2024 IEEE/ACM International Flaky Tests Workshop (FTW)

)
T Can ChatGPT Repair Non Order Dependent Flaky Tests?
Yang Chen Reyhaneh Jabbarvand
University of Illinois Urbana-Champaign University of Illinois Urbana-Champaign
yangc9@illinois.edu reyhaneh@illinois.edu

ABSTRACT

Regression testing helps developers check whether the latest code
changes break software functionality. Flaky tests, which can non-
deterministically pass or fail on the same code version, may mislead
developers’ concerns, resulting in missing some bugs or spending
time pinpointing bugs that do not exist. Existing flakiness detection
and mitigation techniques have primarily focused on general order-
dependent (OD) and implementation-dependent (ID) flaky tests.
There is also a dearth of research on repairing test flakiness, out
of which, mostly have focused on repairing OD flaky tests, and a
few have explored repairing a subcategory of non-order-dependent
(NOD) flaky tests that are caused by asynchronous waits. As a result,
there is a demand for devising techniques to reproduce, detect, and
repair NOD flaky tests. Large language models (LLMs) have shown
great effectiveness in several programming tasks. To explore the po-
tential of LLMs in addressing NOD flakiness, this paper investigates
the possibility of using ChatGPT to repair different categories of
NOD flaky tests. Our comprehensive study on 118 from the IDoFT
dataset shows that ChatGPT, despite as a leading LLM with notable
success in multiple code generation tasks, is ineffective in repairing
NOD test flakiness, even by following the best practices for prompt
crafting. We investigated the reasons behind the failure of using
ChatGPT in repairing NOD tests, which provided us valuable in-
sights about the next step to advance the field of NOD test flakiness
repair.

a bug that does not exist [21]. Flaky tests can also drastically de-
grade the quality of regression testing and cause negative impacts
on software quality [27, 38].

Previous research characterizes test flakiness into different cat-
egories [17, 19, 28, 29, 31, 32]. Specifically, based on whether the
test results depend on the test orders in which they are run, they
can be categorized into Order-Dependent (OD) and Non-Order-
Dependent (NOD) tests [30]. Implementation-dependent (ID) tests
are a specific type of NOD tests [4], which are caused by using
wrong assumptions of unordered collections to implement spe-
cific APIs. There are also several techniques in detecting test flak-
iness [14, 26, 30, 37, 44, 45, 48, 53, 57, 59], but limited attempts
have been made in repairing test flakiness [20, 33, 43, 46, 49].
iFixFlakies [46], iPFlakies [49], and ODRepair [33] are designed
to repair OD tests. DexFix [58] is designed to repair ID tests, and
TRaF [43] and FaTB [29] repairs one sub-category of NOD tests
that are caused by asynchronous waits.

Existing test flakiness repair techniques are all based on program
analysis, i.e., implementing domain-specific repair rules. Such tech-
niques can be limited if the test suite has new programming features
or various development styles. More importantly, unlike OD flaky
tests—caused by polluted shared status between tests—and ID flaky
tests—caused by specific API implementations, the root causes of
NOD tests are various, such as concurrency issues, platform de-
pendencies, runtime environments, and more. This motivates an
approach to look for solutions beyond solely relying on rule-based

CCS CONCEPTS and program analysis to repair NOD tests.
" . . . " . ddeb LLMs have shown great effectiveness in generative tasks related
‘ .SO tware and its engineering Software testing and debug- to code, as code synthesis [12, 15, 22-25, 39, 41, 50-52], code trans-
ging. lation [41], and program repair [56]. Given their abilities in code
synthesis and the fact that NOD tests have several sub-categories
KEYWORDS

Software Testing, Test Flakiness, Large Language Models

1 INTRODUCTION

Flaky tests can non-deterministically pass or fail when running
on the same code version. Typically, developers rely on regression
testing results to debug if the code changes bring problems into the
code base. However, when test failures are, in fact, due to test flaki-
ness, not a bug in the code, developers waste their time pinpointing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FTW 24, April 14, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0558-8/24/04...$15.00
https://doi.org/10.1145/3643656.3643900

under which the instances may have similar patterns, we investi-
gate using GPT-4 [2] to repair NOD tests. Our proposed technique,
NODOoOCTOR, follows best practices in prompting to provide proper
context [41, 47, 55], minimizing the amount of context needed to
account for limited context windows [35, 40, 41], and prompting
iteratively to make the model learn from the textual execution
and compilation error feedback [50]. Our extensive evaluation of
NODocToR that involved 118 NOD flaky tests from 11 real-world
Java projects shows that the NODocTOR can generate plausible
patches for only eight tests. Among them, six were false positives,
and only two were confirmed to be a correct repair. To the best of
our knowledge, we are the first to explore using LLM (GPT-4) for
repairing NOD test flakiness. We observe that GPT-4 is unable to re-
pair NOD test flakiness, and performed a deep analysis of the cases
where GPT-4 were or were not successful in repairing them. We
believe that our findings offer valuable insights for future research
directions in this domain. Our artifact is available at [1].

FTW ’24 April 14 2024 Lisbon Portugal

2 BACKGROUND

Given that this paper focuses on NOD flaky tests, we dedicate a
section to providing a detailed background on NOD tests. NOD tests
can fail due to various reasons instead of only depending on the test
orders in which they are run. Common reasons include concurrency,
asynchronous wait, platform dependency, I/O operations, timing
issues, race conditions, resource leak, and network issues [17, 31].
Several research studies have been proposed to study characterizing
and detecting [13, 14, 17, 29, 31] and repairing NOD flaky tests [29,
43].

