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ABSTRACT

The goal of the Search for Extraterrestrial Intelligence (SETI) is to quantify the prevalence of technological life beyond Earth via
their “technosignatures". One theorized technosignature is narrowband Doppler drifting radio signals. The principal challenge
in conducting SETI in the radio domain is developing a generalized technique to reject human radio frequency interference
(RFI). Here, we present the most comprehensive deep-learning based technosignature search to date, returning 8 promising
ETI signals of interest for re-observation as part of the Breakthrough Listen initiative. The search comprises 820 unique
targets observed with the Robert C. Byrd Green Bank Telescope, totaling over 480 hr of on-sky data. We implement a novel
b�Convolutional Variational Autoencoder to identify technosignature candidates in a semi-unsupervised manner while keeping
the false positive rate manageably low. This new approach presents itself as a leading solution in accelerating SETI and other
transient research into the age of data-driven astronomy.

Submission date: December 10, 2021 Nature Astronomy, Accepted November 30, 2022

“ARE we alone?” is one of the most profound scientific questions humans have asked. The search for extraterrestrial
intelligence (SETI) aims to answer this question by looking for evidence of intelligent life elsewhere in the galaxy via

the “technosignatures” created by their technology. The majority of technosignature searches to date have been conducted at
radio frequencies, given the ease of propagation of radio signals through interstellar space1, as well as the relative efficiency of
construction of powerful radio transmitters and receivers. One type of technosignatures that is most readily distinguishable
from natural astrophysical radio emissions is that of narrow-band (on the order of 1 Hz) and / or exhibit Doppler drifts due to
the relative motions of transmitter and receiver2. The detection of an unambiguous technosignature would demonstrate the
existence of ETI and is thus of acute interest both to scientists and the general public.

Currently, one of the main driving forces of SETI research is the Breakthrough Listen (BL) Initiative1. Since 2016, BL has
been using the Robert C. Byrd Green Bank Telescope (GBT) in the U.S. and the Parkes “Murriyang” Telescope in Australia to
search thousands of stars and hundreds of galaxies across multiple bands for technosignatures3–6. Despite the fact that these
radio telescopes are located in radio-quiet zones, Radio Frequency Interference (RFI) due to human technology still poses a
major challenge for SETI research. In order to reject RFI, one of the techniques employed by the BL team is that of spatial

1https://breakthroughinitiatives.org
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filtering using “cadence” observations, also known as “position switching”. The key idea is that an ETI signal observed on-axis
in the primary beam should only appear in the “ON-source” scans, whereas RFI being near-field in nature would appear in
multiple adjacent observations within a cadence irrespective of whether it is on or off source. However, the presence of RFI in
observational data can often still result in a high false positive rate, as shown by previous searches on a similar GBT dataset
as employed in this work, where 29 million hits was reported by3 and 37 million hits was reported by5. In addition, one can
imagine a nearly infinite range of possible ETI signals which might not be captured by the conventional de-Doppler SETI
algorithm TURBOSETI3, 7.

Recently, Machine Learning (ML) has seen an increasing application in the field of astronomy, thanks to its ability
to generalize relationships in big datasets. In the context of SETI, some examples include a generic signal classifier for
observations obtained at the Allen Telescope Array8 and at the Five-hundred-meter Aperture Spherical Radio Telescope
(FAST)9, Convolutional Neural Networks (CNN) based RFI identifiers10, 11, as well as anomaly detection algorithms12, 13 ,
although none of these work have yet to construct a purely ML-based SETI analysis pipeline. b is the hyperparameter that
adjusts the weighting of the KL-Divergence Loss in a traditional VAE14. Here we apply recent advances in disentangled
deep learning, especially regarding the b�Variational Autoencoders (b -VAE)14 framework, in combination with a Random
Forest decision tree to conduct the first comprehensive ML SETI. b -VAE defines a neural network that implicitly learns and
identifies uncorrelated features within a dataset. This design ultimately tackles the black box problem with neural networks by
forcing the network to learn human-interpretable features from training data15. More concretely, this design of autoencoders
allows the model to implicitly learn the features of “cadence filtering” and “narrowband Doppler drifting signals”, meaning
that a wider range of potential ETI signals can be searched. Furthermore, autoencoders can also implicitly learn how RFI
appears in observational data, without having to be programmed for the nearly-infinite possible morphologies an RFI signal can
take. We apply our ML model on the BL GBT 1.1–1.9 GHz dataset of 820 nearby stars from 1004 cadences. We analyze the
observational data in small snippets of 4096 frequency bins ⇥ 16 time bins, which provides sensitivity to a maximum drift rate
of ⇡±10 Hz/s (refer to the Methods section). We devise an overlapping search (Supplementary Fig. 6) that covers snippets
offset by half the size of a snippet window. Our search includes a total of 57 million unique snippets, excluding the regions of
the band affected by instrumental effects.

