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ON FLAT MANIFOLD BUNDLES AND THE CONNECTIVITY
OF HAEFLIGER’S CLASSIFYING SPACES

SAM NARIMAN

ABSTRACT. We investigate a conjecture due to Haefliger and Thurston in the
context of foliated manifold bundles. In this context, Haefliger-Thurston’s
conjecture predicts that every M-bundle over a manifold B where dim(B) <
dim(M) is cobordant to a flat M-bundle. In particular, we study the bordism
class of flat M-bundles over low dimensional manifolds, comparing a finite
dimensional Lie group G with Diff(G).

1. INTRODUCTION

To build a classifying space for codimension n foliations, Haefliger considered a
more relaxed structure known as codimension n Haefliger structures and built a
classifying space BI';* for them (e.g. see [Hae71, Bot72]) where ;1 is the etale
groupoid of germs of local orientation preserving C’-diffeomorphisms of R”. There
is a natural map

v: Br'* — BGL (R),
which classifies the oriented normal bundle to the C"-Haefliger structures of codi-
mension n. If we drop the regularity r, we mean the smooth case.

Studying the homotopy type of the classifying space BI'* has deep consequences
in foliation theory. In particular, it implies integrability of plane fields up to homo-
topy in a range of dimensions because of the h-principle theorems due to Thurston
about Haefliger’s structures ([Thu74b, Thu76]). Let BT, denote the homotopy fiber
of v. This space classifies those Haefliger structures with the trivial normal bundle.
Haefliger used Gromov-Phillips’ theorem in [Hae71] to show that BT, is at least
n-connected. Thurston first proved ([Thu74a]) that the identity component of the
smooth diffeomorphism group of any compact manifold is a simple group and used
it to show that that BI, is (n + 1)-connected and shortly after Mather ([Mat74,
Section 7)) proved the same statement for BT, when r # dim(M) + 1.

Haefliger introduced and calculated differentiable cohomology of BI, in [Hae79]
and showed that it vanishes up to degree 2n. And he speculated ([Hae79, Section
6]) the possibility that BI, might be 2n-connected. Thurston also stated ([Thu74al)
this range of connectivity for W; as a conjecture. Using Mather-Thurston’s theory
(see [Matll, Nar23]), one could equivalently state this conjecture in the context of
manifold bundles. Let Diff"(M) denote the group of C"-orientation preserving dif-
feomorphisms of a smooth manifold M with the C"-Whitney topology. We decorate
it with superscript ¢ and subscript ¢ if we consider the same group with discrete
topology and its subgroup of compactly supported diffeomorphisms respectively.
The identity homomorphism between the groups DiffZ(M)? — Diff.(M) induces
the map between classifying spaces

(1.1) n : BDIff(M)? — BDIff’(M).

Conjecture 1.2 (Haefliger-Thurston). Let M be an oriented closed manifold. The
map 1 is a homology isomorphism in degrees less than or equal to dim(M) and is a
surjection on homology in degree dim(M) + 1.
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Geometrically, this conjecture is equivalent to saying that for every smooth M-
bundle M — E — B where B is a manifold and dim(B) < dim(M), there exists a
bordism W from B to another manifold B’ and an M-bundle M — K — W such
that when it is restricted to B, it is isomorphic to E — B and when it is restricted
to B, it is a flat M-bundle i.e. it is induced by a representation 7 (B’) — Diff® (M).

Remark 1.3. This conjecture can be stated for C"-diffeomorphisms for all regular-
ities r. In fact for r = 0, it is a consequence of Mather’s theorem ([Mat71]) that n
induces a homology isomorphism in all degrees and the same holds for r = 1 as a
consequence of Tsuboi’s remarkable theorem ([Tsu89)).

This conjecture in the smooth category seems to be out of reach at this point
but in this paper, we want to investigate certain low dimensional predictions of this
conjecture. In particular, we consider certain cases to investigate surjectivity and
injectivity of 7, in low homological degrees.

Remark 1.4. Using the work of Peter Greenberg ([Gre92]) we shall prove in a sep-
arate paper [Nar22], new connectivity results for the curious case of PL-foliations
in codimension 2. Then using the version of Mather-Thurston’s theorem for PL
homeomorphisms ([Nar23]) due to the author, we prove the perfectness of PL home-
omorphisms of surfaces that are isotopic to the identity which answers a question
([Eps70, Section 3]) of Epstein in dimension 2.

