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Abstract—The rapid growth of data-driven applications has
prompted a shift towards Information-Centric Networking (ICN)
in the Internet landscape. Like TCF/IP's routing tables, ICN
employs Forward Information Base (FIB) tables. However, unlike
IF addresses, the URL-like naming scheme in ICN can cause FIB
tables to grow exponentially, leading to delays in prefix lookups.
Current solutions use computationally intensive explicit FIB
aggregation method, or on-demand routing schemes, which use a
discovery mechanism to help reduce the number of FIB records
and thus have shorter lookup times, rely on flooding-based
mechanisms and building routes for all requests, introducing
further scalahility challenges. In this paper, we propose SAMBA,
an Approximate Forwarding-based Self Learning, that uses the
nearest FIB trie record to the given prefix for reducing the
number of discoveries thus keeping the FIB table small By
choosing the nearest prefix to a given name prefix, SAMBA uses
Implicit Prefix Aggregation (IPA) which implicitly aggregates the
FIB records and reduces the number of Self Learning discoveries
required. Coupled with the approximate forwarding, SAMBA can
achieve efficient and scalable forwarding. We demonstrate that
SAMEBA can belp reduce lookup times by up to 45%. SAMBA
also implements multipath discovery and consumer-controlled
flooding mechanisms, which help minimize networking overhead.
Our simulation results show that SAMBA reduces the FIB table
size twenty fold compared to traditional Self Learning schemes.

Index Terms—Name Data Networking, Approximate Forward-
ing, FIB Scalability.

I. INTRODUCTION

In the evolving landscape of network architectures,
Information-Centric Networking (ICN) paradigm and its most
prominent architecture Named Data Networking (NDN) ar-
chitecture represent a paradigm shift that prioritizes data
retrieval based on content rather than traditional host-based
addressing [1]. Central to the efficiency and effectiveness of
ICN/NDN is the routing mechanism, which underpins the
entire framework by finding and storing routes at each node.
NDN consumers send inferests to fetch amy Data provided by a
producer or stored in the network (e.g., CDNs). ICN/NDN uses
a Forward Information Base (FIB) to store routes computed by
arouting algorithm, which can be used by the NDN forwarding
plane to send and forward each interest message towards its
producer [2].

Scalability is a significant challenge in NDN due to the
nature of the Forwarding Information Base (FIB) tables. Unlike
traditional IP routing tables, which manage routes based on rel-
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atively stable, hierarchical IP addresses, FIB tables, however,
must handle a vast and dynamic range of content names [3].
These names are often hierarchical and much longer, leading
to an exponential increase in the size and complexity of the
FIB entries. As a result, the memory and processing power
required to manage these tables grow significantly, making
them less scalable. Additionally, the frequent addition and
deletion of content names exacerbate the challenge, as FIB
tables must dynamically adapt to these changes in real-time.
Thus, developing scalable solutions for FIB management is
critical to ensuring efficient and robust performance.

Researchers have been addressing this scalability challenge
by proposing: (i) optimized data structures for faster FIB
lookups [3]-[6], (ii} compression and FIB aggrepation mecha-
nisms to reduce name prefix sizes [7], [TH[9], (iii) hardware-
based FIB implementations for faster lookups [10], [11], (iv)
on-demand routing schemes which discover routes as needed
resulting in smaller FIB table sizes [9], [12], [13] when
compared to proactive routing approaches [14], [15]. These
solutions are not scalable due to collision (i), adding an
exira layer of complexity (ii}, requiring specific hardware (iii),
perform an explicit offline aggrepation (ii), or do not scale well
under high demand.

In this paper, we propose SAMBA, a scalable NDN forward-
ing system that uses an Approximate Forwarding algorithm
(AF) to forward interests based on a best-effort fashion, and
when forwarding fails, an optimized Self Learning discovery
is initiated to find and store as many routes to the producers
on the reverse path. Therefore, SAMBA employs an Implicit
Prefix Apgpregation (IPA) to keep the size of the FIB table
small, along with the Approximate Forwarding algorithm (AF)
which performs a Longest Prefix Match (LPM) first, and when
that fails sol chooses the first available FIB record on the
subirie. SAMBA's forwarding system creates an Implicit Prefix
Agpmepation (IPA), which implicitly aggregates the FIB en-
tries, unlike state-of-the-art explicit FIB aggregation schemes
which incur an exira computation overhead to aggregate or
compress the FIB records [7], [9], or predictive forwarding
approaches [5], [16] that are unable to recover the correct path
when wrong forwarding happens, SAMBA discovers correct
path via broadcasting.

