
SERENE: A Collusion Resilient Replication-based
Verification Framework

Amir Esmaeili
Department of Computer Science
University of Missouri St. Louis

St. Louis, USA
ae3wc@umsl.edu

Abderrahmen Mtibaa
Department of Computer Science
University of Missouri St. Louis

St. Louis, USA
amtibaa@umsl.edu

Abstract—The rapid advancement of autonomous driving tech-
nology is accompanied by substantial challenges, particularly the
reliance on remote task execution without ensuring a reliable
and accurate returned results. This reliance on external compute
servers, which may be malicious or rogue, represents a major se-
curity threat. While researchers have been exploring replication-
based task verification as a simple, fast, and dependable verifiable
computing method to assess the correctness of results, colluding
malicious workers can easily defeat this method. Existing col-
lusion detection and mitigation solutions often require the use
of a trusted third party server or verified tasks which may be
hard to guarantee, or solutions that assume the presence of a
minority of colluding servers. We propose SERENE, a collusion
resilient replication-based verification framework that detects,
and mitigates colluding workers. Unlike state-of-the-art solutions,
SERENE uses a lightweight detection algorithm that detects
collusion based on a small set of verification tasks. Mitigation
requires a two stage process to group the workers and identifying
colluding from honest workers. We implement and compare
SERENE’s performance to Staab et. al, resulting in an average of
50% and 60% accuracy improvement in detection and mitigation
accuracy respectively.

Index Terms—Constrained Devices, Replication-based Task
Verification, IoT Remote Task Execution, Worker Collusion
Detection, Collusion Mitigation.

I. INTRODUCTION

Autonomous driving systems are transforming the automo-
tive industry, setting the stage for safer and more efficient
transportation. These systems generate large volumes of het-
erogeneous sensory data, requiring substantial computational
resources and real-time processing capabilities. Both onboard
and remote processing power are crucial to handle these
increasing demands. Tasks like real-time image processing for
self-driving navigation are particularly critical and must be
highly accurate. Verifiable computing [1], which ensures the
correctness of results returned by onboard or remote servers,
becomes essential, especially for such safety-critical tasks.

Verifiable computing solutions fall into one the following
three main categories: (i) attaching probabilistically checkable
proofs to each offloaded task to identify incorrect results
with high probability [2], (ii) using Trusted Execution En-
vironments (TEEs), such as Intel Software Guard executions
(SGX) to ensure the integrity of computation execution and
results [3], and (iii) redundantly requesting the execution of
tasks from multiple external servers, and applying majority

voting to find the correct result [4]. While proof-based, and
TEE-based solutions are limited to some specific applica-
tions, and hardware dependability, replication-based methods
are generic, easy to implement, and effective [5]. However,
replication-based task verification is prone to a main security
attack where two or more colluding workers submit the same
incorrect results, and defeat the majority voting scheme of the
replication-based mechanism (i.e., collusion attack) [6].

Most collusion resilient replication-based solutions rely on:
(1) enlarging the voting pool [7], (2) spot checking using a set
of pre-defined trusted tasks [8], or trusted third party server to
re-execute the task [6], and (3) incentivizing rational servers
to betray collusion [9], to decrease the chance of collusion
attack. While most of these existing solutions rely on trusted
third parties or may prevent but not protect against collusion,
recently similarity-based clustering solutions have emerged to
probe the workers and identify clusters of workers to infer
colluding versus honest workers [4], [6], [10]. However, these
solutions fail to detect and mitigate collusion when colluding
nodes represent the majority in the network. To the best of
our knowledge, this problem remains unexplored.

We propose SERENE, a Collusion Resilient Replication-
based Verification Framework. SERENE is implemented on
top of any task replication-based framework to continuously
monitor the list of workers and detect the presence of col-
lusion, triggering a mitigation process to identify and isolate
colluding workers in the network. SERENE’s detection relies
on identifying two clusters of workers consistently disagreeing
with each others. While this identification guarantees the
presence of colluding workers, without assumptions of the
size of colluding workers or the presence of trusted third
party servers (used by state-of-the-art solutions), SERENE uses
a three-step mitigation algorithm to partition the group of
workers and identify the colluding ones.

The three main contribution of our paper are summarized
as follows:

• We propose SERENE to detect and mitigate collusion
attacks. SERENE can accurately identify and isolate col-
luding nodes even when they represent 90% of the worker
population, without relying on any trusted servers or pre-
checked tasks.

20
24

 IE
EE

 1
3t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
lo

ud
 N

et
w

or
ki

ng
 (C

lo
ud

N
et

) |
 9

79
-8

-3
50

3-
76

56
-2

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CL
O

U
DN

ET
62

86
3.

20
24

.1
08

15
75

0

Authorized licensed use limited to: New Mexico State University. Downloaded on April 28,2025 at 04:25:51 UTC from IEEE Xplore. Restrictions apply.

• SERENE decouples detection, and mitigation phases to
run the mitigation approach once the presence of collud-
ing workers in the network is detected. While SERENE’s
detection algorithm is periodic and consciously monitor
the workers behavior, it is designed to be lightweight and
does not require costly lookups.

• We evaluate the SERENE performance with state-of-art
Staab & Angel [11], which we refer to as SnE. Results
show that mitigation accuracy of SERENE is more than
double that of SnE. Furthermore, SERENE detects collu-
sion 15% faster than SnE and 30% to 60% more accurate
detection. Finally, we perform a set of benchmarking
tests to assess the run time of SERENE and show that
it performs faster than SnE in three tested platform while
incurring slightly more resource utilization.

The remainder of this paper is organized as follows: Sec-
tion II presents the literature review of verifiable computing
solutions and related works. In the Section III, we briefly
describe our system model, threat model, and the assumptions
we used in this paper. SERENE’s detection and mitigation
algorithms are discussed in Section IV. We evaluate SERENE’s
performance and present our simulation results in Section V.
Conclusion and future work are provided in Section VI.

