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Time functions with asymptotically hyperbolic geometry play an increasingly important role in
many areas of relativity, from computing black hole perturbations to analyzing wave equations.
Despite their significance, many of their properties remain underexplored. In this expository
article, I discuss hyperbolic time functions by considering the hyperbola as the relativistic analog
of a circle in two-dimensional Minkowski space and argue that suitably defined hyperboloidal
coordinates are as natural in Lorentzian manifolds as spherical coordinates are in Riemannian
manifolds. # 2024 Published under an exclusive license by American Association of Physics Teachers.
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I. HYPERBOLIC GEOMETRY IN RELATIVITY

The discovery of hyperbolic geometry is one of the most
impactful developments in the history of mathematics. Its
revelation by Gauss, Bolyai, and Lobachevsky in the 19th
century was the culmination of a story spanning over
2000 years that rivals any multi-generational science fiction
saga in drama and excitement.1 The subsequent analysis of
non-Euclidean geometry by Beltrami, Poincar"e, and
Riemann was the necessary mathematical development that
prepared the ground for special and general relativity as
physical theories of space, time, and gravity.

Even though Minkowski space is flat, hyperbolic geome-
try plays an important role in special relativity that
Minkowski was keenly aware of.2,3 For example, the inter-
pretation of Lorentz transformations as hyperbolic rotations
gives an intuitive demonstration of relativistic phenomena
such as velocity addition or Thomas precession.4–7

Hyperbolic geometry not only provides the kinematic space
of special relativity,2 it also serves as a model for space that
connects a source of radiation to an idealized observer (see
Sec. III B).

General time functions that share the asymptotic proper-
ties of hyperbolas are called hyperboloidal.8 The behavior of
such hypersurfaces makes them appealing to describe global
aspects of spacetimes, including asymptotic boundaries,
black hole horizons, and cosmological horizons. In suitable
hyperboloidal coordinates, space flows toward null horizons
similarly as in the river model of black holes.9,10

Hyperboloidal time functions play an increasingly important
role in relativity across many active research areas such as
black hole perturbation theory, gravitational waves, and the
mathematical analysis of wave equations.11–19

In this expository article, I present various aspects of
hyperbolic time functions in the simple case of two-
dimensional Minkowski space at a level suitable for an
advanced course on special relativity. The guiding principle
is that the hyperbola in Minkowski space is the analog of a
circle in Euclidean space. The main objectives are to demon-
strate the essential properties of such surfaces and to clarify
misconceptions. Most of the discussion requires no more
than a basic understanding of Minkowski space and coordi-
nate transformations.

Our discussion starts in Sec. II with a quick introduction
to Minkowski space and its compactification using Penrose
coordinates—an essential tool for understanding the global

causal structure of spacetimes. We consider the standard
coordinates and their weaknesses in the context of the global
causal structure of Minkowski space: the standard time coor-
dinate in Minkowski space is degenerate at infinity. Time
functions that respect time-translation symmetry must
approach null infinity to resolve the asymptotic coordinate
singularity. In Sec. III, we introduce spacelike hyperbolas as
analogs of circles in Euclidean space. We clarify their global
causal properties (Sec. III A), demonstrate their necessity for
far-away observers (Sec. III B), and present a variational
principle underlying their construction as solutions to the
isoperimetric problem in Minkowski space (Sec. III C).
Section IV compares Milne slicing (Sec. IV A) and hyper-
bolic foliation (Sec. IV B), revealing that the analogy
between the circle and the hyperbola is misleading when
constructing smooth time functions describing the asymp-
totic domain. The impact of the asymptotic coordinate singu-
larity in Milne slicing is demonstrated on a simple wave
equation in Sec. IV C. Global energy is conserved in stan-
dard time and Milne slicing but decays due to radiation to
infinity in hyperbolic foliation. In Sec. IV D, we revisit the
construction of Penrose coordinates and recognize that they
arise from a combination of Milne slicing and hyperbolic
foliation. The paper ends with conclusions highlighting the
importance of hyperboloidal time functions in relativity
(Sec. V).

