
Noname manuscript No.
(will be inserted by the editor)

Diagnosability and Attack Detection for Discrete Event
Systems under Sensor Attacks

Feng Lin · Stéphane Lafortune ·
Caisheng Wang

Received: 7 July 2023 / Accepted: 29 June 2024

Abstract This paper extends the theory of diagnosability by investigating
fault diagnosis in discrete event systems under sensor attacks using finite-state
automata as models. It assumes that an attacker has compromised the com-
munication channel between the system’s sensors and the diagnostic engine.
While the general attack model utilized by the attacker has been previously
studied in the context of supervisory control, its application to fault diagnosis
remains unexplored. The attacker possesses the capability to substitute each
compromised observable event with a string from an attack language. The
attack model incorporates event insertion and deletion, as well as static and
dynamic attacks. To formally capture the diagnostic engine’s ability to identify
faults in the presence of the attacker, a novel concept called CA-diagnosability
is introduced. This extends the existing notions of CA-controllability and CA-
observability. A testing procedure for CA-diagnosability is developed, and its
correctness is proven. Some sufficient conditions for CA-diagnosability that can
be easily checked are also proposed and proved. The paper then investigates
conditions under which the role of an attacker can be reverted from malicious

This work is supported in part by the US National Science Foundation under grants ECCS-
2146615 and ECCS-2144416.

Feng Lin
Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI
48202, USA
Tel.: +1-313-5773428
E-mail: flin@wayne.edu

Stéphane Lafortune
Department of Electrical Engineering and Computer Science, University of Michigan, Ann
Arbor, MI 48109, USA
E-mail: stephane@umich.edu

Caisheng Wang
Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI
48202, USA
E-mail: cwang@wayne.edu

2 Feng Lin et al.

to benevolent, that is, to help the diagnoser to diagnose faults. The paper fur-
ther applies diagnosability theory to investigate conditions under which the
presence of the attacker can be detected.

Keywords Discrete event systems, cyber attacks, diagnosability
Statements and Declarations: The authors have no competing interests to
declare that are relevant to the content of this article.

1 Introduction

We consider the standard set-up of event diagnosis in discrete event systems
modeled by finite-state automata, as in [1]. However, we assume that an at-
tacker has compromised a subset of the system’s sensors. This attacker can
initiate a sensor deception attack, i.e., it can edit the string of events input
to the diagnostic engine. Such attacks have been the subject of increasing at-
tention in state estimation, fault diagnosis, and supervisory control of discrete
event systems (DES) in recent years [2–8]; a list of references can be found
in a recent book [9] and a survey/tutorial paper [10]. The increased interest
in these problems is motivated by concerns regarding cyber-attacks on both
cyber and cyber-physical systems (CPS) [11–13]. In the context of CPS, their
higher-level control logic is often modeled as discrete transition systems and
thus studied in the context of DES [14–18].

In this paper, we consider a general nondeterministic attack model on
the sensors, where each compromised observable event can be edited, in a
nondeterministic manner, by a string in a language, thereby capturing event
insertion, deletion, and replacement. Moreover, this editing of compromised
events can be dynamic in the sense that the attack language is allowed to vary
for each compromised event, based on the string of events executed so far. This
attack model on sensors was introduced in [19] in the context of supervisory
control, where it led to the formalization of the notions of CA-controllability
and CA-observability (where CA stands for “cyber-attack”); these notions
extend the standard controllability and observability properties to the attack
scenario under consideration. In this paper, we name the sensor attack model
from [19] as the ALTER model1 and study event diagnosis under this general
attack model. Specifically, we study diagnostic performance in the presence of
ALTER attacks, including both static and dynamic attacks. In our problem
formulation, the DES of interest is partially observed by a diagnostic engine
whose goal is to detect each occurrence of an unobservable event of interest
(e.g., a fault event) in a bounded number of events after the occurrence. The
property of diagnosability, originally defined in [1], captures this objective in
the absence of an attacker. Various techniques exist in the literature to test
diagnosability (see, e.g., [16]). We do not assume a specific diagnostic engine
in this paper, but it could be a diagnoser automaton, as defined in [1].

1 One could think of the acronym ALTER as capturing the keywords: Attack Language,
Transition-BasEd, Replacement.

Diagnosability under Sensor Attacks 3

We first define the notion of CA-diagnosability that captures the ability
to still diagnose the occurrences of the unobservable event of interest in the
presence of an ALTER attack. This extends the results in [19], which focused
on supervisory control and introduced the corresponding properties of CA-
controllability and CA-observability, to the realm of event diagnosis. We then
present a testing procedure for CA-diagnosability that is based on transform-
ing the system model and testing the standard property of diagnosability on
the transformed model. The transformation procedure results in an extended
automaton that embeds the possible actions of the attacker into the original
automaton model of the system2. We prove the correctness of this approach
under some general assumptions about the attacker. This approach also allows
us to design a CA-diagnoser for a system under sensor attacks based on the ex-
tended automaton using the conventional design method, if CA-diagnosability
is satisfied.

Owing to the ALTER attack model considered in this paper and to the
formulation and study of the property of CA-diagnosability, our results differ
in nature and complement related recent work on state estimation and diag-
nosis of DES under lossy or tampered observations, as well as codiagnosability
of networked DES; see, e.g., [20–25]. ALTER attacks, as defined in Section 3,
allow any transition labeled by a compromised observable event to be replaced
by a string in a corresponding attack language. The notion of attack language
captures event deletion, insertion, and replacement, as well as nondetermin-
ism of the attacker. These features distinguish ALTER from the other attack
models in the works mentioned above.

We then investigate the question that if a system is diagnosable without
sensor attacks, will it remain CA-diagnosable under sensor attacks? We derive
some sufficient conditions on sensor attacks under which diagnosability implies
CA-diagnosability. One of the conditions is very easy to check. If this condition
is satisfied, then the sensor attacks can be overcome in the sense that a new
CA-diagnoser can be designed to diagnose the occurrences of the unobservable
event of interest in the presence of the attacker.

Next, we revert the role of the attacker from malicious to benevolent, i.e.,
we want to design a helper (rather than an attacker) to help a diagnoser
to diagnose the occurrences of the unobservable event of interest which the
diagnoser cannot do without the helper. Theoretically, this means to find a
helper so that although G is not diagnosable, it is CA-diagnosable with the
helper. We show that, in order for this to be possible, the helper needs to
observe more events than the diagnoser.

In the last part of the paper, we use the diagnosability theory itself to
detect the presence of an attacker, using the same general ALTER model.
We present a second model transformation procedure, where the unobservable
event to diagnose is an event that is introduced in the attacks of the considered
attacker. Under an assumption about the ALTER model, we show that if the

2 The technique of modifying the system model to embed attacks has been used in other
works that have considered attacks on DES, but the details often differ based on the type
of attack considered.

4 Feng Lin et al.

attacker remains stealthy, as defined in the paper, then its presence will not
be detected by the diagnostic engine. The stealthiness of an attacker holds
whenever its edit actions remain contained in the original observed system
language. The special features of our ALTER model make these results novel
and distinct as compared to prior works on attack detection and stealthy (or
covert) attacks in the context of sensor deception attacks, such as the work
in [6, 22,26–28].

The contributions described above extend the theory of diagnosability of
discrete event systems to account for the presence of sensor deception attacks
under a general attack model. In addition, we illustrate some of the results in
this paper with an example of a protection relay and a circuit breaker in a
power system, where the goal is to diagnose failures of the protection relay or
circuit breaker under sensor attacks. Discrete event system theory has been
applied to power systems before [29–34]; our focus on attacks on diagnosers
differentiates our results from these past works.

This paper is organized as follows. Section 2 presents some necessary back-
ground material on the theory of diagnosability of DES. Next, Section 3
describes the general attack model considered in this paper. A prototypical
power system example is introduced in Section 4, where the faults of interest
pertain to the circuit breaker and the protection relay. The results on CA-
diagnosability and its verification are presented in Section 5; the main result
therein is Theorem 1. The power system example is revisited in this section.
Section 6 presents some sufficient conditions on attack models under which
diagnosability implies CA-diagnosability. Section 7 considers how to design a
helper to help a diagnoser to diagnose faults that the diagnoser cannot di-
agnose without the helper. Then, the results on diagnosing the attack itself,
Theorems 5 and 6, are presented in Section 8. Section 9 concludes the paper.

A preliminary and partial version of this paper, without proofs and without
Sections 6 and 7 among other differences, appears in [35].

2 Diagnosability of Discrete Event Systems

Let us review the theory of diagnosability of DES in this section. As usual,
the DES of interest is modeled by a finite deterministic automaton [16,17,36]:

G = (Q,Σ, δ, qo, Qm),

where Q is the state set; Σ is the event set; δ : Q × Σ → Q is the transition
function, generally, a partial function; qo is the initial state; and Qm is the
marked state set. In this paper, we assume that all states in G are marked,
that is, Qm = Q.

We use Σ∗ to denote the set of all finite strings over Σ. The transition
function δ is extended to strings, that is, δ : Q×Σ∗ → Q in the usual way [16].
If δ(q, s) is defined, we denote it by δ(q, s)!. The language generated by G is
the set of all strings defined in G from the initial state:

L(G) = {s ∈ Σ∗ : δ(qo, s)!}.

Diagnosability under Sensor Attacks 5

The language marked by G is the set of all strings defined in G from the initial
state and end in a marked state:

Lm(G) = {s ∈ L(G) : δ(qo, s) ∈ Qm}.

In general, a language K ⊆ Σ∗ is a set of strings. The prefix closure of K is
the set of prefixes of strings in K. A language is prefix-closed if it equals its
prefix closure. The prefix closure of K is denoted by K. By definition, L(G) is
prefix-closed. The length of a string s ∈ Σ∗ is denoted by |s|. The cardinality
(the number of its elements) of a set x ⊆ Q is denoted by |x|.

