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K bstract

Test flakiness, a non-deterministic behavior of builds irrelevant to
code changes, is a major and continuing impediment to deliver-
ing reliable software. The very few techniques for the automated
repair of test flakiness are specifically crafted to repair either Order-
Dependent (OD) or Implementation-Dependent (ID) flakiness. They
are also all symbolic approaches, ie., they leverage program analy-
sis to detect and repair known test flakiness patterns and root causes,
failing to generalize. To bridge the gap, we propose FLAKYH ocToRr,
a neuro-symbolic technique that combines the power of LLMs—
generalizability—and program analysis—soundness—to fix different
types of test flakiness.

Our extensive evaluation using 873 confirmed flaky tests (332
OD and 541 ID) from 243 real-world projects demonstrates the
ability of FLAKYX OCTOR in repairing flakiness, achieving 57% (OD)
and 59% (ID) success rate. Comparing to three alternative flakiness
repair approaches, FLAKYX OCTOR can repair 8% more ID tests than
DexFix, 12% more OD flaky tests than ODRepair, and 17% more
OD flaky tests than iFixFlakies. Regardless of underlying LLM, the
non-LIM components of FLAKYX ocToR contribute to 12-31 % of
the overall performance, i.e., while part of the FLAKYH ocTOR power
is from using LLMs, they are not good enough to repair flaky tests
in real-world projects alone. What makes the proposed technique
superior to related research on test flakiness mitigation specifically
and program repair, in general, is repairing 79 previously unfixed
flaky tests in real-world projects. We opened pull requests for all
cases with corresponding patches; 19 of them were accepted and
merged at the time of submission.
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1 Introduction

Test flakiness is the problem of observing non-determinism in test
execution results without any changes in the code under tests. This
phenomenon can drastically impact the effectiveness of regression
testing in software products. The root cause of test flakiness is code
smells in the test suite. However, developers cannot distinguish
if the test failure is due to a bug in the code or flakiness, which
can waste the valuable time of developers [21] and computing
resources [ 25, 37] without resolving the underlying issue.

To minimize the negative impact of test flakiness, several tech-
niques have been proposed to characterize, detect, and repair them.
Compared to detecting flakiness, there is a dearth of work focus-
ing on their repair. B1l such techniques repair a specific type of
test flakiness. For example, iFixFlakies [44], iPFlakies [47], and
ODRepair [32] are all designed to repair Order-Dependent (OD)
flakiness, which non-deterministically pass or fail under different
test execution orders. DexFix [59] proposes a set of domain-specific
strategies to repair Implementation-Dependent (ID) flaky tests,
which happen due to unrealistic assumptions about non-ordered
collections. TRaF [40] repairs asynchronous waits, a specific type of
Non-Order-Dependent (NOD) tests that non-deterministically pass
or fail due to concurrency issues or dependency on the execution
platform, memory, and time.

Regardless of the flakiness category of interest, all prior tech-
niques are symbolic, !, i.e., they use human knowledge to devise
and implement analytical pattern-based rules for repairing test flak-
iness. M5 a result, they cannot generalize to repairing flaky tests
with unknown root causes that analytical rules do not implement.
More importantly, their abilities are limited due to the potential lim-
itation of underlying program analysis techniques in generalizing
to new programming features and various development styles.

Large Language Models (LLMs) are effective in generative pro-
gramming tasks, making them a natural solution for overcoming
the generalizability limitations of fixing flaky tests. However, LLMs
also suffer from a series of limitations, namely, (L1) generating (syn-
tactically and semantically) incorrect code [33, 34, 38], (L2) the need
for proper context in the prompt to perform reasonably [39, 45, 54],
and (L3) limited context window, which makes leveraging them
for real-world programs and test suites challenging [34, 38, 39]. To
use LLMs for fixing flakiness in real-world problems, one can miti-
gate these challenges by augmenting LLMs with sound symbolic
approaches to resolve syntactic issues and validate the generated
code (L1), and extract the minimum amount of relevant context for
the prompt to achieve the best possible result (L2 and L3).

!Please note that the keyword symbolic here refers to a general term of symbolic
learning in contrast to machine learning and should not be confused with symbolic
execution. We refer to combining LLMs and program analysis as a neuro-symbolic

approach.
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We propose FLAKYX 0CTOR, a neuro-symbolic approach that com-
bines the generalizability power of LLMs with the soundness of
program analysis for repairing OD and ID flaky tests. FLAKYX ocToR
takes the name and type of flaky test as input (§3.1) and extracts its
test code and body of other tests that partnered in crime. It then
executes them and localizes the source of flakiness. By including
the above information as problem context to generate a prompt
(§3.2), it instructs LLMs to create a patch for repairing flakiness
(§3.3). I the patch has compilation errors, FLAKYX ocTOR first tries
to solve the compilation issues offline and then forwards the patch
for validation if resolved (§3.4). It terminates with success if the
validation confirms the generated patch resolves the flakiness. Oth-
erwise, FLAKYX oCTOR updates the prompt with concise information
about unresolved issues and makes subsequent repair attempts
(§3.5). Repairing terminates after a fixed number of iterations or
when all the flaky tests are repaired. Our notable contributions are:

Technique. To our knowledge, FLAKYM OCTOR is the first tech-
nique for repairing more than one category of test flakiness. Prior
work focused on repairing one type of test flakiness, OD flaky
tests [32, 44, 47] or ID flaky tests [59]. Hlso, none of the prior
techniques has leveraged the power of LLMs in repairing test
flakiness. The power of FLAKYX OCTOR is not directly from the
underlying LIM: offline fixing of issues and precise flakiness
localization by minimizing the amount of feedback using static
analysis contributes to 12-31 % of its performance, depending
on the underlying LLM. FLAKYX ocToR is publicly available [2]
and works with both B PI- and open-access LLMs.

Evaluation We comprehensively evaluated the effectiveness of
FLAKYH OCTOR in repairing 873 flaky tests from 243 real-world
projects. Our empirical results corroborate the ability of FLAKY-
M OCTOR in repairing 58% of studied flakiness (57% OD and 59%
ID) in 103 seconds, on average. Kmong the correct patches, 79
of them were not previously fixed by developers or any existing
automated techniques. We opened PRs for those repaired flaky
tests, and 19 of them were accepted and merged by the time of
submission. Compared to alternative approaches, FLaxy® ocTor
can repair 8% more ID tests than DexFix, 12% more OD flaky tests
than ODRepair, and 17% more OD flaky tests than iFixFlakies.

2 Background and Motivation

Depending on whether changing the execution order plays a part in
manifesting test flakiness, prior research categorizes flaky tests into
OD and NOD. This section explains these categories with real-world
examples, challenges in repairing different types of flaky tests, and
why FLAKYH ocToR could repair flakiness in the examples, while
alternative approaches failed.