II. THE STANDARD TIME COORDINATE IN
MINKOWSKI SPACE

Our stage is the two-dimensional Minkowski space. The
Minkowski metric in standard coordinates t 2 ð"1;1Þ and
x 2 ð"1;1Þ is20

ds2 ¼ "dt2 þ dx2: (1)

The Minkowski metric differs from the Euclidean metric by
the presence of a time direction. As a consequence, the met-
ric has a null space consisting of null rays: v ¼ tþ x, u ¼
t" x (Fig. 1). The null space plays a fundamental role in
Minkowski space with no equivalent structure in the
Euclidean case. In particular, the analog of a circle in
Minkowski space becomes an unbounded curve (Sec. III A).
Therefore, it is essential to understand the global structure of
spacetime.
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A common way to represent the global causal structure of
Minkowski space is to draw a Penrose diagram: a conformal
diagram using Penrose coordinates fT;Xg. The key idea is
conformal compactification, which maps the infinite
Minkowski space to a finite space with a boundary represent-
ing infinity.21,22 Many such mappings are available, but the
historical choice by Penrose is the tangent function applied
to the null coordinates. Specifically, we introduce coordi-
nates U ¼ tan"1u and V ¼ tan"1v, which map the infinite
interval ð"1;1Þ to the finite, open interval ð"p=2; p=2Þ.
Squeezing infinite distances to a finite range leads to a singu-
lar metric at the limiting points,

ds2 ¼ "du dv ¼ " 1

cos U cos V

! "2

dU dV: (2)

We capture this singular behavior in a coordinate-dependent
scale factor called the conformal factor X ¼ cos U cos V.
Considering the conformally rescaled, regular metric

ds
2 ¼ X2ds2, we add the limiting points of the open interval

to our domain and obtain the compact interval ½"p=2; p=2',
completing the conformal compactification.

One typically introduces time and space coordinates, T
¼ U þ V and X ¼ V " U, with the range jTjþ jXj 2 ½0; p',
to draw the Penrose diagram (panel (b) of Fig. 1). The con-
formal boundary is the zero set of the conformal factor given
by jUj ¼ jVj ¼ p=2, or jTjþ jXj ¼ p. This boundary is not
part of Minkowski space but represents the asymptotic limit
of its geodesics. Spacelike geodesics end at spatial infinity,
i0
fR;Lg ¼ fT ¼ 0;X ¼ 6pg; timelike geodesics end at time-

like infinity, i6 ¼ fT ¼ 6p;X ¼ 0g; and null geodesics end
at null infinity denoted by I6

fR;Lg. Null infinity is also called

scri for the “script I” symbol I used to denote it.
A big advantage of conformal compactification is that it

replaces asymptotic limits such as x!1 or u!1 with
local analysis at the boundary. Penrose coordinates perform
this compactification along the null coordinates so that null
rays are straight lines at 45(. The Penrose diagram of
Minkowski space is discussed in many textbooks on relativ-
ity.23–25 An advanced discussion of conformal methods in
general relativity can be found in the monograph.26

Penrose coordinates for time T and space X are not direct
compactifications of the standard coordinates t and x. There
is an intermediary step involving null directions. It is instruc-
tive to see why direct compactification does not work.
Setting t ¼ tan #t and x ¼ tan #x, we get

ds2 ¼ " d#t2

cos4#t
þ d#x2

cos4#x
:

One cannot capture the singularity of this metric at the
boundary j#tj ¼ j#xj ¼ p=2 in a conformal factor. The underly-
ing geometric reason is that the standard coordinates are sin-
gular at their asymptotic endpoints, i0

R;L and i6, where their
level sets intersect. The intersection of the level sets can be
seen in the right panel of Fig. 1. This problem affects any
effort to construct a time foliation that asymptotes to spatial
infinity and respects time symmetry. We discuss the case of
spatial infinity below as we are primarily interested in time
functions, but similar arguments apply to the timelike infini-
ties, i6. In Sec. IV D, we will see that Penrose coordinates
are direct compactifications of hyperboloidal coordinates.

A. The standard time coordinate is singular at spatial
infinity

Level sets of t intersect at the spatial infinities, i0fR;Lg, as
seen on the Penrose diagram in Fig. 1(b). This intersection is
reminiscent of radial rays in polar coordinates and indicates
that the time coordinate t is unsuitable for the global causal
structure.

Looking at the upper panel of Fig. 1, students find it hard
to believe that the t slices are singular at infinity because
they seem parallel and non-intersecting on the plot.
However, any coordinate system will look like a Cartesian
grid when plotted with respect to itself. We can see the sin-
gular behavior only when we compare the coordinates to
another, more suitable system. This is true for standard

Fig. 1. (a) Shows the standard Minkowski coordinate grid in ft; xg and the
null cone through the origin representing the axes of null coordinates fu; vg.
(b) Shows the level sets of standard coordinates in a Penrose diagram
fT;Xg. In all figures, solid, horizontal curves are spacelike; dotted, vertical
curves are timelike; and dashed curves are null. Slices of the standard time
coordinate t intersect at spatial infinities, suggesting that the time coordinate
t is unsuitable for the global structure.
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coordinates of Minkowski space as it is for polar coordinates
of Euclidean space.