1.1. On the surjectivity part of Conjecture 1.2 in low degrees. The first
nontrivial homological degree is the case * = 3. The fact that 7, induces an
isomorphism in = = 1 and it is surjective for * = 2 is a consequence of Thurston’s
theorem ([Thu74a]) that the identity component Diff§(M) is a simple group for any
closed smooth manifold M. Let BDiff(M) denote the homotopy fiber of the map
7. Then Thurston’s simplicity result implies that Hy(BDiff(M);Z) = 0 which in
particular leads to surjectivity of n, for = < 2.

When the dimension of M is 2 or 3, we know a lot about the homotopy type of
Diffo(M). In particular, in dimension 2, if a surface ¥, has genus g larger than 1,
then Diffo(X,z) is contractible ([EE69]). So the surjectivity of 7, for the identity
component is obvious. In [Narl7, Theorem 3.17] for the entire group Diff(X,), we
also proved that for the case of surfaces, the natural map

1w H3(BDIff’(X,); Z) — H3(BDiff(X,); Z),

is surjective. It is known that for g > 3, the group H3(BDiff(¥Xz);Z) is torsion but
nonetheless we have surjectivity in degree 3 with integral coeflicients.

Remark 1.5. For a connected finite dimensional Lie group G, the group H3(BG; Z)
is finite. Hence by [Mil83, Corollary 2 section 3] (see also [Mil83, Lemma 6]) the
map H3(BG’;Z) — H3(BG;Z) is surjective.

Therefore, the first nontrivial case of Conjecture 1.2 for the identity component
Diffo(M) is when dim(M) = 3 and = = 3. As a consequence of the resolution of
the generalized Smale’s conjecture ([Hat83, Hat76, Iva76, Gab01, HKMR12, MS13,
BK19, BK21]) we know about the homotopy type of Diffo(M) when M is a geometric
3-manifold. In particular, in many cases we have H3(BDiffo(M); Q) = 0 but one
interesting example is the case M =~ S! x $2 where Hatcher’s theorem ([Hat81])
implies that H3(BDiffo(S! x $2); Q) = Q. In Section 2, we prove that the natural
map

N« H3(BDIff3(S* x §2); Z) — H3(BDiffo(S* x §2);7Z),
is surjective. And with rational coefficients, we prove the following more general
result.
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Theorem 1.6. Let M be a closed manifold such that dim(M) #£ 1 mod 4, then the
map

14 Ha(BDIff(M); Q) — Hs(BDiffo(M); Q),

18 surjective.

Remark 1.7. We expect that one might be able to drop the hypothesis dim(M) #
1 mod 4. As we shall see in Section 2, an affirmative answer to a question posed by
Vogt ([Lan94, Problem F.2.1]) is a step towards making this hypothesis unnecessary.

1.2. On the injectivity part of Conjecture 1.2 in low degrees. The injectiv-
ity part specially for regularities seems to be notoriously difficult. We instead try
to investigate some of its predictions. The only results known in this direction is
due to Tsuboi in low regularities (see [Tsu85, Tsu89]). His work implies that

n: BDIiff"® (M) — BDiff" (M),

induces a homology isomorphism in all degrees for r = 1 and in general it induces
a homology isomorphism in degrees less m where r < %1 — 1. In particular, for
C*-diffeomorphisms, it is still open that whether

N4 : Ha(BDIff’ (M); Z) — Hy(BDiff(M); Z),

is injective. To prove these injectivity results, Tsuboi ([Tsu85, Tsu89]) extensively
studied the vanishing of H, (BDiff(M); Z) in low homological degrees. One presum-
ably easier question would be whether Hy(BDiff"(M);Z) is independent of M for
k < dim(M) or for a codimension zero embedding N — M, whether the natural
map

Hi (BDIff (N, 0); Z) — H(BDiff" (M, 0); Z),

is surjective for k < dim(M). We shall follow this perspective in low dimensions.
There are natural ways to build cycles in group homology of diffeomorphism groups
and use Haefliger-Thurston’s conjecture to predict that they are trivial. Proving
these predictions, in each separate example seem to already be very nontrivial and
we think they are interesting on their own. For example, Tsuboi used the flow of
vector fields to build abelian cycles ([Tsu88, Tsul3]) in diffeomorphism groups and
proved their triviality for codimension one foliations and conjectured the same in
all dimensions.