Characterizing and Detecting Test Flakiness. Previous re-
search has shown various reasons contributing to NOD flakiness.
Unlike OD tests, which can be observed by controlling test orders
in the test suite, NOD tests occur in isolation. They may fail very in-
frequently. Some NOD tests only show failure under certain circum-
stances. Detecting NOD flakiness is challenging, particularly when
the likelihood of observing flaky behavior is minimal. Researchers
previously detected NOD tests by rerunning test suites more than
a thousand times [32], which shows that rerunning test suites to
detect NOD flakiness consumes much computing resources.

Repairing NOD tests. The first step for repairing NOD tests
is to pinpoint the root cause in the test implementation. Previous
approaches [29, 43] utilize domain-specific rules to automatically
repair specific categories of NOD flakiness. However, these meth-
ods may struggle with generalization as NOD tests can have di-
verse root causes, confirmed by the fact that only a subset of these
causes has been explored [17, 32]. Furthermore, NOD tests fail non-
deterministically and infrequently, making the localization of test
flakiness time-consuming, with an average time of about a day per
new flaky test [31].

To illustrate the issue’s significance, Figure 1 shows a NOD test
previously fixed by researchers [6] through manual inspection. The
count test is flaky due to self-pollution [53]. Specifically, it checks
if there is exactly one user in a local file with an email address
bob@example.com and if the count is not equal to 1, i.e., more users
with the same email address exist, the test will fail (Line 30). In
the first execution of the test suite, the test passes since the setUp
adds the user to the database (Line 22), and that user appears in
the database only once. However, if we re-execute the test suite,
this test fails, as the setUp adds the user again to the database. The
developer, in fact, has tried to avoid such a situation by deleting
the local files before the test execution in the setUpClass (Line 4).
However, a wrong file is given as an argument, and executing that
code does not remove the intended local file.

This flakiness can only be detected through manual inspection of
the local file systems and understanding that the file name should
be corrected (Line 5), which is hard and time-consuming. In fact,
inspecting the files and observing that they have been updated
multiple times across multiple test suite executions is the key to the
root cause of the test flakiness. On the other hand, looking at the
test code and test execution results, developers may not understand
the issue.

Yang Chen and Reyhaneh Jabbarvand

@BeforeClass //In abstract class

2 public void setUpClass) throws IOException {

23

FileUtils.delete new File "target/derbydb"));

- FileUtils.delete new File "target/lucene"));

+ FileUtils.delete new File "target/lucene3"));
AnnotationConfiguration cfg = new AnnotationConfiguration);
cfg.addAnnotatedClass User.class);

Properties props = new Properties);
InputStream is = SearchQueryTest.class.getResourceAsStream "/
derby.properties");
try {
props.load is);
} finally {
is.close);
}
cfg.setProperties props);
sessionFactory = cfg.buildSessionFactory);

}

@Override //In the same test class which includes the flaky test

) public void setUp) {

super.setUp);
createUser "Bob", "Stewart", "Smith", "bob@example.com");

}

s @Test

public void count) {
BooleanExpression filter =
user.emailAddress.eq "bob@example.com™);
assertEquals 1, query).where filter).fetchCount));

Figure 1: A NOD flaky test fixed by human in project
querydsl [10]

3 APPROACH

Figure 2 shows the overview of NODocTOR, which contains four
components: Inspector, Prompt Generator, Repair, and Validator. In-
spector component takes the original flaky test suite as input to start
the repair process. The inspection results will be sent to Prompt
Generator to further generate prompts based on specific failure
location, then the prompts will be sent to Repair component. After
receiving the response from LLMs, the patch will be sent to Val-
idator component to check if the flakiness is indeed resolved. In
the remainder of this section, we will explain the details of each
component and how they contribute to repairing NOD flakiness.

Inspector. After receiving the original flaky test suite with
known flakiness identified by detection tools, the Inspector compo-
nent attempts to reproduce the test flakiness. We utilize NonDex [4]
to re-execute the test five times for reproducing NOD tests. It gen-
erates two outputs for the Prompt Generator component: (1) test
execution results, consisting of specific error messages and the
category into Test Pass, Test Failure, and Compilation error; and (2)
pertinent code related to test failures. The code includes the flaky
test method, helper methods (e.g., setUp and tearDown), and other
custom-defined methods within the same test class that are invoked
in the test body. These two outputs proceed to the next stage, the
Prompt Generator, where key messages are extracted and combined
into prompts, as shown in Related Code and Failure Location sections
of the prompt in Figure 3.

Can ChatGPT Repair Non-Order-Dependent Flaky Tests?

Flaky Test Suite

Qﬂspector

FTW ’24 April 14 2024 Lisbon Portugal

Inspection Results

Failure Localization

A
1
1
1
1
1
1

——— e = = === === ——

Repaired Test Suite

Prompt Generator @

Termination criteria:
1- Identical error observed for 3 times
2- Maximum 5 iterations otherwise

Validator

Repair

)

onse

1
1

1

1

1

1

1

LLM 1

1

1

1

Rres? :
1

1

1

Figure 2: Overview of NODocTOR for repairing NOD test flakiness

Prompt Generator. A prompt consists of five sections: Instuc-
tion, Problem Definition, Related Code, Failure Location and Rules.
Figure 3 shows a prompt template filled with information to repair
a NOD test. The prompt initiates with a natural language directive,
instructing the LLM to address test flakiness. In cases where the
LLM is instruction-tuned, the prompt guides it to assume the role
of a software testing expert, thereby enhancing the likelihood of a
higher-quality response [7]. Tailored to the specific type of flakiness
to be addressed, i.e., fixing NOD flaky tests, the instructions furnish
additional details about the flakiness type and offer general advice
on fixing it.