The reason for the coordinate singularity at spatial infinity
is the vanishing of the generator of time symmetry, @t.
Expressing it in Penrose coordinates, we get

@t ¼ cos2U @U þ cos2V @V

¼ 1þ cosð2TÞ cosð2XÞð Þ@T " sinð2TÞ sinð2XÞ@X:

(3)

All components of @t vanish at spatial and timelike infinities
indicating that these points are fixed points of the time sym-
metry causing the intersection of time slices. A regular time
coordinate that approaches spatial infinity cannot preserve
the time-translation symmetry.

B. The standard time coordinate is not operationally
meaningful for far-away observers

The level sets of t represent space for globally synchro-
nized inertial observers at rest relative to each other. This
notion of “now” as a snapshot in time has been abstracted
from our everyday experience with weak gravitational fields,
slow speeds, and small distances. Its construction requires
the synchronization of clocks based on mirrors and is, there-
fore, operationally meaningful only in the vicinity of an iner-
tial observer. However, as an observer moves farther from a
source, one cannot construct such a global time function
operationally. For example, astrophysical sources of gravita-
tional radiation are typically thousands or millions of light
years away, so synchronization of clocks with such sources
is not feasible. Asymptotic observers have only access to the
null rays that reach them from the source.

In Sec. IV B, we will see how spacelike hyperbolas
resolve these problems.

III. SPACELIKE HYPERBOLA

In a historical talk during the eightieth meeting of the
Assembly of Natural Scientists and Physicians in Cologne in
1908, Minkowski presented the unification of space and time
into spacetime.2,3 He demonstrated the invariance of his new
metric under Lorentz transformations using the unit hyperbola
t2 " x2 ¼ 1. The hyperbola plays a fundamental role in
Minkowski space as the set of points equidistant from a fixed
point, representing the analog of a circle in Euclidean space.7 It
is invariant under Lorentz transformations, just as a circle is
under rotations. In contrast to the circle, it is an unbounded curve
with negative curvature and two asymptotes, t6x ¼ 0, which
are the null rays emanating from the origin. The equation for the
hyperbola with (pseudo-)radius g centered at the origin is

jt2 " x2j ¼ g2: (4)

The unit hyperbola with g ¼ 1 is depicted in Fig. 2 in stan-
dard coordinates on the top and Penrose coordinates on the
bottom. Its asymptotes are plotted as dashed lines emanating
from the origin. It is neat that the analog of the unit circle in
Euclidean space is a square on the Penrose diagram of
Minkowski space.

We are primarily interested in spacelike hyperbolas for
constructing time functions. The unit hyperbolas centered at
the origin are spacelike in the interior of the null cone with

jtj > jxj. Future hyperbolas are in t > jxj, and past hyperbo-
las are in t < "jxj (see the shaded regions in Fig. 5).
Sections III A–III C discuss three properties of the future
hyperbola relevant for time functions for idealized, asymp-
totic observers: everywhere spacelike (Sec. III A), a snapshot
in time (Sec. III B), and a maximal curve satisfying a varia-
tional principle (Sec. III C). These properties suggest that
hyperboloidal coordinates are as natural in Lorentzian mani-
folds as spherical coordinates are in Riemannian manifolds.

A. Spacelike hyperbolas are globally spacelike

The future hyperbola on the left panel of Fig. 2 seems to
become “asymptotically null.” The curve clearly asymptotes

FIG. 2. The unit hyperbola j"t2 þ x2j ¼ 1 consists of four curves. The solid
curves inside the null cone, jtj > jxj, are spacelike. The dotted curves outside
the null cone, jxj > jtj, are timelike. The unit hyperbola—the analog of the
unit circle in Euclidean space— is a square on the Penrose diagram of
Minkowski space. The future spacelike hyperbola has the angle a ¼ "p=4
to the V-axis at future null infinity. The diagram demonstrates that hyperbo-
las do not change their causal structure asymptotically. Their causal proper-
ties extend to the asymptotic domain.
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to the null cone and, therefore, to null infinity. In that sense,
one could call it asymptotically null.27,28 However, it is
important to emphasize that this is not a causal statement.
The perception that the hyperbola becomes causally null in
the asymptotic domain arises from its representation in stan-
dard coordinates. The global causal nature of the hyperbola
cannot be discussed faithfully in standard coordinates as they
are unsuitable in the asymptotic domain. It is evident from
the Penrose diagram in Fig. 2(b) that the future hyperbola is
spacelike everywhere, including the asymptotic domain,
because the curve representing the hyperbola intersects null
infinity horizontally. In contrast, an asymptotically null
curve has a null tangent space and is diagonal at null infinity.