Here we consider another source of natural cycles in group homology of diffeo-
morphisms by letting a Lie group G act on itself. Let G be a connected Lie group.
The group homology or the homology of the space BG? has been extensively stud-
ied for certain Lie groups since it is related to Milnor’s conjecture ([Mil83]) and
also to scissors congruence (see [DPS88, Sah89, Sah86] and references therein). It
is a deep result of Sah-Wagoner ([SW77, Theorem 1.28]) that for any connected Lie
group G, the second group homology H,(G,Z) has a quotient group K>(C)*, the
positive part of the second K-group of C which in particular is a Q-vector space of
dimension equal to the continuum. So if we consider the natural map

BG® — BDIffy°(G),

we can map nontrivial cycles in Hy (BG?; Z) to Hy (BDIff;°(G); Z). As we shall see,
in low regularity, we have

Theorem 1.8. For all compact or complex semi-simple Lie groups, the map
H.(BG’; Q) — Hy(BHomeo)(G); Q),
is a trivial map. The same holds for Diffy(G).
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Geometrically, a nontrivial element in H,(BG?; Q) can be represented by a flat
G-bundle over a manifold M" that cannot be extended to a flat G bundle over a
manifold W"*! such that dW = M. So the above theorem says (up to torsion) any
such bundle bounds a flat Homeog(G)-bundle. However, in higher regularities, we
could only show that

Theorem 1.9. The map
Hy(BG®; Q) — H,(BDIff°(G); Q),

is a trivial for any noncompact Lie group, abelian Lie group and also in a special

case G = SU,.
Theorem 1.10. For a complex semisimple Lie group G, the map
(ay)s: Hx(BG®; Q) — H,(BDiff;°(G); Q),
is trivial for = < dim(G/K) + 1 where K is a mazimal compact Lie subgroup.

However we consider continuous group cohomology, as we shall see in Section 3,
we can drop the hypothesis on the degree.
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DMS-2239106, NSF DMS-2113828 and Simons Foundation (855209, SN). The au-
thor thanks Gael Meigniez for the discussion about Haefliger-Thurston’s conjecture.
The author also thanks Mike Freedman for the discussion about Section 3. He is
also grateful to Jonathan Bowden, Sander Kupers and Sgren Galatius for their
comments.

2. MAKING MANIFOLD BUNDLES FLAT OVER 3-MANIFOLDS UP TO BORDISM

2.1. Background. Let Diff"(M) denote the group of C’-diffeomorphisms of a
smooth manifold M with the C’-Whitney topology. We decorate it with
superscript § and subscript ¢ if we consider the same group with discrete topology
and the subgroup of compactly supported diffeomorphisms respectively. If we
drop r, we mean smooth diffeomorphisms. Recall that one can associate to any
topological group G, the classifying space BG which classifies principal bundles
whose group structures are G. The identity homomorphism DiffL(M)° — Diff.(M)
induces the map between classifying spaces

7 : BDIff.(M)° — BDIff’(M).

Thurston in fact studied BDiff_(M) which is the homotopy fiber of the map 7.
This space classifies foliated trivial M-bundles. One can give a semi-simplicial model
for BDiffZ(M) where the set of k-simplicies are the set of foliations on the trivial
bundle A¥ x M — A that are transverse to the fibers and whose holonomies lie in
Diff_(M). Thurston proved an h-principle type theorem that the geometric object
BDiff_ (M) is homology isomorphic to the space of compactly supported sections of a
bundle over M which is more amenable to tools from algebraic topology. To explain
this bundle, let '], denote the topological groupoid whose space of objects is R” and
space of morphisms is given by germs of C"-diffeomorphisms between two points in
R" with a sheaf topology (see [Hae71]). There is a natural map

v: Bl — BGL,(R),

induced by the derivatives of germs. Let Bl denote the homotopy fiber of the
map v. Let 7y: M — BGL,(R) be the map that classifies the tangent bundle and
T (v) be the bundle over M induced by the pullback of the map v via 7. Fix a
section sy of this bundle. For any other section s, we can define the support of s to
be the set of points x € M where s(x) # sp(x). Let Sectc(75y(v)) be the subspace



5

of compactly supported sections of the bundle 7/,(v) — M. Alternatively, it is
homotopy equivalent to the space of lifts « of the map 7y in the diagmram

Bl

M BGL,(R),

Mather-Thurston’s  theorem  [Matll] says that there is a map
BDiff_(M) — Sectc (7 (v)), which induces a homology isomorphism.