The ML model and training architecture

Our encoder consists of convolution layers with 3⇥3 kernels and a total of 8 layers with filter sizes of [16, 32, 64, 128]16. The
number of convolutional layers is determined using a Bayesian optimization technique17, whereas the filter sizes are fine-tuned
empirically. We first stack these convolutional layers to extract “spatial” features from the spectrogram and subsequently feed
the data through a traditional fully-connected neural network. Here the model splits off into two layers: the mean (µ) and the
log of the deviation (s ). These two are fed into a sampling layer as part of a standard encoder model15. The decoder attempts to
recreate the original spectrogram by performing the reverse of what the encoder did, as it is by definition inversely symmetrical
to the encoder. The latent space in between the encoder and the decoder has a dense layer of 512 parameters and the latent
vector is 8 dimensional in shape. The final model design is shown in Fig. 1. It is implemented using TENSORFLOW2 and
KERAS3.

The original VAE framework can be augmented with a single hyperparameter b in the loss function that modulates the
learning constraints applied to the model, specifically by controlling how much the model is penalized for how the model
constructs the sample layer14. For our model we empirically select b = 1.5 after comparing results from a number of validate
sets, which appears to best help the model to learn disentangled features in the latent space. To further improve the model’s
performance, we introduce an inductive bias where we assume that ETI signals have similar features in the ON’s and different
features in the OFF’s18. We also assume that RFI will have similar features in all the OFF’s. This inductive bias is achieved by
training the model to minimize or maximize an euclidean loss metric during training when presented with labeled data. Refer to
the Methods section on Mathematical representations of the b -VAE ML Architecture for further details on the mathematical
representations of our model.

After constructing the b�VAE we create a Random Forest classifier19 to perform the classification. Random Forests use an
ensemble of decision trees to build a classifier, with each tree acting as a vote of confidence. We employ a Random Forest in
combination with our b -VAE network because we needed to turn the encoder into a classifier and a Random Forest model
is fast to train and execute. The greater the number of estimators (trees), the more robust a classifier is. We use the SCIPY
library4 with 1000 estimators and bootstrap it when constructing the individual trees. Empirically this gives the best run-time
vs performance metric.

2https://www.tensorflow.org/
3https://keras.io/
4https://www.scipy.org
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Figure 1. Model training and execution scheme. Backward propagation of the neural network training is not shown for
brevity.
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In order to train our ML algorithm and evaluate the model, we need to provide labelled data for the model to learn from.
There are three main categories of labelled data that are relevant: (1) False data with no ETI signals, (2) True data with ETI
signals, and (3) True data with ETI signals and RFI. Since we do not have a sample of real observational ETI signals for this
purpose, we generate simulated events by artificially injecting signals into the input spectrograms using the Python package
SETIGEN5. A total of 14,711 different snippets of backgrounds are used, obtained from three different cadences (see the
Supplementary Tables. 1 and 2 for more details). This large sample of backgrounds should provide a good variety of scenarios
to help the generalization of the training model. From these backgrounds, we randomly draw a heuristic 120,000 samples to
form the training set. For (1), we use one quarter (30,000 samples) of the original backgrounds without injections, and an
additional 30,000 samples with RFI injected to the backgrounds. Another 30,000 samples are labelled as (2), where we inject
ETI signals into the backgrounds and are referred to as “True Single Shot” in this paper. Finally, the last 30,000 samples are
labelled as (3), where we inject both ETI signals and RFI with a 1:1 relative intensity ratio into the background spectrograms.
We have not simulated all combinations of intensity ratios since the model will, in principle, generalize this parameter. See
Fig. 2 for an example of these three types of labelled data used. A caveat is that if a true, non-synthetic ETI signal is present in
the original backgrounds, it would lead to a mislabelling of our training dataset. This is an unlikely scenario, and our large,
120,000-sample training set should minimize the effect of individual mislabelled data. Also note that we only train our model
to detect signals that last for the entire cadence across the three ON scans. We do not attempt to assess the model’s performance
towards intermittent ETI signals or signals that have a shorter span than the full cadence.