We can explicitly calculate the angle at which the hyper-
bola transverses null infinity.26,29 The calculation is easiest
in compactified null coordinates fU;Vg. Spacelike hyper-
bola of radius g satisfy

g2 ¼ t2 " x2 ¼ u v ¼ tan U tan V:

We calculate the angle of incidence a that the future hyper-
bola makes with the V-axis at the right future null infinity,
IþR ¼ fV ¼ p=2g (see Fig. 2(b)). An asymptotically null
curve would have an angle of 0 or "p=2. The graph UðVÞ
for constant values of g2 has an angle of incidence given by

tan ajIþR ¼
dU

dV

####
V¼p

2

¼ d

dV
tan"1 g2

tan V

! "$ %####
V¼p

2

¼ "g2:

For any non-vanishing, finite g, this angle is in the range
ð"p=2; 0Þ. For the unit hyperbola with g ¼ 1, we have
a ¼ "p=4, giving the horizontal line in the Penrose diagram
Fig. 2. At the limiting values of g we get asymptotically null
curves: For g ¼ 0 the curve becomes tangent to the V-axis with
a ¼ 0; for g!1, the curve becomes tangent to the U-axis
with a! "p=2. Curves for different values of g are depicted
in Fig. 5(b), where one can see this behavior. Note that the
particular value of the angle is not important for the qualita-
tive discussion. The important point is that the future hyper-
bola is spacelike everywhere, including in the asymptotic
domain.

Asymptotically null curves in the Penrose compactifica-
tion have a vanishing V-derivative at future null infinity,
implying that the linear term in the Taylor series of the graph
UðVÞ around V ¼ p=2 vanishes. We translate this local condi-
tion in compactified coordinates to an asymptotic condition in
standard coordinates to give a condition for an embedded curve,
tðxÞ, that behaves like the future hyperbola. For such a curve to
be spacelike at null infinity, we require that the 1=x-term does
not vanish in the expansion of the embedding,

tðxÞ ¼ xþC

x
þOðx"2Þ; C 6¼ 0; as x!61: (5)

The constant term is absorbed in the definition of the time
function. As an example, below is the large x expansion for
the unit hyperbola,

tðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
¼ xþ 1

2x
þ Oðx"3Þ:

The non-vanishing 1=x term ensures that the curve is space-
like at null infinity.

One can understand that the hyperbola does not become
asymptotically null by considering hyperbolic geometry. The
hyperbola, or its higher dimensional version, the hyperbo-
loid, represents a model for hyperbolic geometry—a homo-
geneous space of constant negative curvature.1 The induced
metric on the hyperboloid is the Riemannian metric of hyper-
bolic space, indicating that the hyperboloid is a spacelike
surface everywhere, including the ideal points at infinity.
This property of the hyperboloid allows us to use it as a
snapshot in time.

B. The future hyperbola is a natural snapshot in time

A distinction between space and time for an idealized
observer along null infinity necessarily involves a spacelike
curve extending from null infinity toward the source of radia-
tion. We have seen that hyperbolas inside the null cone are
spacelike curves everywhere. Any spacelike curve can serve
as a snapshot, but generally, the associated observers are not
naturally related to each other. The hyperbola has a particu-
lar property that provides a natural notion of a snapshot in
Minkowski space.

Consider a family of observers with synchronized clocks
at the origin, called timekeepers. The timekeepers move
toward an idealized observer to the right at different speeds.
These speeds can be stochastically distributed. Each time-
keeper sends a light signal to the idealized observer at infin-
ity at their proper time g. The observer receives these signals
at different times within the gray area in Fig. 3. The curve
that connects the timekeepers at their equal proper time and
serves as a snapshot for the observer is the future hyperbola

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 " x2
p

(see Fig. 3). We can pick any other point
ft0; x0g to synchronize the timekeepers and perform a similar

construction with g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt" t0Þ2 " ðx" x0Þ2

q
.