Note that if M is parallelizable, the map 7y is null-homotopic, so the space of
lifts a is homotopy equivalent to the space of maps Map(M, BT ,).

We shall use the following standard fact about homotopy groups of mapping
spaces. Suppose M is an n-dimensional connected manifold and X is an (n + k)-
connected CW complex. Note that m;(Map(M, X)) = [S, Map(M, X)] where the
bracket denotes pointed homotopy classes. Now using adjunction and the cellular
approximation imply the following fact. Then m;(Map(M, X)) = 0 for i < k and
k1 (Map(M, X)) = Tnik+1(X).

2.2. Proof of Theorem 1.6. Let Diffo(M) be the identity component of Diff(M).
Sometimes it is easier to work with the identity component first. Using the short
exact sequence Diffo(M) — Diff(M) — mo(Diff(M)) and comparison of Hochschild-
Serre spectral sequences, it is easy to see that Haefliger-Thurston’s conjecture can
be deduced from the same statement for the map 7: BDiffy(M) — BDiffo(M).

Now suppose that we have an M-bundle over a 3-manifold whose bundle group
structure is Diffo(M). To make this bundle flat up to bordism (see also [Fre20]) we
want to see whether the map

s - H3(BDIff3(M); Z) — Hs(BDiffo(M); Z),

is surjective. Let us first consider an interesting nontrivial case where M =~ S1 x S2.
Using the perfectness of DiffS(M), We know that the BDiffo(M), homotopy fiber
of n has vanishing first homology for any manifold M. And by Mather-Thurston’s
theorem ([Matll]), since 3-manifolds M are parallelizable, BDiffo(M) is homol-
ogy isomorphic to the space of maps Map(M, Bl3). But by Thurston’s theorem
([Thu74a]) BT, is at least (n + 1)-connected. Therefore, the space Map(M, BI'3) is
simply connected, so we have

(2.1) Hy(Map(M, BF3); Z) = my(Map(M, BI3)) = 75(Bl3),

where the first isomorphism is by the Hurewicz theorem and the second is given
by the above standard fact about mapping spaces. On the other hand, by the
same argument H,(BDiff-(R3);Z) is also isomorphic to s (W3) Therefore, for all
embeddings of an open disk R3 < M, the map

BDIff.(R3) — BDiffo(M),

induces an isomorphism on H,. Note that BDiffo(M) is simply connected, so to

prove that 7, is surjective on Hs, it is enough to prove the following d5 differential

in the Serre spectral sequence for BDiffo(M) — BDIff}(M) — BDiffo(M) is trivial,
ds: Hs(BDiffo(M); Z) — Hy(BDiffo(M); Z).

For many geometric 3-manifolds for which we know the homotopy type of Diffo(M)
by the generalized Smale’s conjecture, H3(BDiffo(M);Z) = 0. Hence, for those
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3-manifolds, the same statement follows directly from the generalized Smale’s con-
jecture. But for the case M =~ S x 52 where H3(BDiffo(M);Z) = Z, we show that
the above differential vanishes by comparison of spectral sequences.

First let N =~ [0, 1] x S? be a submanifold of M such that N < M induces an
isomorphism on 7. Again by Hatcher’s theorem (see listed of equivalent statements
in [Hat83, Appendix]) the group Diffo(N, rel 0) is homotopy equivalent to the base
point component of the loop space 2SO3. Therefore, the map

BDiffo(N, rel &) — BDiffo(M),

induces an isomorphism on Hs. Since we have the commutative diagram

Hs(BDiffS (N, rel 0); Z) — H3(BDiffo(N, rel 0); Z)

| ;

Hs(BDiffS(M); Z) — H3(BDiffo(M); Z),

it is enough to show that the horizontal map is surjective. But now by capping off
one of the sphere boundary components of N, we obtain an embedding N < D3
which induces a commutative diagram up to homotopy

BDiff) (N, rel ) —— BDiffo(N, rel 0)

| |

BDIff3(D3, rel 9) — BDiffo(D3, rel 0).

The comparison of the corresponding spectral sequences for N and D3 implies that
ds factors through Hs(BDiffo(D3, rel 0); Z)

d -
H3(BDiffo(N, rel 8); Z) —— H,(BDiffo(N, rel 9); Z)

| -

d I S
H3(BDiffo(D3, rel 8); Z) —= Ha(BDiffo(D3, rel 8); Z).