II. RELATED WORK

Verifying the correctness of remote workers execution has
been recently investigated, and the proposed research solutions
can be categorized into three main categories: (i) Proof-based
approaches using probabilistically checkable proofs (PCPs)
produced by workers, and attached to the results [2], [12],
[13], (ii) TEE-based solutions that at the hardware level
ensures code and data integrity for task offloaders. The Intel
SGX [14], and ARM TrustZone [15] are two main TEE-
based technologies, and (iii) replication-based methods that
are very generic. In this approach, clients assign tasks to
multiple workers, and final results are specified by a quorum
(e.g., majority voting) [16], [7], [8], [17], [9], [18].

While replication-based solutions are straightforward and
easy to implement, they are still susceptible to colluding
workers who can manipulate majority voting outcomes. Most
research on collusion detection has focused on replication-
based methods, with relatively few studies addressing col-
lusion in TEE-based and proof-based solutions. In proof-
based systems, collusion risks arise primarily from delegating
verification or proof setup to a compromised third party [19].
In TEE-based solutions, the main vulnerability comes from
rogue remote attestation, where a malicious entity can bypass
or falsify attestation protocols [20].

However, replication-based collusion defense mechanisms
are mainly divided into two different areas: Prevention [16],
[7], [8], [17], [9], [18], or detection and mitigation [6], [11],
[10], [21], [22], [23]. While in prevention solutions the main
target is to incentivize colluding workers to betray the collu-
sion [9] (by giving higher rewards in a game), or enlarging the
voting pool to decrease the probability of winning of colluding
servers in majority voting [7], nevertheless, the main weakness

of prevention is it works like a vaccine for diseases and it can
not guarantee to prevent from collusion.

On the other hand, detection, and mitigation is an approach
to identify the colluding workers, and makes them isolated
from the workers population. Silaghi et al. [6] used two-
step algorithms to identify a majority pool of servers which
will be considered benign and used for detecting colluding
servers, while Staab et al. [11] applied a one-step graph
clustering algorithm to identify both benign and colluding
servers. Both of these approaches need time to complete the
set of tasks before applying the detection algorithm, also
percentage of colluding servers should be less than 50%.
Moreover, algorithms to cut the worker’s graph has additional
overhead.

Zhao et al. [8], proposed spot checking solution to evaluate
workers by sending tasks with already known results, to
identify colluding servers. Spot checking tasks should be
unpredictable, and it is hard to find these tasks. Some of
solutions in this area assume a trust third party [24] for result
verification, and some of them suppose there are multiple pre-
arranged spot tasks [5]. Both assumptions are rarely feasible.

Unlike most of these proposed solutions, SERENE does
not use trusted parties (e.g., workers), or trusted pre-approved
tasks, and can accurately detect and mitigate collusion even
when the percentage of colluding workers exceeds 50% of the
workers in the network.

III. SYSTEM MODEL, THREAT MODEL, AND ASSUMPTION

A. System Model

We consider an untrustworthy edge computing network
consisting of N workers nodes1, S1 . . . SN (e.g., edge com-
puting servers) distributed across an area where clients can
choose one or many workers at a time to outsource their
computation tasks. We assume that clients perform replication-
based verification by selecting a voting pool consisting of
k random workers2. Users send tasks to a voting pool at
any given time, and collect the majority vote to ensure task
execution correctness.

B. Threat Model

The system threat model includes three types of workers
which submit results to a given offloaded task:

• honest workers: A worker is called honest if it executes
and returns correct results to all given task. We assume
that honest workers can, rarely, return incorrect results
with probability ϵ, due to hardware failure, or incompat-
ibility. The list of honest workers is denoted by H.

• naive malicious workers: This type of worker is malicious
and always submits a random incorrect result (e.g., do not
execute the task and instead return any random result to
save energy, or resources) for a given task. These workers
work independently without any coordination with other

1In this paper, we use workers, servers, and edge nodes interchangeably
2Without loss of generality, we use k = 3 throughout the paper

Authorized licensed use limited to: New Mexico State University. Downloaded on April 28,2025 at 04:25:51 UTC from IEEE Xplore. Restrictions apply.

malicious workers. The list of naive malicious workers is
denoted by M.

• colluding workers: Colluding workers perform sophis-
ticated attacks; they collude only if they constitute the
majority of the verification pool. In addition, they coordi-
nate and decide to collude randomly to avoid verification
detection. We denote the list of colluding workers by
C. A colluding worker w ∈ C colludes if and only if
(1) it ensure there exists enough workers in the pool to
form a majority, and (2) all colluding workers in the pool
decide to collude with a fixed probability Pc. We also
assume that colluding workers follow an evasive strategy,
consisting of storing a list of previously seen tasks and if
they a receive a task twice they assume it’s a verification
task and act as an honest worker for that task by returning
the correct result.

C. Assumptions

We assume the followings:
• Clients have insufficient resources and are incapable of

executing the task themselves, thus incapable of verifying
the correctness of the results,

• Routers, switches, and clients are not malicious. The
integrity of all messages exchanges is not compromised
(e.g., no man-in-the-middle attack).

• All colluding workers at the network edge implement the
same strategy–they coordinate and agree on returning the
same incorrect results with a fixed probability of collusion
Pc.

IV. SERENE: COLLUSION DETECTION AND MITIGATION

Our Collusion Resilient Replication-based Verification
Framework, SERENE, implements two main modules; (i) a
module to detect colluding behavior among servers, and (ii) a
collusion mitigation module.

A. SERENE’s Detection Module

We design SERENE’s collusion detection to be lightweight
and fast in detecting any potential collusion of edge servers a
user is communicating with.

Users store a set of collusion verification tasks (CVT)
selected randomly from their genuine tasks–i.e., tasks previ-
ously sent for compute verification. Once a task Ti is stored
in CVT, SERENE tracks all results received for Ti and the
corresponding server nodes returning these results.