OD Flaky Tests. Such flakiness occurs when two or more tests in
the test suite are coupled through a shared state that the developers
do not properly manage, e.g., in tearDown or setUp methods [60].
Test prioritization [43] or test parallelization [13] can change the
execution order of the tests, altering their outcome from pass to
fail or vice versa. Tests that change the outcome due to polluted
shared status are called victim or brittle [44]. Victim tests pass when
executed alone (but can fail if executed after some other tests), while
brittle tests fail when run alone (but can pass when run after some
other tests). B test that changes the shared state for the victim test
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1 // 0D-Polluter
2 @Test
5 public void assertGetEventTraceRdbConfigurationMap() {
Properties properties = new Properties();
properties.setProperty(BootstrapEnvironment.
EVENT_TR CE_RDB_DRIVER, "org.h2.Driver”);
properties.setProperty(BootstrapEnvironment.EVENT_TR CE_RDB_URL
" h2:mem: job_event_trace”);
properties.setProperty(BootstrapEnvironment.
EVENT_TR CE_RDB_USERN ME, "sa");
properties.setProperty(BootstrapEnvironment.
EVENT_TR CE_RDB_P SSWORD, “password”);
ReflectionUtils.setFieldValue(bootstrapEnvironment, “properties”,
properties);
1 _."’_."’. .
11+ ReflectionUtils.setFieldValue(bootstrapEnvironment,
2 + “properties”, new Properties());
s
1+ // OD-Cle

beer

er (Does not exist in the original test suite and has
ded for illustration)

5 @Test
& public void cleaner() {
ReflectionUtils.setFieldValue( bootstrapEnvironment, "
properties”, new Properties());
s}
» // OD-Victim
@Test
21 public void assertWithoutEventTraceRdbConfiguration(){
assertFalse(bootstrapEnvironment.getTracingConfiguration().
isPresent());

3}

Figure 1: Example of a previously unfixed OD flakiness in
Elasticjob [9] repaired by FLAKYX ocToR that cannot be re-
paired by alternative approaches

is called polluter, while the test that changes the shared state for
the brittle is called state-setter. In addition to polluter/victim and
state-setter/brittle tests, cleaners [44] and state-unsetters [18] are
also important concepts related to OD flaky tests. When a cleaner
test runs between a polluter and a victim, it cleans the polluted
state so the victim can pass. Likewise, when a state-unsetter runs
between a state-setter and a brittle, it neutralizes the state change
impact, and the brittle fails.

Figure 1 shows polluter and victim tests from Elasticjob

project [9]. The shared state causing the dependency is the
bootstrapEnvironment, a global variable in the test class. If
the polluter runs before the victim, it will alter the state of
bootstrapEnvironment (Lines 4-9 in polluter code), which causes
the assertion in Line 22 of the victim to fail. Otherwise, the victim
test passes. The cleaner—which does not exist in reality and has
been added for illustration—neutralizes the impact of polluters by
resetting the shared state, resulting in the victim pass.
Repair Challexge. The obvious solution to repair the OD flakiness
is to remove the dependency. In the illustrative example of Figure 1,
the patch should reset the properties of bootstrapEnvironment at
the beginning of victim or the end of the polluter. Without the
privilege of code synthesis ability of LLMs, prior techniques rely
on the existence of cleaners to extract specific statements to clean
the pollution and generate patches [44]. To alleviate this need,
subsequent techniques automatically generate the cleaner first [32]
and use it for patch generation. Those techniques are still limited
to the ability of testing techniques to generate correct cleaners.
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Frakyl ocTor leverages checks the potential shared state/vari-
ables between tests (§3.1) and then instructs LLM to modify the code
of polluter to clear the polluted state (§3.2). The highlighted line at
the end of the polluter (Line 11) shows the patch for this real-world
example generated by FLAKYX ocToR. iFixFlakies could not fix this
flakiness due to the absence of cleaners in the test suite. ODRepair
detected the shared state successfully but could not generate the
cleaner test to use it for repair further.

NOD Flaky Test. NOD flakiness happens due to misuse or
misunderstanding of programming M PIs, concurrency problems,
execution platforms, runtime environment, etc. Compared to OD
flakiness, NOD flakiness occurs for each test in isolation and regard-
less of test execution order. H's a result, one can detect or validate
the patch by re-executing it without shuffling the test order. Still,
detecting or validating the patch for NOD flakiness is challenging
when the probability of observing flaky behavior is tiny [18]. X spe-
cial sub-category of NOD tests is ID flakiness, which occurs due to
incorrect assumptions about the non-ordered collections [59]. Prior
research [30] has demonstrated that ID tests are more prevalent
than other NOD categories. In the IDoFT [6] dataset of real-world
flaky tests, ID tests also greatly outnumber other NOD tests.

Figure 2 illustrates an ID flaky test from Hadoop [8], which
happens due to converting an unordered collection (a Json object)
into String. This is not problematic unless we assume a specific
order for an unordered collection: the assertion (Lines 8-9) checks
if the conversion equals to “{'®":6,'B":2,"C":2}", assuming that the
string conversions of the same Json objects are similar. ¥ s a result,
the execution of this test non-deterministically passes or fails.
Repair Challenge. The first step in repairing ID tests is under-
standing the source of non-determinism, i.e., localizing the source
of flakiness. The key idea here is that test execution failure can
help localize the source of flakiness systematically. To extract such
information, FLAKY® ocTOR analyzes the stack trace of the test exe-
cution failure and identifies the tests and statements within them
that incorporate non-determinism. It then instructs the LLM to
focus on specific lines in the culprit tests to repair the issue.

To repair the ID flakiness in Figure 2, the patch generated by
FraxyM ocTor first transforms the converted JSon object (csv1) into
a LinkedHashMap (Line 10-12), and then reconstructs the expected
output in the previous assertion as a LinkedHashMap (Lines 13-16).
Comparing these two objects in the new assertion (Lines 17-18) re-
solves the flakiness. We suspect the LLM component of FLAKYX oc-
TOR was able to reason about the return type of mbs.get ttribute
being JSon, based on the format of {'H":6,/B":2,'C":2} in the assertion
argument (Line 9). The chance of data leakage is narrow since this
test was previously unfixed. The alternative approach for fixing ID
tests, DexFix, fails to fix the test as it looks for particular patterns
and explicit usages of unordered collections, which do not exist.
In this paper, we only focus on repairing OD and ID flakiness.
The main reason is that reliable detection of NOD tests in general,
hence validating the generated patches, is still an open problem.
Previous studies [10, 30] rely on re-executing test suites 10-10, 000
times to detect NOD flakiness. Even with this large number of
executions, not observing flaky behavior does not mean it does not
exist. Flakiness localization and patch validation for general NOD
flaky tests still pose open challenges for LLMs to repair them [17].
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@Test // ID flaky test

2 public void testPriority() throws Exception {
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MBeanServer mbs = ManagementFactory.getPlatformMBeanServer();
ObjectName mxbeanMame = new ObjectName(
“Hadoop: service="+ namespace + ",name=DecayRpcScheduler™);
String cvwsl = (String)mbs.get ttribute(mxbeanName,"”
CallVolumeSummary”);
assertTrue("Get expected JMX of CallVolumeSummary before

decay”, cvsl.equals("\{" ":6,\"B\":2,\"C\":2\3}"));
Map<String, Integer> mapl = new Gson().fromJson(
cvsl, new TypeToken<LinkedHashMap<String, Integer>()
.getType());
Map<String, Integer> expectedMapl = new LinkedHashMap<>();
expectedMapl.put(” ", 6);
expectedMapl.put ("B, 2);
expectedMapl .put("C", 2);
assertEquals(“Get expected JMX of CallVolumeSummary before
decay”, expectedMapl, mapl);

Figure 2: Example of a previously unfixed ID flakiness in
Hadoop [8] repaired by FLAKYX ocTOR that cannot be re-
paired by alternative approaches

3 FrakylocTor

Figure 3 shows the overview of FLAKYH oCTOR, consisting of four
main components, namely, Inspector, Prompt Generator, Tailor, and
Validator. The Inspector takes a flaky test suite as input, analyzes
the test execution results, and localizes the source of test failures
in the test code. Depending on the type of flakiness, a combination
of inspection results, culprit test method(s), and relevant global
variables and helper methods in the test class will be used by Prompt
Generator to create the prompt. The prompt specifically instructs
LLM to focus on particular statements and generate the patch by
modifying the provided tests, variables, and helpers.