Following this, the prompt presents the problem to be resolved:
repairing flakiness by listing the names of the involved tests and
presenting their corresponding source code. To provide enough
context for LLMs to understand the problem, we will provide test
method code, global variables in test class,custom-defined methods
called in the test body within the same test class, other helper methods
such as setUp and tearDown) as Related Code to LLMs. This com-
prehensive information is provided to LLMs as we have observed
that root causes can sometimes extend beyond the test method
itself to other methods like setUp within the same test class.

Next, we need to provide the Failure Location information. The
localization of the specific line that failed is extracted by the Prompt
Generator through the analysis of test failure results from the In-
spector component. Recognizing the challenge of repairing without
bug localization information, the prompt emphasizes method-level
localization and removing irrelevant methods from the context.
This assists the LLMs in focusing on modifying the code in the
correct place. Such statement-level localization guides the LLMs,
indicating where to change and offering hints about potential so-
lutions. In contrast to other methods that provide the entire stack

24

trace or failure report to the model [16, 41, 50], NODoCTOR metic-
ulously analyzes the stack trace to pinpoint the lines responsible
for the errors precisely. For instance, from a relatively big test fail-
ure report with usually around 1,000 lines, we extract information
about which assertions in the test class have failed and include only
such relevant details (with only one or two lines). While LLMs are
expected to extract such information independently, this approach
minimizes the contextual load on them, producing more accurate
responses.

Finally, the prompt concludes by outlining a set of rules for the
LLMs to follow while attempting to repair the flakiness. These
rules encompass thinking step by step to enable an implicit chain
of thoughts (CoT), updating the import list if necessary, and gen-
erating syntactically correct code. Additionally, formatting rules,
such as enclosing the response between <code></code> tags, are
included to facilitate response processing. Once the Prompt Gener-
ator component finalizes the prompts, they will be sent to LLMs
for patch generation.

Repair. Once the prompts are generated, they are forwarded
to the LLMs within the Repair component. The current implemen-
tation of NODocTor employs GPT-4 as the LLM for two main
reasons: (1) GPT-4 has demonstrated superior performance over
other commercial or open-source models in various research stud-
ies [18, 35, 41]. Since our goal is to advance the state of NOD flaki-
ness repair, choosing the best model is the most reasonable option;
and (2) GPT-4 offers greater accessibility with the longest context
window compared to other models. Loading LLMs such as Codegen-
16GB [39] and StarCoder [34] requires the availability of high-end
GPUs that not everyone can afford. Besides, GPT-4 has the longest
context window compared to other models (8192 tokens of GPT-
4 compared to 2048 tokens of CodeGen-16B and StarCoder). Our
Tasks related to repairing flaky tests need long prompts.

FTW ’24 April 14 2024 Lisbon Portugal

You are a software testing expert.

Yang Chen and Reyhaneh Jabbarvand

F~~7" 71| I'm going to ask you to fix a flaky test.
i Instruction | | [Definition of Non-Order-Dependent Tests] NOD flaky tests can pass or fail in different
e : reruns.They can be flaky due to concurrency, timeout, platform dependency, timezone

| dependency, etc. You should fix the text, and make sure it will always pass deterministically...

Y Y

[

[
reT--=== 1 :
: Problem : | testMMcifURL is the flaky test you need to fix, which is located in the following java code:
| Definition :

@Test NOD Flaky test method Other helper methods
N . . Before
- public void testMMcifURL() throws StructureException, @ S
ublic void setUp() {....

: Related : I0Exception{ = PO L1
| Code |

| e |
| Failure 1
| Location

String u = "http:/ftp.wwpdb.org/pub/pdb/datal..
Structure s = StructurelO.getStructure(u);
assertNotNull(s);

]

@After
public void tearDown() {...}

E

/i other custom-defined methods called in
the test body within the same test class

When the test fails, | get error: java.io.FileNotFoundException:https://mmtf.resb.org/v1.0/full/1Théw
The error is from line(s) Structure whole = cache.getStructure("1héw");

You should think about the solution step by step, follow the rules below for fixing the code:

2 - Update dependencies in pom.xml if needed, put the code between <!-- <pom.xml start>

I 3-..

I
I
I
: 1 - Update import list if needed, put the code between //<import start> and //<import end>.
I
I

--> and <!-- <pom.xml end> -->. Provide a specific version for the dependency you add.

Figure 3: NOD Prompt template

Validator. The patch from Repair component is then passed to
the Validator component, which examines whether it effectively
addresses the flakiness. If validated by rerunning NonDex, the patch
is recognized as a successful resolution. In cases where the patch
fails validation, the patches generated from the current response
will undergo further processing in the Prompt Generator component,
incorporating the latest compilation or test execution outputs. A
new prompt with updated information is generated for another
iteration of the repair process.

Feedback Loop. LLMs may not effectively address flakiness with
just one round of prompting, inspiring us to re-issue requests for
improved results. The process of iteratively repairing a flaky test is
repeated up to five times. NODoCTOR streamlines the feedback loop
by terminating it sooner if it detects identical compilation or test
failure errors in three consecutive prompting rounds or successfully
generates a valid patch. At the end of each iteration, the Prompt
Generator component takes compilation errors or test failures as
inputs, enhances the previous prompt with this information, and
prompts the LLM once again.

4 EVALUATION

4.1 Experimental Setup

We collected experimental NOD flaky tests from IDoFT [3], which
contains more than 5,490 flaky tests of multiple categories detected
in real-world Java projects. Starting from 662 NOD tests from 45
projects, we exclude projects and tests that: (1) were deleted, (2)
we were unable to compile in a reasonable time due to non-trivial
issues such as deprecated dependencies, and (3) we were unable

25

to reproduce NOD flakiness even after running NonDex in five
times. Consequently, we narrowed down our selection to 118 NOD
flaky tests from 11 projects, which served as the subjects for our
experiments.