The set of observable events is denoted by Σo (⊆ Σ). Σuo = Σ − Σo is
the set of unobservable events. With a slight abuse of notation, the set of all
transitions present in G is also denoted by δ: δ = {(q, σ, q′) : δ(q, σ) = q′}. We
will use ε-transition (q, ε, q′), where ε is the empty string, when we consider
the partial observation below.

As in [1], we make the following two assumptions on G for the rest of this
paper:

A1. G is live (can always generate more events), that is, (∀q ∈ Q)(∃σ ∈
Σ)δ(q, σ)!.

A2. There are no cycles of unobservable events in G, that is, (∀q ∈ Q)(∀s ∈
Σ∗)δ(q, s) = q ∧ |s| > 0⇒ s 6∈ Σ∗uo.

These standard assumptions can be mitigated at the cost of extra techni-
calities to (i) deal with terminating traces and (ii) properly handle cycles of
unobservable events; see, e.g., Chapter 5 in [37]. To keep the treatment simpler
in this paper, we prefer to avoid these complications.

Faults in G are represented by some events. The set of events representing
faults is denoted by Σf ⊂ Σ. To diagnose faults, a diagnoser is used, which
can observe observable events. We assume that all fault events are unobserv-
able, that is, Σf ⊆ Σuo; otherwise, the diagnosis of the fault events is trivial.
Observation is described by the natural projection P : Σ∗ → Σ∗o defined as

P (ε) = ε, P (sσ) =

{
P (s)σ if σ ∈ Σo
P (s) if σ ∈ Σuo

.

P is extended to a language K ⊆ L(G) as P (K) = {P (s) : s ∈ K}. The
inverse mapping of P is defined as P−1(w) = {s ∈ Σ∗ : P (s) = w}. P−1 is
extended to a language J ⊆ P (L(G)) as P−1(J) = {s ∈ Σ∗ : P (s) ∈ J}.

Denote the set of strings in K ⊆ L(G) whose last event is a fault event as

Ψ(K) = {sσ ∈ K : σ ∈ Σf}.

The goal of diagnosis is to determine the occurrence of any string in Ψ(L(G))
after finite delays measured by the number of events occurred afterwards.
Formally, diagnosability is defined in [1] as follows.

6 Feng Lin et al.

Definition 1 [1]
A DES G is diagnosable with respect to P if

(∃n ∈ N)(∀s ∈ Ψ(L(G)))(∀u ∈ L(G)/s)

|u| ≥ n⇒ (∀v ∈ P−1(P (su)) ∩ L(G))Σf ∈ v,
(1)

where N is the set of natural numbers, L(G)/s denotes the post language after
s:

L(G)/s = {u ∈ Σ∗ : su ∈ L(G)}

and Σf ∈ v means v contains at least one fault event:

(∃σ ∈ Σf)v = v′σv′′,

where v′ and v′′ are substrings in Σ∗.

In [1], different types of faults are considered. For simplicity, we consider
only one type of fault in this paper. The results of this paper can be extended
to multi-type faults at the expense of more complex notations.

We consider networked DES under sensor attacks in the next section.

3 Networked Discrete Event Systems under Sensor Attacks

The terminology “ALTER” is used in this paper to name the model introduced
in [19] and reviewed in [10]. In this section, we review the ALTER model and
then propose a method to implement the ALTER model.

3.1 ALTER Sensor Attack Model

As in [19], let us denote the set of observable events and transitions that
may be attacked by Σa

o ⊆ Σo and δa = {(q, σ, q′) ∈ δ : σ ∈ Σa
o}, respectively.

We call events σ ∈ Σa attackable events and transitions tr = (q, σ, q′) ∈ δa
attackable transitions.

For a given attackable transition tr = (q, σ, q′) ∈ δa, we assume that an
attacker can change the event σ to any string in an attack language Atr ⊆ Σ∗.
In other words, if a string s = σ1σ2..., σ|s| ∈ L(G) occurs in G, the set of
possible strings after attacks, denoted by Θa(s), is obtained as follows. Denote
qk = δ(qo, σ1 · · ·σk), k = 1, 2, ..., |s|, then

Θa(s) = L1L2...L|s|,

where

Lk =

{
{σk} if tr = (qk−1, σk, qk) 6∈ δa
Atr if tr = (qk−1, σk, qk) ∈ δa (2)

Diagnosability under Sensor Attacks 7

Note that Θa(s) may contain more than one string. Hence, Θa is a mapping
Θa : L(G)→ 2Σ

∗
.

Note also that this general definition allows for nondeterministic attacks
and includes the following special cases. (1) No attack: if σ ∈ Atr and σ is
altered to σ (no change), then there is no attack. (2) Deletion: if the empty
string ε ∈ Atr and σ is altered to ε, then σ is deleted. (3) Replacement:
if α ∈ Atr and σ is altered to α, then σ is replaced by α. (4) Insertion: if
σα ∈ Atr (or ασ ∈ Atr) and σ is altered to σα (or ασ), then α is inserted.

The observation mapping under partial observation and sensor attacks is
then given by

Φa(s) = P ◦Θa(s) = P (Θa(s)). (3)

Hence, Φa is a mapping Φa : L(G)→ 2Σ
∗
o .

We extend Θa and Φa from strings s to languages K ⊆ L(G) in the usual
way as

Θa(K) = {Θa(s) : s ∈ K}
Φa(K) = {Φa(s) : s ∈ K}.

(4)

We add sensor attacks to G as follows. For each transition tr ∈ δa, let us
assume that Atr is marked by an automaton Ftr, that is, Atr = Lm(Ftr) for
some

Ftr = (Qtr, Σ, δtr, qo,tr, Qm,tr).

Note that not all states in Ftr are marked. We assume that Ftr is trim, that
is, all states are accessible from qo,tr and co-accessible to Qm,tr.

We replace each attackable transition tr = (q, σ, q′) ∈ δa by (q, Ftr, q
′) as

follows.

Gtr→(q,Ftr,q′) = (Q ∪Qtr, Σ, δtr→(q,Ftr,q′), qo)

where δtr→(q,Ftr,q′) = (δ − {(q, σ, q′)}) ∪ δtr ∪ {(q, ε, qo,tr)} ∪ {(qm,tr, ε, q′) :
qm,tr ∈ Qm,tr}. In other words, Gtr→(q,Ftr,q′) contains all transitions in δ and
δtr, except (q, σ, q′), plus the ε-transitions from q to the initial state of Ftr
and from marked states of Ftr to q′. If Ftr has only one marked state, that is,
Qm,tr = {qm,tr}, then we can use a shortcut by merging q and q′ with q0,tr
and qm,tr, respectively, without the ε-transitions (q, ε, q0,tr) and (qm,tr, ε, q

′).
Denote the extended automaton obtained after replacing all attackable

transitions as

Ge = (Qe, Σ, δe, qo, Q
e
m) = (Q ∪ Q̃,Σ, δe, qo, Q)

where Q̃ = ∪tr∈δaQtr is the set of states added during the replacement and
Qem = Q is the set of marked states. Note that Ge is a nondeterministic
automaton and its transition function is a mapping δe : Qe ×Σ → 2Q

e

. From
the construction of Ge, it is obvious that

Lm(Ge) = Θa(L(G)), L(Ge) = Θa(L(G)). (5)

8 Feng Lin et al.

To describe the partial observation, we replace unobservable transitions in
Ge by ε-transitions and denote the resulting automaton as

Geε = (Qe, Σo, δ
e
ε , qo, Q

e
m) = (Q ∪ Q̃,Σo, δeε , qo, Q)

where δeε = {(q, σ, q′) : (q, σ, q′) ∈ δe∧σ ∈ Σo}∪{(q, ε, q′) : (q, σ, q′) ∈ δe∧σ 6∈
Σo}. Clearly, Geε is a nondeterministic automaton.

Geε marks the language Φa(L(G)) because

Lm(Geε) = P (Lm(Ge)) = P (Θa(L(G))) = Φa(L(G)). (6)

3.2 Implementation of the ALTER Model

We now consider how to implement the ALTER model, namely, how to
obtain a plant model G such that the attack model, based on the capabilities
of the attacker, is consistent with the definitions in Section 3.1. Note that the
implementation is not trivial, because ALTER with the set of attack languages
{Atr : tr ∈ δa} is transition-based with respect to the transitions of G while
the observations of the attackers are event-based.

We need to consider two possible cases. In the first case, sensor attacks
are “static,” that is, for any two transitions tr1 = (q1, σ1, q

′
1) ∈ δa and tr2 =

(q2, σ2, q
′
2) ∈ δa with the same event σ1 = σ2, we have Atr1 = Atr2 . In this

case, Atr can also be written as Aσ. In the second case, sensor attacks are
“dynamic,” that is, Atr1 6= Atr2 for some tr1 = (q1, σ1, q

′
1) ∈ δa and tr2 =

(q2, σ2, q
′
2) ∈ δa with the same event σ1 = σ2.

The results in this paper work for both static and dynamic attacks, pro-
vided the plant model G is adjusted in the case of dynamic attacks. Namely,
different implementations are needed for static attacks and dynamic attacks
as described below.

For static attacks, the implementation is simple: whenever an attacker sees
an event σ ∈ Σa

o , it will replace σ with some strings in the same Aσ. In this
case, the plant model G can be used as is and ALTER is defined as in Section
3.1 with the corresponding {Atr} sets.

For dynamic attacks, the implementation is more complex: when an at-
tacker sees an event σ ∈ Σa

o , it has the option of choosing a different attack
language to use, since this language may not be the same for each occurrence
of σ. We assume that this decision depends on the string of events the attacker
has observed so far.