Note that the fact that the right vertical map is an isomorphism follows from the iso-
morphism 2.1. On the other hand, by Hatcher’s theorem ([Hat83]) Diffo(D3, rel 0)
is contractible. Therefore, we have H3(BDiffo(D3, rel 0); Z) = 0 which implies that
ds for N factors through a zero group. Hence, it is a trivial map. This was a special
case, that we could argue integrally. Now motivated by this example, let’s prove
Theorem 1.6.

Proof of Theorem 1.6. Recall M is a manifold whose dim(M) is not 1 modulo 4.
As we saw in the above example, it is enough to prove the following ds differential
in the Serre spectral sequence for BDiffo(M) — BDIff}(M) — BDiffo(M) is trivial,

ds: Hs(BDiffg(M); Z) — H,(BDiffo(M); Z).

Now since BDiffg(M) is simply connected space, the Hurwicz map 3 (BDiffo(M)) —
Hs(BDiffo(M); Z) is surjective. On the other hand, the long exact sequence of
homotopy groups for the fibration BDiffo(M) — BDiffy(M) — BDiffo(M) implies
that m3(BDiffo(M)) =~ m(BDiffo(M)). Hence, to show that the differential ds is
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trivial, it is enough to show that the Hurewicz map which is right vertical map in

R

73(BDiffo(M)) —————— m,(BDiffo(M)),
is trivial. Now consider the following commutative diagram

JE— h R — ~ N
72 (BDiffg(M)) ——————— Hy(BDiffo(M); Z) ————— Hp12(Bl,; Z)

| J |

P
T (BDIffS(M)) = 0 ————— Hy(BDIffy(M); Z) —————— Ha12(BT; Z).

The top right horizontal map is an isomorphism by Mather-Thurston’s theorem
([Thu74a, Bottom of page 306]). And the map p is induced by considering elements
in Hy(BDIff(M); Z) as flat M-bundles over a surface so the total space is (n + 2)-
dimensional with a codimension n-foliation which gives an element in H,,(BI}; Z).
Hence, to prove the theorem, it is enough to show that the map / is rationally
injective if n #% 1 mod 4. But to show that / is rationally injective, we shall consider
the Serre spectral sequence for the fibration

Br, — Bl — BGL/(R).

Since by Thurston’s theorem ([Thu74a]) we know that Bl , is n + 1 connected, it is
enough to show that the differential H,,3(BGL (R); Q) — H,42(Bl,; Q) is trivial.
But for n # 1 mod 4, we know that H,,3(BGL} (R); Q) is trivial. O

Remark 2.2. To drop the hypothesis n Z 1 mod 4, we need to show that the trans-
gression map H,43(BGL; (R); Q) — H,42(Bl,; Q) is trivial. To determine this map,
one could look at the fibration GL(R) % Bl, — Bl and E.Vogt in ([Lan94,
Problem F.2.1]) posed the question that whether ¢ is nullhomotopic.

2.3. Further discussion for different transverse structures. As we men-
tioned, the main evidence behind this conjecture 1.2 was Gelfand-Fuks compu-
tations of continuous Lie algebra cohomology of formal vector fields and also the
fact there are no secondary characteristic classes known in degrees lower 2n + 1 for
a codimension n foliation. The same line of thought can be applied to foliations
with other transverse structures. For example, for the case of having transverse
contact structure for a foliation with odd codimenison n = 2k + 1, Feigin ([Fei82])
computed the continuous Lie algebra cohomology of formal contact vector fields
and observed that it vanishes at least up to degree 2n. Similarly, one can formulate
the contact version of Conjecture 1.2.

Conjecture. Let (M, «) be a contact manifold where M is a manifold of dimension
n = 2k+1 and « is a smooth 1-form such that an (da)™ is a volume form. The group
of orientation preserving C®-contactomorphisms consists of C®-diffeomorphisms
such that f*(a) = Ara where Af is a non-vanishing positive smooth function on
M depending on f. Since we are working with orientation preserving automor-
phisms, we assume that Af is a positive function. Let Cont.(M, ) denote the
group of compactly supported contactomorphisms with induced topology from C®-
diffeomorphisms. Then the natural map

BCont. (M, a)° — BCont.(M, @),
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induces a homology isomorphism up to degree n and a surjection on homology in
degree n + 1.