4.2 Effectiveness in Repairing NOD Test
Flakiness

Table 1 presents the subjects used in our experiments along with
the evaluation results. The sub-columns PF and PU represent the
number of previously fixed and previously unfixed tests, respectively.
The sub-column FP displays the number of false positives, indicating
patches that passed the validation phase but were later found, upon
manual inspection, to be semantically incorrect fixes. From the
results, we can see that NODocToR was only able to repair two
out of a total of 118 NOD tests. Excluding six tests identified as
false positives, the remaining 110 tests could not be repaired. In this
section, we will discuss detailed examples of tests in each category.

421 NOD tests that are successfully repaired Figure 4 shows a suc-
cessful repair of testMMcifURL by NODocToRr. In Line 3, the string
u refers to the file resource 4nwr-assembly1.cif.gz, accessed in
Line 11. Due to the unavailability of the 4nwr-assembly1.cif.gz
resource, the original test encountered a FileNotFoundException er-
ror when querying it in Line 11. Consequently, errors occur when
attempting to assert its non-null status in Line 12. NODocCTOR gen-
erated a patch to address this issue by encapsulating the assertion
within try-catch blocks. These blocks first verify the file’s exis-
tence through http requests, send a GET to establish the connection,

Can ChatGPT Repair Non-Order-Dependent Flaky Tests?

Table 1: Effectiveness of NODOCTOR in repairing NOD flak-
iness. PF: Previously Fixed NOD tests excluding False Pos-
itives); PU: Previously Unfixed NOD tests excluding False
Positives); FP: False Positive.

Project # Tests | # Repaired
PF | PU | PF | PU | FP

mercury 1 0 0 0 1
alibabacloud-tairjedis-sdk] 0 | 71 [0 | 0 | O
wasp 0 34] 0 0 0

biojava 0|l 2]0(|1]|1

one 0 1 0 0 0
querydsl 210002

tyrus 0 1 0 0 1

admiral Oof1]0]0]|1
wildfly-maven-plugin | 0 | 2 | 0 | 0 | O
fastjson ol 1]0f|1]|oO0

secor 2 0 0 0 0

Total 5 [113]| 0 2 6

and proceed with the assertion only if the file is confirmed to exist,
thereby resolving the test failure.

@Test
public void testMMcifURL) throws StructureException, IOException {
String u = "http://ftp.wwpdb.org/pub/pdb/data/biounit/mmCIF/
divided/nw/4nwr-assemblyl.cif.gz";

try {
URL url = new URL u);
HttpURLConnection connection =
HttpURLConnection) url.openConnection);
connection.setRequestMethod "GET");
int responseCode = connection.getResponseCode);
+ if responseCode == HttpURLConnection.HTTP_OK) {
Structure s = StructurelIO.getStructure u);
assertNotNull s);
5+ 3}
+ } catch IOException e) {
5+ fail "The URL is not accessible");
i 3
3

Figure 4: A NOD test successfully repaired by NODocTOR in
project biojava [8]

Figure 5 shows another NOD test, test_groovy, which was
successfully repaired by NODocToRr. In Line 14 of the origi-
nal test, an instance (GroovyObject b) of Class B (which ex-
tends Class A) is created without setting the id property. Con-
sequently, the JSON serialization of b in Line 17 triggers an
IllegalArgumentException with the error message Compari-
son method violates its general contract. This error commonly oc-
curs when using the JSON. toJSONString) method to serialize
objects, and the objects being compared do not adhere to the
contract expected by the sorting algorithm. When employing
JSON. toJSONString), the objects being serialized establish a nat-
ural order through the compareTo method. In this case, the presence
of a null object for the id property causes a comparison operation
to handle null value incorrectly. This issue results in a comparison
logic error, indirectly impacting the serialization process. To resolve
the test failure, NODOCTOR generates a patch to explicitly set the id

FTW ’24 April 14 2024 Lisbon Portugal

property for the instance b before serializing it, effectively resolving
the flakiness.

@Test

2 public void test_groovy) throws Exception {

17

19

20

26

ClassLoader parent = Thread.currentThread).getContextClassLoader
)5

GroovyClassLoader loader = new GroovyClassLoader parent);

Class AClass = loader.parseClass "class A {\n" + // " int id\n" +
/7"

GroovyObject a = GroovyObject) AClass.newInstance);

a.setProperty "id", 33);

String textA = JSON.toJSONString a);

GroovyObject aa = GroovyObject) JSON.parseObject textA, AClass);

Assert.assertEquals a.getProperty "id"), aa.getProperty "id"));

System.out.println a);

// Class B,

Class BClass = loader.parseClass "class B extends A {\n"
String name\n" + // "}");

GroovyObject b = GroovyObject) BClass.newInstance);

inherited from A
+ /7"

5 + b.setProperty "id", 33);

b.setProperty "name", "jobs");

String textB = JSON.toJSONString b);

GroovyObject bb = GroovyObject) JSON.parseObject textB, BClass);
Assert.assertEquals b.getProperty "id"), bb.getProperty "id"));

}

Figure 5: A NOD test successfully repaired by NODOCTOR in
project fastjson [9]

422 NOD tests that are false positive In some cases, although
the generated patch enables the test to pass during the validation
process, manual inspection reveals that the corresponding code
changes do not effectively address the NOD flakiness. Instead, the
patches either (1) modify the logic of assertions triggering the test
failures or (2) alter the original test logic. Consequently, we classify
such patches as false positives. Six tests have been identified as false
positives, and we will delve into their examples in this section.

