head- ~ Quat.y Mean Left Right, Quat.y Median Left ~ Position.x Mean Right, Position.z[15] Min ~ Element[51] Min, Element[6] Min, Ele-
set, Position.y Mean Headset Right, Quat.y Min Left Right Right, Position.x[5] Mean Right ment[25] Max
a4 Quat.x Mean Right Controller, Position.z Min ~ Quat.y Mean Left Right, Quat.x Max Left,  Position.x Mean Left, Position.y[24] Mean ~ Element[51] Median, Element[25] Median, El-
Left Controller, Quat.w Mean Left Controller Quatw Max Right Left, Position.x[7] Med Right ement[51] Min
ais Position.y Max Headset, Position.x Max Head- ~ Quat.y Mean Left Right, Quat.y Median Left ~ Position.x Mean Right, Position.x[14]  Element[51] Min, Element[23] Min, Ele-
set, Position.x Mean Headset Right, Quat.y Max Left Right Mean Right, Position.x[6] Med Left ment[25] Median
aie Position.y Max Headset, Position.x Min Head- ~ Quat.y Mean Left Right, Quat.y Median Left ~ Position.z Min Left, Rotation.z[3] Med  Element[25] Min, Element[5] Mean, Rota-
set, Position.x Mean Headset Right, Quat.y Min Left Right Left, Position.x[12] Mean Right tion.z[3] Med Left
ayy Position.x Min Headset, Position.x Mean Head- ~ Quat.y Mean Left Right, Quat.y Median Left ~ Position.y Med Left, Rotation.z[22] Min ~ Element[50] Min, Element[41] Mean, Ele-
set, Position.y Max Headset Right, Quat.y Max Left Right Right, Rotation.x[25] Mean Right ment[54] Mean
ag Position.y Max Headset, Position.z Mean Head- ~ Quat.y Mean Left Right, Quat.y Median Left ~ Position.z[13] Mean Right, Position.z[8] ~ Element[25] Median, Element[2] Min, Posi-
set, Position.y Median Headset Right, Quat.x Mean Right Max Left, Position.y[18] Med Left tion.z[8] Max Left
ag Quat.x Min Right Controller, Quatw Max Left, ~ Quat.y Mean Left Right, Quat.x Min Right,  Position.z Max Left, Position.z[18] Med ~ Element[51] Min, Element[51] Mean, Ele-
Position.y Median Right Controller Quatw Max Left Left, Position.y[1] Med Left ment[25] Median
as Position.x Min Headset, Position.x Median  Quat.y Mean Left Right, Quat.y Median Left ~ position.x[11] Max Left, Position.x[12] Element[30] Min, Element[30] Mean, Ele-

Headset, Position.x Mean Headset

Right, Quat.y Max Left Right

Med Left, Position.x[4] Max Left

ment[5] Mean

Table 11: Identification accuracy (in %) based on combinations of AUs that represent emotions w.r.t. app groups; Emotional
States: LA = low arousal, HA = high arousal, PV = positive valence, NV = negative valence.

Emotion Arousal/Valance Identification accuracy (%) in App Groups
Social Flight Sim. Int. Nav. K.-walk. | Rhy. | Shooting [ Archery
ag ais ayy  a ais  ai ‘ az ‘ ay ‘ aig ‘ as
Happiness HA/PV 100.0 100.0 85.0 70.0 80.0 75.0 95.0 95.0 80.0 70.0
Surprise LA/PV 100.0 95.0 85.0 80.0 80.0 85.0 100.0 100.0 90.0 85.0
Anger HA/NV 95.0 95.0 95.0 85.0 85.0 85.0 90.0 95.0 90.0 85.0
Disgust HA/NV 75.0 75.0 70.0 55.0 60.0 75.0 70.0 70.0 75.0 75.0
Fear LA/NV 90.0 95.0 90.0 90.0 90.0 95.0 100.0 100.0 95.0 90.0
Sadness LA/NV 85.0 90.0 100.0 90.0 80.0 80.0 90.0 90.0 95.0 85.0
All Emotion AUs All 95.0 100.0 95.0 90.0 95.0 90.0 100.0 100.0 100.0 85.0
All AUs All 95.0 100.0 100.0 95.0 100.0 90.0 100.0 100.0 100.0 90.0
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Table 12: Evaluation Results for the Open-World Setting.

App No.  App Group ‘ Accuracy (%)
[ BM  EG HJ FE
Social a5 80 60 60 100
IntNav. a7 100 8 70 90
Knu.walk. az 90 70 60 90
Rhythm ai 80 60 60 80
Shoot.& Arch. as 100 70 80 90

Table 13: Evaluation Results for Model Ensemble (BM = Body
Motion, EG = Eye Gaze, H] = Hand Joints, BM&EG = Ensemble
of Body Motion and Eye Gaze models, EG&HJ = Ensemble of

Eye Gaze and Hand Joints models).

App No. | App Group | Accuracy (%)
[ BM | EG | HJ | BM&EG | EG&H]
Social | aiz 85 80 60 95 80
Teleportation ag, ag 75,80 90,70 35,45 100, 90 90, 80
Flight Simulation | a3, azo 9595 | 8575 | 80,75 - 90,85
KnuWalking | a7 95 80 65 - 85
Int. Nav. az, ag 95,80 80,80 60,60 -,80 90,80
Golfing ag 80 70 50 90 80

Sensor Group Model Ensemble Results. Table 13 represents
the identification accuracy for the attacker that ensemble multiple
sensor group models and then calculates the final attack accuracy.
The first three sub-columns of the Accuracy column represent
individual sensor group accuracy (e.g., either for BM, EG, or HJ). If
individual sensor group identification accuracy is low, the attacker
further ensemble those weak models of multiple sensor groups,
as presented in the last two columns (BM&EG and EG&H]J). Any
empty value on the table indicates that the individual sensor model
provides high identification accuracy, the attacker further did not

optimize it.
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