Our Contributions: In this paper, we make the following
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coniributions:

+« We empirically measure the potential gains of reducing
the FIB size on every router lookup operation.

+ We propose SAMBA, Approximate Forwarding that uses
the nearest FIB record to the given prefix to avoid un-
necessary route discoveries, resulting in reducing the FIB
size, thus it provides an IPA. It can also recover incorrect
paths via broadcasting ensuring correct forwarding.

+ SAMEA also implements multipath and a Stop-and-Wait
feature, which help build alternate routes and reduce
flooding in the network respectively.

o Our simulation results compare the performance of
SAMBA to state-of-the-art Self Learning, and show major
improvements, including reducing FIB size by up to 20,
overhead by 75%, and up to 50% more throughput during
link failures.

The remainder of this paper is organized as follows. In
Section 11, we survey related work and existing schemes. Sec-
tion I1I motivates the need for controlling the FIB table size.
Section IV presents the detailed design of SAMBA. Section V
evaluates SAMBA’s performance. Section VI concludes the
paper and presents future research directions.

II. RELATED WORK

Routing and forwarding are two important modules in the
ICN/NDN, while routing finds available routes for destinations
and fills the FIB table, forwarding selects the next hop for a
given incoming interest from FIB table [17]. A key function in
forwarding that operates over the FIB table for every incoming
interest is the lookup function. The performance of the lookup
function depends on the number of FIB entries, making FIB
scalability a major challenge.

FIB scalability in NDN has been extensively explored
across five research categories: (i) optimized data structures
for faster FIB lookups [3}-[6], (ii) compression and FIB
ageregation mechanisms to reduce name prefix sizes [7], [8],
(iii) hardware-based FIBs [10], [11], (iv) on-demand routing
schemes [9], [12], [13] which discover routes as needed
resulting in smaller FIB table sizes when compared to proac-
tive routing approaches [14], [15], [18], and (v) predictive
forwarding [5], [16] which speculatively forwards an interest
when a longest prefix match is unavailable.

However, while optimized data structures (i) such as hash-
based solutions [3] are not scalable due to collisions, hardw are-
based methods (ii), though fast in operation, are complex to
implement and incur an additional cost. On the other hand,
prefix compression, and coding solutions [7], [8] operate for
each interest received, incurring a complex computation at
the routers. Agpregation-based methods [4], however, are run
periodically on the entire FIB tables, which can be complex,
slow, and inefficient. We, in this paper, propose SAMBA that
uses an implicit aggregation method which reuses “similar”
FIB records keeping the FIB tables small in size.

On-demand routing (iv) and speculative forwarding (v) are
critical areas of research that closely align with the focus of
our work. On-demand schemes (iv) [9], [12], [13], [19], [20],
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Fig. 1: Scalability assessment of FIB lookup time; average of
100 FIB lookup and insertion times for as the FIB table size
scales from 1k to 1M entries (x axis in logscale)

on the other hand, compute paths reactively (i.e., on-demand,
when needed), by broadcasting a discovery interest to establish
a route at the network for the requested producer. On-demand
schemes keep the FIB size “smaller” and “manageable™ by
storing only necessary routes. Self Leamning [9], one of the
most popular on-demand routing schemes uses a discovery
mechanism to find new routes (when “regular” interests fail
to find one) and store these routes on all nodes on the path.
While Self Learning approaches [9], [12] reduce the number
of FIB entries in the routers’ FIB tables, these tables can
still grow as the number of requests scale. Finally, forwarding
based on speculation is another approach to keep the FIB
smaller. Fuzzy forwarding [16] exploits semantic similarity
to find comresponding records which is highly complex to
construct in vector space, and speculative forwarding [5] uses
a token-relaxed Patricia trie as a data structure and forwards
interests speculatively. This method, however, fails to address
the challenge of finding a route when speculative forwarding
fails to reach the producer.

We propose SAMBA, which leverages features in both Self
Learning and Approximate Forwarding (AF) to forward inter-
ests to the closest FIB record for any given prefix, however
when forwarding fails, an updated Self Learning discovery is
initiated to identify as many routes as possible. SAMBA is
designed to minimize the number of “unnecessary™ discoveries
to maintain the FIB tables as small as possible.