False positive patches alter the assertions that trig-
ger test failures. In four of the plausible patches, the code
changes only modify or remove the assertions to make the
tests pass without actually resolving the flakiness. Figure 6 dis-
plays a patch generated for the count test. As shown in Fig-
ure 1, researchers previously fixed this test, and the issues were
rooted in the setUpClass method with a wrong file name. How-
ever, even though the setUpClass method is provided along
with the test code to the model, it cannot accurately iden-
tify the real root cause. Instead, GPT-4 modifies the assertion
assertEquals 1,query).where filter).fetchCount)); to
assertTrue count >= 1);. Since the query result will always
be greater than 1, the new assertion allows the test to pass but does
not resolve the underlying flakiness. This limitation is because,
while test execution results are provided to the prompt, the changes
pertain to local file systems, and the content of local configuration
files is not disclosed to GPT-4. Therefore, it is challenging for GPT-4
to pinpoint the root cause accurately.

False positive patches change the original test logic. Two
tests are associated with patches that modify the original test
logic. Figure 7 presents an example in this category, where the
test testGetStructureForDomain1 attempts to download a struc-
ture from a string in line 4, which may not always be available.

o

FTW ’24 April 14 2024 Lisbon Portugal

@Test
public void count) {
+ synchronized this) {

BooleanExpression filter = user.emailAddress.eq "bob@example.

com");
+ long count = query).where filter).fetchCount);
B assertEquals 1, query).where filter).fetchCount));
+ assertTrue count >= 1);
+ 3
}

Figure 6: A False positive patch generated by NODocTOR in
project querydsl [10], which alters test assertions

Consequently, querying this structure encounters an exception of
FileNotFoundException. To overcome this, NODocTor mocks the
AtomCache by returning a predefined structure instead of attempt-
ing to download it. While this modification enables the test to pass
without relying on the availability of the URL, it fails to address
the underlying issues and changes the original test logic.

@Test

public void testGetStructureForDomainl) throws IOException,
StructureException {

- String ranges = "A:328-396,B:518-527";

- Structure whole = cache.getStructure "Théw");

- AtomPositionMap map = new AtomPositionMap StructureTools

B .getAllAtomArray whole), AtomPositionMap.ANYTHING_MATCHER);

- List<ResidueRangeAndLength> rrs = ResidueRangeAndLength

8 = .parseMultiple ranges, map);

; - Chain a =

(S I

- int expectedLengthA = rrs.get 0).getlLength);

- int expectedLengthB = rrs.get 1).getlLength);

- Structure structure = cache.getStructureForDomain "d1héw.2");

» - assertEquals 2, structure.getPolyChains).size));

structure.getPolyChainByPDB "A");
- Chain b = structure.getPolyChainByPDB "B");

5 = assertEquals expectedLengthA, a.getAtomGroups).size));

- assertEquals expectedLengthB, b.getAtomGroups).size));

AtomCache cache = Mockito.mock AtomCache.class);
Structure structure = Mockito.mock Structure.class);

when cache.getStructure "1h6w")).thenReturn structure);
Structure whole = cache.getStructure "1h6w");

assertNotNull whole);

Figure 7: A False positive patch generated by NODoCTOR in
project biojava [8], which changes test logic

423 NOD tests that cannot be repaired In addition to the false
positive tests and repaired flaky tests, NODocTor was not able to
generate a plausible patch for the remaining 110 tests. We divide
the reasons for these unsuccessful cases into two primary cate-
gories: R1) Challenges in locating root causes. GPT-4 finds it
challenging to identify the actual root causes of NOD tests. NOD
test failures can come from factors beyond test orders, such as
concurrency, deadlock, etc. These issues are inherently difficult to
debug. While test execution results are provided as feedback for
GPT-4, the lack of sufficient local system dynamic information still
presents challenges in achieving effective fixes. R2) Struggles

Yang Chen and Reyhaneh Jabbarvand

in providing effective fixes. GPT-4 faces difficulties in generat-
ing effective fixes for NOD test issues. Sometimes, the model may
successfully identify the root cause of NOD flakiness but cannot
generate correct code changes to address the issues. Alternatively,
it might only eliminate specific assertions to ensure test passage,
thereby altering the test logic.

Figure 8 shows an example in which GPT-4 fails to locate the root
cause R1). Test testDelimitedTextFileWriter can fail due to
the conflict dependency issues of third-party framework Mockito,
which is used in the method mockDelimitedTextFileWriter
(called at line 4) for mocking the FileSystem class. The un-
derlying issue in the mocking framework leads to an Ille-
galStateException being thrown at Lines 22 and 23 in the
mockDelimitedTextFileWriter method when attempting to
mock the class. The patch used by developers [5] involves replac-
ing Mockito with PowerMockito to stub the filesystem. However,
NODocToR struggles to identify such complex root causes in exter-
nal libraries. Instead, it proposes that the FileSystem class should
not be directly mocked; rather, the FileSystem.get) method
should be used to obtain an instance of the FileSystem and then em-
ploy that instance in the test. Consequently, GPT-4 fails to pinpoint
the actual root cause of such tests.