Once the LLM responds to the prompt with a patch, Tailor first
checks for compilation errors, which are inevitable in the code
produced by LLMs. In case of compilation issues in the patch, the
Tailor tries to resolve them offline in Stitching sub-component.
If the modified code passes compilation, it goes to the Validator
to check if it resolves the flakiness. If validated, FLakyM ocTor
terminates successfully. Otherwise, the incorrect patch generated
from the current iteration, along with concise compilation or test
execution outputs, goes for another round of inspection and repair.
The iterative repair terminates upon generating a successful patch
or for a fixed number of iterations. We will explain the details of
each component in the remainder of this section.

3.1 Iaspector

The Inspector takes the flaky test suite as input and extracts proper
and concise contextual information required to repair the flakiness.
If a given test suite contains more than one flaky test, the FLAKY-
® ocTor will analyze them individually, and each will be patched
separately. Inspector should generate three contextual information
(CI) for the Prompt Generator: (CL1) test execution errors, (CL.2) cor-
responding failed assertions, and (CL3) potential source of flakiness.
To that end, it first executes the tests to reproduce the failure based
on different types of flakiness. For OD-Victim tests, Inspector uses
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public void convertToeDatabaseColumn_twoflement ()
throws IDException {
Map<String, String> map = new HashMape>(B);

but was=:

Test failure:
Texpected: <{"a":"1","disableCheck™: "true"}»
<{"disableCheck":"true®,"a":"1"}>"

1
prbbbe vold

mag.put(“a", "1");
map. put( “disablecheck™, "true"};

Lines "assertEquols(expected, this.converter.
convertToDotabaseCol umn(map) ) ;

convertToDatabaseColumn_twoElement Fix()

throws IDException {

cause test failure.|.

assertEquals (expected,

- Map<String, String> map = re!]

this.converter. convertToDatabaseColunn(nap));

Lines “Magp<String, String> map = new HashMap<»(8);*

HashMap«<»>(B);

Validator
)

Offline Stitched Patch

“canpot find symbol: class

may cause potential test flakiness. ClL3 + MzpeString, Strings nap = new|
2 . g =
______________________________________ LinkedHashMapes (2)
:— Inspection Results Tailor : Q;;uruuuuh{uumun,
— Prompt Prompt this.converter. convert TobatibaseCalumn{map));|
1 Inspector 1
. Q p Generator EE EE—— HE
Flaky Test Suite I '\ ] |'
] 1 Termination criteria: Response 1. Original patch
I I 1-ldentical error ebserved for 3 times & N
| | 2-Maximum 5 iterations otherwise Inspection e
I ! | .
o 20
-~ : \‘Slltchmg Compllation errar: g
I

n
Repaired Test Suite

FlakyDoctor

Reverts modifierto
be consistent with

original code vl
T =i - assertEquals (expected,

public void|

I0Exception {|
- MapeString,

this. converter. corwertTolatabaseColumn{map) ) ;

+

+ inport java.util,[inkeﬂiasrﬂap,\

convertToDatabaseColunn_twoElement=Fde() gt hrous|

trings map = new HashMap<s(8); -
+ Mepestring, Strings map = new LinkedHashMap:s(8);

LinkedHashMap', ‘location: class
com.ctrip. framework.apollo.biz.ent
ity.lpaMapFieldlsonConverterTest’

Adds an import
statement

Reverts method
name to be consistent

with original code .~

Figure 3: Overview of FLAKYX ocToR for repairing test flakiness

a modified version of Surefire [1] to specity the execution order of
the polluter and victim, i.e., executes the polluter test before the
victim to make it fail. For OD-Brittle tests, FLAKY® OCTOR executes
them in isolation, as they fail by default. For ID tests, Inspector
executes them with NonDex [4], which randomly explores different
behaviors of certain Ml PIs during test execution through multiple
rounds to produce the failure outcome.

M fter test execution and reproducing the failure, Inspec-
tor extracts the errors (CL1) directly from the execution re-
sult. In the running example of Figure 3 that shows an ID
flaky test convertToDatabaseColumn_twoElement, the error mes-
sage (CL1) is expected:{"a":"1","disableCheck”:"true"} but
was:{"disableCheck”: "true”,"a":"1"}). By parsing the stack trace,
Inspector can extract the line number in the test class and get the
assert statement causing the failure accordingly (CI.2).

Repairing without problem localization information is search-
ing for a needle in a haystack. Inspector employs a method-level
localization, i.e., only includes the flaky test methods instead of the
entire test suite. It additionally employs the following heuristics to
localize the source of flakiness at the statement level as possible:

For ID flaky tests, Inspector performs a backward flow-sensitive
analysis to pinpoint unordered collections (e.g., HashMap) or B PIs
(e.g., getFields) before the failed assertions, which may lead
to a non-deterministic order of elements. In the running exam-
ple, Inspector identifies that Map<String, String> map
HashMap<>(8) initializes an unordered collection and returns it as
the potential cause of flakiness (CL3).

For OD-Victim tests, Inspector extracts global variables and helper
methods such as setUp and tearDown. Global variables can be po-
tential sources of dependency between tests. Including the helper
methods is two-fold: they can be either a source of dependency
between tests due to improper management of global variables
and resources, or the patch can implement the fix inside them.

new
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3.2 Prompt Generator

FrakyM ocTor currently supports fixing ID and OD (OD-Victim
and OD-Brittle) flaky tests and has three prompt templates corre-
sponding to each type. Figure 4 shows the templates for OD-Victim
(Figure 4a), ID (Figure 4b) and OD-Brittle (Figure 4c) flakiness. The
structure of prompt templates is similar, but Prompt Generator fills
them differently according to flakiness type.

The prompt starts with a natural language instruction, asking
the LM to repair the flaky test (Instruction section). If the LLM is
instruction-tuned, the prompt asks it to act as a software testing ex-
pert to increase the chance of LLM producing a better response [3].
Depending on the type of flakiness, the instructions provide more
specific information and general advice in repairing them.

Next, the prompt introduces the problem that LLM should solve,
i.e., repairing flakiness, by listing the names of the tests involved
(Problem Definition), followed by relevant source code (Related
Code) extracted by Inspector (CL.2). For ID and OD-Brittle flaky tests,
the Related Code section only includes the flaky test declaration
and implementation. For OD-Victim tests, this section includes the
code of the victim, polluter, global variables, and helper methods.
With this design decision, repairing a polluter or helper methods
may resolve several other related flakiness in the test suite. Prompt
Generator also concatenates statements that raise errors/failures
(CL1) and potential sources of flakiness (CI.2) to the prompt (Failure
Location section) to help models localize the flakiness better, and,
hopefully, generate a higher-quality patch.

