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ON FLAT MANIFOLD BUNDLES AND THE CONNECTIVITY

OF HAEFLIGER’S CLASSIFYING SPACES

SAM NARIMAN

Abstract. We investigate a conjecture due to Haefliger and Thurston in the
context of foliated manifold bundles. In this context, Haefliger-Thurston’s
conjecture predicts that every M-bundle over a manifold B where dimpBq ď
dimpMq is cobordant to a flat M-bundle. In particular, we study the bordism
class of flat M-bundles over low dimensional manifolds, comparing a finite
dimensional Lie group G with Diff0pGq.

1. Introduction

To build a classifying space for codimension n foliations, Haefliger considered a
more relaxed structure known as codimension n Haefliger structures and built a
classifying space BΓr ,`n for them (e.g. see [Hae71, Bot72]) where Γr ,`n is the etale
groupoid of germs of local orientation preserving C r -diffeomorphisms of Rn. There
is a natural map

ν : BΓr ,`n Ñ BGL
`
n pRq,

which classifies the oriented normal bundle to the C r -Haefliger structures of codi-
mension n. If we drop the regularity r , we mean the smooth case.

Studying the homotopy type of the classifying space BΓr ,`n has deep consequences
in foliation theory. In particular, it implies integrability of plane fields up to homo-
topy in a range of dimensions because of the h-principle theorems due to Thurston

about Haefliger’s structures ([Thu74b, Thu76]). Let BΓ
r

n denote the homotopy fiber
of ν. This space classifies those Haefliger structures with the trivial normal bundle.

Haefliger used Gromov-Phillips’ theorem in [Hae71] to show that BΓ
r

n is at least
n-connected. Thurston first proved ([Thu74a]) that the identity component of the
smooth diffeomorphism group of any compact manifold is a simple group and used
it to show that that BΓn is pn ` 1q-connected and shortly after Mather ([Mat74,

Section 7]) proved the same statement for BΓ
r

n when r ‰ dimpMq ` 1.
Haefliger introduced and calculated differentiable cohomology of BΓn in [Hae79]

and showed that it vanishes up to degree 2n. And he speculated ([Hae79, Section
6]) the possibility that BΓn might be 2n-connected. Thurston also stated ([Thu74a])

this range of connectivity for BΓ
r

n as a conjecture. Using Mather-Thurston’s theory
(see [Mat11, Nar23]), one could equivalently state this conjecture in the context of
manifold bundles. Let Diffr pMq denote the group of C r -orientation preserving dif-
feomorphisms of a smooth manifold M with the C r -Whitney topology. We decorate
it with superscript δ and subscript c if we consider the same group with discrete
topology and its subgroup of compactly supported diffeomorphisms respectively.
The identity homomorphism between the groups Diff

r
cpMqδ Ñ Diff

r
cpMq induces

the map between classifying spaces

(1.1) η : BDiff
r
cpMqδ Ñ BDiff

r
cpMq.

Conjecture 1.2 (Haefliger-Thurston). Let M be an oriented closed manifold. The

map η is a homology isomorphism in degrees less than or equal to dimpMq and is a

surjection on homology in degree dimpMq ` 1.
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Geometrically, this conjecture is equivalent to saying that for every smooth M-
bundle M Ñ E Ñ B where B is a manifold and dimpBq ď dimpMq, there exists a
bordism W from B to another manifold B 1 and an M-bundle M Ñ K Ñ W such
that when it is restricted to B, it is isomorphic to E Ñ B and when it is restricted
to B 1, it is a flat M-bundle i.e. it is induced by a representation π1pB 1q Ñ Diff

δpMq.

Remark 1.3. This conjecture can be stated for C r -diffeomorphisms for all regular-
ities r . In fact for r “ 0, it is a consequence of Mather’s theorem ([Mat71]) that η
induces a homology isomorphism in all degrees and the same holds for r “ 1 as a
consequence of Tsuboi’s remarkable theorem ([Tsu89]).

This conjecture in the smooth category seems to be out of reach at this point
but in this paper, we want to investigate certain low dimensional predictions of this
conjecture. In particular, we consider certain cases to investigate surjectivity and
injectivity of η˚ in low homological degrees.

Remark 1.4. Using the work of Peter Greenberg ([Gre92]) we shall prove in a sep-
arate paper [Nar22], new connectivity results for the curious case of PL-foliations
in codimension 2. Then using the version of Mather-Thurston’s theorem for PL
homeomorphisms ([Nar23]) due to the author, we prove the perfectness of PL home-
omorphisms of surfaces that are isotopic to the identity which answers a question
([Eps70, Section 3]) of Epstein in dimension 2.