CV T = {T1, . . . , TL}, (1)

Ti = [V i, Ri
1, R

i
2, . . . , R

i
N], (2)

where V i is the majority result for task Ti or NULL when
there is no majority recorded yet for task Ti, and Ri

j is the
returned results received by server Sj when performed task
Ti, or Ø when Sj did not receive task Ti.

SERENE runs the collusion detection module periodically,
every period ∆t. It selects a collusion detection task Ti ∈

Ti

R
RR

R

R*

R
RR R R'

R''

t: Result List t+Δt: Tk receives R, R-, R'

R'R+ R"

R' R+

R"

No Collusion
Vi=R

Collusion Detected
Vi=R, Second Group= R'

RR-

time

Fig. 1: In time t, there is just a group of majority (V i = R),
but in t+∆t, the received result R′ makes the second majority
group, and collusion detected.

CV T randomly and sends it to collusion detection pool, CP =
{Si

j |Ri
j = Ø}, consisting of a set of servers that have never

received the same task previously (i.e., no results have been
returned/recorded by servers). When SERENE fails to select
k servers that have never received task Ti, i.e., |CP | ≤ k, it
removes Ti from CVT and replaces it with the most recent
genuine task.

The collusion detection algorithm runs as soon as SERENE
receives rij , a result from server Si

j ∈ CP . Collusion is
triggered if and only if: (i) the result received does not agree
with the recorded majority result, and (ii) there exist another
same result returned by a different server (i.e., servers agreeing
on the same result which is different from the majority result),
Alg. 1 Line 5. If collusion is not detected, i.e.,Detection
function returns -1, the majority result value is updated if
V i == NULL and the rij is inserted into the CVT, i.e.,
Ri

j ← rij . However, if collusion is detected, SERENE wipes
the CVT, and immediately initiates the mitigation module to
detect and isolate colluding servers.

Figure 1 depicts an example, where a user sends a task Ti

at time t+∆t, where the received results R and R′′ did not
trigger collusion detection, however received result R′ did,
because SERENE found another R′ ∈ CV T and V i = R ̸=
R′, which resulted in finding two separate group of server
agreeing on two different set of results, led to the detection of
colluding servers.

Algorithm 1 SERENE’s Detection Function, after receiving
rij from server Sj

Require: Ti, r
i
j

1: if rij == V i OR V i == NULL then
2: return (-1) {No Collusion}
3: end if
4: if ResultInCV T (rij) AND V i ̸= rij then
5: return (1) {Collusion Detected}
6: end if
7: return (-1)

B. SERENE’s Mitigation Module

As soon as collusion is detected, the mitigation module is
activated to proactively probe a subset of servers in order to
accurately classify them as honest or colluding workers.

Authorized licensed use limited to: New Mexico State University. Downloaded on April 28,2025 at 04:25:51 UTC from IEEE Xplore. Restrictions apply.

SERENE’s detection algorithm implies that there is at least
two colluding nodes in the network, based on one verification
task. The mitigation module consists of (i) clustering the nodes
into two groups of servers that have similar behavior, which
we refer to as similarity-based grouping, and (ii) identifying
which group includes honest and which one includes colluding
servers, we refer to this step as identifying colluders.

1) Similarity-based Partitioning into Two Unnamed
Groups: As the detection helps indicate that there may exist
two groups of servers, these groups are not exhaustive because
they are formed based on a single task and a subset of probed
nodes. Therefore, the mitigation module is designed to probe
all the nodes in the network and construct an exhaustive
undirected weighted similarity graph (SG), based on how
often pairs of workers agree on the same result for the same
task (i.e., agree on voting outcomes).

Therefore, SERENE collects new votes based on current
tasks until each pair of workers has been selected in 83 separate
voting pools. Tasks are sent to only one pool of workers and
the task, its k votes, and the k worker nodes returning the vote
results are stored into a new task repository, TR = {Ti, i =
1 . . . L | Ti = {(Ri

1, S1), (R
i
2, S2), (R

i
3, S3)}} (assuming that

the pool size is k = 3).
Then SG is constructed as a complete graph with N vertices,

and N×(N−1)
2 weighted edges, where weights are calculated

as the ratio between how often two workers’, Si’s and Sj’s,
votes agreed with each others by the number of times they
appeared on the same voting pools: i.e., the weighted edge
connecting two worker Si and Sj , ei,j is:

ei,j =

∑
k 1Rk

i =Rk
j∑

k 1∃(Rk
i ∩Rk

j)

The Similarity-based Grouping starts by isolating the naive
malicious workers which will return results/votes while consis-
tently disagreeing with all other nodes. Isolating these workers
is simple; we apply the EigenTrust algorithm proposed by
Kamvar et al. [25] to isolate naive malicious workers, which
we will save into a list of malicious workers M. After
removing M from the SG graph, the resulting graph consists
only of honest and colluding workers.

We use a graph partitioning algorithm to cut the graph into
two sub-graphs forming two disjoint groups. Graph partition-
ing algorithms such as Markov Cluster Algorithm (MCL) [26],
Minimum Cut Tree Clustering (MinCTC) [27], or Spectral
Clustering (SP) [28], can be used. We select one of these
algorithm attractively and stop as soon as the graph is partition
into two sub-graphs.

However, if the graph partitioning algorithm fails to por-
tions the SG graph, while we have detected the presence of
colluding workers in the network (i.e., based on the collusion
detection module), SERENE employs a greedy heuristic to
construct two groups of nodes based the outcome of the
detection module. Assume the collusion detection module has

3It has been shown that 8 is sufficient to have an accurate similarity
graph [11]

detected collusion based on task Ti after receiving a voting
results Ri

j from worker Sj .
Therefore, we construct two groups as follows; worker node

Sj will form a group G1 with the other server worker Sk such
that Ri

j = Ri
k (e.g., from the example of Figure 1, G1 will be

formed by two worker nodes returning the red R’ result), The
other group G2 is formed by all worker nodes returning the
majority vote result and the remaining worker nodes which
did not return any voting result yet (e.g., from the example of
Figure 1, G2 will be formed by the all worker nodes returning
the green R result as well as all other worker nodes which
where not probed yet). G2 will then be updated by removing
all naive malicious workers M computed prior to the group
partitioning.