Another advantage of using simulated data is that we can control the injection parameters, namely the signal-to-noise ratio
(S/N), the drift rate (DR) and the width (w) of the signal. We set a range of 10 to 50 for the S/N and a DR of ±8 Hz/s. Note that
simulated ETI signals with zero drift rate are included. For w, we choose a range where DR⇥dt +5  w  DR⇥dt +55 Hz,
with dt being the sampling rate. The lower bound offset of 5 Hz is chosen to be slightly wider than the amount of drift in one
time bin at a given drift rate. This is necessary to prevent quantization of the injected signals as we do not have the native
resolution in the filterbank-format observational data. Within the above ranges, we randomly draw a combination of S/N, drift
rate and width for each simulated signal. See Supplementary Fig. 7 for the distribution of the final set of injected parameters.

In order to obtain the clustering loss matrix and the reconstruction loss vector, we need to train the encoder concurrently
with concatenated (collapsed) cadences as well as non-collapsed cadences. We generate separate training sets for these to
increase the diversity of the training set — that is, we have 120,000 samples of concatenated cadences as well as an independent
120,000 samples of false cadences and another 120,000 samples of true cadences. Refer to Fig. 1 for the breakdown of the size
of the training set. The Random Forest model requires separate training since it needs to be built specific to a neural network
where the weights are held constant. This is achieved by taking the outputs encoded by the b -VAE and feeding the results into
the Random Forest with synthetic labelled data. We create 12,000 false cadences and 12,000 true cadences (24,000 total) with
the same breakdown ratio of various labelled categories. Overall, it takes roughly 12 hr to generate and train the full model with
100 iterations each time on our machines (see the Supplementary Figure 6 for further details on the specs of these computers).

5https://github.com/bbrzycki/setigen
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(a) False with injected RFI (b) False with no injected RFI

(c) True with injected RFI (d) True with no injected RFI

Figure 2. Examples showing the four types of training data. The bright streaks are signals detected. Each set of 6 panels
represent 6 sequential ON-OFF observations. These spectrograms have a frequency resolution of 22.3 Hz and a time resolution
of 18.7 s. Both the injected Extraterrestrial Intelligent (ETI) Signal and Radio Frequency Interference (RFI) signals have an S/N
of 20.

Model Evaluation and Demonstration

We test our algorithm against traditional ML approaches, including a support vector machine (SVM)20, a Random Forest19,
a classic, artificial neural network (ANN)16, and a 3-D convolutional neural network (CNN)16 in order to demonstrate its
performance. The SVM and the Random Forest are both classifiers and can only work with feature vectors as input, so we
perform an additional step of applying principal component analysis (PCA) on the unrolled feature vectors. We implement
these models using the python module SCIPY6 with further fine tuning discussed in sections "alternative model hyperparameter
tuning" of the methods. A test bench of labelled data using different backgrounds were generated, which consists of 24,000
simulated snippets, with the same ratio of labelled events as our training set described earlier. The goal is to subject different
ML models to this test bench and see how successful they are in recovering the correct signal classifications.

6https://www.scipy.org/
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Figure 3. An receiver operating characteristic curve (ROC) comparing the true positive rate (TPR) against the false positive
rate (FPR) at various threshold settings for a number of ML models. The corresponding Area Under the Curve (AUCs) are
listed in the legend. Models above the dashed line are considered better than random.

Fig. 3 shows a receiver operating characteristic (ROC) curve which evaluates the performance of each model at varying
classification thresholds. All ML models perform well and are above the diagonal line. The Area Under the Curve (AUC)
provides an aggregate measure of performance summing over all classification thresholds. A perfect model would have an
AUC of 1. Our ML model has an AUC of 0.9993, a precision value of 0.993, a recall of 0.985 and an F1 score of 0.989. These
are significantly higher than most of the other classical ML models, and marginally better than the second best model of the
CNN. This provides evidence that simpler ML solutions perform less well than our b -VAE-based model.