1.1. On the surjectivity part of Conjecture 1.2 in low degrees. The first
nontrivial homological degree is the case ˚ “ 3. The fact that η˚ induces an
isomorphism in ˚ “ 1 and it is surjective for ˚ “ 2 is a consequence of Thurston’s
theorem ([Thu74a]) that the identity component Diffδ

0pMq is a simple group for any

closed smooth manifold M . Let BDiffpMq denote the homotopy fiber of the map

η. Then Thurston’s simplicity result implies that H1pBDiffpMq;Zq “ 0 which in
particular leads to surjectivity of η˚ for ˚ ď 2.

When the dimension of M is 2 or 3, we know a lot about the homotopy type of
Diff0pMq. In particular, in dimension 2, if a surface Σg has genus g larger than 1,
then Diff0pΣg q is contractible ([EE69]). So the surjectivity of η˚ for the identity
component is obvious. In [Nar17, Theorem 3.17] for the entire group DiffpΣg q, we
also proved that for the case of surfaces, the natural map

η˚ : H3pBDiffδpΣg q;Zq Ñ H3pBDiffpΣg q;Zq,

is surjective. It is known that for g ą 3, the group H3pBDiffpΣg q;Zq is torsion but
nonetheless we have surjectivity in degree 3 with integral coefficients.

Remark 1.5. For a connected finite dimensional Lie group G , the group H3pBG ;Zq
is finite. Hence by [Mil83, Corollary 2 section 3] (see also [Mil83, Lemma 6]) the
map H3pBG δ ;Zq Ñ H3pBG ;Zq is surjective.

Therefore, the first nontrivial case of Conjecture 1.2 for the identity component
Diff0pMq is when dimpMq “ 3 and ˚ “ 3. As a consequence of the resolution of
the generalized Smale’s conjecture ([Hat83, Hat76, Iva76, Gab01, HKMR12, MS13,
BK19, BK21]) we know about the homotopy type of Diff0pMq whenM is a geometric
3-manifold. In particular, in many cases we have H3pBDiff0pMq;Qq “ 0 but one
interesting example is the case M – S1 ˆ S2 where Hatcher’s theorem ([Hat81])
implies that H3pBDiff0pS1 ˆ S2q;Qq “ Q. In Section 2, we prove that the natural
map

η˚ : H3pBDiffδ
0pS1 ˆ S2q;Zq Ñ H3pBDiff0pS1 ˆ S2q;Zq,

is surjective. And with rational coefficients, we prove the following more general
result.
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Theorem 1.6. Let M be a closed manifold such that dimpMq ı 1 mod 4, then the

map

η˚ : H3pBDiffδ
0pMq;Qq Ñ H3pBDiff0pMq;Qq,

is surjective.

Remark 1.7. We expect that one might be able to drop the hypothesis dimpMq ı
1 mod 4. As we shall see in Section 2, an affirmative answer to a question posed by
Vogt ([Lan94, Problem F.2.1]) is a step towards making this hypothesis unnecessary.

1.2. On the injectivity part of Conjecture 1.2 in low degrees. The injectiv-
ity part specially for regularities seems to be notoriously difficult. We instead try
to investigate some of its predictions. The only results known in this direction is
due to Tsuboi in low regularities (see [Tsu85, Tsu89]). His work implies that

η : BDiffr ,δpMq Ñ BDiff
r pMq,

induces a homology isomorphism in all degrees for r “ 1 and in general it induces
a homology isomorphism in degrees less m where r ă n`1

m
´ 1. In particular, for

C8-diffeomorphisms, it is still open that whether

η˚ : H2pBDiffδpMq;Zq Ñ H2pBDiffpMq;Zq,

is injective. To prove these injectivity results, Tsuboi ([Tsu85, Tsu89]) extensively

studied the vanishing of H˚pBDiffpMq;Zq in low homological degrees. One presum-

ably easier question would be whether HkpBDiff r pMq;Zq is independent of M for
k ď dimpMq or for a codimension zero embedding N ãÑ M , whether the natural
map

HkpBDiff r pN , Bq;Zq Ñ HkpBDiff r pM , Bq;Zq,

is surjective for k ď dimpMq. We shall follow this perspective in low dimensions.
There are natural ways to build cycles in group homology of diffeomorphism groups
and use Haefliger-Thurston’s conjecture to predict that they are trivial. Proving
these predictions, in each separate example seem to already be very nontrivial and
we think they are interesting on their own. For example, Tsuboi used the flow of
vector fields to build abelian cycles ([Tsu88, Tsu13]) in diffeomorphism groups and
proved their triviality for codimension one foliations and conjectured the same in
all dimensions.