@Test

public void testDelimitedTextFileWriter) throws Exception {
setupDelimitedTextFileWriterConfig);
mockDelimitedTextFileWriter false);

s private void mockDelimitedTextFileWriter boolean isCompressed)

throws Exception {

) - PowerMockito.mockStatic FileSystem.class);

27

+ Configuration conf = new Configuration);
+ FileSystem fs = FileSystem.get conf);
+ PowerMockito.spy FileSystem.class);
FileSystem fs = Mockito.mock FileSystem.class);
- Mockito.when
- FileSystem.get Mockito.any URI.class),
- Mockito.any Configuration.class))).thenReturn fs);
+ PowerMockito.doReturn fs).when FileSystem.class,

+ "get", Mockito.any URI.class),

)+ Mockito.any Configuration.class));

Mockito.when fs.open fsPath)).thenReturn fileInputStream);
Mockito.when fs.create fsPath)).thenReturn fileOutputStream);

Figure 8: A Test can not be repaired by NODocTOR in
alibabacloud-tairjedis-sdk wasp [7], in which GPT-4 can not
locate root cause

Figure 9 shows another test that NODocToR fails to repair. For
this test, the NODocToR can identify the root cause but struggles
to generate an effective patch R2). The testUpdatePK test fails
not due to code within the test body but due to incorrect setup
in a helper method, setUpBeforeClass. In Line 7, a NullPoint-
erException occurs when TEST_UTIL trying to start a mini cluster,
indicating that the WaspTestingUtility class or its dependencies

Can ChatGPT Repair Non-Order-Dependent Flaky Tests?

are not properly initialized when TEST_UTIL is created. NODoc-
TOR manages to locate the root cause and attempts to initialize
TEST_UTIL in the setup, but it fails to generate an effective patch.
The generated patch tries to create a new WaspTestingUtility, as
shown in Figure 9, but it does not resolve the issues. Additionally,
during the iterations of the feedback loop, sometimes NODocTOR
either addresses partial compilation issues or introduces new com-
pilation errors. Consequently, it may not produce a successful patch.

public void setUpBeforeClass) throws Exception {
WaspTestingUtility.adjustLoglevel);

+ if TEST_UTIL == null){

+ TEST_UTIL = new WaspTestingUtility);

5 +)

TEST_UTIL.getConfiguration).setInt "wasp.client.retries.number",
3
TEST_UTIL.startMiniCluster 3);
TableSchemaCacheReader.getInstance TEST_UTIL.getConfiguration)).
clearCache);
TEST_UTIL.createTable TABLE);
TEST_UTIL.getWaspAdmin).disableTable TABLE);

2}
5 @Test

public void testUpdatePK) throws IOException {
Map<String, String> sqlGroup = new HashMap<String, String>);
sqlGroup.put INSERT, "Insert into " + TABLE_NAME + " column,

column2,column3) values 5,234,'abc');");

Figure 9: A Test cannot be repaired by NODocTOR in project
wasp [11], in which GPT-4 can locate the root cause but fail
to generate a correct fix

5 RELATED WORK

Numerous empirical studies emphasize the significance of the test
flakiness problem from a developer’s standpoint[21, 36]. Various
techniques have been proposed to characterize [19, 28, 29,31, 32, 42],
detect [14, 26, 30, 37, 44, 45, 48, 49, 54, 57, 59], or repair [20, 33, 43,
46, 49, 53] test flakiness. iFixFlakies [46] and iPFlakies [49], address
the repair of OD test flakiness in Java and Python test suites, re-
spectively. iFixFlakies focuses on OD tests, utilizing information
about the test order and leveraging iDFlakies for required inputs. It
modifies the execution order of test sub-sequences to identify tests
that impact shared states, generating patches accordingly. iPFlakies
follows similar steps but is limited to repairing victim OD tests
in Python test suites. ODRepair [32] addresses the limitation of
iFixFlakies, which relies on cleaner tests to repair victim OD tests. It
analyzes static fields and serialized heap states to identify polluted
shared states between victim and polluter tests. By enforcing the
execution of cleaner tests before victims, ODRepair resolves test
flakiness. DexFix [58] is a tool for repairing ID flakiness by imple-
menting domain-specific repair strategies, effectively repairing 119
out of 275 ID flaky tests. However, these strategies are tailored to
specific flaky tests and may not generalize.

Two research projects have proposed techniques to repair NOD
flaky tests caused by asynchronous waits. FaTB [29] identifies
method calls in the test code associated with timeouts or thread

28

FTW ’24 April 14 2024 Lisbon Portugal

waits. It subsequently computes the flaky-test-failure rate, repre-
senting the frequency at which the flaky test is expected to fail.
Leveraging this rate, FaTB explores different time values and pro-
vides developers with the minimum time values they should con-
sider based on their tolerance for flaky test failures. TRaF [43]
addresses test flakiness in JavaScript test suites of web-based appli-
cations by adjusting waiting times for asynchronous calls to break
time dependencies between tests.

None of the prior techniques aimed to devise a general-purpose
NOD test flakiness repair approach. Also, while LLMs have been
explored in repairing code in general, we are the first to explore
the use of GPT-4 in repairing test flakiness.

6 FUTURE WORK

The capacity for in-depth analysis of NOD flaky tests remains con-
strained and localizing NOD flakiness and validating corresponding
patches continue to pose open challenges. In our upcoming research,
our goal is to explore efficient methods for categorizing, detecting,
reproducing, and repairing NOD tests without requiring extensive
resources for rerunning test suites. Regarding categorization, while
several related works have attempted to understand different root
causes for NOD test flakiness, there is no work on deeply analyzing
instances of each NOD sub-category to identify similarities and
commonalities between them. Such insight would be the first step in
detecting and ultimately repairing NOD test flakiness. The natural
next step would be enabling a reliable reproduction of NOD flaky
tests. Relying just on re-execution is naive, and we need to work
on sort of guarantees to judge the existence (or non-existence)
of flaky tests in the test suites. With all these insights, we can
revisit the problem of repairing NOD tests. On a related line of
research, we plan to investigate the potential of leveraging LLMs to
automatically generate pull requests for patches. This exploration
encompasses assessing whether LLMs can (1) streamline unneces-
sary code changes and (2) effectively articulate the functioning of
the patch. Furthermore, the non-deterministic behavior of LLMs
shows similarity to flakiness, which remains an open problem for
future research.