Formally, let Σao be the set of events observable to the attacker. It is often
the case that Σao = Σo. However, the approach proposed here works as long as
Σa
o ⊆ Σao, that is, the attacker can observe all events that it wants to attack.

Let Pao : Σ∗ → Σ∗ao be the natural projection from Σ∗ to Σ∗ao.

Diagnosability under Sensor Attacks 9

An implementation is based on a finite automaton model of the dynamic
attacker3, with event set Σao:

H = (Y,Σao, ζ, yo, Ym).

We assume that all states in H are marked, that is, Ym = Y . To ensure
that all strings observed by the attacker are defined in H, it is required that
Pao(L(G)) ⊆ L(H). For example, the dynamic attacker may be defined based
on the observer of G with respect to Pao as H. In that case, Pao(L(G)) = L(H).

The set of all possible transitions of H is denoted by ζ = {(y, σ, y′) :
ζ(y, σ) = y′}. The set of attackable transitions is denoted by ζa = {(y, σ, y′) ∈
ζ : σ ∈ Σa

o}. For each transition tr = (y, σ, y′) ∈ ζa, we assume that the
capabilities of the dynamic attacker are as follows: it can change the event σ
to any string in an attack language AHtr ⊆ Σ∗. Note that, since the attacker
observes Σao, it knows which state y ∈ Y it is in. Hence, when it observes
an attackable event, it knows which attackable transition the attackable event
corresponds to. Therefore, in the case of dynamic attacks modeled by H and
the set {AHtr} as just described, we can obtain an attack model consistent
with the definitions of Section 3.1 if we embed H into G as follows. Take the
parallel composition of G and H [16]:

Ĝ = (Q̂,Σ, δ̂, q̂o, Q̂m) = G||H = (Q× Y,Σ, δ × ζ, (qo, yo), Q× Y),

where Q×Y denotes the product of sets and δ×ζ is defined, for (q, y) ∈ Q×Y
and σ ∈ Σ, as

(δ × ζ)((q, y), σ) =

{
(δ(q, σ), ζ(y, σ)) if σ ∈ Σao
(δ(q, σ), y) otherwise

.

For a transition t̂r = (q̂, σ, q̂′) = ((q, y), σ, (q′, y′)) with σ ∈ Σa
o , the corre-

sponding attack language is given by At̂r = AH(y,σ,y′).

Since Pao(L(G)) ⊆ L(H) implies L(Ĝ) = L(G), in the rest of the paper,
we assume that, without loss of generality, G is already embedded with some
H. If not, we can take Ĝ = G||H, call Ĝ the new G, and work on the new G.

The ALTER model is both general and specific. It is general in the sense
that it includes deletion, insertion, and replacement as special cases. It is
specific in the sense that the attacks are specified by attack languages. This
makes ALTER different from related work reviewed in the introduction, as
attack languages are a general way of capturing two features: (i) the constraints
on insertion, deletion, and replacement; and (ii) the nondeterminism of the
attack.

Let us now illustrate the ALTER model using the following example.

3 In prior work, it is usually assumed that either an attack model is known or an “all-out”
attack model is used. We adopt the same viewpoint in this paper. Basically, if one is going
to test the vulnerabilities of a system, then one must start with potential vulnerabilities.

10 Feng Lin et al.

Example 1 Let us consider the discrete event system G in Fig. 1 with states
Q = {1, 2, 3, 4} and events Σ = {α, β, γ, µ}. In the figures, symbol → denotes
the initial state and double circles denote marked states.

Fig. 1 Discrete event system G of Example 1.

Assume that event µ is unobservable and event α may be attacked, that
is, Σo = {α, β, γ} and Σa

o = {α}. The attack is dynamic and we assume that
it is implemented by the automaton H in Fig. 2 with Σao = {α, β}. In H,
there are two attackable transitions: ζa = {tr1, tr2}, where tr1 = (A,α,A)
and tr2 = (B,α,B). Let AHtr1 = {α} and AHtr2 = {β}, that is, the attacker will
do nothing at state A and will replace α by β at state B. The corresponding
automaton for FHtr2 is shown in Fig. 3.

Fig. 2 The automaton H implementing the dynamic attack.

Fig. 3 Automaton FH
tr of attack language AH

tr for transition tr2 = (B,α,B) ∈ ζa.

The synchronous product Ĝ = G‖H is shown in Fig. 4.

There are six attackable transitions in Ĝ: δ̂a = {t̂r1, t̂r2, t̂r3, t̂r4, t̂r5, t̂r6},
where t̂r1 = ((1, A), α, (2, A)), t̂r2 = ((2, A), α, (3, A)), t̂r3 = ((4, A), α, (3, A)),
t̂r4 = ((1, B), α, (2, B)), t̂r5 = ((2, B), α, (3, B)), and t̂r6 = ((4, B), α, (3, B)).

Diagnosability under Sensor Attacks 11

Fig. 4 The synchronous product Ĝ = G‖H of Example 1.

We have At̂r1 = At̂r2 = At̂r3 = AHtr1 = {α} and At̂r4 = At̂r5 = At̂r6 =

AHtr2 = {β}. The extended automaton Ĝe obtained after replacing all transi-

tions subject to attacks in Ĝ is shown in Fig. 5. Note that Ftr2 has only one
marked state. So, we use the shortcut of merging q and q′ with q0,tr and qm,tr,
respectively, without the ε-transitions (q, ε, q0,tr) and (qm,tr, ε, q

′).

Fig. 5 The extended automaton Ĝe

12 Feng Lin et al.

4 Power System Example

In this section, we present an example of a protection relay and a circuit
breaker in a power system that will be used to illustrate the theoretical results
in this paper.

Example 2 The system is shown in Fig. 6. The circuit breaker will be closed
or tripped when the corresponding closing coil (CC) or tripping coil (TC) is
energized. There are auxiliary contacts that assist with the functions of the
circuit breaker. The auxiliary normally-open (NO) contact a is closed when the
main circuit breaker is closed; otherwise, it is open when the circuit breaker is
open. The auxiliary normally-closed (NC) contact b is closed when the main
circuit breaker is open; otherwise, it is open when the circuit breaker is closed.
There can be additional TC and CC contacts that can be controlled remotely
or locally via manual operations.

The system works as follows. If there is a downed power line or other
accident that has occurred in the power system, causing an over current event
on the power line, as shown in Fig. 6, then the protection relay (PR) will be
triggered. When the PR is triggered, the corresponding PR contact is closed.
Then, the TC of the circuit breaker is energized to trip (open) the circuit
breaker to cut the faulty power line from the power system as the auxiliary
NO contact a is closed when the main circuit breaker is closed. After the circuit
breaker is open for a short period of time, it will automatically try to reclose
through a pre-defined reclosing command/procedure (RC). It is noted that
when the circuit breaker is open, the contact a is open, and the tripping coil
is cut from the control power. At the same time, the auxiliary normally-closed
(NC) contact b is closed when the main circuit breaker is open. Therefore,
when the RC contact is closed by the reclosing command, the CC is energized
to close the circuit breaker. If the over current disappears after the reclosure,
then the fault is temporal, and the line returns to normal operation. If the
over current stays after the reclosure, then the fault is permanent and the PR
will be tripped again, and the circuit breaker will return to and remain open
until the repair is made to the power line. It is worth noting that the diagram
shown in Fig. 6 is a much-simplified version of a real system. Nevertheless, the
main function of the system can be modeled by the automaton G shown in
Fig. 7. In the automaton G, the states are Q = {1, 2, 3, 4, 5, 6} and the events
are

O.C. - Over current,

Z.C. - Zero current,

PRT - Protection relay tripped,

PRF - Protection relay failed,

CBT - Circuit breaker tripped,

CBF - Circuit breaker failed, and

R - Circuit breaker reclosed.

Diagnosability under Sensor Attacks 13

Fig. 6 Protection relay and circuit breaker

Fig. 7 Automaton G for protection relay and circuit breaker

We assume that only events O.C. and Z.C. are observable (that is, the
current can be measured). Hence, Σo = {O.C., Z.C.}. We further assume that
Σa
o = Σao = Σo.

We would like to diagnose faults in the system. Clearly, there are two fault
events: PRF and CBF . Hence, Σf = {PRF , CBF }. It can be checked that
without sensor attacks, G is diagnosable with respect to P [1, 16]. Intuitively,
this is because, after the occurrence of either PRF or CBF , a diagnoser will
see event O.C., while under normal operation, the diagnoser will see event
Z.C..

Let us now suppose that an attacker can change the transition tr =
(6, O.C., 6) to (6, Z.C., 6), that is, Atr = {Z.C.} with Ftr shown in Fig. 8.
Note that G is already embedded with the attacker model H shown in Fig. 9
because G is isomorphic to G||H.

For the automaton G shown in Fig. 7, we can construct the extended
automaton Ge as shown in Fig. 10.

14 Feng Lin et al.

Fig. 8 Automaton Ftr of attack language Atr for transition tr = (6, O.C., 6)

Fig. 9 Automaton H implementing the dynamic attack

Fig. 10 The extended automaton Ge

5 Diagnosability under Sensor Attacks

Under sensor attacks, after the occurrence of s ∈ L(G), a diagnoser ob-
serves one of the strings s′ ∈ Φa(s). Hence, we extend diagnosability to CA-
diagnosability as follows.

Definition 2 A DES G is CA-diagnosable with respect to Φa if

(∃n ∈ N)(∀s ∈ Ψ(L(G)))(∀u ∈ L(G)/s)

|u| ≥ n⇒ (∀v ∈ (Φa)−1(Φa(su)) ∩ L(G))Σf ∈ v,
(7)

where (Φa)−1 is the inverse mapping of Φa, that is, (Φa)−1(v′) = {v ∈ L(G) :
v′ ∈ Φa(v)}.