Prompt Generator concludes the prompt with a list of six rules
for LLM to follow: (1) Solve the problem with implicit Chain-of-
Thoughts (CoT) [52], (2) Update the imports and build files if needed,
(3) Generate syntactically correct code, (4) Ensure all the arguments
are correct, (5) Use compatible types for all variables, and (6) Follow
the specified formatting (to facilitate response processing). ¥s we
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|
Instruction E Problem Definition

Related Code
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Failure Location Rules

I
|
|
I
=

You are a software testing expert.
I'm going to ask you to fix a flaky test.
[Definition of Order-Depandant Victim Tests] When tests are [ ion of

You are a software testing expert.
I'm going to ask you to fix a flaky test.

You are a software testing expert.
I'm going to ask you to fix a flaky test.

dependent on each other through a shared state, changing the
axecution order results in a non-deterministic pass or failure...
Flakiness can be by r the icy bat
tests.

testDefeultConfig is the victim flaky test you need to fix,
testColdFactorylargerThanOne is the polluter, they are located in
the following java code:

this.c

ID flaky tests are caused by using seme APIs which
assume the order of elements are guaranteed...
Flakiness can be resolved by making sure the elements
returned from collections are in a deterministic order...

convertToDatabaseColumn_twoElement is the flaky test
you need to fix, which is located in the following

void comvert ToDatabaseCalumn_twoflement() throws [OException |
Map-<String, String> map = new HashMap-<2{8):

map.put{“disableCheck”, “true”);

java coda:

Other hepler methods | aTect Polluter @Test
private D8Helper dbHelpe \public void testColdFactoryarger ThanOned) |

M
@Befare SentinelConfig.setConfig{SentinelConfig. COLD FACTOR, map.gut{'a’, "1
pubilic void setUp( {41 "2

Victim
et asseriEquals(expected,

DistabaseC:

Tests] [Dafinition of Ordar-Depandant Brittls Tasts]

When OD Brittle tests run in isolation, they may fail dus
to improperly cenfigured status..

Flakiness can be fixed by ensuring that states are
correcty set up (or shut down) at the test's beginning

{or the end)...

testEmitSingleLongTimeRt is the flaky test you need
to fix, which is located in the following java code:

@Tast
public void testEmitSingleLongTimeRt(| [
String resourceName =

TirmaRt"):

StepVerifiercreate({Mona.ust(2)
deloyElement{Durationoftillis 1000))
_mapie-=e*2)

@After -
pulilic void tearDown(]  Public void testDefaufiConfigl
A

s inelConfig. DEFAULT COLD_FACTOR, !
SentinelConfg calFactor():
i

When the test falls, | get the following error: i
] expected: <["a""1", 'disableCheck™"true"]>

but was: <["disableCheck":"true","a":"1"}>

The error ks from line(s) assertEqualsiexpected,this.converter. .
When the test fais, | get the followng ermrar: e e When :\:m;«:‘al Qollt::;;o:\ldnu efror:
java.long AssertiorError: expected:<3» but was<4> Line Map 3 e = T expected:< k& \:nu | .
The error is from lina(s) onfig. DEFAULT_COLD_FACTOR, p——~ String, String HazhMap The error is Trom line(s) cn.avght]
SentinelConf Mot S— ness.

Rules Rules
ules

;;ser[Enr.mFs{lG]D,m.nvsR‘{L 200

(@)

(b)

()

Figure 4: Prompt templates for repairing OD-Victim (a), ID (b) and OD-Brittle (c) flaky tests

will show later, including these rules helps only to a limited ex-
tent, which requires additional effort to compensate for the subpar
performance of LLMs [38].

3.3 Tailor

Tailor consists of two sub-components: LLM and Stitching. The
LLM carries most of the repair burden. FLAKYX ocTOR can work
with any LLM with minimal changes in the prompts, and its current
implementation uses GPT-4 [3] as an B PI-access LLM and Magi-
coder [53] as an open-access LLM?. When dealing with real-world
code and tests, LLMs’ performance can drastically degrade [39].
Ks an obvious consequence, they generate a code that does not
compile, even though being asked during prompting [38].

The ultimate goal of FLAKYX OCTOR is to repair real-world flaky
tests, making it vulnerable to this limitation of LLMs. Specifically,
without being compilable, passing the patch to the Validator com-
ponent is worthless. ¥ s a result, Stitching sub-component of Tailor
attempts to resolve common compilation issues in the generated
patch offline. ¥ s we will show later (§4.4),

Stitching contributes to 10% and 41% of the correct patches gen-
erated by GPT-4 and Magicoder in the first iteration (total numbers
across all iterations are 12% and 31%).

These numbers are more significant, by a huge margin, than
asking LLMs to resolve compilation errors through iterative textual
feedback [14, 48]. Stitching also reduces the computational cost and
carbon footprint by avoiding re-promoting LLM:s for fixing trivial or
frequent compilation issues. Stitching resolves the following issues
in the LLM-generated patches systematically using Mlgorithm 1:

“These models have been shown to surpass their equivalent models of the same size

in several programming tasks.
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Inconsistency with the original code (Lines 3-7). Patches likely
differ from the original code in a few statements. Due to non-
determinism intrinsic to LLMs, it is possible that the generated
code, although implementing the correct repair logic, has such
trivial inconsistency issues and cannot be compiled. To check for
this, Stitching inspects if modifiers, return types, and annotations
of the test method(s) in the patch match the original code. If not,
it reverts the changes at those places. In the running example of
Figure 3, the LLM-generated patch removes the public modifier,
which prevents the test runner in JUnit4 from executing the
method. Thereby, Stitching adds the public modifier back.
Missing class dependency (Lines 10-17). Bdding new code may
require importing new dependencies. If a compilation error is
related to missing dependencies (i.e., missing class symbols error),
Stitching looks for the missing class in the local JDK specified in
the build file of the project and imports the corresponding one
that resolves the error. In the patch generated for the running
example of Figure 3, LLM replaces HashMap with L inkedHashMap,
but fails to import java.util.LinkedHashMap. Based on the error
message, Stitching looks for the class LinkedHashMap and adds the
corresponding import to the patch. If multiple classes share the
same short name, Stitching initially parses all potential classes
by matching the short name within the JDK and returns a list
that includes all relevant imports. It then traverses the list within
a loop. If the first import doesn'’t resolve the issue, it proceeds to
the next until the correct class is imported or the loop ends.
Missing external dependency (Lines 18-20). Some patches require
updating the pom.xml. For example, the patch for ID flakiness
in Figure 2 should not only import com.google.gson.Gson and
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com.google.gson.reflect. TypeToken to the test class, but also up-
date pom.xml by adding gson 2.8.6 as a dependency (or rewrite
the artifactId if the dependency exists).

Conflicting dependencies (Lines 21-25). LLMs may add dependen-
cies that conflict with the existing ones. For example, adding
org.assertj.core.api. ssertions.assertThat to a test that al-
ready imports org. junit. ssert.assertThat results in a compi-
lation error due to an ambiguous reference. In such situations,
we maintain the original imports and discard the conflicting
ones from the patch. M dditionally, if the original code imports
org.junit. ssert.x, simply matching by short name is insuffi-
cient. In this scenario, Stitching traverses each import node in
the patch to determine if its removal resolves the ambiguity,
continuing this process until all conflicts are resolved.

3.4 Validator

FLakyN ocTOR can generate plausible patches. However, the final
decision of whether the patch resolves test flakiness needs further
validation. For OD-Victim tests, Validator executes the patched
polluter and victim in two different orders (polluter before victim
and victim before polluter) using a modified version of Surefire [1].
If the victim passes in both, FLAKYH ocTOR accepts the patch as
the ultimate repair. Given that a single polluter (P) may pollute
multiple victims ({Vp, V4, ... V }), Validator also checks whether
a patch removes the pollution of other victims ({V3, ... V' }). This
can reduce the need for additional re-prompts to fix each victim
separately, thereby minimizing the costs.