We also evaluate the model performance across the frequency band, the S/N and the drift rate ranges. From Supplementary
Fig. 8a, we find that the overall accuracy is fairly high across the full band at a probability threshold of 50%, with the majority
of the sub-band having accuracy over 97.5%. In other words, False, Single True and Double True labelled data were correctly
identified over 97.5% of the time. The few percent drop of accuracy near 1600 MHz corresponds to regions of the band that are
heavily affected by RFI signals. As mentioned earlier, high false positive rate has been a persistent bottleneck in SETI efforts.
Even a false positive rate of a few percent can translate to tens of thousands of candidates, reducing the search efficiency. We
can attempt to drive down the false positive rate by selecting a higher classification threshold. As shown in Supplementary
Fig. 8b, we find that at a threshold of 90%, we have a <1% false positive rate with a maximum 1-s uncertainty of 0.1%.
Naturally, a higher threshold will also mean worse true positive detection, meaning that we have a slightly higher chance of
missing genuine ETI signals in the data. However, we see that the biggest drop in true positives happens in discarded regions of
the band where prominent RFI is present. Barring those regions, we still have a true positive accuracy of above 95% in the rest
of the band. For the S/N performance evaluation, we record a pretty consistent accuracy of & 95% across S/N 20 to almost
80 (Supplementary Fig. 9a), with the largest uncertainty of ±2.7% per S/N bin. For the drift rate performance evaluation, we
find that our performance drops as the drift rate increases (Supplementary Fig. 9b). At 8 Hz/s, we have roughly 70% accuracy
in identifying “Single True” injected signals. This drops to about 35% at 10 Hz/s. This degradation can be explained by our
unbalanced test samples (further discussed in the Methods section), where fewer high drift rate signals were employed in the
training of the ML model.
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Search Results

From the 115 million snippet windows searched, our ML model returns a total of 2,917,789 signals of interest. Small drift rate
signal can potentially be seen by two adjacent overlapped snippets. Currently, each snippet is searched independently and we
have not attempted to associate detections across them. Hence this 3 million signals of interest is likely an over count. We note
that nearly 10% of these events came from a handful (⇠1%) of cadences. These observations are heavily contaminated by RFI
and skew the false positive rate of our analysis. We visualize the distribution of all events as a function of observing frequency
as shown in Fig. 4. It can be seen that certain observing frequencies contain a much higher number of events compared to the
others — for example the region around 1600 MHz. This overlaps with known RFI at the GBT site specifically from persistent
GPS signals. Those regions of the spectrum are heavily contaminated by RFI and it would be challenging to detect anything
apart from RFI in those frequencies. Indeed, from our performance assessment we see that our ML model is, by a few percent,
slightly less accurate in these RFI-contaminated frequencies. Using the frequency histogram in the bottom left panel of Fig. 4
which has a histogram bin size of 4.97 MHz, we empirically determine a threshold to discard frequency bins with more than
35,000 events per bin, since this represents a conservative level where the main peaks of RFI clusters can be flagged. This
equates to discarding 13 histogram bins, which is about 65 MHz of the entire band.

Figure 4. (a) The distribution of signals of interest in terms of confidence threshold and observing frequency. (c) A histogram
of the number of signals of interest at each observing frequency, with histogram bin size of 4.97 MHz. (b) The number of
signals of interest at or above a given classification threshold. The red data points are without the frequency histogram-based
filtering, whereas the black data points are after such filtering. (d) The number of histogram bins being filtered out at
progressively lower cutoff number of signals of interest.

The top right panel of Fig. 4 shows the number of signals of interest at a range of classification thresholds, which has a
quadratically increasing trend towards low thresholds. We further limit our signals of interest to those that have a classification
threshold of over 90% in order to reduce the number of false positives. After applying these further filtering criteria, we are left
with 20,515 signals of interest to assess. Upon a visual inspection, we identify 8 promising signals of interest that show narrow,
drifted signals in the three ON-scans (Fig. 5). Refer to Table 1 for their respective parameters. These 8 signals of interest come
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from five different stars. HIP 13402 and 54677 both have spectral type K whereas HIP 62207 is a G star, HIP 56802 an F
star and HIP 118212 is an M star. They are all within 30 to 90 ly from Earth. All five targets were analyzed by3 and by5 but
they did not detect anything similar. Re-observations of these five sources took place on May 21, 2022, at the Green Bank
Telescope using the same set up as the original observations. We analyze these data using the same b -VAE pipeline and visually
inspect all 72 events returned by the search. We do not detect anything like the 8 signals of interest. This shows that no matter
what the true nature of these signals are, they are not persistent in time. Given that the main goal of this work is to apply ML
technique to identify signals with a specific pattern, we do not attempt to make a definite conclusion of whether these 8 signals
are genuinely produced by ETI. We encourage further re-observations of these targets.