We first show that CA-diagnosability of G is equivalent to (conventional)
diagnosability of Ge under the following assumptions:

A3. An attacker cannot delete or insert fault events, that is,

(∀v ∈ L(G))(∀v′ ∈ Θa(v))Σf 6∈ v ⇔ Σf 6∈ v′. (8)

A4. An attacker can only delete/insert a bounded number of events, that is,

(∀s ∈ L(G))(∀u ∈ L(G)/s)(∀s′ ∈ Θa(s))

(∀u′ ∈ Θa(L(G))/s′)(s′u′ ∈ Θa(su)

⇒ |(|u| − |u′|)| ≤ d)

(9)

Diagnosability under Sensor Attacks 15

for some integer d > 0.

Note that Assumption A3 will be satisfied if

(∀tr ∈ δa)Atr ⊆ (Σ −Σf)∗.

Note also that Assumption A4 ensures that Assumption A2 is true under
attacks. Furthermore, Assumption A4 is needed in several proofs.

Let us now prove the following theorem.

Theorem 1 Under Assumptions A3 and A4, G is CA-diagnosable with re-
spect to Φa if and only if Ge is diagnosable with respect to P , that is,

(∃n ∈ N)(∀s ∈ Ψ(L(G)))(∀u ∈ L(G)/s)

|u| ≥ n⇒ (∀v ∈ (Φa)−1(Φa(su)) ∩ L(G))Σf ∈ v

if and only if

(∃n ∈ N)(∀s ∈ Ψ(L(Ge)))(∀u ∈ L(Ge)/s)

|u| ≥ n⇒ (∀v ∈ P−1(P (su)) ∩ L(Ge))Σf ∈ v

Proof
The proof is in the Appendix.

Since CA-diagnosability of G is equivalent to diagnosability of Ge, all tech-
niques developed for diagnosability can be used to solve problems in CA-
diagnosability.

Example 3 Let us continue with the example of a protection relay and a circuit
breaker in a power system discussed in the previous section. It can be checked
that Assumptions A1 - A4 are all satisfied.

Using standard methods [1, 16], we can check that Ge is not diagnosable
with respect to P . Intuitively, this is because the attacker changes O.C. to
Z.C. So, after the occurrence of either PRF or CBF , a diagnoser will see
event Z.C., which is same as it will see under normal operation.

By Theorem 1, G is not CA-diagnosable with respect to Φa. Hence, the
sensor attack makes a diagnosable system not CA-diagnosable.

If G is CA-diagnosable with respect to Φa, then a new diagnoser, called CA-
diagnoser, can be designed for G to diagnose faults based on Ge using standard
methods [1, 16]. Let us illustrate this by the following modified power system
example.

Example 4 Consider again the power system in Example 2, but with a different
attacker. The attacker inserts Z.C. after O.C., that is, for tr = (6, O.C., 6),
A′tr = {O.C. Z.C.} with F ′tr shown in Fig. 11.

Let us check if G under the new attacker is CA-diagnosable or not by
constructing a CA-diagnoser as follows.

16 Feng Lin et al.

Fig. 11 The new automaton F ′
tr of attack language A′

tr for transition tr = (6, O.C., 6)

Fig. 12 The new extended automaton G′e

Step 1: Construct the new extended automaton G′
e

as shown in Fig. 12.
Note that, since F ′tr has only one marked state, we eliminate ε-transitions in
G′

e
.

Step 2: Construct the label automaton Glabel as shown in Fig. 13. Note
that the fault events are PRF and CBF . In the automaton Glabel, N denotes
“normal” and F denotes “faulty”.

Fig. 13 Label automaton Glabel for building CA-diagnoser

Step 3: Take parallel composition G̃e = G′
e||Glabel as shown in Fig. 14.

Note that G̃e and G′
e

are isomorphic. However, states in G̃e are labeled with
N or F.

Step 4: Replace unobservable events in G̃e by ε to obtain nondeterministic
automaton G̃eε as shown in Fig. 15.

Step 5: Convert nondeterministic automaton G̃eε to the equivalent deter-
ministic automaton (also called observer) G̃eobs as shown in Fig. 16 (see [16]

for details). G̃eobs is the diagnoser for G′
e
. We call G̃eobs the CA-diagnoser for

G.

Since there is no indeterminate cycle in G̃eobs, G
′e is diagnosable with re-

spect to P . By Theorem 1, G is CA-diagnosable with respect to Φ′
a
.

Therefore, CA-diagnoser G̃eobs can be used to diagnose the faults: When

G̃eobs enters states BF or 6F, we know that a fault has occurred.

Diagnosability under Sensor Attacks 17

Fig. 14 Parallel composition G̃e = G′e||Glabel

Fig. 15 Nondeterministic automaton G̃e
ε

Fig. 16 CA-diagnoser G̃e
obs

6 Sufficient Conditions for CA-Diagnosability

In this section, we investigate the following question: If a system is diagnosable
without sensor attacks, under what types of sensor attacks, is it still diagnos-
able? In other words, we would like to find some (sufficient) conditions on
sensor attacks under which diagnosability implies CA-diagnosability. Let us
first prove the following theorem.

Theorem 2 The fact that G is diagnosable with respect to P implies that G
is CA-diagnosable with respect to Φa if

(∀s ∈ L(G))

(Φa)−1(Φa(s)) ∩ L(G) ⊆ P−1(P (s)) ∩ L(G).

18 Feng Lin et al.

Proof
Clearly, the following is true:

(∀s ∈ L(G))

(Φa)−1(Φa(s)) ∩ L(G) ⊆ P−1(P (s)) ∩ L(G)

⇒(∀s ∈ Ψ(L(G)))(∀u ∈ L(G)/s)

(Φa)−1(Φa(su)) ∩ L(G) ⊆ P−1(P (su)) ∩ L(G)

⇒(∀s ∈ Ψ(L(G)))(∀u ∈ L(G)/s)

(∀v ∈ P−1(P (su)) ∩ L(G))Σf ∈ v
⇒ (∀v ∈ (Φa)−1(Φa(su)) ∩ L(G))Σf ∈ v

Therefore,

(∃n ∈ N)(∀s ∈ Ψ(L(G)))(∀u ∈ L(G)/s)

|u| ≥ n⇒ (∀v ∈ P−1(P (su)) ∩ L(Ge))Σf ∈ v
⇒(∃n ∈ N)(∀s ∈ Ψ(L(G)))(∀u ∈ L(G)/s)

|u| ≥ n⇒ (∀v ∈ (Φa)−1(Φa(su)) ∩ L(G))Σf ∈ v

Let us model the sensor attacks described above by a mapping

Ω : δa → 2Σ
∗

such that, for tr = (q, σ, q′) ∈ δa, Ω(tr) = Atr. Extend Ω to

Ω : δ → 2Σ
∗

as follows. For tr = (q, σ, q′) ∈ δ,

Ω(tr) =

{
Ω(tr) if tr ∈ δa

{σ} otherwise
.

In other words, if tr = (q, σ, q′) 6∈ δa, then simply let Atr = {σ} (replacing σ
by σ).

Theorem 3 The fact that G is diagnosable with respect to P implies that G
is CA-diagnosable with respect to Φa if

(∀tr = (q1, σ, q2) ∈ δ)(∀tr′ = (q′1, σ
′, q′2) ∈ δ)

σ 6= σ′ ⇒ P (Ω(tr)) ∩ P (Ω(tr′)) = ∅.
(10)

Proof
Let us first prove by contradiction that if Equation (10) is true, then, for

all s ∈ L(G),

(Φa)−1(Φa(s)) ∩ L(G) ⊆ P−1(P (s)) ∩ L(G).

Diagnosability under Sensor Attacks 19

Suppose (Φa)−1(Φa(s)) ∩ L(G) 6⊆ P−1(P (s)) ∩ L(G). Then

(Φa)−1(Φa(s)) ∩ L(G) 6⊆ P−1(P (s)) ∩ L(G)

⇒(∃s′ ∈ L(G))s′ ∈ (Φa)−1(Φa(s)) ∧ s′ 6∈ P−1(P (s))

⇒(∃s′ ∈ L(G))Φa(s) ∩ Φa(s′) 6= ∅ ∧ P (s′) 6= P (s)

⇒(∃s′ ∈ L(G))(∃w)w ∈ Φa(s) ∧ w ∈ Φa(s′)

∧ P (s′) 6= P (s)

⇒(∃s′ ∈ L(G))(∃w)w ∈ P (Θa(s)) ∧ w ∈ P (Θa(s′))

∧ P (s′) 6= P (s)

⇒(∃s′ ∈ L(G))(∃w)(∃v ∈ Θa(s))(∃v′ ∈ Θa(s′))

w = P (v) ∧ w = P (v′) ∧ P (s′) 6= P (s)

⇒(∃s′ ∈ L(G))(∃v ∈ Θa(s))(∃v′ ∈ Θa(s′))

P (v) = P (v′) ∧ P (s′) 6= P (s).

P (s′) 6= P (s) means that s and s′ are different for at least one observable
event. Without loss of generality, assume that s and s′ are different for exactly
one observable event, that is, s = s1σs2 and s′ = s′1σ

′s′2 such that P (s1) =
P (s′1) ∧P (s2) = P (s′2) ∧ σ 6= σ′ ∧ σ, σ′ ∈ Σo.

Denote the corresponding transitions of σ and σ′ by tr and tr′ respectively.
Then,

(∃v ∈ Θa(s))(∃v′ ∈ Θa(s′))P (v) = P (v′)

⇒(∃u ∈ Ω(tr))(∃u′ ∈ Ω(tr′))P (u) = P (u′)

(because tr and tr′ must be replaced

by strings with the same projection)

⇒P (Ω(tr)) ∩ P (Ω(tr′)) 6= ∅,

which contradicts Equation (10).