Another interesting transverse structure for foliations is to have volume preserv-
ing holonomies. To formulate a similar question in terms of volume preserving
diffeomorphisms, let M be an n-dimensional manifold with a fixed volume form w
and let Diff¥ (M) denote the group of volume preserving diffeomorphism equipped
with the C®-topology. It is interesting to find the largest homological degree so
that up to that degree the map

n: BDIff*? (M) — BDiff* (M),

induces a homology isomorphism. Let BDiff* (M) denote the homotopy fiber of
7. McDuff ([McD83, §2]) showed that when the volume of w is infinity the space
DiffY(R") has a nontrivial (n — 1)-th homology. And in fact, Hurder ([Hur83])
proved that the classifying space of Haefliger structures preserving volume form
with a trivial normal bundle WZOI for n > 2 is not (n + 3)-connected. Therefore,
the best we can expect in the volume preserving case for dimension bigger than 2
would be

Question. Let (M,w) be a pair of an n-dimensional manifold M and a volume
form w. Then the map

n: BDIff*"° (M) — BDiff* (M),

induces a homology isomorphism on Ha(—;7Z) if dim(M) > 2.

3. FLAT G-BUNDLES VS FLAT Diffg(G)-BUNDLES

Let G be a finite dimensional connected Lie group. A flat G-bundle p: E - M
over an oriented manifold M gives a cycle in the group homology of G°. We can
consider such flat bundle as a flat Diffy(G)-bundle by extending the holonomy
group via the map G — Diffg(G), and ask whether it is a nontrivial cycle in group
homology of Diffy(G). In other words, we have the induced map

o, : BG® — BDIffy°(G),

and we want to study whether «, is homologically nontrivial. Conjecture 1.2 as we
explained in the introduction suggests that this map might be trivial on integral
homology in degrees less than dim(G) + 1.

Proof of Theorem 1.8. Recall that Milnor proved ([Mil83]) that for a compact or
complex semi-simple Lie group Hy(BG%; Q) — Hy(BG; Q) is a trivial map. Given
the commutative diagram

H«(BG?; Q) — H,(BDiffy°(G); Q)

| |

H.(BG; Q) — H.(BDiff3(G); Q),

and Conjecture 1.2, in homological dimension less than dim(G) + 1, we expect that
the top map is trivial. Note that since Conjecture 1.2 is known for r = 0,1 in all
homological degree, we already conclude the proof for low regularities. O
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So we assume that the regularity r > 1. Consider the following homotopy com-
mutative diagram

o -
BG — BDiffy(G)

|,

BG® ——— BDIff;%(G).

As we learned from Mather-Thurston’s theory, it is sometimes easier to work with
BDiffy(G) first. So we work with @; instead and in fact for compact Lie group or
complex semisimple groups, studying @; would be enough for our purpose because
of the following lemma.

Lemma 3.1. For a compact Lie group or a complex semisimple group G, if the
map @, induces a trivial map on Hx(—; Q) so does .

Proof. Dupont ([Dup94, Theorem 3.1]) and Brylinski ([Bry93]) showed that the
Serre spectral sequence for the fibration

G —» BG — BG?,

collapses rationally if G is a compact or complex semisimple Lie group. Therefore,
in particular in these cases, the map

H«(BG; Q) - H«(BG’; Q),

is surjective. So if @, induces a trivial map on rational homology in some degree,
so will be ;. O

Theorem 3.2. Let G be a real Lie group and K be a mazximal compact subgroup.
Then, the induced map

@, Hy(BG;Z) — H,(BDiff((G); Z),
is a trivial map for = < dim(G/K) + 1.

Proof. In fact, we show that the group H,(BDiffy(G);Z) is trivial for
* < dim(G/K) + 1. Since G is parallelizable, by Mather-Thurston’s theorem we
have the homology isomorphism

BDiffy(G) — Map(G, Bl 4im(c))-

Since G is homotopy equivalent to its maximal compact subgroup we have
Map(G,ﬁdim(G)) = Map(K,ﬁdim(G)). On the other hand, by Thurston’s
theorem we know that Wdim(G) is at least dim(G) + 1 connected. Therefore, by
the fact about homotopy groups of mapping spaces in subsection 2.1,
Map(K, Bl gim()) is at least dim(G) — dim(K) + 1-connected. O

Corollary 3.3. For a complex semisimple Lie group G, the map
(o)t Hx(BG®; Q) — Hx(BDIff5"(G); Q),
is trivial for = < dim(G/K) + 1.