III. WHY FIB S1ZE MATTERS?

To quantify the impact of the increasing number of FIB
entries at the routers on lookup and insertion operation delays,
we conduct a series of benchmarking experiments using a
desktop machine equipped with an Intel Core i5 CPU and
8 GB of RAM. We implement the FIB data structure as a
trie [21]'. We generate tries that consist of FIB entries for
prefixes of lkengths up to 50 characters. We implement our trie
such that each node represents a single character. This design
allows our trie to store prefixes with heights of up to 50.

We vary the size of the trie from 1K to 1M entries and
perform an average of 100 randomly generated prefix lookups
and insertions. Each lookup and insertion operation is repeated
20 times and averaged. Resulis are shown in Figure 1.

ITries are known to perform faster lookups than hierarchical hash tables [4]
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Figure 1 illustrates that as the number of FIB entries in-
creases, the lookup and insertion time increases almost linearly.
unlike binary trees, tries have a larger lookup time and does not
scale well as the number of FIB entries grows [22]. Note that
while the exact lookup and insertion time may vary depending
on the implementation, the hardware, the language, etc., we are
more interested in the trend showing the potential impact of a
reduction in FIB table size on the performance. For instance,
the figure shows that a FIB size reduction of 10, say from 1M
to 100K entries can reduce the lookup time by up to 45%. This
time saved will be applied to every single interest processed by
the router resulted in major performance improvement across
the network and a much better quality of experience for the end
consumers. This paper aims to utilize the minimum number
of FIB entries while maintaining the same (i.e, or similar)
routing/forwarding performance.

IV. SAMBA

In this section, we present SAMBA, a scalable approximate
forwarding that employs an enhanced Self Learning-based
routing scheme that reduces the number of discoveries while
keeping the FIB tables sizes as small as possible. We first argue
why self learning schemes are more suited to be coupled with
an approximate forwarding for faster forwarding at scale.

A Why LPM is Not Suited for Self Learning Schemes?

Longest prefix matching (LPM) is commonly used by most
ICN/NDN routers to determine the list of next hops for any
given prefix (ie, producer). While LPM is very efficient and
fast for most routing schemes, in Self Learning, routes are
set on-demand. This means there may not be a route for
all legitimate prefixes. In this case, LPM will fail to find
a list of next hop faces, tripgering a discovery for a new
route. We argue thar this process is sub-optimal and can lead
unnecessary route discoveries, resulting in larper FIB rables
and network overhead. In fact, often producers implement
multiple services, or a server may host multiple tenant and/or
multiple stakeholders services, therefore a partial name prefix
of the producer or the server can suffice to serve many prefixes
without the need to discover all or'and store them all in the
FIB [9].

For simplicity, let us assume that a given prefix p, of
length k, has the following form: “/<domaini/domain2/...
fdomaink™. p is stored in the FIB as a branch in the trie
of height k, where the leaf, “domaink™ includes a pointer to
the outgoing interface(s) for any interests matching p. Self
Learning schemes, similar to proactive routing schemes, set
records in the FIB for all prefixes, up to “domaink™, which
creates a very dense FIB trie structure as shown in Fig. 2
(subfipure in the left), while SAMBA implicitly aggregates
FIB records and re-utilizes existing similar records for new
incoming interests which creates a sparse and easy to search
trie structure as per the right subfigure in Fig. 2. For instance,
if a node receives a new interest “/<domaini/domain2’/...",
it will first try the route set by the record “/<domaini/domain2
/.. ./domaink”, however, if that routes fails, then and only then
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Fig. 2: Comparing the FIB properties using state-of-the-art
solutions [9] (left) and SAMBA (right). SAMBA inserts very
few prefix entries, often longer but act as an implicit aggre-
gate/summarization for the entire trie branch.

the node initiates a new discovery and stores a new route. This
simple IPA mechanism reduces the trie size considerably by
employing an implicit FIB aggregation mechanism which is
lightweight compared to an explicit offline aggregation which
operates on the entire FIB and can be very costly [9].
Besides this simple idea, throughout the paper, we will
address, analyze, and discuss the following research questions:
1) What is the complexity introduced by the new AF
algorithm compared to the well-studied and optimized
longest prefix matching algorithm [9]?
2) What additional delay costs are incurred by SAMBA
when it fails to reuse FIB records?
3) Can IPA achieve compression performance comparable
to that of explicit FIB aggregation?