Here we consider another source of natural cycles in group homology of diffeo-
morphisms by letting a Lie group G act on itself. Let G be a connected Lie group.
The group homology or the homology of the space BG δ has been extensively stud-
ied for certain Lie groups since it is related to Milnor’s conjecture ([Mil83]) and
also to scissors congruence (see [DPS88, Sah89, Sah86] and references therein). It
is a deep result of Sah-Wagoner ([SW77, Theorem 1.28]) that for any connected Lie
group G , the second group homology H2pG ,Zq has a quotient group K2pCq`, the
positive part of the second K-group of C which in particular is a Q-vector space of
dimension equal to the continuum. So if we consider the natural map

BG δ Ñ BDiff
r ,δ
0 pGq,

we can map nontrivial cycles in H˚pBG δ;Zq to H˚pBDiffr ,δ
0 pGq;Zq. As we shall see,

in low regularity, we have

Theorem 1.8. For all compact or complex semi-simple Lie groups, the map

H˚pBG δ ;Qq Ñ H˚pBHomeoδ0pGq;Qq,

is a trivial map. The same holds for Diff
1
0pGq.
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Geometrically, a nontrivial element in HnpBG δ;Qq can be represented by a flat
G -bundle over a manifold Mn that cannot be extended to a flat G bundle over a
manifold W n`1 such that BW “ M . So the above theorem says (up to torsion) any
such bundle bounds a flat Homeo0pGq-bundle. However, in higher regularities, we
could only show that

Theorem 1.9. The map

H2pBG δ;Qq Ñ H2pBDiffr ,δ
0 pGq;Qq,

is a trivial for any noncompact Lie group, abelian Lie group and also in a special

case G “ SU2.

Theorem 1.10. For a complex semisimple Lie group G , the map

pαr q˚ : H˚pBG δ
;Qq Ñ H˚pBDiff r ,δ

0 pGq;Qq,

is trivial for ˚ ď dimpG{K q ` 1 where K is a maximal compact Lie subgroup.

However we consider continuous group cohomology, as we shall see in Section 3,
we can drop the hypothesis on the degree.

Acknowledgement. The author was partially supported by NSF CAREER Grant
DMS-2239106, NSF DMS-2113828 and Simons Foundation (855209, SN). The au-
thor thanks Gael Meigniez for the discussion about Haefliger-Thurston’s conjecture.
The author also thanks Mike Freedman for the discussion about Section 3. He is
also grateful to Jonathan Bowden, Sander Kupers and Søren Galatius for their
comments.

2. Making manifold bundles flat over 3-manifolds up to bordism

2.1. Background. Let Diff
r pMq denote the group of C r -diffeomorphisms of a

smooth manifold M with the C r -Whitney topology. We decorate it with
superscript δ and subscript c if we consider the same group with discrete topology
and the subgroup of compactly supported diffeomorphisms respectively. If we
drop r , we mean smooth diffeomorphisms. Recall that one can associate to any
topological group G , the classifying space BG which classifies principal bundles
whose group structures are G . The identity homomorphism Diff

r
cpMqδ Ñ Diff

r
cpMq

induces the map between classifying spaces

η : BDiff
r
cpMqδ Ñ BDiff

r
cpMq.

Thurston in fact studied BDiff
r
cpMq which is the homotopy fiber of the map η.

This space classifies foliated trivialM-bundles. One can give a semi-simplicial model

for BDiff
r
cpMq where the set of k-simplicies are the set of foliations on the trivial

bundle ∆k ˆM Ñ ∆k that are transverse to the fibers and whose holonomies lie in
Diff

r
cpMq. Thurston proved an h-principle type theorem that the geometric object

BDiff
r
cpMq is homology isomorphic to the space of compactly supported sections of a

bundle overM which is more amenable to tools from algebraic topology. To explain
this bundle, let Γrn denote the topological groupoid whose space of objects is Rn and
space of morphisms is given by germs of C r -diffeomorphisms between two points in
Rn with a sheaf topology (see [Hae71]). There is a natural map

ν : BΓrn Ñ BGLnpRq,

induced by the derivatives of germs. Let BΓrn denote the homotopy fiber of the
map ν. Let τM : M Ñ BGLnpRq be the map that classifies the tangent bundle and
τ˚
Mpνq be the bundle over M induced by the pullback of the map ν via τM . Fix a
section s0 of this bundle. For any other section s, we can define the support of s to
be the set of points x P M where spxq ‰ s0pxq. Let Sectcpτ˚

Mpνqq be the subspace
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of compactly supported sections of the bundle τ˚
Mpνq Ñ M . Alternatively, it is

homotopy equivalent to the space of lifts α of the map τM in the diagmram

M BGLnpRq,

BΓrn

τM

να

Mather-Thurston’s theorem [Mat11] says that there is a map

BDiff
r
cpMq Ñ Sectcpτ˚

M pνqq, which induces a homology isomorphism.
Note that if M is parallelizable, the map τM is null-homotopic, so the space of

lifts α is homotopy equivalent to the space of maps MappM , BΓnq.
We shall use the following standard fact about homotopy groups of mapping

spaces. Suppose M is an n-dimensional connected manifold and X is an pn ` kq-
connected CW complex. Note that πi pMappM ,X qq “ rS i ,MappM ,X qs where the
bracket denotes pointed homotopy classes. Now using adjunction and the cellular
approximation imply the following fact. Then πi pMappM ,X qq “ 0 for i ď k and
πk`1pMappM ,X qq “ πn`k`1pX q.