2) Group Identification: Identify and Isolate Colluding
Workers: At this step, the main goal is to identify which group
includes honest and which one includes colluding workers.
Unlike other state-of-the-art research, we do not assume the
presence of a trusted third party servers or trusted tasks (i.e.,
with guaranteed results) to guarantee efficient identification of
these two groups.

SERENE constructs a subset of trusted tasks (TT) from the
original task repository, TR. A task Tk ∈ TR is called a
trusted task if and only if ∃i ∈ G1 and j ∈ G2|Rk

i = Rk
j ,

where G1 and G2 are the two unnamed groups identified in
the previous step. In other words, trusted tasks are the ones
where workers from the two disjoints groups have agreed
upon–colluding workers did not collude for these trusted tasks,
thus the result returned for this task can be trusted. Note that
colluding workers may not decide to collude if they did not
form a majority of the pool or with a probability of 1− Pc.

The list TT of trusted tasks will be utilized to classify the
workers into honest and colluding workers. However, since
colluding nodes may not collude all the time, SERENE sends
multiple tasks for each worker of one of the two unnamed
groups to classify the group, say G1, then the remaining group,
G2, will constitute the other class of workers. We show, in
sec. V-D, that this idea may not be sufficient and we may need
to check the two groups instead of relying only on classifying
only one and infer the other.

SERENE’s group identification uses fewer trusted tasks
and resources, if it starts the identification of the honest
group, rather than the colluding workers group (details will
be presented later in this section as we present the algorithm).
In other words, if we start identification of G1 and G1 was
classified as an honest group, verifying G2, consisting of
colluding nodes is less complex and requires less trusted task.
Otherwise, if G1 was classified as a colluding group, then
verifying the honest group, G2 requires more trusted tasks.

SERENE uses the size of the group to predict its classifi-
cation, using the assumption that honest workers are likely
to outnumber colluding workers in the network. Note that
SERENE is also able to correctly classify the worker even
when this assumption is not accurate–i.e., colluding workers
represent the majority of the workers as we will explain in the
algorithm and show results in the evaluation section V-D.

Authorized licensed use limited to: New Mexico State University. Downloaded on April 28,2025 at 04:25:51 UTC from IEEE Xplore. Restrictions apply.

Say G1 is the bigger group, SERENE selects a pool of
k workers P ⊆ G1 such that Sj ∈ P have the minimum
number of verification within G1, then for the selected pool
P , SERENE identifies the first task Ti ∈ TT such all workers
Sj ∈ P have never received task Ti, i.e., find Ti such that
∀Sj ∈ P, (Sj , ∗) /∈ TT . The verification algorithm stops when
the minimum number of verification for all nodes is equal to
e or when all tasks in TT have been utilized. The parameter
e is the maximum number of trusted tasks verification used to
tune the algorithm for accuracy.

SERENE assigns a reputation score Rsi to each worker node
Si based on worker node Si’s votes after comparing these
votes with the trusted tasks majority vote result. We assign
a voting score of 1 if the vote agrees with majority and -
1 otherwise. Let Vi = {v1 . . . ve′} where e′ ≤ e be the list
of voting scores (i.e., a list of 1 or -1). Rsi is computed as
follows:

Rsi =

∑e′

j=1 vj

e′

If ∀Si ∈ G1, Rsi = 1 then SERENE identify G1 as
a honest group–all workers in G1 are honest. Otherwise,
SERENE runs a k-mean clustering algorithm, with K = 2
to classify G1 into two subgroups, G1.1 and G1.2. Assume
that we name G1.1 such that the average reputation score of
G1.1, Ri∈G1.1 is the highest — Ri∈G1.1 > Ri∈G1.2. If (I)
|G1.1| ≥ |G1.2|, then, G2 ← G2 ∪ G1.2, and G1 ← G1.1;
G1 consists of honest workers and G2 consists primarily of
colluding workers. Otherwise (II), i.e., |G1.1| < |G1.2|, then,
G2← G2∪G1.1, and G1← G1.2; G1 consists of colluding
workers and G2 consists primarily of honest workers.

However, SERENE needs to verify that all workers Sj ∈ G2
are colluding (in case I or honest in case II) workers.
Case (I): The unverified unnamed group G2 consists primarily
of colluding worker nodes. In this case, SERENE selects
a pool of k workers from the unnamed group G2, i.e.,
P ′ = {Si, i = 1 . . . k | Si ∈ G2}. SERENE selects tasks
Ti ∈ TT to verify the new pool P ′, similar to the selection for
pool P . Any worker node Si returning a vote which disagrees
with the majority will be placed in the honest group, i.e.,
G1← G1 ∪ Si, because Si did not collude with the majority
of colluding nodes, thus Si is honest. We repeat this process
until we exhaust all tasks Ti ∈ TT , because colluding nodes
may not always collude and must be tested multiple times.
Case (II): The unverified unnamed group G2 consists primarily
of honest worker nodes. In this case, SERENE iterates over all
worker nodes Si ∈ G2 and selects a pool of k workers formed
with Si and the remaining are colluding nodes, i.e., P ′ =
S1, S2, . . . , Sk such that ∃i | Si ∈ G2 AND ∀j ̸= i, Sj ∈ G1.
SERENE selects up to e tasks Ti ∈ TT to verify the new
pool P ′, similar to the selection for pool P . In this case, if
worker node Si ∈ G2 ∩ P ′ returns a vote which disagrees
with the majority, then Si is verified as honest and remains
in G2, SERENE then selects/verifies another worker Sj until
all nodes are verified. However, if after e task verification,

Case I

G1 G2
P'

G1: Honest; G2: unnamed mostly colluding
Case II

G1 G2

P'

G1: Colluding; G2: unnamed mostly honest

Fig. 2: Group identification example: In Case (I), where G1
consists of honest workers, SERENE selects pools P’ entirely
from G2; nodes disagreeing with majority are honest and
added to G1; In Case (II), where G1 consists of colluding
workers, P’ is formed with two nodes from G1 and one from
G2, until we verify all G2 members (i.e., G2 members agreeing
with majority are colluding and added to G1).

all worker nodes in P ′ return the same vote then they are all
colluding workers and SERENE will place Si in the colluding
group, i.e., G1← G1 ∪ Si.