B. Approximate Forwarding (AF) & Implicit Prefiv Apprepa-
tion (IPA)

Consider a trie, a string-indexed look-up data structure,
consisting of a set of nodes. All the children of a node have a
common prefix of the string associated with that parent node.
The trie is rooted “/” (refer to the trie example consisting
of 6 leaf nodes in figure 3). To determine the next hops for
any given prefix p, The AF algorithm works as follows: (i)
First it operates similar to the longest prefix matching (LPM)
algorithm by searching from the root of the trie “/" until it
reaches a leaf node, ie., a node in the trie which stores next
hop faces for the given prefix, or a normal trie node, which
we will refer to as stopping node (Sn). (ii) if a leaf node
is reached then AF returned exactly the same next hop than
LPM, however AF operates differently when Sn is reached-
ie, LPM fails to find a next hop face. AF performs a simple
lightweight depth-first search (DFS), searching for a next hop
in the sub-trie rooted at “Sn". Nofe that the DFS does not
search the strings but simply checks if any next hops exists in
the sub-trie. (iii) If DFS successfully found a list of next hop
faces, say f, then AF returns f as a forwarding face unless f
isalocal face, then AF returns a NOROUTE NACK (Alg. 1).
This message triggers a new discovery message in consuemr
side to discover the comect route.

Thus, the interest will follow an approximate path towards a
given producer; if the correct producer is reached then data is
sent back to consumeri(s), otherwise a given producer receiving
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Fig. 3: Trie example: (I1) AF performs similar to LPM and
returns fy; (12), AF runs a DES on the sub-trie rooted at B
and returns f; as it finds leaf node D; (I3) AF runs DFS on
the sub-trie rooted at H which fails to find a next hop, thus
AF returns a NOROUTE.

the interest while unable to satisfy it (ie, when DFS returns
f which is a 1ocal face, the interest is about to be sent to
the incorrect producer application), sends a NOROUTE HACK
to the consumer. This AF's NACK will trigger a discovery
interest by the consumer and a new prefix p for the producer
will be added to all nodes in the path, similar to the Self
Learning mechanism.

To illustrate how AF works, we depict in Figure 3 a sample
trie at a given node, u, consisting of six leaf nodes (i.e., nodes
with a next hop face, f; # null). If u receives the interest
“fa/e/F” (11), AF performs a longest prefix match (LPM) and
finds a next hop face, f1, at node F. However, if u receives
interest “/a/B/Y" (12}, LPM fails, thus AF runs a DFS at node
B and finds a forwarding face f1, at node D. If f; is not a local
face then AF forwards the interest to f;, otherwise it sends
4 NORDOUTE NACE to the consumer. Finally, if u receives
interest “/a/H/Z" (13), AF runs DFS at node H, which fails to
find any leaf in the sub-trie, resulting in sending a NOROUTE
NACK to the consumer.

Note that AF uses DFS when longest prefix matching
fails. While this functionality may introduce an extra delay
overhead, we arpue that the DFS search of a leaf is fast with a
major benefit consisting of preventing unnecessary discovery
flooding. The AF algorithm will create a FIB with that prefixes

are implicitly aggregated (IPA).

Algorithm 1 Approximate Forwarding (AF) algorithm when
receiving an interest with name prefix p;

Require: p,
I Sn+— LPM{'/")
2 if IsLeaf(5Sn) then

3 Return Sn.f # LPM found a face

4 else if f «— DFS(5n) then

5. if isLocal(f) then

[ Return NOROUTE {f DFS successful but producer
7. else

& Return f {f DFS successful, forwarder
o end if

10: else

11:  Return NOROUTE /I AF: No face found in sub-trie
12 end if

. Multipath Discovery: Finding Alrernate Routes

As described in the previous section, IPA achieves an
implicit aggregation of the FIB and maintains a smaller FIB
size by trying approximate faces (ie, routes). However, when
these faces fail to reach the correct producer (ie, either
because the wrong producer is reached or a node with no
face is encountered), a NOROUTE HACK received by the
consumer initiates an interest discovery to store a new, and
more accurate, route at the FIB.

SAMBA implements a multipath feature allowing any node
to exhaust all forwarding faces prior to forwarding the
NOROUTE NACK back towards the consumer, thus reducing
the overhead of initiating a new broadcast-based discovery.
Note that storing multiple faces at the leaf nodes does not
increase the size of the FIB, but simply adds only a few bytes
to the leaf nodes.