FIG. 3. Timekeepers synchronize their clocks at the origin and travel toward
an observer at different relative speeds. They send light signals to the ideal-
ized observer at infinity at their unit proper time. The spacelike curve that
connects the timekeepers is the unit hyperbola, which provides a natural
snapshot for idealized observers at infinity.
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This notion of a snapshot works well with asymptotic
observers of radiation. Any time function constructed by an
observer at infinity is related to a hyperbolic time function
by a smooth transformation. In contrast, the transformation
from the standard time coordinate to hyperbolic or null coor-
dinates is singular at infinity. Therefore, a time function for
observers at infinity must resemble a hyperbola in its asymp-
totic behavior.

C. The hyperbola is a maximal curve

The circle is the simplest nontrivial example of a minimal
curve solving the isoperimetric problem in the plane: enclos-
ing the largest area with a fixed perimeter.30 Since the hyper-
bola is the relativistic analog of a circle, we may expect that
the hyperbola solves a similar type of isoperimetric problem.

We can think of the isoperimetric problem as a con-
strained variational problem. An equivalent problem to max-
imizing the area with a fixed perimeter is minimizing the
perimeter with a fixed area. The action for a minimal curve
with length L enclosing a fixed area A is

S ¼ L" k ) A: (6)

The solution of this minimization problem is a circle of
radius 1=k. The inverse radius, or equivalently, the Lagrange
multiplier of the minimization problem k, is the constant cur-
vature of the circle.

In Minkowski space, minimizing length is not an interesting
problem because null rays have zero length. Instead, in
Lorentzian variational problems, we look for a maximizing
curve. The action for maximizing boundary length is the same
as (6), except that the length L and the area A are computed for
the Minkowski metric (1). This idea generalizes to higher
dimensions and curved spacetimes, leading to the analysis of
constant mean curvature surfaces in general relativity.31,32

Consider a curve parametrized by x as t ¼ tðxÞ. The length
of the curve is

L ¼
ð

ds ¼
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"dt2 þ dx2

p
¼
ð1

"1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"t0ðxÞ2 þ 1

q
dx;

where t0ðxÞ ¼ dtðxÞ=dx. We need a reference curve to calcu-
late the enclosed spacetime area. Since we are performing
the calculation in standard coordinates, we take the t ¼ 0
line as a reference (see Fig. 4), but the outcome is indepen-
dent of the reference curve. The enclosed spacetime area by
the curve tðxÞ and the line t ¼ 0 is

A ¼
ð1

"1
dx

ðtðxÞ

0

dt ¼
ð1

"1
tðxÞdx: (7)

We can write the action (6) as an integral over a Lagrangian
density functional

S ¼
ð1

"1
L dx ¼

ð1

"1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1" tðxÞ02

q
" ktðxÞ

$ %
dx:

The Euler–Lagrange equation for varying tðxÞ with respect
to the parameter x reads

d

dx

@L

@t0
¼ @L

@t
) d

dx

t0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1" t02
p ¼ k:

We integrate by x and solve for t0 with the boundary condi-
tion t0ð0Þ ¼ 0

t0ðxÞ ¼ 6
kxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2x2
p :

Choosing the positive sign and integrating again, we obtain
the future hyperbola

tðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k2
þ x2

r
: (8)

The Lagrangian multiplier k is inversely related to the
radius of the hyperbola g and represents the constant mean
extrinsic curvature of the curve, K ¼ k, just as in the
Euclidean case. The variational problem (6) does not deter-
mine the Lagrangian multiplier, k, or equivalently, the mean
curvature K. Its value depends inversely on the spacetime
area A we prescribe in the constraint.33 The larger the space-
time area to be enclosed, the smaller the mean curvature of
the hyperbola. In Fig. 4, the upper line with K ¼ 0:5 encloses
a larger area than the lower line with K ¼ 1. The maximal
area is enclosed by a curve with vanishing mean curvature,
K ¼ 0. Such maximal slices are level sets of t.

IV. HYPERBOLIC TIME FUNCTIONS

The future hyperbola is spacelike everywhere and has a
natural interpretation as a snapshot in time constructed by an
idealized observer at infinity. We want to describe dynamical
evolution by parametrizing spacetime using a foliation of
such snapshots as given by level sets of a time function. The
time function should be suitable for describing the global
causal structure in an operationally meaningful way. We
have seen that the standard time coordinate is unsuitable for

FIG. 4. The isoperimetric problem in two-dimensional Minkowski space is
to maximize the length L of a curve tðxÞ that encloses a given spacetime area
A with respect to a reference surface, arbitrary taken as the t ¼ 0 slice.
Hyperbolas are solutions to this isoperimetric problem and have constant
mean curvature. The upper hyperbola with a smaller mean curvature
K ¼ 0:5 encloses a larger spacetime area than the lower hyperbola with a
larger mean curvature K ¼ 1.
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this purpose. We now construct time functions based on
hyperbolas and study a simple example of an evolution equa-
tion. At the end of the section, we recognize the nature of
Penrose coordinates as hyperboloidal.