Figure 2 depicts two examples of case (I) and (II); in the first
example G1 was named as H thus G2 is unnamed and consists
mainly of colluding nodes, however the clustering algorithm
may have misclassified few honest workers as colluding. In
this case, SERENE selects its pool of workers for verification
from G2, looking for any inconsistency in the votes which
result in classifying the node as honest and adding it to G1. In
case (II) (the sub-figure from the right in Figure 2), G2 consists
primarily of honest workers, thus SERENE verifies worker
by worker from G2 with a pool P’ formed with colluding
workers from G1. A pool showing zero inconsistencies, results
in classifying the verified worker as colluding.

Finally, SERENE has identified all worker groups (i) naive
malicious (M), honest workers (H), and colluding workers
(C). Afterward, SERENE clears all task sets, TR and TT and
periodically reruns the detection module to identify any new
potential colluding nodes.

V. EVALUATION

In this section, we compare SERENE’s performance to the
closest state-of-the-art algorithm, Staab & Angel, which we
refer to as SnE [11], one of the existing collusion mitigation
approaches that uses comparable set of assumptions. Note
that none of the existing research has claimed or developed
a method to detect and mitigate collusion when colluding
workers exceeds 50% of the nodes in the network.

A. Simulation Setup

We implement SERENE and simulate different workload
and network scenario using a python simulator we have
developed. We consider a network of N = 20 workers. While
we have considered naive malicious workers in our design,
we do set M ≠ 0 because identifying M is very trivial and
has been solved by many state-of-the-art algorithms including
SnE [11]. We simulate a 20 to 25 milliseconds random round
trip time communication delay between all nodes at the edge.
We implement two variations of SnE, SnE 8 and SnE 12

Authorized licensed use limited to: New Mexico State University. Downloaded on April 28,2025 at 04:25:51 UTC from IEEE Xplore. Restrictions apply.

using using e = 8 (recommended value in [11]) and e = 12
observations per edge. We have tested other implementations
using different clustering algorithm such as SP and MinCTC,
however in this paper we show only results for SnE using
MCL clustering which achieved the best results.

We vary the percentage of colluding workers C from 10%, to
90% from the set of N workers. Colluding nodes can collude
with a probability Pc ranging from 10% (i.e., rarely collude),
to 90% (i.e., mostly collude).

Each node generates a set of tasks at a rate of 1000 tasks per
second. Each task is sent to k = 3 workers for task verification.
We run the simulation for 100 seconds, with collusion starting
randomly, following a uniform distribution between 3 seconds
and 90 seconds. We repeat each simulation 100 times and
measure the distribution of SERENE’s and SnE’s results.

Parameters Acronym Values
Number of worker nodes N 20
% colluding workers |C| 10%, . . . , 90%
Probability of collusion Pc 10, 50, 90%
Error rate for honest workers ϵ 0.3%
Simulation end time – 100s
Maximum observation per edge e 12 obs/edge
Users task generation rate – 1000 task/sec
Communication round trip delay RTT {20 . . . 25}ms

TABLE I: Simulation parameter for evaluation of SERENE

B. Evaluation Metrics

In our experiments, we evaluate SERENE’s and SnE’s
performances using the following metrics:

• Collusion detection delay: Measured as the difference
between the time when SERENE detects the presence of
collusion and the start time of the collusion. The start time
of collusion is simulated (i.e., known) in our evaluation.
We also measure the number of epochs or iterations
in addition to the detection delay which is reported in
seconds.

• Collusion detection accuracy: We use the f1-score ratio of
the accurate detection and the falsely detected collusion
(i.e., either collusion not detected, or falsely detected).

• Collusion mitigation accuracy: We measure the accuracy
of SERENE’s mitigation algorithm as an f1-score ratio
between the number of accurately detected and falsely
detected (i.e., colluding workers classified as honest or
honest classified as colluding workers) colluding workers.

• Collusion mitigation latency: Measured as the difference
in time between completing the mitigation (e.g., for
SERENE, this time is the end of the identification of both
groups G1 and G2) and the start of the collusion.

C. SERENE’s Collusion Detection Performance

SERENE’s collusion detection is measured using two main
metrics; collusion detection delay and collusion detection
accuracy.

Figure 3 compares the performance of SERENE’s and SnE’s
collusion detection performance in terms of collusion latency

(sub-figures a and b) or collusion detection accuracy (sub-
figure c). Figure 3-(a) and (b) we measure the detection latency
in seconds and in number of iterations respectively and we plot
the cumulative distribution function (CDF) (where Inf denotes
infinite delays resulting from inability to detect collusion when
collusion exists). Note that the CDFs include results from
different simulation runs, as well as varying Pc and C values.

In Figure 3a, SERENE outperforms SnE and detects collu-
sion up to 10 × faster. For half of the delays (50% percentile),
SERENE detects collusion at 0.85 seconds or less however,
SnE12 detects collusion at 50% longer delays, at 1.2 seconds
when e = 12, and mostly unsuccessful delays when e = 8,
SnE8. Moreover, while SERENE accurately detects collusion
with more than 98%, SnE fails more than 30% and 80% of
the time when using e = 12 and e = 8 respectively.

We also plot the CDF of the detection delay in algorithm
epochs in Figure 3b. Note that the epochs of both SERENE
and SnE are incomparable–i.e.,SnE operates periodically and
waits to gather e observation per edge to perform its clustering,
while SERENE’s epoch is one task at the time and detection
occurs when a given task detects two groups. We show that
SERENE detects collusion accurately in 90 or less tasks with
half of the collusion scenario detected within 35 tasks.