SAMBA implements a NACK handling algorithm, as de-
scribed in Alg. 2, which checks the FIB for another alternative
route for the same given prefix p;, and if say a node u
successfully finds a face, f, for p;, u informs all nodes
downstream and the consumer of the existence of an alternative
route which was not tested. Consumer then can quickly (Le.,
without waiting for a timeout), re-transmits the same interest
which will follow the same path until reaching node u, which
can try the alternative route towards the producer. This process
can continue until all nodes exhaust all available faces leading
to producer or abruptly interrupted by consumer, after few
attempts, to send a discovery interest and store a new roule to
producer. Alg. 2 allows a given node u to change the NACK
reason to ALT ROUTE to inform all nodes downstream of the
existence of an alternative, untested route.

This multipath feature reduces the need to broadcast many
interest discovery messages which will be flooded, thus adding
a major overhead and unnecessary congestion. We will evalu-
ate the impact of this feature on latency and overhead in the
evaluation section.

Algorithm 2 OnReceiveNACK: SAMBEA’'s multipath feature
< NACK,, = from face oFace

Require: NACK,,, oFace
1. if Reason(Nackp,) == NORCUTE then
2z  RemoveFaceFromLeaf(py, oFace) I/ Remove failed
face and check if another one exists

3 if f + Erist Another Face(p;) then

4 SetNackReason(NAC Ky, ALT_ROUTE) i If
another face exists, inform downstream

5 Send(NAC Ky, ,iFace)

& else

T RemoveFIBEntry(p)

B Forward(NACK, )

o end if

1 else if Reason(Nacky,) == ALT_RCUTE then

1:  Forward(NACK,,) // Nodes receiving ALT_ROUTE
MNACK keep their face to test alternative route

1z end if
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Now, we describe how SAMBA discovers and stores multiple
routes for the same prefix. Note that discovery interests are
broadcasted and do not follow LPM or AF mechanisms.
We use a similar approach to Shi er al s approach which
implements a temporary data structure to save the PIT record
for a given time allowing multiple Data messages are to be
received for the same interest discovery [12]. While Shi er
al 's approach works well for paths with two or more egress
links, it fails when two paths have a node with two ingress
links. This failure is due to the loop prevention mechanism
which prevents any node of accepting two interests with the
same nonce [23]. SAMBA overwrites this rule, if and only
if it receives a discovery interest. SAMBA allows multiple
interest discoveries to be received, their incoming faces added
to PIT, however only the first interest is forwarded/broadcasted
to the upsiream faces. This change will not create looping
interests (ie., interests forwarded indefinitely in the network),
but yet allows a data received by the node to be sent to all
incoming faces which help discover multiple routes instead of
one. To allow that, when an interest discovery is received by a
forwarder, and it is already in the PIT table, the forwarder node
adds the interest incoming face (iFace) to the corresponding
PIT record and silently discards the received duplicate interest
(Alg. 3).

Algorithm 3 OnReceivelnterestDiscovery < I > from iFace

Require: I, iFace

1. if ErxistsInPIT(I)==10 then

2 InsertPIT(I,iF ace) f First discovery interest is
saved and broadcasted to all faces except iFace

3 BroadeastToAllFaces(I, oF aces) /I Broadcast
discovery to all outgoing faces, oFaces

4 else

5 AddIncomingFace(l,iFace) /f Append incoming
face for duplicate discovery interests

&  DiscardInterest(I) // Duplicate discovery interests
are dropped

7. end if

On receiving a discovery Data message (Le, a Data with
a discovery tag), a forwarder node, u, forwards the messape
to all downsiream paths, iFaces, which create multiple ingress
paths when |iFaces| = 1. To help create multiple egress path,
u forwards the first Data message I) downsiream and removes
all incoming faces, iFaces, as well as the outgoing face where
the Data is received from, oFace, and set an expiry time for
the PIT record. Note that SAMBA keeps the PIT alive and
all outgoing faces which the node did not receive anmy Data
from yet, for potential alternative route announcement on those
outgoing faces. This mechanism, similar to the one proposed
by Shi er al [9], allows discovering multiple egress paths.
Alg. 3 and Alg. 4 provide details on how interest discoveries
and Data discoveries are handled by SAMBA respectively.