REFERENCES

2023. GitHub Repository of NODoctor. https://github.com/Intelligent- CAT-
Lab/NODoctor.
2023. GPT-4 Technical Report. https://cdn.openai.com/papers/gpt-4.pdf.

[3] 2023. International Dataset of Flaky tests. https://github.com/
TestingResearchlllinois/idoft.
[4] 2023. Nondex Test Flakiness Detection Tool.

https://github.com/TestingResearchIllinois/NonDex.

2023. PR for test testDelimited TextFileWriter. https://github.com/pinterest/secor/
pull/1687.

2023. A previously-fixed NOD test. https://github.com/querydsl/querydsl/pull/
2658.

2023. Repository alibabacloud-tairjedis-sdk.
alibabacloud-tairjedis-sdk.

2023. Repository biojava. https://github.com/biojava/biojava.

2023. Repository Fastjson. https://github.com/alibaba/fastjson.

2023. Repository querydsl. https://github.com/querydsl/querydsl.

2023. Repository wasp. https://github.com/alibaba/wasp.

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang.
2021. Unified pre-training for program understanding and generation. arXiv
preprint arXiv:2103.06333 (2021).

Abdulrahman Alshammari, Christopher Morris, Michael Hilton, and Jonathan
Bell. 2021. FlakeFlagger: Predicting Flakiness Without Rerunning Tests. In 2021
IEEE/ACM 43rd International Conference on Software Engineering. 1572-1584.
https://doi.org/10.1109/ICSE43902.2021.00140

https://github.com/alibaba/

FTW ’24 April 14 2024 Lisbon Portugal

[14] Jonathan Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung,
and Darko Marinov. 2018. DeFlaker: Automatically detecting flaky tests. In 2018
IEEE/ACM 40th International Conference on Software Engineering. IEEE, 433-444.

[15] Saikat Chakraborty, Toufique Ahmed, Yangruibo Ding, Premkumar T Devanbu,
and Baishakhi Ray. 2022. Natgen: generative pre-training by “naturalizing”
source code. In Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 18-30.

[16] Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou,

and Weizhu Chen. 2022. Codet: Code generation with generated tests. arXiv
preprint arXiv:2207.10397 (2022).
[17] Yang Chen, Alperen Yildiz, Darko Marinov, and Reyhaneh Jabbarvand. 2023.
Transforming test suites into croissants. In Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis. 1080-1092.
Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen,
Jiayi Feng, Chaofeng Sha, Xin Peng, and Yiling Lou. 2023. Classeval: A manually-
crafted benchmark for evaluating llms on class-level code generation. arXiv
preprint arXiv:2308.01861 (2023).

[18

[19] Saikat Dutta, August Shi, Rutvik Choudhary, Zhekun Zhang, Aryaman Jain, and
Sasa Misailovic. 2020. Detecting flaky tests in probabilistic and machine learning
applications. In Proceedings of the 29th ACM SIGSOFT International Symposium
on Software Testing and Analysis. 211-224.

[20] Saikat Dutta, August Shi, and Sasa Misailovic. 2021. Flex: fixing flaky tests in

machine learning projects by updating assertion bounds. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 603-614.

[21] Moritz Eck, Fabio Palomba, Marco Castelluccio, and Alberto Bacchelli. 2019.
Understanding flaky tests: The developer’s perspective. In Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 830-840.

[22] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,

Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. CodeBert: A pre-trained

model for programming and natural languages. arXiv preprint arXiv:2002.08155

(2020).

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,

Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022. Incoder: A

generative model for code infilling and synthesis. arXiv preprint arXiv:2204.05999

(2022).

[24] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long

Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcodebert:

Pre-training code representations with data flow. arXiv preprint arXiv:2009.08366

(2020).

Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan,

and Alexey Svyatkovskiy. 2023. Inferfix: End-to-end program repair with llms.

arXiv preprint arXiv:2303.07263 (2023).

[26] Tarig M King, Dionny Santiago, Justin Phillips, and Peter J Clarke. 2018. Towards
a Bayesian network model for predicting flaky automated tests. In 2018 IEEE
International Conference on Software Quality, Reliability and Security Companion.
IEEE, 100-107.

[23

oo
&

[27] Emily Kowalczyk, Karan Nair, Zebao Gao, Leo Silberstein, Teng Long, and Atif
Memon. 2020. Modeling and ranking flaky tests at Apple. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering: Software
Engineering in Practice. 110-119.

[28] Wing Lam, Patrice Godefroid, Suman Nath, Anirudh Santhiar, and Suresh Thum-

malapenta. 2019. Root causing flaky tests in a large-scale industrial setting. In
Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis. 101-111.

[29] Wing Lam, Kivan¢ Muslu, Hitesh Sajnani, and Suresh Thummalapenta. 2020.
A study on the lifecycle of flaky tests. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering. 1471-1482.

[30] Wing Lam, Reed Oei, August Shi, Darko Marinov, and Tao Xie. 2019. iDFlakies:

A framework for detecting and partially classifying flaky tests. In 2019 12th ieee

conference on software testing, validation and verification icst). IEEE, 312-322.

Wing Lam, Stefan Winter, Angello Astorga, Victoria Stodden, and Darko Marinov.

2020. Understanding reproducibility and characteristics of flaky tests through

test reruns in Java projects. In 2020 IEEE 31st International Symposium on Software

Reliability Engineering. IEEE, 403-413.

[32] Wing Lam, Stefan Winter, Anjiang Wei, Tao Xie, Darko Marinov, and Jonathan

Bell. 2020. A large-scale longitudinal study of flaky tests. Proceedings of the ACM

on Programming Languages 4 (2020), 1-29.