The accuracy of both algorithms is further compared in
Figure 3c. While all algorithms perform better as the prob-
ability of colluding increases among the workers, SERENE
outperforms SnE and achieves a 98% accuracy or more in
detecting collusion. However, SnE, and especially SnE8, show
major variation in accuracy performance and failing to detect
collusion from 6% to 27% of the time for SnE12 and 43% to
83% of the time for SnE8, when Pc =50%. In fact, SnE relies
on periodic data gathering and triggers a clustering algorithm
to find two groups of workers, however most of the time it
clusters the network into two group of workers even in the
absence of collusion. Notably, the authors did not test SnE
algorithm in absence of collusion in their original paper [11].

In addition to SERENE’s high accuracy in detecting collud-
ing workers, the detection algorithm, consisting of zero lookup
and simple mathematics operations, is both fast and efficient.
We conduct a bench-marking analysis and show results in
section V-E.
Impact of CVT size on SERENE detection performance:

We vary the percentage of collusion Pc to analyze the impact
of the size of the CVT table (consists of tasks used to detect
the presence of two groups in the network). SERENE detects
collusion faster as the probability of collusion increases, since
the more collusion instances amongst workers the faster we
detect two inconsistent groups, thus SERENE detects collusion
faster.

Additionally, we show in Figure 4 that there may exist
an optimal value of L (L ≈ .25 × N) and very large
(L = .7 × N) and very small (L = .1 × N) values perform
poorly. Large L values are discouraged because the larger
the table size the longer to gather multiple votes for any
given task (because SERENE chooses tasks randomly), thus
the slower the detection. Moreover, very small table sizes

Authorized licensed use limited to: New Mexico State University. Downloaded on April 28,2025 at 04:25:51 UTC from IEEE Xplore. Restrictions apply.

10 3 10 2 10 1 100 101 INF
Delay (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

SnE12
SnE8
SERENE

(a) CDF of detection delays in sec-
onds (x-axis in logscale)

100 101 102 INF
Verification epochs

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

SnE12
SnE8
SERENE

(b) CDF of detection delays in epochs
(x-axis in logscale)

SnE8
SnE12
SERENE0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

Pc = 10 Pc = 50 Pc = 90

(c) Collusion detection accuracy

Fig. 3: Comparing SERENE’s and SnE’s collusion detection delay (a) and (b) and accuracy (c); INF denotes infinite delay
values due to unsuccessful collusion detection

SERENE L = 0.1N
SERENE L = 0.25N
SERENE L = 0.5N
SERENE L = 0.7N

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

f1
-s

co
re

Pc = 10 Pc = 50 Pc = 90

(a) Collusion detection delay as
a function on Pc

10 2 10 1 100 101 INF
Delay (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

SERENE L = 0.1N
SERENE L = 0.25N
SERENE L = 0.5N
SERENE L = 0.7N

(b) CDF of detection delay ∀
Pc, C (x-axis in logscale)

Fig. 4: Collusion detection delay as a function of task repos-
itory size, L

results of replacing the tasks that have been used to verify
all workers, then SERENE replaces them which slows the
detection. The CDF of all collusion detection delays ∀ Pc,
C (Figure 4b) shows that L = .25×N can achieve more than
10× improvement in latency, making it an important tuning
parameter for SERENE’s collusion detection.

D. SERENE Collusion Mitigation Performance

Collusion detection is the first step towards addressing the
collusion problem, efficient mitigation is also important. We
evaluate, in Figure 5, SERENE’s mitigation performance by
measuring both mitigation accuracy and latency and compare
these performance to those of SnE. We compare SERENE
only to SnE12 which exhibits the best performance com-
pared to SnE8 and for better readability. Additionally, we
examine multiple implementations of SERENE namely: (i)
SERENE-Partitioning: an implementation of SERENE up to
the similarity-based partitioning phase, where SERENE iden-
tifies two unnamed clusters G1 and G2 (i.e., section IV-B2),
(ii) SERENE-Partitioning+G1): an implementation of SERENE
up to the identification of G1 and removal of misclassified
G1 members (see section IV-B2), and (iii) SERENE: the full
implementation of SERENE design.

In Figure 5a, we demonstrate that all SERENE versions out-
perform SnE by up to 10% when the population of colluding
workers is low and more than 95% more when the percentage
of colluding workers exceed 50%. Note that SnE works only
when colluding workers represent the minority group and
it uses this assumption to identify C. However, SERENE

performs best when C is large because it detects the two groups
and gathers more observations per edge faster. In addition,
while SERENE-Partitioning performance is almost identical to
SnE’s performance for lower C values, the G1 identification
phase only enhances SERENE’s performance by up to 5%
while maintaining more than 85% accuracy when colluding
workers are the majority in the network. SERENE achieves up
to 95% accuracy when Pc =0.5. Moreover, Figure 5b shows
similar performance when the distribution of delays for all Pc

values in included–SERENE outperforms SnE12 and achieving
consistent accuracy above 80% ∀ Pc and C.

This major accuracy gain comes with a minor latency cost
shown in Figure 5c. While SnE have almost constant mitiga-
tion delay which constitute the time needed to gather sufficient
observation per edge to cluster the graph, SERENE employs
the identification phase to identify both groups G1 and G2
(SERENE does not assume that colluding workers represent
the majority in the network) and further verifies the correctness
of the clustering (e.g., misclassified workers). These steps
help achieve the accuracy gains highlighted in Figure 5a.
SERENE’s mitigation latency are 500ms to 1.5s more than
SnE12 mitigation delays. We argue that accurate identification
of colluding workers in the network is essential, thus the
additional delay cost introduced by SERENE is justified; in
fact, SnE with inaccurate identification of colluding nodes
may use another detection and mitigation phased to identify
the misclassified workers which will result in much larger
latencies.