We individually compute the drift rate and S/N of these signals of interest as they are not a by-product of our ML pipeline.
We estimate the drift rate in each ON-scan separately using SETIGEN. The uncertainty of the drift rate is defined to be the
deviation of drift rates among the three ON scans. A number of interesting events were rejected despite showing narrow band
drifted signals as we find that the drift rates across the three ON-scans are not consistent. We note that a changing drift rate does
not necessarily mean the variation is non-physical. However, there is an infinite possibility of orbital motions that can phase
connect three arbitrary drift rates. With a single dish SETI experiment, we have no independent way of verifying this and we
consider it an intrinsic limitation of our search. We choose to exclude signals that are changing in drift rates for simplicity, as
we cannot confidently relate them from one ON scan to the next. We also point out that MLc4 and MLc5 have the same drift
rates and come from an observation of the same target, although at slightly different times and at different parts of the band.

ID Target Center Freq. MJD Confidence Drift rate S/N
(MHz) (Hz/s)

MLc1 HIP 13402 1188.539231 57541.68902 98.1 +1.11(25) 6.53
MLc2 HIP 118212 1347.862244 57752.78580 99.9 �0.44(7) 16.38
MLc3 HIP 62207 1351.625410 57543.08647 93.7 �0.05(10) 57.52
MLc4 HIP 54677 1372.987594 57517.08789 99.9 �0.11(3) 30.20
MLc5 HIP 54677 1376.988694 57517.09628 97.9 �0.11(2) 44.58
MLc6 HIP 56802 1435.940307 57522.13197 99.9 �0.18(4) 39.61
MLc7 HIP 13402 1487.482046 57544.51645 99.9 +0.10(2) 129.16
MLc8 HIP 62207 1724.972561 57543.10165 99.9 �0.126(10) 34.09

Table 1. The top 8 signals of interest identified by our ML model. We list the name of the ON-source target star, the frequency
at the middle of the relevant ⇠11 kHz snippet, the MJD of the detection, the topocentric drift rate, as well as the S/N of the
signal. The HIP prefix in the source name shows that these targets are drawn from the Hipparcos catalog21.

Figure 5. Waterfall plots of the 8 signals of interest. Each panel has a width of 2800 Hz and the x-axis are referenced to the
centre of the snippet where the signal is found, as reported in column 3 of Table 1.

Regarding the nature of the rest of the events, most of them look like false positives associated with RFI signals. We have
not exhaustively classified every single event and it is entirely possible that there are additional ETI-like signals that we have not
picked up, including those that are too weak to be seen by human eyes. Other reasons as to why the false positive rate is higher
than in our validation process include overfitting of backgrounds. The diversity of the RFI environment and the brightness of
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the RFI signals mean that it is unavoidable that our model would sometimes focus more on the background than the foreground
signals. In addition, we do not have real ETI signals to train the model on, and instead have to rely on simulated signals that are
injected to the sky backgrounds. Injection of signals might have altered the statistics of the snippets, introducing artefacts that
were unintentionally learnt by the ML model.

Discussion

This work represents the most comprehensive ML-based technosignature search to date, and improves on previous work by
finding signals of interest not detected before3, 5. We generate synthetic, labelled data to train a b -VAE framework together
with a Random Forest classifier. We observe some level of generalization in the trained model, as the latent space shows
interpretable features and the model is able to correctly identify signals beyond the initial training parameter space.

Overall we see a high degree of accuracy when the model is subjected to a different test bench, both across the frequency
band as well as over a wide range of signal S/N. Our model also performs better in comparison to a number of classical ML
models tested.