Chengpeng Li, Chenguang Zhu, Wenxi Wang, and August Shi. 2022. Repair-

ing order-dependent flaky tests via test generation. In Proceedings of the 44th

International Conference on Software Engineering. 1881-1892.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov,

Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. 2023.

StarCoder: may the source be with you arXiv preprint arXiv:2305.06161 (2023).

Jiawei Liu, Chungqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is your

code generated by chatgpt really correct? rigorous evaluation of large language

[31

w
&

(34

[35

Yang Chen and Reyhaneh Jabbarvand

models for code generation. arXiv preprint arXiv:2305.01210 (2023).

Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An empir-
ical analysis of flaky tests. In Proceedings of the 22nd ACM SIGSOFT international
symposium on foundations of software engineering. 643-653.

Maximiliano A Mascheroni and Emanuel Irrazabal. 2018. Identifying key success
factors in stopping flaky tests in automated REST service testing. Journal of
Computer Science and Technology 18, 02 (2018), e16-¢16.

John Micco. 2017. The state of continuous integration testing@ google. (2017).
Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou,
Silvio Savarese, and Caiming Xiong. 2022. Codegen: An open large language
model for code with multi-turn program synthesis. arXiv preprint arXiv:2203.13474
(2022).

Shuyin Ouyang, Jie M Zhang, Mark Harman, and Meng Wang. 2023. LLM is
Like a Box of Chocolates: the Non-determinism of ChatGPT in Code Generation.
arXiv preprint arXiv:2308.02828 (2023).

Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar, Lam-
bert Pouguem Wassi, Michele Merler, Boris Sobolev, Raju Pavuluri, Saurabh
Sinha, and Reyhaneh Jabbarvand. 2023. Understanding the Effectiveness of Large
Language Models in Code Translation. arXiv preprint arXiv:2308.03109 (2023).
Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn. 2021.
A Survey of Flaky Tests. ACM Trans. Softw. Eng. Methodol. (2021), 74 pages.
https://doi.org/10.1145/3476105

Yu Pei, Jeongju Sohn, Sarra Habchi, and Mike Papadakis. 2023. TRaf: Time-
based Repair for Asynchronous Wait Flaky Tests in Web Testing. arXiv preprint
arXiv:2305.08592 (2023).

Suzette Person and Sebastian Elbaum. 2015. Test analysis: Searching for faults in
tests (N). In 2015 30th IEEE/ACM International Conference on Automated Software
Engineering ASE). IEEE, 149-154.

Gustavo Pinto, Breno Miranda, Supun Dissanayake, Marcelo d’Amorim,
Christoph Treude, and Antonia Bertolino. 2020. What is the vocabulary of
flaky tests?. In Proceedings of the 17th International Conference on Mining Software
Repositories. 492-502.

August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov. 2019. iFixFlakies:
A framework for automatically fixing order-dependent flaky tests. In Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 545-555.

Disha Shrivastava, Hugo Larochelle, and Daniel Tarlow. 2023. Repository-level
prompt generation for large language models of code. In International Conference
on Machine Learning. 31693-31715.

Roberto Verdecchia, Emilio Cruciani, Breno Miranda, and Antonia Bertolino.
2021. Know you neighbor: Fast static prediction of test flakiness. IEEE Access 9
(2021), 76119-76134.

Ruixin Wang, Yang Chen, and Wing Lam. 2022. iPFlakies: A framework for
detecting and fixing python order-dependent flaky tests. In Proceedings of the
ACM/IEEE 44th International Conference on Software Engineering: Companion
Proceedings. 120-124.

Xingyao Wang, Hao Peng, Reyhaneh Jabbarvand, and Heng Ji. 2023. LeTI: Learn-
ing to Generate from Textual Interactions. arXiv preprint arXiv:2305.10314 (2023).
Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi DQ Bui, Junnan Li, and
Steven CH Hoi. 2023. Codet5+: Open code large language models for code
understanding and generation. arXiv preprint arXiv:2305.07922 (2023).

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. 2021. Codet5: Identifier-
aware unified pre-trained encoder-decoder models for code understanding and
generation. arXiv preprint arXiv:2109.00859 (2021).

Anjiang Wei, Pu Yi, Zhengxi Li, Tao Xie, Darko Marinov, and Wing Lam. 2022.
Preempting flaky tests via Non-Idempotent-Outcome tests. In International Con-
ference on Software Engineering. 1730-1742.

Anjiang Wei, Pu Yi, Tao Xie, Darko Marinov, and Wing Lam. 2021. Probabilistic
and systematic coverage of consecutive test-method pairs for detecting order-
dependent flaky tests. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 270-287.

Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert,
Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C Schmidt. 2023. A prompt
pattern catalog to enhance prompt engineering with chatgpt. arXiv preprint
arXiv:2302.11382 (2023).

Chungqiu Steven Xia and Lingming Zhang. 2023. Conversational automated
program repair. arXiv preprint arXiv:2301.13246 (2023).

Pu Yi, Anjiang Wei, Wing Lam, Tao Xie, and Darko Marinov. 2021. Finding
polluter tests using Java PathFinder. ACM SIGSOFT Software Engineering Notes
46, 3 (2021), 37-41

Peilun Zhang, Yanjie Jiang, Anjiang Wei, Victoria Stodden, Darko Marinov, and
August Shi. 2021. Domain-specific fixes for flaky tests with wrong assumptions on
underdetermined specifications. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering. IEEE, 50-61.

Celal Ziftci and Diego Cavalcanti. 2020. De-flake your tests: Automatically
locating root causes of flaky tests in code at google. In 2020 IEEE International
Conference on Software Maintenance and Evolution. IEEE, 736-745.