2.2. Proof of Theorem 1.6. Let Diff0pMq be the identity component of DiffpMq.
Sometimes it is easier to work with the identity component first. Using the short
exact sequence Diff0pMq Ñ DiffpMq Ñ π0pDiffpMqq and comparison of Hochschild-
Serre spectral sequences, it is easy to see that Haefliger-Thurston’s conjecture can
be deduced from the same statement for the map η : BDiffδ

0pMq Ñ BDiff0pMq.
Now suppose that we have an M-bundle over a 3-manifold whose bundle group

structure is Diff0pMq. To make this bundle flat up to bordism (see also [Fre20]) we
want to see whether the map

η˚ : H3pBDiffδ
0pMq;Zq Ñ H3pBDiff0pMq;Zq,

is surjective. Let us first consider an interesting nontrivial case where M – S1 ˆS2.
Using the perfectness of Diffδ

0pMq, We know that the BDiff0pMq, homotopy fiber
of η has vanishing first homology for any manifold M . And by Mather-Thurston’s
theorem ([Mat11]), since 3-manifolds M are parallelizable, BDiff0pMq is homol-
ogy isomorphic to the space of maps MappM , BΓ3q. But by Thurston’s theorem

([Thu74a]) BΓn is at least pn ` 1q-connected. Therefore, the space MappM , BΓ3q is
simply connected, so we have

(2.1) H2pMappM , BΓ3q;Zq – π2pMappM , BΓ3qq – π5pBΓ3q,

where the first isomorphism is by the Hurewicz theorem and the second is given
by the above standard fact about mapping spaces. On the other hand, by the
same argument H2pBDiffcpR3q;Zq is also isomorphic to π5pBΓ3q. Therefore, for all
embeddings of an open disk R3

ãÑ M , the map

BDiffcpR3q Ñ BDiff0pMq,

induces an isomorphism on H2. Note that BDiff0pMq is simply connected, so to
prove that η˚ is surjective on H3, it is enough to prove the following d3 differential

in the Serre spectral sequence for BDiff0pMq Ñ BDiff
δ
0pMq Ñ BDiff0pMq is trivial,

d3 : H3pBDiff0pMq;Zq Ñ H2pBDiff0pMq;Zq.

For many geometric 3-manifolds for which we know the homotopy type of Diff0pMq
by the generalized Smale’s conjecture, H3pBDiff0pMq;Zq “ 0. Hence, for those
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3-manifolds, the same statement follows directly from the generalized Smale’s con-
jecture. But for the case M – S1 ˆ S2 where H3pBDiff0pMq;Zq “ Z , we show that
the above differential vanishes by comparison of spectral sequences.

First let N – r0, 1s ˆ S2 be a submanifold of M such that N ãÑ M induces an
isomorphism on π2. Again by Hatcher’s theorem (see listed of equivalent statements
in [Hat83, Appendix]) the group Diff0pN , rel Bq is homotopy equivalent to the base
point component of the loop space ΩSO3. Therefore, the map

BDiff0pN , rel Bq Ñ BDiff0pMq,

induces an isomorphism on H3. Since we have the commutative diagram

H3pBDiffδ
0pN , rel Bq;Zq H3pBDiff0pN , rel Bq;Zq

H3pBDiffδ
0pMq;Zq H3pBDiff0pMq;Zq,

–

it is enough to show that the horizontal map is surjective. But now by capping off
one of the sphere boundary components of N , we obtain an embedding N ãÑ D3

which induces a commutative diagram up to homotopy

BDiff
δ
0pN , rel Bq BDiff0pN , rel Bq

BDiff
δ
0pD3, rel Bq BDiff0pD3, rel Bq.

The comparison of the corresponding spectral sequences for N and D3 implies that
d3 factors through H3pBDiff0pD3, rel Bq;Zq

H3pBDiff0pN , rel Bq;Zq H2pBDiff0pN , rel Bq;Zq

H3pBDiff0pD3, rel Bq;Zq H2pBDiff0pD3, rel Bq;Zq.

d3

d3

–

Note that the fact that the right vertical map is an isomorphism follows from the iso-
morphism 2.1. On the other hand, by Hatcher’s theorem ([Hat83]) Diff0pD3, rel Bq
is contractible. Therefore, we have H3pBDiff0pD3, rel Bq;Zq “ 0 which implies that
d3 for N factors through a zero group. Hence, it is a trivial map. This was a special
case, that we could argue integrally. Now motivated by this example, let’s prove
Theorem 1.6.