For OD-Brittle, Validator executes the patched brittle test and
accepts it as an ultimate fix if it passes. We did not use iDFlakies to
validate OD tests, mainly due to the non-determinism intrinsic to
the implemented algorithm. One threat of validating tests in isola-
tion from other tests is overfitting [31]: introducing a new problem
when fixing the current one. While the chances of overfitting are
narrow in our experiments, we performed a lightweight static anal-
ysis check to ensure the shared state between OD tests is unique to
them, and no other test in the test suite has such dependency. The
Validator uses NonDex (configured with nondexRuns=5 similar to
the original paper) to validate ID patches. If NonDex does not mark
the patch as flaky, we accept it as the ultimate fix.

Validator categorizes the validation outcomes into three groups:
test pass, test failure, and compilation error.® test pass indicates the
patch successfully resolves the issue, while the last two types indi-
cate the patch from the current response does not fix the flakiness
correctly. In such cases, the process will cycle the patch through
subsequent iterations in a feedback loop for further refinement.

3.5 Feedback Loop

Flaky tests are complex, and LLMs may not repair them with a
single round of prompting, motivating the re-prompting of LLMs
iteratively. Bt the end of each iteration, the Prompt Generator com-
ponent takes the compilation errors or test failures as inputs, modi-
fies the Related Code and Failure Location of the previous prompt
by adding new contextual information (CL.1-CL3), and prompts
LLM again. One of the core strengths of FLAKYX ocTOR over re-
lated work that employs iterative textual feedback to improve LLM

Yang Chen and Reyhaneh Jabbarvand

H lgorithm 1: Stitching Component

Input: Original Related Code RC, LLM-generated Code LC,
Compilation Errors E
Output: Stitched Code SC
1 foreach ;€ LC do

2 if hasError( ;,E)then

3 T « getCorrespondingMethod(RC, ;)

4 DT «identifyMethodDeclaration(T)

5 DM «identifyMethodDeclaration( ;)

6 if DT DM then

7 LSC<—revertDMi.n i to DT

8 SLib « getJavaStandardLibs

9 foreach e; € E do

10 if isMissingClassSymbol(e;) then

1 eSy bol «— extractClassSymbol(e;)
12 Slib; « searchJavalib(eSy bol, SLib)
13 foreach lib, € Slib; do

14 Py « addImportLib(liby, SC)

15 Ey « compile(Py)

16 if e; ¢ E, then

17 L SC « P,

18 if packageNotExist(e;) then

19 pack «— extractMissingPackage(e;)
20 | SCpuita < searchRepository(pack)
21 PI ports «— getlmportStats( ;)
22 TI ports «— getlmportStats(T)
23 foreach PI p; € PI ports do

24 \» if isConflictWith(PI p;, TI ports) then
25 L SC « exclude(SC,PI p;)

26 return SC

performance [14, 39, 48] is trimming down long compilation er-
ror or test failure results (sometimes as long as 1000+ lines) to a
handful of concise contextual information (§3.1). This will improve
the performance of FLAKY® OCTOR, as recent research shows that
LLMs provide the best results when given fewer, more relevant con-
texts rather than larger, unfiltered ones [35]. The iterative repair
of a given flaky test repeats five times. However, FLAKYX ocToR
terminates the feedback loop sooner if it observes an identical com-
pilation error in three consecutive rounds or repairs flakiness.
In-context learning [12] may improve the performance of FLAKY-
® ocTor. However, including examples results in prompts exceeding
the LLMs’ context window size in many cases, especially those for
repairing OD-Victim tests. Furthermore, FLAKYX OCTOR's prompts
are enriched with practical natural language instructions and con-
cise context in the Related Code and Failure Location sections.
Given that LLMs inherently understand instructions in natural lan-
guage better than in-context examples in different modalities [49],
the need for in-context examples in FLAKYH OCTOR is negligible.
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4 Evaluation
We investigate the following research questions:

RQ1: Effectiveness in fixing Test Flakiness. To what extent
FLAXYH OCTOR can repair previous fixed or unfixed OD and
ID flakiness in real-world projects?

Comparison with H lternative K pproaches. To what ex-
tent FLAKYH oCTOR can fix flaky tests that alternative ap-
proaches cannot? Mre there flaky tests that FLAKYX ocTOR
cannot fix but other techniques can?

Contribution of Different Components. To what extent
do error extraction, prompt crafting, stitching, and feedback
loop help FLakyl ocTor to successfully repair flaky tests?
Performance. How much does it take and cost for FLAKY-
¥ oCTOR to repair flaky tests?

ROQ2:

ROQ3:
ROQ4:

4.1 Experimental Setup

H Iternative X pproaches. Prior research focuses on repairing only
one type of test flakiness; ODRepair [32] and iFixFlakies [44] repair
Java OD tests and iPFlakies [47] repairs Python OD tests. Dex-
Fix [59] repairs ID tests. TRaF [40] repairs a special category of
NOD tests caused by asynchronous waits. We excluded TRaF from
alternative approaches, as FLAKYX ocTOR currently only fixes ID
and OD tests. Since most flakiness repair approaches deal with
Java unit tests, we excluded iPFlakies from the evaluation. ¥ mong
the remaining tools, DexFix is not publicly available®, but their
dataset is. Ms a result, we evaluated FLAKYH ocTOR on their dataset
of ID tests without running their tool on additional ID flakiness.
For OD flakiness, we compared with both ODRepair and iFixFlakies
(ODRepair overcomes the limitations of iFixFlakies by generating
cleaner tests, while iFixFlakies can fix tests that ODRepair can not).

Subjects. Hlternative approaches come with a dataset of ID (from
DexFix) and OD-Victim flaky tests (from ODRepair). We excluded
38 tests from four projects in DexFix dataset and 28 OD-Victim tests
from eight projects in ODRepair dataset that we were not able to
compile or reproduce the flakiness in a reasonable amount of time,
which left us with 237 ID tests and 299 OD-Victim tests.

We further augmented these datasets with flaky tests from IDoFT,
a repository of different types of flakiness in real-world projects.
The reasons for augmentation are to include (1) OD-Brittle tests,
which were not included in the dataset of prior work, and (2) flaky
tests that were not previously fixed by human developers or auto-
mated flakiness repair techniques. From IDoFT, we excluded the
projects that (1) were removed from the repositories mentioned in
IDoFT, (2) we were not able to compile with Java 8 or Java 11 due to
non-trivial issues such as deprecated dependencies, (3) did not fin-
ish compilation in one hour, and (4) we were not able to reproduce
their flakiness. The filtering process left us with 193 projects with
at least one module, where different modules of the same project
may have different flaky tests in the IDoFT dataset. Rugmentation,
along with the tests from the dataset of alternative approaches,
provides us with 541 ID, 299 OD-Victim?, and 33 OD-Brittle tests
from total 243 projects. @ mong the total of 873 tests, there are 114,
98, and 14, previously unfixed ID, OD-Victim, and OD-Brittle tests.