!Same prefix and same nonce, which we refer to as interest (I) in Alg. 3

Algorithm 4 OnReceiveDiscoveryData < D) > from interface
oFace
Require: D, oFace
1: if iFaces + PIThasFace( D)) then
2 FlBinsert(D,oFace) I/ Data from first path arrived
3 SendDataDownstream (D, iFaces)
4  RemoveFacePIT (iFaces, oF ace) [/ Keep outgoing
faces which did not send data yet
5  PitRecordExiprelimer(D, tmp) [/ Set a timer tmp
for the PIT record to expire

& else if ¢mp = 0 then

7. FIBinsert(D,oFace) [/ Insert an aliernative egress
path

&  RemoveFacePIT(D, oFace)

o else

ir  sendNACK(UNSOLICITED_DATA)

11: end if

D. SAMBA’s Consumer Stop-and-Wait Mechanism

Most applications send multiple messages to the same pro-
ducer. To avoid sending numerous interest discovery requests
as s00m as an application sends an interest to a given producer,
SAMBA implements a Stop-and-Wait consumer mechanism.
This mechanism queves interests for any given prefix that
has an ongoing discovery. Using this mechanism, consumers
do not send multiple interest discoveries for the same prefix
name, thus avoiding unnecessary overhead caused by sending
multiple “redundant flooding messages™ to discover the same
route.

SAMBA's Stop-and-Wait mechanism, as depicted in the
flowchart in Figure 4, aims to queue all interests sharing the
same prefix p with an ongoing current discovery. The queued
interests wait until: (1) a new route is discovered and stored
in the FIB, or (2) a timer expiration triggers a new discovery
process for the same prefix p.

SAMBA’s consumer initiates a route discovery for prefix p as
s00m as it receives NORCOUTE NACK, and starts a timer for the
requesting interest with prefix p. Any new interest received by
the consumer app sharing the same interest p, will follow the
Stop-and-Wait mechanism described above (Figure 4). When
a new route is discovered, all queued interests are sent with
the highest priority (Le., prior to new interests).

V. EVALUATION

In this section, we compare the performance of SAMEBA
against state-of-the-art Self Learning algorithm [21]. First,
we describe our evaluation methodology, metrics, and then
we study the impact of various parameters. on SAMBA’s
performance.

A Simulation Setup

We use ndnSIM [24], a module of ns-3 [25], to implement
and evaluate SAMBA. We perform our simulation on a Desktop
machine with a 4-core i7 Intel CPU and 8 GB memory.
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Fig. 4: Flowchart diagram of SAMBA’s Stop-and-Wait mech-
anism. Interests are queued waiting for the creation of a new
route or a timeout of a current active discovery.

Network Topology: We created an [SP-like network topology
using NetScaNDN [26] topology maker module, consisting
of N nodes, including B routers, ' Prefixes (consumers),
and P Producer Connection Points. The B routers consist
of R, core and K. edge routers. While the core routers are
connected to three other core routers, edge routers, however
are connected randomly to 1, 2, or 3 core routers (and to none
of the edpe routers). Edpe routers are also used as access
nodes for consumers and producers. We connect randomly
each consumer and producer to one and only one edge router.
While we vary C and P in our simulation, we fix K, = 16
and K. = 21. In our topology the average path length between
any consumer and producer is roughly 3.2 hops.
Implementation: We implement AF forwarding strategy at
each node in the network, including forwarders, producers,
and consumers. Consumers also implement SAMBA's Stop-
and-Wait mechanism as described in section IV-D. Consumers’
apps, starting at a random time spanning from beginning of
simulation and 50 seconds after, send requests at a rate of
8 interest per second. Each consumer i sends interests with
the same prefix p, for a given producer u. interests have the
following name format: “/p;/seq”, where seq is the sequence
number for consumer i. We set all producers to produce a
total of M = P prefixes, such that each producer can produce
one or more prefixes. In our simulation, we disable in-network
caching to evaluate the features introduced by SAMBA without
any unknown parameter such as caching.

We perform twenty simulation runs for each experiment in
which we vary the topology and the producer prefix associa-
tion. Each simulation run is set to 60 seconds.

B. Evaluation Metrics

We use the following three metrics to evaluate SAMBA:

1) Average number of FIB entries: We measure the number
of FIB entries for a given router as the number of leaves
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Fig. 5: Comparison of SAMBA's and Self Leaming's average
FIB table size as the number of prefixes, ', increases. The
improvement ratio, in the right y-axis, increases as the number
of prefixes per producer increases (x axis in logscale).

in its FIB trie. This metric is proportional to the number
of nodes in the trie. We measure the average number of
FIB entries for all routers as well as for core-only.

2) Network overhead: Measured as the number of broad-
casted discovery interests (i.e., interests with a discovery
tag).

3) Average number of redundant paths: We measure the
number of disjoint paths for each prefix at each router
and compute the averape per prefix and per router.

. Results and Analysis

We design SAMBA to reduce the FIB size and thus reduce
the lookup latency as shown in Figure 1. We first compare the
FIB sizes of SAMBA and Self Learning.