Proof of Theorem 1.6. Recall M is a manifold whose dimpMq is not 1 modulo 4.
As we saw in the above example, it is enough to prove the following d3 differential
in the Serre spectral sequence for BDiff0pMq Ñ BDiff

δ
0pMq Ñ BDiff0pMq is trivial,

d3 : H3pBDiff0pMq;Zq Ñ H2pBDiff0pMq;Zq.

Now since BDiff0pMq is simply connected space, the Hurwicz map π3pBDiff0pMqq Ñ
H3pBDiff0pMq;Zq is surjective. On the other hand, the long exact sequence of

homotopy groups for the fibration BDiff0pMq Ñ BDiff
δ
0pMq Ñ BDiff0pMq implies

that π3pBDiff0pMqq – π2pBDiff0pMqq. Hence, to show that the differential d3 is
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trivial, it is enough to show that the Hurewicz map which is right vertical map in

H3pBDiff0pMq;Zq H2pBDiff0pMq;Zq

π3pBDiff0pMqq π2pBDiff0pMqq,

d3

–

h

is trivial. Now consider the following commutative diagram

π2pBDiff0pMqq H2pBDiff0pMq;Zq Hn`2pBΓn;Zq

π2pBDiffδ
0pMqq “ 0 H2pBDiffδ

0pMq;Zq Hn`2pBΓ`
n ;Zq.

h –

p

i

The top right horizontal map is an isomorphism by Mather-Thurston’s theorem
([Thu74a, Bottom of page 306]). And the map p is induced by considering elements

in H2pBDiffδ
0pMq;Zq as flat M-bundles over a surface so the total space is pn ` 2q-

dimensional with a codimension n-foliation which gives an element in Hn`2pBΓ`
n ;Zq.

Hence, to prove the theorem, it is enough to show that the map i is rationally
injective if n ı 1 mod 4. But to show that i is rationally injective, we shall consider
the Serre spectral sequence for the fibration

BΓn Ñ BΓ
`
n Ñ BGL`

n pRq.

Since by Thurston’s theorem ([Thu74a]) we know that BΓn is n ` 1 connected, it is
enough to show that the differential Hn`3pBGL`

n pRq;Qq Ñ Hn`2pBΓn;Qq is trivial.
But for n ı 1 mod 4, we know that Hn`3pBGL`

n pRq;Qq is trivial. �

Remark 2.2. To drop the hypothesis n ı 1 mod 4, we need to show that the trans-
gression map Hn`3pBGL`

n pRq;Qq Ñ Hn`2pBΓn;Qq is trivial. To determine this map,

one could look at the fibration GL`
n pRq

ι
ÝÑ BΓn Ñ BΓ`

n and E.Vogt in ([Lan94,
Problem F.2.1]) posed the question that whether ι is nullhomotopic.

2.3. Further discussion for different transverse structures. As we men-
tioned, the main evidence behind this conjecture 1.2 was Gelfand-Fuks compu-
tations of continuous Lie algebra cohomology of formal vector fields and also the
fact there are no secondary characteristic classes known in degrees lower 2n ` 1 for
a codimension n foliation. The same line of thought can be applied to foliations
with other transverse structures. For example, for the case of having transverse
contact structure for a foliation with odd codimenison n “ 2k ` 1, Feigin ([Fei82])
computed the continuous Lie algebra cohomology of formal contact vector fields
and observed that it vanishes at least up to degree 2n. Similarly, one can formulate
the contact version of Conjecture 1.2.

Conjecture. Let pM ,αq be a contact manifold where M is a manifold of dimension

n “ 2k`1 and α is a smooth 1-form such that α^pdαqn is a volume form. The group

of orientation preserving C8-contactomorphisms consists of C8-diffeomorphisms

such that f ˚pαq “ λf α where λf is a non-vanishing positive smooth function on

M depending on f . Since we are working with orientation preserving automor-

phisms, we assume that λf is a positive function. Let ContcpM ,αq denote the

group of compactly supported contactomorphisms with induced topology from C8-

diffeomorphisms. Then the natural map

BContcpM ,αqδ Ñ BContcpM ,αq,
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induces a homology isomorphism up to degree n and a surjection on homology in

degree n ` 1.