3This was confirmed by the paper’s authors.
#No additional OD-Victim tests found in the selected projects.
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LLMs. FLaky® ocToR is designed to work with ¥ PI- and open-
access LLMs. The former does not require the availability of GPU
resources and is more accessible to a wider range of users. How-
ever, most M PI-access models, even though negligible, charge for
prompting. Open-access LLMs, on the other hand, are free to use,
assuming the availability of (non-trivial) GPU resources. Our exper-
iments use GPT-4 [3] and Magicoder [53] as B PI- and open-access
LLMs, given their superiority to alternative models of similar size
in code synthesis [3, 53]. LLMs are inherently non-deterministic,
which impacts the reproducibility of their results. We believe this
is not a threat to the validity of our results: once the synthesized
code repairs the flakiness, the problem is considered to be solved.
Furthermore, the iterative nature of FLAKYX ocTOR, utilizing sound
program analysis as part of the approach, large-scale evaluation on
real-world data (repairing 507° out of 873 flaky tests), and repairing
previously unfixed flaky tests (79 previously unfixed by developers
or alternative approaches) increases confidence in the rigor of the
technique rather than being luck.

4.2 ROQ1: Effectiveness in Repairing Test
Flakiness

4.2.1 Repairizg ID Flakiness. Table 1 shows the result of running
FrakyMd ocTor and DexFix on subject ID flaky tests. Columns PF
and PU indicate the number of previously fixed and unfixed ID
tests. M fter the automated validation, we manually checked all the
repaired patches to ensure the correctness. Such false positives
(listed under column FP) include deleting assert statements in the
patch, surrounding them inside try/catch blocks, or replacing the
failing assert statement with one that always passes. The reported
numbers under PF and PU do not include FP patches.

From these results, we can see that FLAKYY ocTorR-GPT-4 and
FrLaxy ocTor-Magicoder were able to repair 57% (39% previously
unfixed) and 16% (9% previously unfixed) ID flaky tests. While
Magicoder repairs less tests compared to GPT-4, it can, in fact, repair
6 tests that GPT-4 cannot. Bs we will show in RQ3, augmenting
the power of LLMs with program analysis enables some emerging
abilities for smaller open-access models.

We also wanted to see to what extent FLAKYH ocTor advances
state-of-the-art ID flakiness repair technique, DexFix. Given that
DexFix is not publicly available, to have a fair comparison, we show
the performance of FLAKYX ocToR for a subset of ID flaky tests
in the last four projects that overlap with DexFix dataset inside
the parenthesis. Overall, FLAKYY ocTor-GPT-4 and FLAKYH ocTOR-
Magicoder repair 52% and 11% of the ID flaky tests in the DexFix
Dataset, while DexFix achieves 44% repair success rate. The repaired
ID tests by FLAKYX ocTOR-GPT-4 from the DexFix dataset subsume
that of FLAKY® ocToR-Magicoder.

4.2.2 Repairizg OD Flakiwess. The numbers under OD-Victim col-
umn of Table 2 compare the effectiveness of FLAKYM ocToOR with
ODRepair and iFixFlakies. OD-Brittle column only compares FLAKY-
HocTor and iFixFlakies, as ODRepair cannot fix such flakiness
without knowing corresponding state-unsetters (a test that pollutes
the state for brittle tests) [13].

*We count unique tests repaired by two versions of FLAkYE ocTOR.
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Table 1: Effectiveness of FLAKYE ocTtor and DexFix in re-
pairing ID flakiness. P: Projects; M: Modules; PF: Previously
Fixed; PU: Previously Unfixed; FP: False Positive. Green
rows indicate the superiority of FLAKYX OCTOR, and the red
row indicates the superiority of DexFix. The white rows be-
long to augmented tests.

. #Tests GPT-4 Magicoder Dex Fix|
GitHub D |#P M] | pp by | pE |pU| FP | PF | PU| FP |#Fixed
FasterXML| 10 [9] 12 2 9 2 [ 1 1 0|1 =

SAP 4[2 4 1 2 oo 1 oo -
IBM 4[4 4 0 3 oo 0 oo -
adobe 3[2 3 1 2 oo 1 oo -

DataDog | 3[1 2 1 2 1|0 0 [ -

oracle 3[3 3 [1] 1 0 0 1 0 0 -

wildfly | 2[5 3 2 1 oo 1 [ -
intel 21 1 1 1 oo 1 oo -
networknt| 2[5 5 [1] 3 0 0 2 0 0 -
gehg 2[5 4 2 4 0|1 1 oo -
opengoofy | 2 [3] 4 0 4 0|1 2 0|0 -
eclipse-eedj| 2 [6] 1 5 0 3|0 0 1 0 -
Sp¢ 21[2] 2 0 2 0|0 0 oo -

HubSpot | 2[2 2 0 2 oo 1 oo -

twitter | 2[2 2 0 1 oo 0 oo -

dromara 2[3 3 [1] 2 0 0 [1] 0 0 -

GCP’ 21 1 1 1 0ol o 1 0o -

eBay 2[2 1 1 0 1|0 0 oo -

jdereg | 2[1 0 2 0 oo 0 0|1 -

apache |36[87] 136(98)| 46 || 75(49) 16 o || 17(5) o 9| 29

square | 4[4] 3(9) | 9 2(1) 2 0 0@ o0 o 0

acs 2[5] 9@ | o 7(2) 0 0 41y 0 o0 0

intuit 2[2]  1(2) | 2 1(1) 1 o0 0@ o o 0

Others [114[143] 182 (91)| 37 |[117(51) 17 3 || 40(18) 9 5 50

alibaba | 4[6] 39(33)| 1 || 25(200 1 0 3(2) 0 0| 25

Total 215 [306] 427 (237)| 114 [|267 (124) 44 6 [| 77(26) 10 18 | 104

Similar to the previous experiment, we manually checked and
excluded false positives from the results. FLAKYH ocToR-GPT-4 can
repair 58% (27% previously unfixed) OD-Victim tests. FLaAkYH oc-
ToR-Magicoder repairs 27%, all subsumed by FLaxyMX ocToR-GPT-4.
On the other hand, ODRepair and iFixFlakies repair 45% and 40%
of OD-Victim tests. To recall, we have to exclude 28 tests from
ODRepair and 38 tests from DexFix dataset due to non-trivial dep-
recated dependencies or non-reproducible flakiness, out of which,
ODRepair successfully repairs only five, and DexFix successfully
repairs 15. This still makes FLAXYX ocTOR superior to ODRepair
and DexFix, given the notable gap in repairing OD-Victim and ID
tests. Fixing OD-Brittle is a tie-in competition for FLAKYH ocToR-
GPT-4 and iFixFlakies, FLAKYH ocTOR achieves 51% success rate and
iFixFlakies achieves 39%. FLAKYK ocToR-Magicoder can only repair
9% of the OD-Brittle flaky tests, where one of them could not be
fixed by FLAKYX ocTOR-GPT-4.

H s demonstrated, FLAKYX ocTOR was able to repair 79 previ-
ously unfixed ID and OD flaky tests. We have opened PRs for
such fixes, where 19 of them have been accepted and merged
by the time of submission °. We consider this ability of FLAKY-
¥ ocToR to make it superior to flakiness repair approaches in
particular, and to a wider range of LLM-based program repair
techniques, in general. Comparing FLAKYH ocTor with gen-
eral State-of-the-art ¥ PR techniques [55, 57], even those that
6::I:u'i.ng—prcrjec‘ls
"GoogleCloudPlatform

#apolloconfig
9The links to the opened PRs are available on the artifact website [2].
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Figure 5: Comparison between the correct patches generated
by different approaches. Sub-figures a-b compare OD-Victim,
c-d compare OD-Brittle, and e-f compare ID patches

leverage LLMs such as GPT-4 [56], have been only proven to
be effective on known datasets such as Defects4] [5] and
QuixBugs [7]. Most of these techniques [22, 23, 56] also
assume perfect bug localization before the repair. In con-
trast, FLARKYK ocTOR repairs many flaky tests from real-world
projects, where humans or automated techniques previously
could not repair a reasonable number. ¥ s we will show in
subsequent research questions, this power comes from the
synergy of LLMs and symbolic approaches, not just LLMs.