Let us briefly remark that if we consider the corresponding maps in continu-
ous cohomology theories, one gets a trivial map in all degrees. It is a well known
theorem of van Est that the continuous cohomology HX .(G;R) is isomorphic to
the relative Lie algebra cohomology H*(g, €) where £ is the Lie algebra of maxi-
mal compact subgroup. Since BG is the realization of the etale groupoid given by
the action of G? on G, one can similarly define the continuous (smooth) cohomol-

ogy HX,.(BG;R) as in [Hae79, Sta78]. And there is a version of van Est which

cont
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says that the continuous cohomology HX .(BG;R) is isomorphic to the Lie algebra

cont
cohomology H*(g). Hence, we have a commutative diagram

Hz,, (BG; R) +———— H*(g)
Hie (G R) «——— H*(g, ).

Similarly Brown-Szczarba ([BS94]) proved that HZ ., (BDiffg(M); R) is isomorphic
to the continuous Lie algebra cohomology (aka Gelfand-Fuks cohomology)

H*(Vect(M)). So @; on the level of the continuous cohomology is the map
H*(Vect(G)) — H*(g).

Interestingly, this map is trivial in all degrees. Because, it is consequence of Bott-

Segal’s theorem ([BS77]) that H*(Vect(M)) is trivial in degrees less than dim(M)+1

and H*(g) is trivial by definition for degrees above dim(G). So as a consequence,
for a semisimple Lie group G, the map between smooth group cohomologies

HE . (Diff5(G); R) — HZ ,(G:R),

cont cont

is trivial in all degrees.

Now back to group homology with integer coefficients, recall that we know that
H, (BDIff;°(G); Z) = 0 for all r # dim(G)+1. Hence, the first nontrivial homological
degree that a, could be nontrivial for r # dim(G) + 1 is

(ay)s: Ha(BG®; Z) — Ha(BDIff°(G); Z).

Sah-Wagoner ([SW77]) proved that for any connected Lie group G, the second group
homology H»(BG?;7Z) has a quotient group equal to a Q-vector space of dimension
equal to the continuum. We consider the case where G is abelian or G = SU,.

Theorem 3.4. Let G be a finite dimensional abelian connected Lie group or let it
be SU, and r # dim(G) + 1, then the induced map

H»(BG®; Q) — H,(BDIff°(G); Q)
is trivial.
Proof. First let us consider the abelian case. If G is not compact, then G
Rk x T" for some k > 0 and the group homology Hy(B(R¥)® x B(T")?; Q)
Hy(B(R¥)%: Q) x Hyx(B(T")%; Q). We show that cycles in Hy(B(R¥)?; Q) map triv-
fally into Ha(BDiffy°(G); Q). Note that B(R¥)? — BDiff§°(G) factors as follows

lle 11

B(R¥)? £, B(AfF(R¥))® — BDIff}°(G).

There is a trick that apparently goes back to Quillen that the group homomor-
phism Aff(R¥) — GL,(R) induces an isomorphism on rational group homology (see
[dLHMS83, Lemma 4]). Therefore, the map S induces a trivial map on Hy(—; Q).
So we assume that G = T*. We shall first consider the case k = 1. Geometrically,
any 2-cycle in Ha(S?1; Z) is represented by a flat S'-bundle over the 2-torus. Equiva-
lently, on the total space which is diffeomorphic to T3 we have a foliation transverse
to the S!-fibers whose holonomy is given by a representation p: 71 (T?2) — Rot(S?)
of fundamental group of the base into the rotations of S*. Such a foliation is given
by the integrable form w = dz — (a.dx + b.dy) where z is the coordinate of the fiber
and x and y are the coordinates of the base. But not only w is integrable but also
it is closed. We learned from [MR74, Page 145] that two codimension 1-foliations
on M that are defined by closed 1-forms w; and wy are in fact concordant. Because
we can consider the foliation on M x [0, 1] that is defined by the integrable 1-form
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dt + fo(t).wi + fi(t).wi where f; are smooth functions on the real line such that
Supp(f(t)) < [0,1/4] and Supp(f(t)) < [3/4,1]. So the foliation defined by w is
concordant to the foliation defined by w’ = dz. But the foliation defined by w’ is
foliated cobordant to zero since it is trivial horizontal foliation on S! x T2 which
bounds the horizontal foliation on S x (D? x S'). Hence, the foliation defined by
w gives a trivial cycle in H3(BI'[; Z).