Another interesting transverse structure for foliations is to have volume preserv-
ing holonomies. To formulate a similar question in terms of volume preserving
diffeomorphisms, let M be an n-dimensional manifold with a fixed volume form ω

and let DiffωpMq denote the group of volume preserving diffeomorphism equipped
with the C8-topology. It is interesting to find the largest homological degree so
that up to that degree the map

η : BDiffω,δpMq Ñ BDiff
ωpMq,

induces a homology isomorphism. Let BDiff
ωpMq denote the homotopy fiber of

η. McDuff ([McD83, §2]) showed that when the volume of ω is infinity the space

Diff
ω
c pRnq has a nontrivial pn ´ 1q-th homology. And in fact, Hurder ([Hur83])

proved that the classifying space of Haefliger structures preserving volume form

with a trivial normal bundle BΓ
vol

n for n ą 2 is not pn ` 3q-connected. Therefore,
the best we can expect in the volume preserving case for dimension bigger than 2

would be

Question. Let pM ,ωq be a pair of an n-dimensional manifold M and a volume

form ω. Then the map

η : BDiffω,δpMq Ñ BDiff
ωpMq,

induces a homology isomorphism on H2p´;Zq if dimpMq ą 2.

3. Flat G -bundles vs flat Diff0pGq-bundles

Let G be a finite dimensional connected Lie group. A flat G -bundle p : E Ñ M

over an oriented manifold M gives a cycle in the group homology of G δ. We can
consider such flat bundle as a flat Diff

r
0pGq-bundle by extending the holonomy

group via the map G Ñ Diff
r
0pGq, and ask whether it is a nontrivial cycle in group

homology of Diffr
0pGq. In other words, we have the induced map

αr : BG
δ Ñ BDiff

r ,δ
0 pGq,

and we want to study whether αr is homologically nontrivial. Conjecture 1.2 as we
explained in the introduction suggests that this map might be trivial on integral
homology in degrees less than dimpGq ` 1.

Proof of Theorem 1.8. Recall that Milnor proved ([Mil83]) that for a compact or
complex semi-simple Lie group H˚pBG δ ;Qq Ñ H˚pBG ;Qq is a trivial map. Given
the commutative diagram

H˚pBG δ;Qq H˚pBDiffr ,δ
0 pGq;Qq

H˚pBG ;Qq H˚pBDiffr
0pGq;Qq,

and Conjecture 1.2, in homological dimension less than dimpGq `1, we expect that
the top map is trivial. Note that since Conjecture 1.2 is known for r “ 0, 1 in all
homological degree, we already conclude the proof for low regularities. �



9

So we assume that the regularity r ą 1. Consider the following homotopy com-
mutative diagram

BG BDiff
r
0pGq

BG δ BDiff
r ,δ
0 pGq.

αr

αr

As we learned from Mather-Thurston’s theory, it is sometimes easier to work with

BDiff
r
0pGq first. So we work with αr instead and in fact for compact Lie group or

complex semisimple groups, studying αr would be enough for our purpose because
of the following lemma.

Lemma 3.1. For a compact Lie group or a complex semisimple group G , if the

map αr induces a trivial map on Hkp´;Qq so does αr .

Proof. Dupont ([Dup94, Theorem 3.1]) and Brylinski ([Bry93]) showed that the
Serre spectral sequence for the fibration

G Ñ BG Ñ BG δ
,

collapses rationally if G is a compact or complex semisimple Lie group. Therefore,
in particular in these cases, the map

H˚pBG ;Qq ։ H˚pBG δ ;Qq,

is surjective. So if αr induces a trivial map on rational homology in some degree,
so will be αr . �

Theorem 3.2. Let G be a real Lie group and K be a maximal compact subgroup.

Then, the induced map

αr ˚ : H˚pBG ;Zq Ñ H˚pBDiff r
0pGq;Zq,

is a trivial map for ˚ ď dimpG{K q ` 1.

Proof. In fact, we show that the group H˚pBDiffr
0pGq;Zq is trivial for

˚ ď dimpG{K q ` 1. Since G is parallelizable, by Mather-Thurston’s theorem we
have the homology isomorphism

BDiff
r
0pGq Ñ MappG , BΓdimpGqq.

Since G is homotopy equivalent to its maximal compact subgroup we have

MappG , BΓdimpGqq
»

ÝÑ MappK , BΓdimpGqq. On the other hand, by Thurston’s

theorem we know that BΓdimpGq is at least dimpGq ` 1 connected. Therefore, by
the fact about homotopy groups of mapping spaces in subsection 2.1,
MappK , BΓdimpGqq is at least dimpGq ´ dimpK q ` 1-connected. �

Corollary 3.3. For a complex semisimple Lie group G , the map

pαr q˚ : H˚pBG δ ;Qq Ñ H˚pBDiff r ,δ
0 pGq;Qq,

is trivial for ˚ ď dimpG{K q ` 1.