A. Milne slicing

The first attempt to construct a suitable time function
based on hyperbolas is to parametrize Minkowski space by
hyperbolas of different radii, as in the case of Euclidean
space with polar coordinates based on circles of different
radii. This approach goes back to Milne,34 who considered
the resulting metric a cosmological model35,*

The hyperbola of radius g is given by Eq. (4). The corre-
sponding parametrization of Minkowski space is depicted in
Fig. 5. The figure shows that Milne slices have different
causal properties in different parts of the light cone centered
at the origin. Outside the light cone, Milne slices are timelike
curves representing uniformly accelerated observers. These
domains are known as Rindler wedges.36 The light cone acts
as a null horizon for the Rindler wedges.

Inside the light cone, Milne slices are spacelike curves and
provide a time function. We are particularly interested in
parametrizing the future light cone by hyperbolas with Milne

time g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 " x2
p

. Parametrizing the future light cone by
the proper time of observers with arbitrary velocity seems a
natural choice (compare Sec. III B). Each slice has a constant
mean extrinsic curvature, and the value of the curvature
depends on time as K ¼ 1=g.

To write the Minkowski metric in Milne slicing in its
simplest form, we define the comoving coordinate v via
t ¼ g cosh v and x ¼ g sinh v. The metric becomes

ds2 ¼ "dg2 þ g2dv2: (9)

Milne slicing has some undesirable properties for describ-
ing time evolution. First, we see from Fig. 5(b) that the slices
intersect at null infinity and do not provide a smooth folia-
tion of the conformal boundary. This behavior of Milne sli-
ces near null infinity is similar to standard time slices near
spatial infinity. The evolution vector field, @g, vanishes at
null infinity, indicating that the slices intersect there.

The second problem is that Milne slicing does not pre-
serve the time-translation symmetry, leading to a time-
dependent metric (9). While the choice of coordinates is a
matter of taste and depends on the problem, introducing an
artificial time dependence into the metric is undesirable for
many applications.

A related problem is that the light cone at the origin plays a
unique role in Milne slicing. This is similar to the role that the
origin plays in polar coordinates, around which rotational sym-
metry is defined. However, it is unclear why the origin should
play such a unique role when we describe time evolution in
Minkowski space. Note that polar coordinates parametrize all of
space, whereas Milne time is restricted to inside the light cone.
In the following section, we will resolve these issues by con-
structing a hyperbolic foliation that respects the time-translation
symmetry of Minkowski space and is regular at null infinity.

B. Hyperbolic foliation

The Milne model (9) uses the radii of hyperbolas as the
time coordinate, similar to how polar coordinates use the radii
of circles as a space coordinate. However, Euclidean space
has no null cone or a time direction. The time-translation sym-
metry in Minkowski space plays a central role in many appli-
cations, and we should keep it in our coordinates.

Instead of slicing the spacetime by hyperbolas of different
radii, we fix the radius of a hyperbola to some value, L, and
shift it along the time direction by s,37

ðt" sÞ2 " x2 ¼ L2: (10)

We call the slicing of Minkowski space with the time
function s a hyperbolic foliation. Such time-shifted hyperbo-
las can be generalized to higher dimensions and curved, sta-
tionary spacetimes, leading to hyperboloidal foliations.38

Solving the above equation for s, we can choose the sign for

FIG. 5. Slicing of Minkowski space by hyperbola of different radii (Milne
slicing). The slices asymptote to the same null cone, intersecting at null
infinity and becoming singular. The slicing does not respect the time-
translation symmetry of Minkowski space, and the metric depends on Milne
time (9).