On the other hand, by Mather-Thurston’s theorem Ha(BDiff5°(S');Z) ~ Z @
Hs(BT'}; Z) where the Z summand is detected by the Euler class and H3(Bl'{;Z) =~

H,(BDiff;° (S1); Z). But the Euler class of the foliation defined by w on S' x T2 is
trivial and by the above argument it is also a trivial cycle in H3(BI'};Z). Hence,
the map
Hy(B(SY)%; Z) — H,(BDiffy°(S); Z),
is trivial.
Now for the case G = T", recall from the proof of Lemma 3.1 that
Hy(B(T"); Q) — Ha(B(T")?; Q) is surjective. So instead we shall prove that

H2(B(T"); Q) — Hz(BDiffs(T7); Q),

is a trivial map. Recall that by Mather-Thurston’s theorem and the connectivity
of BT, for r # dim(G) + 1, so similar to isomorphisms in (2.1), we have

Hy (BDIfF(T"); Z) = Hy(Map(T", BT ,); Z) = Hp2(BT ;7).

Therefore, it is enough to show that any 2-cycle in Ha(B(T"); Q) which is a trivial-
ized flat T"-bundle over T2 maps trivially into Hn+2(ﬁ;; Q), which in turn follows
if we show that such flat T"-bundles over T2 are trivial in the foliated cobordism
group. Since the holonomy group p(Z?) < T, the foliation is given similarly to the
previous case by the Pfaffian system

wj = dz; — (a,-.dx + b;.dy) =0 for all /,

where z; are coordinates of T" fiber and x and y are coordinates of T2 base. Again
since these are all closed one forms, this foliation is foliated cobordant to the hori-
zontal foliation on 7" x T2 given by dz; = 0. But the horizontal foliation is trivial in
foliated cobordism group so the image of this 2-cycle is trivial in Ho(BDiffo(T"); Z).

Now let G = SU,. Mather proved in a letter to Sah ([Mat75], see also [AD79])
that

Ha(B(S1)* Z) — Ha(B(SU2)": Z),

is surjective. So any 2-cycle in H(B(SU2)%; Z) can be represented by a flat SUp-
bundle over T2 whose holonomy group p: Z?> — SU, lies in the maximal torus
S! < SU,. In particular, the holonomy lies in a subgroup generated on a one-
parameter subgroup given by the flow of

i o
i [V

in the Lie algebra su(2). Let u; and up be the other generators of su(2). So any
element in H,(B(SU,)% Z) can be represented by a foliation on SU, x T2 that is
defined by the Pfaffian system
w3 = dzz — (a.dx + b.dy) =0
Wy = d22 =0
w1 = d21 =0
where dz; are one forms dual to u; in the Lie algebra su(2). Since this Pfaffian system

is given by the vanishing of closed forms, by a similar argument for codimension 1-
foliations ([MR74, Page 145]), it is foliated cobordant to a foliation given by dz; = 0
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for all i which is the horizontal codimension 3 foliation on SU; x T?2. Therefore, it
is trivial in the foliated cobordism group. (]

The case of G = SU, is particularly interesting because its third group homology
is also known and there are non-abelian cycles in degree 3. In particular, it is known
([Dup01, Corollary 9.19]) that Hs(BSUS; Z) is isomorphic to Q/Z plus a nontrivial
Q vector space which is subspace of the scissors congruence Pc. The summand
Q/Z is again generated by abelian cycles but the other summand that is detected
by the scissors congruence group is not generated by abelian cycles and Conjec-
ture 1.2 predicts that these cycles should be trivial too in Hz(BDiff;’(S3); Z). In
this direction, Reznikov ([Rez99, Theorem 6.6]) proved that Chern-Simons classes
in H3(BSO4(R)?; R/Z) lift to H3(BDiff*"*(53%); R/Z) where the group Diff§(S3)
is the volume preserving diffeomorphisms of $3 made discrete. However, because of
Conjecture 1.2, we expect that they cannot be further lifted to H3(BDiff$(S3); R/Z).

Conjecture 3.5. Chern-Simons classes are in the cokernel of the map

H3(BDIff3(S%); R/Z) — H3(BSO4(R)%; R/Z).
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