Effect of e on collusion mitigation accuracy: We have
discussed the impact of e on SnE performance. SERENE
can also be tuned with different values of e to enhance its
mitigation accuracy (detection accuracy does not seem to
be impacted by e). We compare, in Figure 6, the collusion
mitigation accuracy of SERENE when e = 5, 10, 20, 40. We
show that the impact of e is highlighted more for lower
probability of collusion, Pc (more 30% accuracy gain when
comparing e = 5 and e = 10). Lower Pc requires more
observations for colluding nodes to consistently collude with
each others. However, we also observe that SERENE-e=10
seems to achieve a good trade-off and there is not much
improvement recorded as we increase e (less than 1.5% for

Authorized licensed use limited to: New Mexico State University. Downloaded on April 28,2025 at 04:25:51 UTC from IEEE Xplore. Restrictions apply.

10 20 30 40 50 60 70 80 90
% of Colluding Nodes

0

20

40

60

80

100
f1

-s
co

re

SnE12
SERENE-Prt
SERENE-Prt+G1
SERENE

(a) Comparing mitigation accuracy for
Pc = 50%

SnE12 SERENE-Prt+G1 SERENE

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

(b) Collusion mitigation accuracy ∀ Pc

45 50 55 60
Delay (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

SnE12
SERENE

(c) CDF of mitigation latency for all C and
Pc values

Fig. 5: Comparing mitigation accuracy (a, b) and latency (c) for SnE, SERENE implementation up to the grouping phase
(SERENE-Prt), SERENE implementation up to the identification of G1 (SERENE-Prt+G1), and SERENE (i.e., the full design).

PC=10 PC=50 PC=9050
60
70
80
90

100

f1
-s

co
re SERENE-e = 5

SERENE-e = 10
SERENE-e = 20
SERENE-e = 40

Fig. 6: Comparing the collusion mitigation accuracy for dif-
ferent observation per edge values (e).

higher Pc values). Note that we choose e = 12 for all other
experiments which achieves good trade off between accuracy
and delay.

E. Prototyping and Benchmarking Tests

We conduct a series of benchmarking tests using various
machines/platforms including: (i) a Raspberry Pi v3b featuring
a quad-core 1.2 GHz 64-bit CPU and 1 GB of RAM, (ii)
Raspberry Pi v4 with a quad-core 1.8 GHz CPU and 4 GB of
RAM (Pi4), and (iii) an older laptop equipped with an Intel
dual-core 2.0 GHz 64-bit CPU and 2 GB of RAM (Laptop).

We implement both SERENE and SnE on these three
platforms and perform a set of benchmarking tests to measure
CPU usage, memory usage, and run times of the proposed
schemes. We repeat the experiments 50 times and plots the
distribution of all gathered result data in Figure 7. While
SERENE consumes 9% more memory to load its tables and
executes the detection and mitigation algorithms (Figure 7a),
it utilizes more than half the CPU when compared to SnE’s
CPU usage–SERENE uses on average 10% CPU while SnE
uses 33%. Note that none of the tested platform shows over-
utilization of the resources, thus the very small differences
when we compare results across the three platforms.

Moreover, we can show in Figure 7b, that SERENE runs
twice as fast than SnE across the three tested platforms. This
gain is mainly due to the fast detection algorithm which runs
10× faster than SnE’s collusion detection– SERENE detects in
5 milliseconds, while SnE detects collusion in 54 milliseconds.
Note that both algorithms were implemented in the same
fashion–i.e., no parallel computing for SERENE or SnE.

SERENE_memory
SnE12_memory

SERENE_CPU
SnE12_CPU

Pi3 Pi4 Laptop
10

20

30

40

50

60

Ut
iliz

at
io

n
(%

)
(a) Memory and CPU utilization

Pi3 Pi4 Laptop0

20

40

60

80

100

Ru
nt

im
e

(m
s)

SERENE Detection
SERENE Mitigation
SnE12 Detection
SnE12 Mitigation

(b) Run times

Fig. 7: The benchmarking tests for memory and cpu utilization
(a) as well as run times (b) using a Raspberry Pi3, Raspberry
Pi4, and a Laptop machine.

VI. CONCLUSION AND FUTURE WORK

We have introduced a new worker collusion resilient repli-
cation based task verification scheme called SERENE. Un-
like state-of-the-art collusion resilient solutions, SERENE is
lightweight and efficient to detect the presence of colluding
workers, and isolate them. SERENE’s detection relies on
identifying two clusters of workers consistently disagreeing
with each others. Furthermore, SERENE uses a three step
mitigation to partition the group of workers and identify the
colluding ones. Our results show that SERENE detects the
existence of collusion more accurately (with more than 98%
success ratio, which represents 30% improvement compared
to SnE), and 5× faster than SnE’s detection delay.

In the future, we will consider the threat model where
colluding nodes can be organized in different groups and
collude only with their corresponding groups. This would
make collusion mitigation more challenging, requiring an
extension of SERENE to identify the group of honest/benign
nodes among multiple clusters. Thus the mitigation phase
should be updated to find different cluster of colluding ndoes.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under grant #2148358 and is supported in
part by funds from OUSD R&E, NIST, and industry partners
as specified in the Resilient & Intelligent NextG Systems
(RINGS) program.

Authorized licensed use limited to: New Mexico State University. Downloaded on April 28,2025 at 04:25:51 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] M. Walfish and A. J. Blumberg, “Verifying computations without
reexecuting them,” Communications of the ACM, vol. 58, no. 2, pp. 74–
84, 2015.

[2] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable
computing: Outsourcing computation to untrusted workers,” in Annual
Cryptology Conference, pp. 465–482, Springer, 2010.

[3] P. Jauernig, A.-R. Sadeghi, and E. Stapf, “Trusted execution envi-
ronments: properties, applications, and challenges,” IEEE Security &
Privacy, vol. 18, no. 2, pp. 56–60, 2020.

[4] R. Canetti, B. Riva, and G. N. Rothblum, “Practical delegation of
computation using multiple servers,” in Proceedings of the 18th ACM
conference on Computer and communications security, pp. 445–454,
2011.