*Many early works on hyperboloidal methods used a similar approach.42–44

In higher dimensions, Milne slicing leads to a metric whose time slices
have the same geometry as Anti-de Sitter time slices. Therefore, this
approach is appealing in recent works on quantum field theory and flat-
space holography.45–47
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future or past hyperbolic foliations that foliate future or past
null infinity. The future hyperbolic foliation is depicted in
Fig. 6. Each slice asymptotes to a future null cone shifted in
time. We write the time function s as

s ¼ t"
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ x2

p
¼ t" L

cos q
; (11)

where x ¼ L tan q is a scaled spatial compactification.
This time function has many appealing properties. It pre-

serves the generator of the time-translation symmetry,
@t ¼ @s. The mean extrinsic curvature is constant in space
and time, K ¼ 1=L. The metric is time-independent by
construction,

ds2 ¼ "ds2 " 2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ x2
p ds dxþ L2

L2 þ x2
dx2 (12)

¼ 1

cos2q
"cos2q ds2 " 2L sin q dsdqþ L2dq2
( )

: (13)

We can absorb the radius of the hyperbola, L, in the con-
formal factor using a rescaled time coordinate #s ¼ Ls. As we
have seen in Sec. III B, the radius of the hyperbola corre-
sponds to the proper time from the origin, so the conformal
metric with the rescaled time is scale-free. The conformal
metric is regular at null infinity and includes a non-diagonal
term indicating that space flows outward in the future hyper-
bolic foliation. This outflow behavior is analogous to the
inflow behavior in the river model of black holes where regu-
lar foliations respecting time symmetry have a diagonal shift
term.9,10

C. Energy conservation and decay

Noether’s theorem states that the symmetries of the back-
ground imply conserved quantities for the dynamics. In
Minkowski space, we have a time-translation symmetry
implying conservation of energy. It is a standard result that
energy is conserved for non-dissipative systems. As a simple
demonstration, consider the homogeneous wave equation for
a massless scalar field /ðt; xÞ,

"/tt þ /xx ¼ 0;

where the subscript is shorthand for a partial derivative.
This equation was first written by d’Alembert in 1747 to
describe the problem of a vibrating string, long before
the unification of space and time into spacetime.39

Remarkably, the scalar wave equation, with its finite propa-
gation speed, is inherently relativistic in natural units. We
write the equation as a conservation law to demonstrate
energy conservation

Et ¼ F x; with E ¼ 1

2
/2

t þ /2
x

* +
; F ¼ /t/x:

This form of the wave equation gives us the energy density E
and the flux density F .† The total energy is the integral of
the energy density over space, E ¼

Ð1
"1 E dx. The scalar field

in the standard time coordinate has globally conserved
energy, assuming that the boundary terms vanish due to the
finite speed of propagation,

dE

dt
¼
ð1

"1

dE
dt

dx ¼
ð1

"1

dF
dx

dx ¼ /t/x

####
1

"1
¼ 0:

However, our experience with isolated dynamical systems
suggests they lose energy to radiation. We want a formula
that relates the energy decay to radiation flux at null infinity.
In null coordinates, the energy calculated along null infinity
(also called Bondi energy40) readily captures such decay. We
have seen that the standard time coordinate does not capture
the asymptotic behavior adequately. One might anticipate,
therefore, that slices approaching null infinity instead of spa-
tial infinity will capture the energy loss. To see if that is the
case, we compute the wave equation in Milne coordinates,

FIG. 6. Hyperbolic foliation (10) fixes a future hyperbola and drags it along
the time direction @t. The resulting metric (12) is independent of time. The
null cone through the origin is shaded in gray to contrast with the Milne slic-
ing of Fig. 5.

†We can also compute these quantities from the energy-momentum tensor
of a scalar field, but the formulation as a conservation law seems simpler
requiring only the formation of total derivatives in the wave equation.48
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"/gg þ
1

g2
/vv "

1

g
/g ¼ 0:

We compactify space with sinh v ¼ tan q to analyze the
asymptotic behavior,

" g2

cos q
/gg þ cos q /qq "

g
cos q

/g " sin q/q ¼ 0:

The energy and flux densities are

E ¼ 1

2

g2

cos q
/2

g þ cos q /2
q

 !

; F ¼ cos q /g/q:

Energy is conserved also in Milne time,

dE

dg
¼
ðp=2

"p=2

dF

dq
dq ¼ cos q /g/q

####
p=2

"p=2

¼ 0:

Energy conservation is not just a consequence of evaluat-
ing the energy at spatial infinity. It is a consequence of the
intersection of time slices in the asymptotic domain. To
model energy radiation to infinity, we need an asymptoti-
cally regular foliation. Switching to a hyperbolic foliation
makes the loss of energy explicit. The transformed wave
equation in hyperbolic foliation s and compactifying coordi-
nate q reads after a division by cos2q,

"/ss " 2 sin q /sq þ cos2q /qq " cos q /s

" 2 sin q cos q /q/

¼ 0:

The energy and flux densities are

E ¼ 1

2
/2

s þ cos2q /2
q

* +
;

F ¼ "sin q /2
s þ cos2q /s/q:

Now, we can show that a Bondi-type total energy is not con-
served but decays due to radiation across null infinity,

d

ds
E ¼

ðp=2

"p=2

dF
dq

dq ¼ F
####
p=2

"p=2

¼ "/2
s jIþR " /2

s jIþL * 0:

One can understand the behavior of energy by visually
inspecting the Penrose diagrams in Figs. 1, 5, and 6. An out-
going characteristic in standard time and Milne time crosses
all slices because each level set of the corresponding time
function ends at the same asymptotic point. In hyperbolic foli-
ation, however, an outgoing null ray carrying energy will
intersect only a finite number of slices. Therefore, energy will
decay along a hyperbolic foliation. The propagation of such
energy packages along null rays is best visualized by the char-
acteristics of the metric plotted in Fig. 7. Outgoing character-
istics leave the domain through the conformal boundary only
in the case of the hyperbolic foliation (right-most panel).

D. Penrose coordinates are hyperboloidal

Penrose diagrams are important tools to visualize the
global causal structure of spacetimes. The associated coordi-
nates are constructed through an intermediate step of null
coordinates21,41–47 as reviewed in Sec. II. We saw in that
section that Penrose coordinates do not arise from the com-
pactification of standard coordinates. What is then the nature
of the coordinates that lead to Penrose coordinates when
compactified?

To answer this question, we “decompactify” the time
coordinate T via

tan T ¼ tanðV þ UÞ ¼ tan tan"1ðtþ xÞ þ tan"1ðt" xÞ
( )

¼ 2t

1" ðt2 " x2Þ
:

The Cauchy surface t ¼ 0 maps to T ¼ 0. The timelike infin-
ities t! 61 map to T ¼ 6p. The null cone from the origin
gives the limiting surfaces with T ¼ 6p=2 drawn as thick
lines in Fig. 8. We can get more insight into the nature of the
Penrose time function in the domain jTj 2 ð0; p) by setting
tan T + "1= ~T . We get,

t ¼ ~T6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2 þ ~T

2
q

; or ðt" ~TÞ2 " x2 ¼ 1þ ~T
2
:

FIG. 7. Null rays in the compactified space coordinate q 2 ð"p=2; p=2Þ for the standard time t on the left, Milne slicing g in the middle, and hyperbolic folia-
tion s on the right. Outgoing null rays in standard time and Milne slicing never reach the conformal boundary. Compare to the Penrose diagrams in Figs. 1, 5,
and 6.
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This expression is a combination of Milne slicing with time-
dependent radii (4), t2 " x2 ¼ g2, and time-shifted hyper-

bolic foliation (11), ðt" sÞ2 " x2 ¼ 1.The hyperbolas with

time-dependent radii

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~T

2
q

are shifted along the standard

time t by ~T (see Fig. 8). The hyperboloidal nature of the level
sets of T is obvious from the Penrose diagram. The straight
coordinate lines of the diagram intersect null infinity hori-
zontally and are spacelike globally. We conclude that
Penrose coordinates arise from the direct compactification of
hyperboloidal coordinates.

V. CONCLUSIONS

The main thesis of this paper is that hyperboloidal coordi-
nates are as natural in Lorentzian manifolds as spherical
coordinates are in Riemannian manifolds. Students of gen-
eral relativity are typically familiar with spherical coordi-
nates and their basic geometric properties. The analogy of

hyperboloids to spheres is useful as a teaching tool to intro-
duce counterintuitive features of Lorentzian manifolds
related to the unusual metric signature.

Hyperboloidal time functions provide the idealization of
surfaces of simultaneity for far-away observers. They maxi-
mize spatial volume for a given spacetime volume and have
significant advantages in the analysis of wave equations.
Unlike standard and Milne time slicings, time-shifted hyper-
boloidal foliations offer a regular global framework. This
regularity allows for an accurate depiction of energy decay,
crucial for understanding astrophysical processes and gravi-
tational wave propagation. The central role that hyperboloi-
dal coordinates play in the study of the global causal
structure of spacetimes is demonstrated also through the
Penrose diagrams drawn in compactified hyperboloidal coor-
dinates. The hyperbolic geometry of hyperboloidal surfaces
of simultaneity suggests many interesting questions from
holography to computational physics that should be a fruitful
research topic in the coming decades.
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