Let us briefly remark that if we consider the corresponding maps in continu-
ous cohomology theories, one gets a trivial map in all degrees. It is a well known
theorem of van Est that the continuous cohomology H˚

contpG ;Rq is isomorphic to
the relative Lie algebra cohomology H˚pg, kq where k is the Lie algebra of maxi-

mal compact subgroup. Since BG is the realization of the etale groupoid given by
the action of G δ on G , one can similarly define the continuous (smooth) cohomol-

ogy H˚
contpBG ;Rq as in [Hae79, Sta78]. And there is a version of van Est which



10 SAM NARIMAN

says that the continuous cohomology H˚
contpBG ;Rq is isomorphic to the Lie algebra

cohomology H˚pgq. Hence, we have a commutative diagram

H˚
contpBG ;Rq H˚pgq

H˚
contpG ;Rq H˚pg, kq.

–

–

Similarly Brown-Szczarba ([BS94]) proved that H˚
contpBDiff

r
0pMq;Rq is isomorphic

to the continuous Lie algebra cohomology (aka Gelfand-Fuks cohomology)
H˚pVectpMqq. So αr on the level of the continuous cohomology is the map

H˚pVectpGqq Ñ H˚pgq.

Interestingly, this map is trivial in all degrees. Because, it is consequence of Bott-
Segal’s theorem ([BS77]) that H˚pVectpMqq is trivial in degrees less than dimpMq`1

and H˚pgq is trivial by definition for degrees above dimpGq. So as a consequence,
for a semisimple Lie group G , the map between smooth group cohomologies

H˚
contpDiff

r
0pGq;Rq Ñ H˚

contpG ;Rq,

is trivial in all degrees.
Now back to group homology with integer coefficients, recall that we know that

H1pBDiffr ,δ
0 pGq;Zq “ 0 for all r ‰ dimpGq`1. Hence, the first nontrivial homological

degree that αr could be nontrivial for r ‰ dimpGq ` 1 is

pαr q˚ : H2pBG δ
;Zq Ñ H2pBDiff r ,δ

0 pGq;Zq.

Sah-Wagoner ([SW77]) proved that for any connected Lie group G , the second group
homology H2pBG δ ;Zq has a quotient group equal to a Q-vector space of dimension
equal to the continuum. We consider the case where G is abelian or G “ SU2.

Theorem 3.4. Let G be a finite dimensional abelian connected Lie group or let it

be SU2 and r ‰ dimpGq ` 1, then the induced map

H2pBG δ;Qq Ñ H2pBDiff r ,δ
0 pGq;Qq

is trivial.

Proof. First let us consider the abelian case. If G is not compact, then G –
Rk ˆ T n for some k ą 0 and the group homology H˚pBpRk qδ ˆ BpT nqδ;Qq –
H˚pBpRk qδ;Qq ˆ H˚pBpT nqδ;Qq. We show that cycles in H˚pBpRkqδ;Qq map triv-

ially into H2pBDiff r ,δ
0 pGq;Qq. Note that BpRk qδ Ñ BDiff

r ,δ
0 pGq factors as follows

BpRk qδ
β

ÝÑ BpAffpRkqqδ Ñ BDiff
r ,δ
0 pGq.

There is a trick that apparently goes back to Quillen that the group homomor-
phism AffpRk q Ñ GLkpRq induces an isomorphism on rational group homology (see
[dLHM83, Lemma 4]). Therefore, the map β induces a trivial map on H˚p´;Qq.

So we assume that G “ T k . We shall first consider the case k “ 1. Geometrically,
any 2-cycle in H2pS1;Zq is represented by a flat S1-bundle over the 2-torus. Equiva-
lently, on the total space which is diffeomorphic to T 3 we have a foliation transverse
to the S1-fibers whose holonomy is given by a representation ρ : π1pT 2q Ñ RotpS1q
of fundamental group of the base into the rotations of S1. Such a foliation is given
by the integrable form ω “ dz ´ pa.dx ` b.dyq where z is the coordinate of the fiber
and x and y are the coordinates of the base. But not only ω is integrable but also
it is closed. We learned from [MR74, Page 145] that two codimension 1-foliations
on M that are defined by closed 1-forms ω1 and ω2 are in fact concordant. Because
we can consider the foliation on M ˆ r0, 1s that is defined by the integrable 1-form
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dt ` f0ptq.ω1 ` f1ptq.ω1 where fi are smooth functions on the real line such that
Supppf0ptqq Ă r0, 1{4s and Supppf1ptqq Ă r3{4, 1s. So the foliation defined by ω is
concordant to the foliation defined by ω1 “ dz . But the foliation defined by ω1 is
foliated cobordant to zero since it is trivial horizontal foliation on S1 ˆ T 2 which
bounds the horizontal foliation on S1 ˆ pD2 ˆ S1q. Hence, the foliation defined by
ω gives a trivial cycle in H3pBΓr1;Zq.