[5] G. Levitin, L. Xing, and Y. Dai, “Optimal spot-checking for collusion
tolerance in computer grids,” IEEE Transactions on Dependable and
Secure Computing, vol. 16, no. 2, pp. 301–312, 2017.

[6] G. C. Silaghi, F. Araujo, L. M. Silva, P. Domingues, and A. E. Arenas,
“Defeating colluding nodes in desktop grid computing platforms,”
Journal of Grid Computing, vol. 7, no. 4, pp. 555–573, 2009.

[7] A. Küpçü, “Incentivized outsourced computation resistant to malicious
contractors,” IEEE Transactions on Dependable and Secure Computing,
vol. 14, no. 6, pp. 633–649, 2015.

[8] S. Zhao, V. Lo, and C. G. Dickey, “Result verification and trust-based
scheduling in peer-to-peer grids,” in Fifth IEEE International Conference
on Peer-to-Peer Computing (P2P’05), pp. 31–38, IEEE, 2005.

[9] C. Dong, Y. Wang, A. Aldweesh, P. McCorry, and A. van Moorsel,
“Betrayal, distrust, and rationality: Smart counter-collusion contracts for
verifiable cloud computing,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pp. 211–227,
2017.

[10] L.-C. Canon, E. Jeannot, and J. Weissman, “A dynamic approach for
characterizing collusion in desktop grids,” in 2010 IEEE International
Symposium on Parallel & Distributed Processing (IPDPS), pp. 1–12,
IEEE, 2010.

[11] E. Staab and T. Engel, “Collusion detection for grid computing,” in 2009
9th IEEE/ACM International Symposium on Cluster Computing and the
Grid, pp. 412–419, IEEE, 2009.

[12] M. Backes, D. Fiore, and R. M. Reischuk, “Verifiable delegation of
computation on outsourced data,” in Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, pp. 863–
874, 2013.

[13] K. Elkhiyaoui, M. Önen, M. Azraoui, and R. Molva, “Efficient tech-
niques for publicly verifiable delegation of computation,” in Proceedings
of the 11th ACM on Asia Conference on Computer and Communications
Security, pp. 119–128, 2016.

[14] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-
Ruiz, and M. Russinovich, “Vc3: Trustworthy data analytics in the cloud
using sgx,” in 2015 IEEE symposium on security and privacy, pp. 38–54,
IEEE, 2015.

[15] N. O. Duarte, S. D. Yalew, N. Santos, and M. Correia, “Leveraging
arm trustzone and verifiable computing to provide auditable mobile
functions,” in Proceedings of the 15th EAI International Conference on
Mobile and Ubiquitous Systems: Computing, Networking and Services,
pp. 302–311, 2018.

[16] M. Belenkiy, M. Chase, C. C. Erway, J. Jannotti, A. Küpçü, and
A. Lysyanskaya, “Incentivizing outsourced computation,” in Proceedings
of the 3rd international workshop on Economics of networked systems,
pp. 85–90, 2008.

[17] K. Watanabe, M. Fukushi, and S. Horiguchi, “Collusion-resistant
sabotage-tolerance mechanisms for volunteer computing systems,”
in 2009 IEEE International Conference on e-Business Engineering,
pp. 213–218, IEEE, 2009.

[18] Y. Kong, C. Peikert, G. Schoenebeck, and B. Tao, “Outsourcing com-
putation: the minimal refereed mechanism,” in International Conference
on Web and Internet Economics, pp. 256–270, Springer, 2019.

[19] L. Wang, Y. Tian, and J. Xiong, “Achieving reliable and anti-collusive
outsourcing computation and verification based on blockchain in 5g-
enabled iot,” Digital Communications and Networks, 2022.

[20] J. Ménétrey, C. Göttel, M. Pasin, P. Felber, and V. Schiavoni, “An
exploratory study of attestation mechanisms for trusted execution en-
vironments,” arXiv preprint arXiv:2204.06790, 2022.

[21] F. Araujo, J. Farinha, P. Domingues, G. C. Silaghi, and D. Kondo, “A
maximum independent set approach for collusion detection in voting
pools,” Journal of Parallel and Distributed Computing, vol. 71, no. 10,
pp. 1356–1366, 2011.

[22] A. Bendahmane, M. Essaaidi, A. El Moussaoui, and A. Younes, “The
effectiveness of reputation-based voting for collusion tolerance in large-
scale grids,” IEEE Transactions on Dependable and Secure Computing,
vol. 12, no. 6, pp. 665–674, 2014.

[23] J. Wang and A. Mtibaa, “CoVFeFE: Collusion-Resilient verifiable com-
puting framework for Resource-Constrained devices at network edge,”
in 2024 IEEE 13th International Conference on Cloud Networking
(CloudNet) (IEEE CloudNet 2024), (Rio de Janeiro, Brazil), p. 8.85,
Nov. 2024.

[24] A. M. Sauber, A. Awad, A. F. Shawish, and P. M. El-Kafrawy, “A novel
hadoop security model for addressing malicious collusive workers,”
Computational Intelligence and Neuroscience, vol. 2021, 2021.

[25] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The eigentrust
algorithm for reputation management in p2p networks,” in Proceedings
of the 12th international conference on World Wide Web, pp. 640–651,
2003.

[26] Markov Clustering Documentation, “Markov Clustering Documenta-
tion.” https://markov-clustering.readthedocs.io/en/latest/. [Online; ac-
cessed March 15, 2024].

[27] U. Brandes, M. Gaertler, and D. Wagner, “Experiments on graph
clustering algorithms,” in European symposium on algorithms, pp. 568–
579, Springer, 2003.

[28] Markov Clustering Documentation, “Markov Clustering Documen-
tation.” https://scikit-learn.org/stable/modules/generated/sklearn.cluster.
SpectralClustering.html. [Online; accessed March 15, 2024].

Authorized licensed use limited to: New Mexico State University. Downloaded on April 28,2025 at 04:25:51 UTC from IEEE Xplore. Restrictions apply.