Since

(∀s ∈ L(G))

(Φa)−1(Φa(s)) ∩ L(G) ⊆ P−1(P (s)) ∩ L(G).

by Theorem 2, the fact that G is diagnosable with respect to P implies that
G is CA-diagnosable with respect to Φa.

Theorem 3 says that, given a diagnosable G, for G to be CA-diagnosable,
the attacker cannot replace two different observable events with two strings
having the same projection.

If the sufficient condition in Theorems 2 or 3 is satisfied, then we can design
a CA-diagnoser to diagnose faults in G. In general, the CA-diagnoser may be
different from the original diagnoser.

20 Feng Lin et al.

Note that Equation (10) is not satisfied in the power system example when
Atr = {Z.C.}, because

(∃tr = (6, O.C, 6) ∈ δ)(∃tr′ = (5, Z.C., 5) ∈ δ)
O.C. 6= Z.C. ∧ P (Ω(tr)) ∩ P (Ω(tr′)) = {Z.C.} 6= ∅.

On the other hand, Equation (10) is satisfied in the power system exam-
ple when A′tr = {O.C. Z.C.}. In particular, for tr = (6, O.C, 6) and tr′ =
(5, Z.C., 5),

P (Ω(tr)) ∩ P (Ω(tr′)) = {Z.C.} ∩ {O.C. Z.C.} = ∅.

7 From Attacker to Helper

In this section, we revert the role of the attacker from malicious to benevolent.
In other words, we consider the situation where the attacker is actually a
helper, whose goal is to help the diagnoser to diagnose faults in the sense that
while G is not diagnosable, it is CA-diagnosable. Intuitively, it would seem that
if the helper observes the same set of events as the diagnoser, it cannot help in
event diagnosis. On the other hand, if the helper has access to more observable
events, then it might be in a position to resolve lack of diagnosability. Let us
first show that this is possible using the following example.

Example 5 Let us consider the system modeled by G shown in Fig. 17. The
event set is Σ = {f, u, α, β, γ}, where f is the fault event. We assume that u
is not observable and β is not observable to the diagnoser, but is observable
to the helper. We further assume that α can be edited by the helper. Hence,
Σo = {α, γ}, Σa

o = {α}, and Σao = {α, β, γ}.

Fig. 17 Automaton G of the system in Example 5

It can be checked that G is not diagnosable with respect to P . Intuitively,
this is because the two strings βαγ∗ and fαβγ∗ have the same projection αγ∗

and hence cannot be distinguished by the diagnoser.
Suppose that the helper can change the transition tr = (4, α, 6) to (4, γ, 6),

that is, Atr = {γ} with Ftr shown in Fig. 18. Note that the helper can do

Diagnosability under Sensor Attacks 21

so because event β is observable to the helper (but not observable to the
diagnoser). Hence, the helper can distinguish transition (4, α, 6) from (3, α, 5).

Fig. 18 Automaton Ftr of Example 5

The resulting extended automaton Ge is shown in Fig. 19. It can be checked
that Ge is diagnosable with respect to P and hence G is CA-diagnosable with
respect to Φa. Intuitively, this is because by replacing (4, α, 6) with (4, γ, 6),
string fαβγ∗ become fγβγ∗. Since P (fγβγ∗) = γγ∗, while P (βαγ∗) = αγ∗,
the two strings fγβγ∗ and βαγ∗ become distinguishable to the diagnoser.

Fig. 19 Extended automaton Ge of Example 5

In the above example, the reason that the helper can help the diagnoser
to diagnose the fault is that the helper can observe β, while the diagnoser
cannot. Note that in Example 5 the helper is not inserting event β, which is
unobservable to the diagnoser, but instead it replaces one occurrence of α by
γ. This type of solution might be desirable in instances where communication
of certain events (here, β) must be avoided for various reasons (e.g., security).
The helper allows the diagnoser to work properly while keeping β unobservable
to the diagnoser. In the following theorem, we prove that this is necessary,
that is, if the helper observes less than or the same as the diagnoser, then it
cannot help the diagnoser.

Theorem 4 If Σao ⊆ Σo and G is not diagnosable with respect to P , then G
is not CA-diagnosable with respect to Φa for any Φa satisfying Assumptions
A3 and A4.

Proof
Suppose Σao ⊆ Σo and G is not diagnosable with respect to P , that is,

¬(∃n ∈ N)(∀s ∈ Ψ(L(G)))(∀u ∈ L(G)/s)

22 Feng Lin et al.

|u| ≥ n⇒ (∀v ∈ P−1(P (su)) ∩ L(G))Σf ∈ v
⇔(∀n ∈ N)(∃s ∈ Ψ(L(G)))(∃u ∈ L(G)/s)

|u| ≥ n ∧ (∃v ∈ L(G))P (v) = P (su) ∧Σf 6∈ v

We want to prove that for any Φa satisfying Assumptions A3 and A4, G
is not CA-diagnosable with respect to Φa. Let Ge be the extended automaton
corresponding to Φa. By Theorem 1, we only need to prove that Ge is not
diagnosable with respect to P , that is,

¬(∃n′ ∈ N)(∀s′ ∈ Ψ(L(Ge)))(∀u′ ∈ L(Ge)/s′)

|u′| ≥ n′ ⇒ (∀v′ ∈ P−1(P (s′u′)) ∩ L(Ge))Σf ∈ v′

⇔(∀n′ ∈ N)(∃s′ ∈ Ψ(L(Ge)))(∃u′ ∈ L(Ge)/s′)

|u′| ≥ n′ ∧ (∃v′ ∈ L(Ge))P (v′) = P (s′u′) ∧Σf 6∈ v′.

Let us first prove

(∃s ∈ Ψ(L(G)))(∃u ∈ L(G)/s)

(∃v ∈ L(G))P (v) = P (su) ∧Σf 6∈ v
(11)

implies

(∃s′ ∈ Ψ(L(Ge)))(∃u′ ∈ L(Ge)/s′)

(∃v′ ∈ L(Ge))P (v′) = P (s′u′) ∧Σf 6∈ v′.
(12)

For s, u, v in (11), consider s′u′ ∈ Θa(su) and v′ ∈ Θa(v). Since s ∈
Ψ(L(G)) ⇒ Σf ∈ su. By Assumption A3, Σf ∈ s′u′. Let s′u′ ∈ Θa(su) be
such that s′ ∈ Ψ(Θa(L(G))) ∧ s′ ∈ Θa(s).

Since P (v) = P (su) and Σao ⊆ Σo, we have Pao(v) = Pao(su). Hence, any
transition tr along Pao(v) (= Pao(su)) is replaced by the same language Atr.
Let us pick the same string in Atr for v′ as for s′u′. Then P (v′) = P (s′u′).

Because

su ∈ L(G)⇒ s′u′ ∈ Θa(L(G))⇒ u′ ∈ Θa(L(G))/s′

v ∈ L(G)⇒ v′ ∈ Θa(L(G))

Σf 6∈ v ⇒ Σf 6∈ v′(by Assumption A3),

we have

(∃s′ ∈ Ψ(Θa(L(G))))(∃u′ ∈ Θa(L(G))/s′)

(∃v′ ∈ Θa(L(G)))P (v′) = P (s′u′) ∧Σf 6∈ v′.

that is, (12) is true.
Let us now prove

(∀n ∈ N)(∃s ∈ Ψ(L(G)))(∃u ∈ L(G)/s)

|u| ≥ n ∧ (∃v ∈ L(G))P (v) = P (su) ∧Σf 6∈ v
(13)

Diagnosability under Sensor Attacks 23

implies

(∀n′ ∈ N)(∃s′ ∈ Ψ(L(Ge)))(∃u′ ∈ L(Ge)/s′)

|u′| ≥ n′ ∧ (∃v′ ∈ L(Ge))P (v′) = P (s′u′) ∧Σf 6∈ v′.
(14)

Suppose (13) is true. Then, for any n′ ∈ N , let n = n′+d, where d is given
in Assumption A4.

Because (11) ⇒ (12), we have

(∃s ∈ Ψ(L(G)))(∃u ∈ L(G)/s)

|u| ≥ n ∧ (∃v ∈ L(G))P (v) = P (su) ∧Σf 6∈ v
⇒(∃s′ ∈ Ψ(Θa(L(G))))(∃u′ ∈ Θa(L(G))/s′)

(∃v′ ∈ Θa(L(G)))P (v′) = P (s′u′) ∧Σf 6∈ v′.

Furthermore, by the proof of (11) ⇒ (12),

s ∈ L(G) ∧ u ∈ L(G)/s ∧ s′ ∈ Θa(s)

∧ u′ ∈ Θa(L(G))/s′ ∧ s′u′ ∈ Θa(su)

By Assumption A4, we have |(|u| − |u′|)| ≤ d. Hence,

|u| ≥ n ∧ |(|u| − |u′|)| ≤ d
⇒|u| ≥ n ∧ |u| − |u′| ≤ d
⇒|u| ≥ n ∧ |u′| ≥ |u| − d
⇒|u′| ≥ n− d = n′.

Therefore, (14) is true.

8 Sensor Attack Detection

Diagnosability theory can also be used to detect sensor attacks. We show how
to do this in this section.

One obvious method to detect sensor attacks is to check if the observed
string is in P (L(G)) or not. If a string w 6∈ P (L(G)) is observed, then a
sensor attack must have occurred. To avoid being detected, an attacker may
want to ensure that the attacks are “stealthy” (or covert) in the sense that
the observed language under sensor attacks is contained in P (L(G)), that is,
Φa(L(G)) ⊆ P (L(G)) or equivalently Φa(L(G)) ⊆ P (L(G)) (since P (L(G)) is
prefix-closed). Stealthy attacks on sensors or actuators have been investigated
in the literature; see, e.g., [6, 22,26–28].