D. SAMBA’s FIB Table Size

We vary the number of prefixes per producer to evaluate how
these two algorithms, SAMBA and Self Learning, construct
their FIB tries and which one scales better.

We first fix the number of producers in the network, P = 4,
and vary the number of prefixes, C. As C increases, producers
serve more and more prefixes (eg, a Google server can
serve Gmail, Drive, Calendar, and Photo services). We plot,
in Figure 3, the average FIB size of all nodes in the network
(Fig. 5a) and for core nodes only (Fig. 5b), using SAMBA
and Self Learning, as we increase the number of requested
prefixes, C. We show that SAMBA outperforms Self Learning
and keeps the size of the FIB smaller as ' increases. SAMBA's
FIB size does not exceed 22 and 35 prefixes on average for all
routers and core routers respectively, while Self Learning's FIB
size increases exponentially, exceeding 420 and 805 prefixes
respectively.

Additionally, we measure the improvement ratio is measured
as the fraction of average number of FIB mecords in Self
Learning to average number of FIB records in SAMBA, and
show that SAMBA's improvement increases as the number of
prefixes per producer increases. In fact, SAMBA re-uses the
same saved route for the producer, thus the more prefixes
served by unique producer, the better performance achieved

Authorized icensed use limited to: Mew Mexico State University. Downloaded on April 28,2025 at 04:22:53 UTC from |EEE Xplore. Restrictions apply.



2 [ [ ™ 1] =) ] [] 13 T
i # Producer Connecion I'nish

(a) Avg # FIB records(b) Avg # FIB records
in core+edge when PFin core routers when P
changes changes

Fig. 6: Comparison of SAMBA's and Self Learning's average
FIB table size as the number of number of producer connection
points), P, increases. The improvement ratio increases as the
number of prefixes per producer increases.

by SAMBA. Self Learning, however, re-discovers all paths to
all prefixes and thus the size of its FIB mrie (ie, or table)
increases exponentially. The improvement ratio increases from
2% and 4x when C' = 10, to 20x and 30x when O = 1k
for all routers and core routers respectively. This improvement
zain increases show how SAMBA can scale better compared to
Self Learning, thus reduces the trie search and lookup times
as shown in Figure 1.

We also fixed the number of prefixes, C' = 100, and vary
the number of producers connection points, F, to investigate
how SAMBEA scales as the number of producers increases.
Our results in Figure 6 show that while SAMEBA keeps the
FIB size small compared to Self Learning, the improvement
ratio decreases as P increases. The improvement ratio for
all routers decreases from 6x to 6x as P increases from 2
to 22. However, this improvement decreases much less for
core routers (from 5x to 4.3x), which are more important in
any networking architecture, thus keeping their FIB smaller is
more critical than edge routers. As the number of prefixes
per producer connection points decreases—i.e, P increases,
SAMBA’s AF algorithm will fail to use accurate approximate
routes resulting in more and more discoveries. However, we
note that these discoveries remain smaller than those initiated
by Self Learning.

E. Overhead Analysis

In addition to SAMBA’s main objective reducing the FIB
size, we argue that SAMBA also uses much less message over-
head when compared to other state-of-the-art routing schemes.
While proactive solutions have much higher overhead, we
compare SAMBA to the Self Learning reactive approach to
quantify when and how SAMBA utilizes fewer discoveries to
achieve the same delivery performance.

However, we measure the network overhead as number of
interest discovery messages that flooded over the network, in
both experiments shown in section V-D, SAMBA has lower
overhead compared to Self Learning. Figure 7a shows that
SAMBEA is able to reuse FIB records around 20 times more than

Self Learning. It, therefore, generates less overhead than Self
Learning, especially when the number of requested different
prefixes, O, increases. For instance when O = 1k, Self Leam-
ing flooded 150k interests to discover new routes, however,
SAMBA did not send more than 8,087 interests and reused
most of the pre-existing FIB records to forward consumers’
interests. Afier reusing pre-existing FIB records, SAMBA failed
in only 10% interests and ended up sending new discovery
interests to add new routes.

Also, the number of discovery messages in the second
experiment when number of producer connection points P
is varying, increases for both SAMBA, and Self Learning,
however, SAM BA has better results in decreasing the number of
discovery flooding in the network as it is depicted in Figure 7b.