4.3 ROQ2: Comparison with K lternative
K pproaches

We further wanted to explore the properties of flaky tests repaired
by different approaches. To that end, we illustrate the overlap of
successful patches generated by FLAKYE ocToR and those from alter-
native approaches in Figure 5. For OD-Victim tests (Figures 5a-5b),
FrakyM ocTor-GPT-4 exclusively repairs 68 OD-Victim tests, in-
cluding 26 that were previously unfixed. FLAKY¥ ocToR-Magicoder
can fix 37 tests that neither ODRepair nor iFixFlakies could fix.
® lternative OD repair approaches fail at repairing such cases due
to the need for existing cleaners (iFixFlakies) or difficulties in iden-
tifying complex shared statuses beyond static variables (ODRepair).
For OD-Brittle tests (Figures 5c-5d), FLakYX ocTOR-GPT-4 exclu-
sively repairs 11 of them (nine previously unfixed). FLAKYX ocTOR-
Magicoder can repair only three OD-Brittles, all fixed by iFixFlakies.

Regarding ID tests (Figures 5e-5f), FLAKYX ocToR-GPT-4 success-
fully repairs 50 ID flaky tests that DexFix cannot, and FLAKYH oc-
ToR-Magicoder manages to repair four tests that are beyond the
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Table 2: Effectiveness of FLAKYX ocToR, ODRepair and iFixFlakies in repairing OD flakiness. P: Github Projects; M: Modules;
PF: Previously Fixed ID tests; PU: Previously Unfixed ID tests; FP: False Positive. Green rows indicate the superiority of

FLakyl ocToR, yellow rows indicate tie, red rows indicate the superiority of alternative approaches, and the white row

indicates cases where none of the techniques repaired flaky tests.

OD-Victim OD-Brittle
GitHub ID #P [#M]| #Tests GPT-4 Magicoder - . #Tests GPT-4 Magicoder ||.... .
PF | PU J PF | PU | FP J PF | PU | FP JODREPE‘" J‘F“‘Flak‘“ PF | PU || PF [PU | FP || PF | PU | pp ||FixFlakies
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capability of DexFix, which is limited to specific heuristics and fails
to generalize beyond them. Figure 1 and Figure 2 show examples
of cases where FLAKYH ocTOR was able to repair flaky tests, but
alternative OD and ID repair approaches could not.

4.3.1 OD tests that FLakyX¥ ocTor caXot repair. Through manual
investigation of cases where FLAXYH ocTOR could not fix but alter-
native approaches did, we identified two main recurring patterns:
(1) Even though our program analysis provided the polluted vari-
able(s) as context, the patches focused on resetting other variables.
In most cases, these variables were directly used in the assertion
of the victim method but were not the polluted states. (2) Even if
LLM identified polluted states correctly, FLakY¥ ocToR could not
generate a correct patch due to hallucination. Examples of such
hallucinations include adding variables that do not exist or applying
¥ PIs incompatible with the polluted field type.

4.3.2 ID tests that FLakyMocToR cavwsot repair. There are 30 tests
fixed by DexFix but not FLAXYM ocToR. Breaking down these tests:
(1) FLakyM ocTor successfully located the unordered collections
but could not generate a correct patch due to overfitting into the
provided context. For example, if the assertion failure in the context
is related to specific elements in the HashMap, while LLM creates a
LinkedHashMap (which is an ordered collection), it only populates it

with those specific elements and discards others. This may result
in resolving the previous assertion failure but failing new ones. (2)
Frakyl ocTor successtully located the unordered collections and
sorted the elements in a deterministic order. However, it consis-
tently faced compilation errors due to hallucinating unsupported
operators or invoking non-existent X PIs.

These results confirm that the FLAKYX 0CTOR can complement
existing tools for repairing flaky tests, serving as a complementary
technique along with others. For tests where symbolic techniques
DexFix, iFixFlakies, and ODRepair fail to generate a patch based
on existing heuristics, developers may use FLAKYK ocTOR.

4.4 RQ3: Contribution of Different Components

In this research question, we evaluate the effectiveness of three no-
table contributions of FLAKYH ocToR: effective flakiness localization,
prompt crafting, and iterative repair.

44.1 Flakiwess Localizatiow. Without analyzing the test report by
the Inspector, FLAXYH ocToR should take the entire test execution re-
port of compilation error stack trace. To show the impact of precise
flakiness localization, we sorted all flaky tests based on the length

10The GitHub ID of nine projects are: vaadin, danfickle, jenkinsci, c2mon, CloudSlang,
jitsi, flaxsearch, javadelight, querydsl.
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Table 3: Impact of precise flakiness localization on the ef-
fectiveness of FLAKYY ocToRr. Hvg. Lines: Kverage length of
entire test reports; Patches and O-Patches indicate correct
patches with longer prompts and original FLAKYX ocToR.

Yang Chen and Reyhaneh Jabbarvand

Table 4: The results of vanilla prompting compared to FLAKY-
M ocToR. Patches: Total generated patches; C-Patches: Correct
patches; FP-Patches: False Positives.

of the original test failure report, selected the top 40% (the budget
caps the percentage) (349 tests), and replaced the Failure Location
part of the prompt with the entire test report. Table 3 compares
the effectiveness of the FLakyM ocTor with (O-Patches column)
or without (Patches column) precise flakiness localization by the
Inspector. These results demonstrate the necessity of minimizing
contextual information for LLMs to achieve a higher performance:
Without trimming, 435 prompts (aggregated for both models) ex-
ceed the context window of the models. FLaAkY¥ ocTor LLMs that
originally could repair all selected flaky tests only repair 96 of them.

44.2 Prompt Crafting. To show the impact of the proposed prompt
crafting approach of FLaAxYH ocToR, we asked FLAKYX ocTOR-GPT-4
and FLaxyl ocTor-Magicoder to repair all subject ID and OD flaky
tests through vanilla prompting: to perform a task without providing
additional context. Table 4 shows the result of this experiment. In
this experimental setting, FLAKYN ocToR-GPT-4 and FLakYH ocTOR-
Magicoder only produced 13 and two correct patches, compared
to 500 and 170 original patches. Vanilla prompting results in zero
patches for OD-Brittle flaky tests. In most of the failed cases, LLM
either explicitly mentioned that it does not understand the problem
or only explained the test code without producing any patch. The
huge performance drop (98%) in vanilla prompting indicates
the impact of providing the proper context into the prompt.

4.4.3 Stitching awd Iterative Feedback. To investigate the impact
of iterative feedback and Stitching, we tracked back the lifetime
of patched flaky tests during multiple repair iterations. Overall,
for 500 flaky tests fixed by FLAKYX ocTorR-GPT-4 and 170 by
FLakYX ocTor-Magicoder, Stitchix g contributes to 12% and
31% of them, respectively.