Another method to detect sensor attacks is to translate the sensor attack
detection problem into a diagnosis problem. Other works have considered the
same approach for different attack models. In the case of ALTER, we propose
to proceed as follows. We insert an artificial (unobservable) fault event ρ after

24 Feng Lin et al.

an event is altered by an attacker, as described below. Then, detecting a sensor
attack is equivalent to diagnosing the fault event ρ.

Formally, let the system under sensor attacks be G. Assume that G has no
fault events, because we want to focus on the sensor attack detection problem.
For any transition tr = (q, σ, q′) ∈ δa, we modify its corresponding language
Atr by adding ρ after σ is altered by an attacker as follows.

Atr = (Atr − {σ}){ρ} ∪ ({σ} ∩Atr). (15)

We construct the extended automaton for Ātr. Since ρ 6∈ Σ, the resulting
extended automaton has one more unobservable event. To distinguish it from
the extended automaton in previous sections, let us denote it by

Ḡe = (Q̄e, Σ ∪ {ρ}, δ̄e, qo).

Since the artificial fault event ρ is inserted whenever an event σ ∈ Σa
o is

altered by an attacker, all attacks can be detected within finite steps after the
attacks if and only if Ḡe is diagnosable with respect to P and ρ.

To investigate the relationship between stealthiness and diagnosability, we
make the following assumption:

A5. An attacker can always choose not to alter an event, that is,

(∀tr = (q, σ, q′) ∈ δa)σ ∈ Atr. (16)

Note that Assumption A5 implies that L(G) ⊆ L(Ḡe). Note further that, as
to be shown in Example 6, if Assumption A5 is not true, then the natural and
intuitive result that the attacker cannot be detected if the attacker is stealthy
is not true.

The following theorem shows that, under Assumption A5, if an attacker is
stealthy, then none of its attacks can be detected.

Theorem 5 If Φa(L(G)) ⊆ P (L(G)) and Φa satisfies Assumption A5, then
no attack (event ρ) in the corresponding Ḡe can be detected, that is,

(∀sρ ∈ L(Ḡe))(∀n ∈ N)(∃u ∈ L(Ḡe)/sρ)

|u| ≥ n ∧ (∃v ∈ L(Ḡe))P (v) = P (sρu) ∧ ρ 6∈ v.
(17)

Proof
Suppose Φa(L(G)) ⊆ P (L(G)) and Φa satisfies Assumption A5. We prove

that Equation (17) is true as follows.
For any sρ ∈ L(Ḡe) and n ∈ N , let u be a string in Lm(Ḡe)/sρ such that

|u| ≥ n. By Assumption A1 (G and hence Ḡe is live), such a u exists.
Since Φa(L(G)) ⊆ P (L(G)) and u ∈ Lm(Ḡe)/sρ, we have

sρu ∈ Lm(Ḡe)

⇒sρu ∈ Θa(L(G))

(because Lm(Ge) = Θa(L(G)))

Diagnosability under Sensor Attacks 25

⇒P (sρu) ∈ P (Θa(L(G))) = Φa(L(G)) ⊆ P (L(G))

⇒(∃v ∈ L(G))P (v) = P (sρu)

⇒(∃v ∈ L(Ḡe))P (v) = P (sρu)

(by Assumption A5, L(G) ⊆ L(Ḡe)).

Therefore,

(∀sρ ∈ L(Ḡe))(∀n ∈ N)(∃u ∈ Lm(Ḡe)/sρ)

|u| ≥ n ∧ (∃v ∈ L(Ḡe))P (v) = P (sρu) ∧ ρ 6∈ v
⇒(∀sρ ∈ L(Ḡe))(∀n ∈ N)(∃u ∈ L(Ḡe)/sρ)

|u| ≥ n ∧ (∃v ∈ L(Ḡe))P (v) = P (sρu) ∧ ρ 6∈ v
(since Lm(Ḡe) ⊆ L(Ḡe)).

This completes the proof.

The following theorem shows that if an attacker is stealthy, then Ḡe is not
diagnosable with respect to P and ρ.

Theorem 6 If Φa(L(G)) ⊆ P (L(G)) and Φa satisfies Assumption A5, then
the corresponding Ḡe is not diagnosable with respect to P and ρ.

Proof

Suppose Φa(L(G)) ⊆ P (L(G)) and Φa satisfies Assumption A5. Since the
logic implication (∀x)A(x)⇒ (∃x)A(x) is always true, by Theorem 5,

(∀sρ ∈ L(Ḡe))(∀n ∈ N)(∃u ∈ L(Ḡe)/sρ)

|u| ≥ n ∧ (∃v ∈ L(Ḡe))P (v) = P (sρu) ∧ ρ 6∈ v
⇒(∀n ∈ N)(∀sρ ∈ L(Ḡe))(∃u ∈ L(Ḡe)/sρ)

|u| ≥ n ∧ (∃v ∈ L(Ḡe))P (v) = P (sρu) ∧ ρ 6∈ v
⇒(∀n ∈ N)(∃sρ ∈ L(Ḡe))(∃u ∈ L(Ḡe)/sρ)

|u| ≥ n ∧ (∃v ∈ L(Ḡe))P (v) = P (sρu) ∧ ρ 6∈ v
⇒¬(∃n ∈ N)(∀sρ ∈ L(Ḡe))(∀u ∈ L(Ḡe)/sρ)

|u| ≥ n⇒ (∀v ∈ P−1(P (su)) ∩ L(Ḡe))ρ 6∈ v.

Therefore, Ḡe is not diagnosable with respect to P and ρ.

From Theorem 6 and its proof, we know that Equation (17) is stronger than
non-diagnosability. Intuitively, this is because Equation (17) requires that all
attackers are not detectable, while non-diagnosability only requires that some
attackers are not detectable.

The following example shows that if Assumption A5 is not satisfied, then
the result of Theorem 3 (and hence the result of Theorem 2) is not true.

26 Feng Lin et al.

Fig. 20 Automaton G of the system in Example 6

Example 6 Let us consider the system modeled by G shown in Fig. 20. The
event set is Σ = {u, v, α, β, γ}. We assume that α and γ are observable to both
the diagnoser/attack detector and the attacker, that is Σo = Σao = {α, γ}.
We further assume that α is attackable, that is, Σa

o = {α}.
Suppose that the attacker can change the transitions (2, α, 5) and (6, α, 8)

to (2, αα, 5) and (6, αα, 8), respectively, that is, the attacker can insert an
extra α in transitions (2, α, 5) and (6, α, 8). Note that the attacker can do so
because, by observing γ, the attacker can distinguish transitions (2, α, 5) and
(6, α, 8) from transition (4, α, 7).

We modify the corresponding language Atr = {αα} by adding ρ afterwards,
that is, Ātr = {ααρ}. The corresponding F̄tr is shown in Fig. 21.

Fig. 21 Automaton F̄tr of Example 6

The resulting extended automaton Ḡe is shown in Fig. 22. It is not difficult
to see that Φa(L(G)) = P (L(G)) = α∗+ γαγα∗. Hence, Φa(L(G)) ⊆ P (L(G))
and the attacks are stealthy.

On the other hand, it can be checked that Ḡe is diagnosable with respect
to P and ρ. In fact, all attacks can be detected. Intuitively, this is because if
the diagnoser sees α before seeing γ, then an attack has occurred. Note that
Assumption A5 is not satisfied, because α 6∈ Atr = {αα}.

9 Conclusion

We have studied the diagnosability properties of discrete event systems when
the communication channel from the sensors to the diagnoser is compromised
by sensor deception attacks in the context of a general attack model. This has
led to the formulation of the new notion of CA-diagnosability, which paral-
lels the notions of CA-controllability and CA-observability introduced in prior
works pertaining to supervisory control under attack. A testing procedure for

Diagnosability under Sensor Attacks 27

Fig. 22 Extended automaton Ḡe of Example 6

CA-diagnosability was presented, based on model transformation. This model
transformation also allows us to design a CA-diagnoser for a system under
sensor attacks if CA-diagnosability is satisfied. Some sufficient conditions were
derived on attackers, which can be easily checked, ensuring that diagnosabil-
ity implies CA-diagnosability. Conditions under which the role of an attacker
can be reverted from malicious to benevolent were also investigated. Finally,
the detection of the attacker was considered from the viewpoint of diagnos-
ing a triggering (unobservable) attack event embedded in the system model.
Results were obtained regarding the ability to detect such attacks using the
methodologies from the theory of diagnosability.

In future work, it would be of interest to study in more depth special
instances of the general attack model considered in this paper, in order to
allow for greater resilience of the diagnostic engine and/or for greater ability
at attack detection. It would also be of interest to further develop the case
study considered in this paper, where the goal is to achieve resilient diagnosis
of failures of the protection relay or the circuit breaker in a prototypical power
system.

10 Appendix

Proof of Theorem 1
Let us take negations of the conditions in Theorem 1 as follows.