Other overheads of SAMBA is the delay and additional
discovery interest due to wrong forwarding. While the wrong
forwarding happens just in the first interest of a connection and
the delay of finding a new path is less than a Round Trip Time
(ETT), so these overheads are not considerable and it is still
fewer than the number discovery messages in Self Learning.

We also evaluate the overhead of SAMBA for detecting
the multipaths by measuring the number of data discovery
messages that return on the router link. While in Self Learning
just a path is discovered, and duplicate discovery interests from
multiple paths dropped, SAMBA discovers all available paths,
consequently number of data discovery messapes increases
(Figure 7c). This additional overhead of SAMBA is doubled
compared to Self Learning. However, we will show how
alternative paths can increase the SAMBA performance in
presence of link failure.

F. SAMBA’s Performance in Presence of Link Failures

In this section, first, we compare the level of path redun-
dancy in SAMBA and Self Learning. To this end, we measure
the Average number of Paths per Prefix (APP) in the core
and edge routers respectively. In this experiment we use the
network topology of section V-D, fix the number of prefixes
' = 30, and producers P = 4. Then, we vary the number of
core and edge routers link & from one to 10.

While Self Learning can detect only one path per discovery
and each router just has a next hop per prefix, SAMBA can
discover all existing paths. With a maximum of k& = 10 for
each router SAMBA can discover 1.67 APP in core routers
(Figure 8a), while Self Learning can only discover on average
almost (.25 APP for all k values, also Self Learning can
discover 1.53 APP in core and edge routers (Figure 8b), and
Self Learning can discover 0.2 APP.

Toy Scenario with Link Failure In this experiment, We
simulate link failure scenario with a simple topology shown
in Figure 9a with two disjoint paths towards producer P1,
and each link delay is 10ms. We run the simulation for 12
seconds and simulate an R3-R4 link failure at time 8 seconds
using the Link Down function in ndnSIM. In this experiment,
we implement consumer Cl requests prefix “/pP1” from Pl
and runs congestion control mechanism using AIMD [27]
algorithm, also we set starting window size to one.To find
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Consumer's congestion window got decreased and the delay to
recover is a result of a slow start/congestion avoidance mech-
anism. Whereas, SAMBA’s consumer does not get impacted
by the link failure and maintains a maximum throughout
during simulation. SAMBA uses its multipath feature to set
two disjoint paths (when available, e g, at R1) resulting in
a seamless switching to the second path CO-R1-R2-R4-Pl
as soon as R1 receives a NOROUTE NACK to divert traffic

changes Metwork when P changes
Fig. 7: Network overhead comparison of SAMBA and Self Learning.
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Fig. 8: In this experiment, the level of redundancy increases by
adding a degree of k in core and edge routers. While detected
paths in Self Leaming are almost the same, in SAMBA, it
increases by elevating redundant links in core and edge routers.

failed links, we exploit BFD [28] protocol which is a periodic
bidirectional way in link layer, with time interval Int =
and dead interval of 3.

Figure 9b shows the throughput measured at C1 node over
time. We compare SAMBA with Shi's approach [12] that can
discover multipath through different producers, while in Shi's
approach consumer throughput decreases by up to 50% when
the link fails. It took the consumer more than 1.5 seconds to
re-discover a new path and recover its maximum throughput.

bms,

4

gm +'

® I ]

—C_  B0® y
(a) CO requests /P1 (b) Consumer throughput

Fig. 9: Link Failure scenario when R3-4 Link fails in second
8, SAMBA uses the alternate route immediately.

towards R2 instead of R3, and R1 sends ALT_RCOUTE to
C1, so the consumer will not activate the slow start state.
Note that in case the second path fails, SAMBA will then
initiate a route discovery and set new paths towards P1 (this
scenario is not simulated in our experiment). In addition to
the throughput gains, SAMBA will also reduce the number
of discovery messages sent because of alternative paths while
Shi's approach has exactly 195 discovery messages to recover
from the link failures, which SAMBA avoided.

V1. ConcLUsION AND FUTURE WORK

In NDN, many routing approaches face scalability issues
due to the increasing number of FIB records affecting lookup
times. To address this, we developed SAMBA, which AF and
IPA to maintain small FIB tables by finding the nearest prefix
for a given name. SAM BA also features multipath discovery for
route redundancy and a Stop-and-Wait mechanism to minimize
redundant discoveries. Evaluations show SAMBA achieves
20 times fewer FIB records and 5 times fewer flooding
messages compared to Self Leamning. Future work will focus
on implementing SAMBA on a real testbed and enhancing its
multipath management.
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