On the other hand, by Mather-Thurston’s theorem H2pBDiff r ,δ
0 pS1q;Zq – Z ‘

H3pBΓr1;Zq where the Z summand is detected by the Euler class and H3pBΓr1;Zq –

H2pBDiffr ,δ
0 pS1q;Zq. But the Euler class of the foliation defined by ω on S1 ˆ T 2 is

trivial and by the above argument it is also a trivial cycle in H3pBΓr1;Zq. Hence,
the map

H2pBpS1qδ;Zq Ñ H2pBDiff r ,δ
0 pS1q;Zq,

is trivial.
Now for the case G “ T n, recall from the proof of Lemma 3.1 that

H2pBpT nq;Qq Ñ H2pBpT nqδ;Qq is surjective. So instead we shall prove that

H2pBpT nq;Qq Ñ H2pBDiffr
0pT nq;Qq,

is a trivial map. Recall that by Mather-Thurston’s theorem and the connectivity

of BΓ
r

n, for r ‰ dimpGq ` 1, so similar to isomorphisms in (2.1), we have

H2pBDiff r
0pT nq;Zq – H2pMappT n, BΓ

r

nq;Zq – Hn`2pBΓ
r

n;Zq.

Therefore, it is enough to show that any 2-cycle in H2pBpT nq;Qq which is a trivial-

ized flat T n-bundle over T 2 maps trivially into Hn`2pBΓ
r

n;Qq, which in turn follows
if we show that such flat T n-bundles over T 2 are trivial in the foliated cobordism
group. Since the holonomy group ρpZ2q ă T n, the foliation is given similarly to the
previous case by the Pfaffian system

ωi “ dzi ´ pai .dx ` bi .dyq “ 0 for all i ,

where zi are coordinates of T
n fiber and x and y are coordinates of T 2 base. Again

since these are all closed one forms, this foliation is foliated cobordant to the hori-
zontal foliation on T nˆT 2 given by dzi “ 0. But the horizontal foliation is trivial in

foliated cobordism group so the image of this 2-cycle is trivial in H2pBDiff r
0pT nq;Zq.

Now let G “ SU2. Mather proved in a letter to Sah ([Mat75], see also [AD79])
that

H2pBpS1qδ;Zq Ñ H2pBpSU2qδ;Zq,

is surjective. So any 2-cycle in H2pBpSU2qδ;Zq can be represented by a flat SU2-
bundle over T 2 whose holonomy group ρ : Z2 Ñ SU2 lies in the maximal torus
S1 ă SU2. In particular, the holonomy lies in a subgroup generated on a one-
parameter subgroup given by the flow of

u3 “

„

i 0

0 ´i



in the Lie algebra sup2q. Let u1 and u2 be the other generators of sup2q. So any
element in H2pBpSU2qδ;Zq can be represented by a foliation on SU2 ˆ T 2 that is
defined by the Pfaffian system

ω3 “ dz3 ´ pa.dx ` b.dyq “ 0

ω2 “ dz2 “ 0

ω1 “ dz1 “ 0

where dzi are one forms dual to ui in the Lie algebra sup2q. Since this Pfaffian system
is given by the vanishing of closed forms, by a similar argument for codimension 1-
foliations ([MR74, Page 145]), it is foliated cobordant to a foliation given by dzi “ 0
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for all i which is the horizontal codimension 3 foliation on SU2 ˆ T 2. Therefore, it
is trivial in the foliated cobordism group. �

The case of G “ SU2 is particularly interesting because its third group homology
is also known and there are non-abelian cycles in degree 3. In particular, it is known
([Dup01, Corollary 9.19]) that H3pBSUδ

2;Zq is isomorphic to Q{Z plus a nontrivial
Q vector space which is subspace of the scissors congruence PC. The summand
Q{Z is again generated by abelian cycles but the other summand that is detected
by the scissors congruence group is not generated by abelian cycles and Conjec-
ture 1.2 predicts that these cycles should be trivial too in H3pBDiffr ,δ

0 pS3q;Zq. In
this direction, Reznikov ([Rez99, Theorem 6.6]) proved that Chern-Simons classes

in H3pBSO4pRqδ;R{Zq lift to H3pBDiffvol ,δpS3q;R{Zq where the group Diff
vol ,δ
0 pS3q

is the volume preserving diffeomorphisms of S3 made discrete. However, because of
Conjecture 1.2, we expect that they cannot be further lifted to H3pBDiffδ

0pS3q;R{Zq.

Conjecture 3.5. Chern-Simons classes are in the cokernel of the map

H3pBDiffδ
0pS3q;R{Zq Ñ H3pBSO4pRqδ;R{Zq.
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