Figures 6a-b illustrates the evolution of 170 and 500 patches from
Fraxyl ocTor-Magicoder and FLAKYX ocTOR-GPT-4. The left grey
bar shows the initial state of tests, i.e., being flaky. M fter applying
the patch in each iteration, the status can be Test Pass (P) (flakiness
fixed), Test Failure (F) (flakiness still exists), or Compilation Error
(CE) (patching resulted in compilation issue). We are specifically
interested in patches that Stitching contributes to changing their
status and labeled them with [iteration number|:[status1] To
[status2]. For example, “2:CE To P” shows Stitching changes the
state of patches in iteration 2 from compilation error to test pass.

W mong the 170 tests successfully repaired by FLAKY® ocTOR-
Magicoder, Stitching converts compilation errors to test pass for 32
of them (CE To P). For eight tests, while Stitching addressed the

Flakiness| #Tests | Model |#Patches |#C-Patches |#FP-Patches
Flakiness | #Tests [{vg. Lines| Model |#Patches |#0-Patches D 541 GPT-4 336 11 12
D 216 606 GPT-4 2 111 IMagicoder| 255 1 10
Magicoder 0 28 _— GPT-4 251 2 2
OD-Victim{ 299 .
ODVictiml 120 164 GPT-4 52 106 IMagicoder| 173 1 2
Magicoder| 42 77 . GPT-4 13 0 1
GPT OD-Brittle| 33 Magicod 1 0 0
: agicoder|
OD-Brittle| 13 | 489 e 12 E
Magicoder 0 3
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compilation errors, the patches resulted in test failures (CE To F).
¥ dditionally, for 12, Stitching resolved partial but not all compilation
issues (CE To CE), which also helps to generate improved patches
in the subsequent iteration. For 500 correct patches generated by
FLaxyl ocToR-GPT-4, Stitching helped 58 during the repair process.
M mong these patches, 37 were improved by Stitching directly into
successful patches. The impact of Stitching is much higher on Magi-
coder since it is a smaller and weaker model compared to GPT-4.
This entails the importance of neuro-symbolic approaches for the
ultimate democratization of open-source LLMs.

24% to 60% of patches, including those fixed by Stitching, were
generated in the first iteration. The feedback loop contributed to
generating the remaining patches in subsequent iterations: feed-
back loop contributes to more than doubling the number of
patches generated in the first iteration.

4.5 ROQ4: Performance

To address this research question, we evaluated the time and costs
involved in using FLAKYY oCTOR during repairing tests. The iterative
workflow of FLAKYH ocTOR attempts the repair between one to five
times. Tests for which a successful patch is generated may finish
earlier, whereas those that cannot be repaired persist longer. On
average, GPT-4 requires 87.2 seconds and costs $0.12 to repair an ID
test or OD-Brittle test, and takes 232.8 seconds at a cost of $0.27 to
complete a repair attempt for unsuccessful tests. For OD tests, GPT-
4 needs 107.5 seconds at a cost of $0.18 to repair a test successfully,
and 214.2 seconds costing $0.35 for unsuccessful repair attempts.
Magicoder, on the other hand, takes 109.2 seconds to successfully
repair an ID test and 355.9 seconds for an unsuccessful attempt; for
OD tests, it requires 110.6 seconds for a successful repair and 247.7
seconds for an unsuccessful attempt.

5 Related Work

Many techniques have been proposed for characterising [19, 26,
27, 29, 30], detecting [11, 24, 28, 36, 41, 42, 46, 47, 51, 58, 61], or
repairing [15, 20, 32, 40, 44, 47, 50] test flakiness. Recently, Chen
et al. proposed Croissant [18], a tool for modifying tests such that
a non-flaky test suite shows flaky behavior. iFixFlakies [44] and
iPFlakies [47] are two related research on repairing test flakiness
exist in Java and Python tests suites. iFixFlakies takes the order-
dependent test, the failing test order, and the passing test order. The
current implementation of iFixFlakies leverages iDFlakies to get the
required inputs. It then modifies the execution order of different
sub-sequences of tests to find tests that modify the shared state—by
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Figure 6: The evolution of patches through different repair
iterations of (a) FLAKYX ocTor-Magicoder and (b) FLARYH oc-
TOR-GPT-4. The notation To indicates the applicability and
impact of the Stitching to the current patch

setting or unsetting the shared states—with the identified victim
or brittle, and uses them to generate the patch. iPFlakies follows
similar steps but can only repair victim OD tests (not brittles) in
Python test suites. Compared to these approaches, FLAkY® ocTor
is more versatile in repairing both victim and brittle OD tests as
well as ID flaky tests.

ODRepair [32] is proposed to overcome the limitation of
iFixFlakies, which rely on the existence of cleaner tests to repair
victim OD tests. To that end, it analyzes the static fields and se-
rialized heap state to identify the polluted shared states between
victim and polluter tests and relies on automated testing techniques
to generate cleaners tests. By enforcing the execution of cleaner
tests before the victim, ODRepair resolves the test flakiness. Com-
pared to this technique, which only targets repairing victim OD
tests, FLAKYM OCTOR can repair more categories of test flakiness.
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®1so, our proposed technique completely resolves the dependency,
making the patch more realistic to resolve test flakiness.

DexFix [59] repairs ID flakiness by implementing domain-
specific repair strategies that resolve implementation dependencies
in both the test and the main codes. Consequently, it is limited to
strategies tailored to repair studied flaky tests and may not gen-
eralize to other patterns. FLAKY® oCTOR is not limited in that way
due to relying on LLMs to perceive the nature of test flakiness and
repairing based on the relevant contexts provided in the prompt.

TRaF [40] aims to address test flakiness in the JavaScript test
suite of web-based applications by updating the waiting time of
asynchronous calls to a value that breaks the time dependency
between tests. To that end, they use code similarity and look at the
relevant change history of the code, hoping to find useful hints for
the efficient wait time in the existing or past code versions. [ syn-
chronous waits are a subcategory of NOD test flakiness [18], which
the current implementation of FLAKYX ocToOR does not support.
Existing research [17] indicates that merely leveraging LLMs can
be challenging for repairing NOD flaky tests.

FrakyMd ocTor is the first test flakiness repair technique that
leverages the power from a combination of LLMs and static anal-
ysis. The empirical evaluation clearly shows the benefit of this
combination, i.e., repairing different categories of test flakiness
and generating successful patches for flaky tests that were not
previously fixed by humans or existing automated techniques.

6 Concluding Remarks

In this paper, we proposed FLAKYX OCTOR, the first technique that
combines the generalizability power of LLMs with the soundness of
the program analysis, to repair different types of flakiness. Our eval-
uation results show that FLAKYK ocTOR is able to generate patches
for flaky tests of real-world projects that were previously unfixed.
In many cases, neither prior automated techniques nor human
developers were able to repair such flakiness.

We are considering several research directions on top of this
work. The first obvious plan is supporting the repair of NOD flaky
tests. This requires devising more complex analysis techniques to
localize such flakiness issues and revising the prompt template to
incorporate relevant context. Next, we plan to perform a large-
scale empirical study to further pinpoint when FLAKYX OCTOR can
repair test flakiness, and when it cannot. This would provide insight
into the research gap, very likely to require more advanced offline
processing techniques to further help LLMs repair flaky tests.

7 DataKvailability Statement
The artifacts of FLAKYX ocTOR are publicly available at [2] and [16].
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