¬(∃n ∈ N)(∀s ∈ Ψ(L(G)))(∀u ∈ L(G)/s)

|u| ≥ n⇒ (∀v ∈ (Φa)−1(Φa(su)) ∩ L(G))Σf ∈ v
⇔(∀n ∈ N)(∃s ∈ Ψ(L(G)))(∃u ∈ L(G)/s)

¬(|u| ≥ n⇒ (∀v ∈ (Φa)−1(Φa(su)) ∩ L(G))Σf ∈ v)

⇔(∀n ∈ N)(∃s ∈ Ψ(L(G)))(∃u ∈ L(G)/s)

|u| ≥ n ∧ ¬(∀v ∈ (Φa)−1(Φa(su)) ∩ L(G))Σf ∈ v
⇔(∀n ∈ N)(∃s ∈ Ψ(L(G)))(∃u ∈ L(G)/s)

|u| ≥ n ∧ (∃v ∈ (Φa)−1(Φa(su)) ∩ L(G))Σf 6∈ v
⇔(∀n ∈ N)(∃s ∈ Ψ(L(G)))(∃u ∈ L(G)/s)

28 Feng Lin et al.

|u| ≥ n ∧ (∃v ∈ L(G))v ∈ (Φa)−1(Φa(su)) ∧Σf 6∈ v
⇔(∀n ∈ N)(∃s ∈ Ψ(L(G)))(∃u ∈ L(G)/s)

|u| ≥ n ∧ (∃v ∈ L(G))(∃w ∈ Φa(su))

v ∈ (Φa)−1(w) ∧Σf 6∈ v
⇔(∀n ∈ N)(∃s ∈ Ψ(L(G)))(∃u ∈ L(G)/s)

|u| ≥ n ∧ (∃v ∈ L(G))(∃w ∈ Φa(su))

w ∈ Φa(v) ∧Σf 6∈ v
⇔(∀n ∈ N)(∃s ∈ Ψ(L(G)))(∃u ∈ L(G)/s)

|u| ≥ n ∧ (∃v ∈ L(G))Φa(v) ∩ Φa(su) 6= ∅ ∧Σf 6∈ v

Similarly,

¬(∃n′ ∈ N)(∀s′ ∈ Ψ(L(Ge)))(∀u′ ∈ L(Ge)/s′)

|u′| ≥ n′ ⇒ (∀v′ ∈ P−1(P (s′u′)) ∩ L(Ge))Σf ∈ v′

⇔(∀n′ ∈ N)(∃s′ ∈ Ψ(L(Ge)))(∃u′ ∈ L(Ge)/s′)

¬(|u′| ≥ n′ ⇒ (∀v′ ∈ P−1(P (s′u′)) ∩ L(Ge))Σf ∈ v′)
⇔(∀n′ ∈ N)(∃s′ ∈ Ψ(L(Ge)))(∃u′ ∈ L(Ge)/s′)

|u′| ≥ n′ ∧ ¬(∀v′ ∈ P−1(P (s′u′)) ∩ L(Ge))Σf ∈ v′

⇔(∀n′ ∈ N)(∃s′ ∈ Ψ(L(Ge)))(∃u′ ∈ L(Ge)/s′)

|u′| ≥ n′ ∧ (∃v′ ∈ P−1(P (s′u′)) ∩ L(Ge))Σf 6∈ v′

⇔(∀n′ ∈ N)(∃s′ ∈ Ψ(L(Ge)))(∃u′ ∈ L(Ge)/s′)

|u′| ≥ n′ ∧ (∃v′ ∈ L(Ge))v′ ∈ P−1(P (s′u′)) ∧Σf 6∈ v′

⇔(∀n′ ∈ N)(∃s′ ∈ Ψ(L(Ge)))(∃u′ ∈ L(Ge)/s′)

|u′| ≥ n′ ∧ (∃v′ ∈ L(Ge))P (v′) = P (s′u′) ∧Σf 6∈ v′.

Hence, equivalently, we need to prove

(∀n ∈ N)(∃s ∈ Ψ(L(G)))(∃u ∈ L(G)/s)

|u| ≥ n ∧ (∃v ∈ L(G))Φa(v) ∩ Φa(su) 6= ∅ ∧Σf 6∈ v

if and only if

(∀n′ ∈ N)(∃s′ ∈ Ψ(L(Ge)))(∃u′ ∈ L(Ge)/s′)

|u′| ≥ n′ ∧ (∃v′ ∈ L(Ge))P (v′) = P (s′u′) ∧Σf 6∈ v′

It is natural to define that a (non-prefix-closed) language is diagnosable
if and only if its prefix closure is diagnosable. Hence, we replace L(Ge) by
Lm(Ge) as

(∀n′ ∈ N)(∃s′ ∈ Ψ(L(Ge)))(∃u′ ∈ L(Ge)/s′)

|u′| ≥ n′ ∧ (∃v′ ∈ L(Ge))P (v′) = P (s′u′) ∧Σf 6∈ v′

Diagnosability under Sensor Attacks 29

⇔(∀n′ ∈ N)(∃s′ ∈ Ψ(Lm(Ge)))(∃u′ ∈ Lm(Ge)/s′)

|u′| ≥ n′ ∧ (∃v′ ∈ Lm(Ge))P (v′) = P (s′u′) ∧Σf 6∈ v′.

By Equation (5), Lm(Ge) = Θa(L(G)). Thus,

(∀n′ ∈ N)(∃s′ ∈ Ψ(Lm(Ge)))(∃u′ ∈ Lm(Ge)/s′)

|u′| ≥ n′ ∧ (∃v′ ∈ Lm(Ge))P (v′) = P (s′u′) ∧Σf 6∈ v′

⇔(∀n′ ∈ N)(∃s′ ∈ Ψ(Θa(L(G))))(∃u′ ∈ Θa(L(G))/s′)

|u′| ≥ n′ ∧ (∃v′ ∈ Θa(L(G)))P (v′) = P (s′u′) ∧Σf 6∈ v′.

Therefore, equivalently, we need to prove

(∀n ∈ N)(∃s ∈ Ψ(L(G)))(∃u ∈ L(G)/s)

|u| ≥ n ∧ (∃v ∈ L(G))Φa(v) ∩ Φa(su) 6= ∅ ∧Σf 6∈ v
(18)

if and only if

(∀n′ ∈ N)(∃s′ ∈ Ψ(Θa(L(G))))(∃u′ ∈ Θa(L(G))/s′)

|u′| ≥ n′ ∧ (∃v′ ∈ Θa(L(G)))P (v′) = P (s′u′) ∧Σf 6∈ v′.
(19)

Let us first prove

(∃s ∈ Ψ(L(G)))(∃u ∈ L(G)/s)

(∃v ∈ L(G))Φa(v) ∩ Φa(su) 6= ∅ ∧Σf 6∈ v
(20)

if and only if

(∃s′ ∈ Ψ(Θa(L(G))))(∃u′ ∈ Θa(L(G))/s′)

(∃v′ ∈ Θa(L(G)))P (v′) = P (s′u′) ∧Σf 6∈ v′.
(21)

Proof of (21) ⇒ (20): Suppose (21) is true. Then, for s′, u′, v′ in (21), we have

s′u′ ∈ Θa(L(G)) ∧ v′ ∈ Θa(L(G))

⇒(∃su ∈ L(G))s′u′ ∈ Θa(su)

∧ (∃v ∈ L(G))v′ ∈ Θa(v).

Since s′ ∈ Ψ(Θa(L(G))) ⇒ Σf ∈ s′u′. By Assumption A3, Σf ∈ su. Let
su ∈ L(G) be such that s ∈ Ψ(L(G)) ∧ s′ ∈ Θa(s). Then,

su ∈ L(G)⇒ u ∈ L(G)/s

Σf 6∈ v′ ⇒ Σf 6∈ v (by Assumption A3)

P (v′) = P (s′u′)⇒ (∃w)w = P (v′) = P (s′u′)

⇒ (∃w)w ∈ P (Θa(v)) ∧ w ∈ P (Θa(su))

⇒ (∃w)w ∈ Φa(v) ∧ w ∈ Φa(su)

⇒ Φa(v) ∩ Φa(su) 6= ∅.

30 Feng Lin et al.

Therefore,

(∃s ∈ Ψ(L(G)))(∃u ∈ L(G)/s)

(∃v ∈ L(G))Φa(v) ∩ Φa(su) 6= ∅ ∧Σf 6∈ v,

that is, (20) is true.
Proof of (20) ⇒ (21): Suppose (20) is true. Then, for s, u, v in (20), we have

Φa(v) ∩ Φa(su) 6= ∅
⇒P (Θa(v)) ∩ P (Θa(su)) 6= ∅
⇒(∃w)w ∈ P (Θa(v)) ∧ w ∈ P (Θa(su))

⇒(∃w, v′, s′u′)v′ ∈ Θa(v) ∧ s′u′ ∈ Θa(su)

∧ w = P (v′) = P (s′u′)

⇒(∃v′, s′u′)v′ ∈ Θa(v) ∧ s′u′ ∈ Θa(su)

∧ P (v′) = P (s′u′).

Since s ∈ Ψ(L(G)) ⇒ Σf ∈ su. By Assumption A3, Σf ∈ s′u′. Let s′u′ ∈
Θa(su) be such that s′ ∈ Ψ(Θa(L(G))) ∧ s′ ∈ Θa(s). Then,

su ∈ L(G)⇒ s′u′ ∈ Θa(L(G))⇒ u′ ∈ Θa(L(G))/s′

v ∈ L(G)⇒ v′ ∈ Θa(L(G))

Σf 6∈ v ⇒ Σf 6∈ v′(by Assumption A3).

Therefore,

(∃s′ ∈ Ψ(Θa(L(G))))(∃u′ ∈ Θa(L(G))/s′)

(∃v′ ∈ Θa(L(G)))P (v′) = P (s′u′) ∧Σf 6∈ v′.

that is, (20) is true.

Let us now prove (18) if and only if (19).
Proof of (19)⇒ (18): Suppose (19) is true. Then, for any n ∈ N , let n′ = n+d,
where d is given in Assumption A4.

Because (21) ⇒ (20), we have

(∃s′ ∈ Ψ(Θa(L(G))))(∃u′ ∈ Θa(L(G))/s′)

|u′| ≥ n′ ∧ (∃v′ ∈ Θa(L(G)))P (v′) = P (s′u′) ∧Σf 6∈ v′

⇒(∃s ∈ Ψ(L(G)))(∃u ∈ L(G)/s)

(∃v ∈ L(G))Φa(v) ∩ Φa(su) 6= ∅ ∧Σf 6∈ v

Furthermore, by the proof of (21) ⇒ (20),

s ∈ L(G) ∧ u ∈ L(G)/s ∧ s′ ∈ Θa(s)

∧ u′ ∈ Θa(L(G))/s′ ∧ s′u′ ∈ Θa(su)

Diagnosability under Sensor Attacks 31

By Assumption A4, we have |(|u| − |u′|)| ≤ d. Hence,

|u′| ≥ n′ ∧ |(|u| − |u′|)| ≤ d
⇒|u′| ≥ n′ ∧ |u′| − |u| ≤ d
⇒|u′| ≥ n′ ∧ |u| ≥ |u′| − d
⇒|u| ≥ n′ − d = n.

Therefore, (18) is true.
Proof of (18)⇒ (19): Suppose (18) is true. Then, for any n′ ∈ N , let n = n′+d,
where d is given in Assumption A4.

Because (20) ⇒ (21), we have

(∃s ∈ Ψ(L(G)))(∃u ∈ L(G)/s)

|u| ≥ n ∧ (∃v ∈ L(G))Φa(v) ∩ Φa(su) 6= ∅ ∧Σf 6∈ v
⇒(∃s′ ∈ Ψ(Θa(L(G))))(∃u′ ∈ Θa(L(G))/s′)

(∃v′ ∈ Θa(L(G)))P (v′) = P (s′u′) ∧Σf 6∈ v′.

Furthermore, by the proof of (20) ⇒ (21),

s ∈ L(G) ∧ u ∈ L(G)/s ∧ s′ ∈ Θa(s)

∧ u′ ∈ Θa(L(G))/s′ ∧ s′u′ ∈ Θa(su)

By Assumption A4, we have |(|u| − |u′|)| ≤ d. Hence,

|u| ≥ n ∧ |(|u| − |u′|)| ≤ d
⇒|u| ≥ n ∧ |u| − |u′| ≤ d
⇒|u| ≥ n ∧ |u′| ≥ |u| − d
⇒|u′| ≥ n− d = n′.

Therefore, (19) is true.

References

1. M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis, “Diag-
nosability of discrete-event systems,” IEEE Transactions on Automatic Control, vol. 40,
no. 9, pp. 1555–1575, 1995.

2. M. R. C. Alves, P. N. Pena, and K. Rudie, “Discrete-event systems subject to unknown
sensor attacks,” Discrete Event Dynamic Systems: Theory and Applications, vol. 32,
pp. 143–158, Mar. 2022.

3. S. Matsui and S. Lafortune, “Synthesis of winning attacks on communication protocols
using supervisory control theory: two case studies,” Discrete Event Dynamic Systems,
vol. 32, no. 4, pp. 573–610, 2022.

4. M. Wakaiki, P. Tabuada, and J. P. Hespanha, “Supervisory control of discrete-event
systems under attacks,” Dynamic Games and Applications, vol. 9, no. 4, pp. 965–983,
2019.

5. L. K. Carvalho, Y.-C. Wu, R. Kwong, and S. Lafortune, “Detection and mitigation of
classes of attacks in supervisory control systems,” Automatica, vol. 97, pp. 121–133,
2018.

32 Feng Lin et al.

6. L. Lin, Y. Zhu, and R. Su, “Synthesis of covert actuator attackers for free,” Discrete
Event Dynamic Systems: Theory and Applications, vol. 30, pp. 561–577, 2020.

7. A. Rashidinejad, B. Wetzels, M. Reniers, L. Lin, Y. Zhu, and R. Su, “Supervisory
control of discrete-event systems under attacks: An overview and outlook,” in 2019
18th European Control Conference (ECC), pp. 1732–1739, IEEE, 2019.

8. R. Su, “Supervisor synthesis to thwart cyber attack with bounded sensor reading alter-
ations,” Automatica, vol. 94, pp. 35–44, 2018.

9. J. C. Basilio, C. N. Hadjicostis, and R. Su, “Analysis and control for resilience of discrete
event systems: Fault diagnosis, opacity and cyber security,” Foundations and Trends in
Systems and Control, vol. 8, no. 4, pp. 285–443, 2021.

10. C. N. Hadjicostis, S. Lafortune, F. Lin, and R. Su, “Cybersecurity and supervisory
control: A tutorial on robust state estimation, attack synthesis, and resilient control,”
in 2022 IEEE 61st Conference on Decision and Control (CDC), pp. 3020–3040, IEEE,
2022.

11. I. R. Porche III, Cyberwarfare: An Introduction to Information-Age Conflict. Artech
House, 2019.

12. S. M. Dibaji, M. Pirani, D. B. Flamholz, A. M. Annaswamy, K. H. Johansson, and
A. Chakrabortty, “A systems and control perspective of CPS security,” Annual Reviews
in Control, vol. 47, pp. 394–411, 2019.

13. W. Duo, M. Zhou, and A. Abusorrah, “A survey of cyber attacks on cyber physical
systems: Recent advances and challenges,” IEEE/CAA Journal of Automatica Sinica,
vol. 9, no. 5, pp. 784–800, 2022.

14. P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of discrete event
processes,” SIAM journal on Control and Optimization, vol. 25, no. 1, pp. 206–230,
1987.

15. F. Lin and W. M. Wonham, “On observability of discrete-event systems,” Information
sciences, vol. 44, no. 3, pp. 173–198, 1988.

16. C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems. Springer
Nature, 3rd ed., 2021.

17. W. M. Wonham and K. Cai, Supervisory control of discrete-event systems. Springer,
2019.

18. W. Wonham, K. Cai, and K. Rudie, “Supervisory control of discrete-event systems: A
brief history,” Annual Reviews in Control, vol. 45, pp. 250–256, 2018.

19. S. Zheng, S. Shu, and F. Lin, “Modeling and control of discrete event systems under
joint sensor-actuator cyber attacks,” in IEEE International Conference on Automation,
Control and Robotics Engineering (CACRE 2021), pp. 1–8, IEEE, 2021.

20. L. K. Carvalho, M. V. Moreira, and J. C. Basilio, “Comparative analysis of related
notions of robust diagnosability of discrete-event systems,” Annual Reviews in Control,
vol. 51, pp. 23–36, 2021.

21. S. Takai, “A general framework for diagnosis of discrete event systems subject to sensor
failures,” Automatica, vol. 129, p. 109669, 2021.

22. Q. Zhang, C. Seatzu, Z. Li, and A. Giua, “Selection of a stealthy and harmful attack
function in discrete event systems,” Scientific Reports, vol. 12, Sept. 2022.

23. Y. Li, C. N. Hadjicostis, and N. Wu, “Tamper-tolerant diagnosability under bounded
or unbounded attacks,” IFAC-PapersOnLine, vol. 55, no. 28, pp. 52–57, 2022.

24. Y. Tong, Y. Wang, and A. Giua, “A polynomial approach to verifying the existence of
a threatening sensor attacker,” IEEE Control Systems Letters, vol. 6, pp. 2930–2935,
2022.

25. M. V. Alves, R. J. Barcelos, L. K. Carvalho, and J. C. Basilio, “Robust decentralized
diagnosability of networked discrete event systems against dos and deception attacks,”
Nonlinear Analysis: Hybrid Systems, vol. 44, p. 101162, 2022.

26. Q. Zhang, Z. Li, C. Seatzu, and A. Giua, “Stealthy attacks for partially-observed discrete
event systems,” in 2018 IEEE 23rd International Conference on Emerging Technologies
and Factory Automation (ETFA), vol. 1, pp. 1161–1164, IEEE, 2018.

27. R. Meira-Góes, E. Kang, R. H. Kwong, and S. Lafortune, “Synthesis of sensor decep-
tion attacks at the supervisory layer of cyber–physical systems,” Automatica, vol. 121,
p. 109172, 2020.

28. R. Tai, L. Lin, and R. Su, “Synthesis of optimal covert sensor–actuator attackers for
discrete-event systems,” Automatica, vol. 151, p. 110910, 2023.

Diagnosability under Sensor Attacks 33

29. A. Ghasaei, Z. J. Zhang, W. M. Wonham, and R. Iravani, “A discrete-event supervisory
control for the AC microgrid,” IEEE Transactions on Power Delivery, vol. 36, no. 2,
pp. 663–675, 2020.

30. A. Kharrazi, Y. Mishra, and V. Sreeram, “Discrete-event systems supervisory control for
a custom power park,” IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 483–492,
2017.

31. S. Reshmila and R. Devanathan, “Diagnosis of power system failures using observer
based discrete event system,” in 2016 IEEE First International Conference on Control,
Measurement and Instrumentation (CMI), pp. 131–135, IEEE, 2016.

32. B. Zhao, F. Lin, C. Wang, X. Zhang, M. P. Polis, and L. Y. Wang, “Supervisory control
of networked timed discrete event systems and its applications to power distribution
networks,” IEEE Transactions on Control of Network Systems, vol. 4, no. 2, pp. 146–
158, 2015.

33. J. H. Saleh, E. A. Saltmarsh, F. M. Favarò, and L. Brevault, “Accident precursors, near
misses, and warning signs: Critical review and formal definitions within the framework of
discrete event systems,” Reliability Engineering & System Safety, vol. 114, pp. 148–154,
2013.

34. M. Romero-Rodŕıguez, R. Delpoux, L. Piétrac, J. Dai, A. Benchaib, and E. Niel, “An
implementation method for the supervisory control of time-driven systems applied to
high-voltage direct current transmission grids,” Control Engineering Practice, vol. 82,
pp. 97–107, 2019.

35. F. Lin, S. Lafortune, and C. Wang, “Diagnosability of discrete event systems under
sensor attacks,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 3572–3578, 2023.

36. C. N. Hadjicostis, Estimation and Inference in Discrete Event Systems. Springer, 2021.
37. C. Seatzu, M. Silva, and J. H. Van Schuppen, Control of discrete-event systems, vol. 433.

Springer, 2013.