By analyzing 1004 cadences corresponding to approximately 115 million snippets recorded with the GBT 1.1–1.9 GHz
receiver, our model returns 2.9 million events. Upon further filtering by discarding RFI affected frequency bins as well as by
limiting the classification threshold to 90%, we further reduce the number of events to approximately 20,000. By visually
inspecting the individual diagnostic plots, we discover 8 promising SETI signals of interest with narrow band, drifted signals
showing the expected on-off pattern that were not identified by previous TURBOSETI searches3, 5. We limit our search to
drifting signals that have a uniform drift rate and are persistent across the three ON scans. However, a modified ML model can
be adapted and re-trained to look for other ETI morphologies in the future, such as those with a spread spectrum emission.
One main limitation of our ML implementation is that we have a non-uniform training set with fewer synthetic signals at higher
drift rates (see Supplementary Fig. 7). This has likely skewed our model and misguided it that low drift rate events are more
common.

Looking ahead, we hope to expand this ML technique to other Breakthrough Listen datasets to further increase the impact
of ML on SETI. This includes other GBT and Parkes data, as well as the upcoming MeerKAT22, Very Large Array (VLA)23,
Square Kilometre Array24 and the next generation VLA (ngVLA; Ng et al., submitted) interferometric SETI projects.25
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Methods

The GBT 1.1–1.9 GHz dataset

We have chosen to deploy an ML SETI algorithm on the Breakthrough Listen GBT 1.1–1.9 GHz dataset, sourced from several
different observational campaigns, as it is one of the largest homogeneous SETI datasets available in a single location at the
Berkeley SETI Research Center. The majority of this dataset has been made publicly available7. The dataset used in this work
has a frequency range of 1023�1926 MHz and consists of a total of 1004 cadences from 820 unique targets observed over
480 hr. In total, ⇠ 120 TB of data has been analyzed in this work.

Each cadence has six 4.8-min observations recorded in HDF5 format. In the analysis described here, we exclusively
work with the fine-frequency resolution data26. More than half of the cadences have a frequency resolution of 2.79 Hz and
322,961,408 frequency channels. The remaining 397 cadences taken before 2016 April have a frequency resolution of 2.84 Hz
and 318,230,528 channels per observation. All data have a time resolution of ⇠18 s and 16 time bins for each observation
within the cadence. Parts of the band are affected by instrumental artifacts, including steep roll-off on the band edges and at the
boundaries of an analog notch filter. These regions are at frequencies n < 1.1 GHz, n > 1.9 GHz and 1.2 < n < 1.34 GHz.
Together these equate to about 30% of the full band and are excluded from our search.

Two types of cadences have been used in the GBT observations, the ABACAD pattern and the ABABAB pattern. The
difference between these is that the “ON-source” scans (the A scans) can be interspersed with identical “OFF-source” targets
(the B scans) or three different “OFF-source” targets (B, C, D). In both cases, the minimum angular offset between ON and OFF
source scans is at least six beamwidths, which is well beyond the primary and side lobes of the GBT beams. In fact, the majority
(over 80%) of the cadences analyzed have an angular offset of as much as 38 beamwidths. We treat both types of cadences the
same way in our analysis, since for the purpose of spatial filtering we only care that the “OFF-scans” are sufficiently far from
the “ON-scans”.

In our simulated data, we have assumed no time delay between the six observations in a cadence, although in reality, there
is a small amount of slew time switching between ON and OFF scans. We have discarded cadences that have a long (�2 min)
pause between the individual observations, since that would significantly alter the data characteristics due to longer term
variation in telescope performance and our ML model has not been trained to detect those. The 1004 analyzed have typically a
small time gap of the order of a minute and we have effectively assumed the observations are continuous for simplicity. For
signals with a low drift rate of say 1 Hz/s, this is not really an issue, since a minute of time delay would correspond to a shift
of about 60 Hz which is only 2 or 3 frequency bins in the downsampled snippet used for the ML search. However, this issue
becomes more prominent at high drift rates. For example, at the maximum detectable drift rate of 10 Hz/s, during the minute of
gap the signal would have shifted by about 600 Hz, which is roughly 25 downsampled frequency bins. We note that it is an
oversight on our part, as not taking time delay into account could have affected our ability in detecting signals with high drift
rates.

Data preprocessing

Neural networks perform better if the input data has a shape close to that of a CNN kernel which typically has a 1:1 aspect ratio.
In contrast, the fine-resolution GBT data have a very elongated dimension, with over 300 million frequency bins by 16 time
bins per observation. Indexing small partitions of the frequency band and searching them independently can solve that problem,
but a small frequency band will reduce the maximum drift rates our algorithm is sensitive to, since the algorithm cannot detect
any signal that drifts beyond the diagonal of the input data shape. Here we define the maximum drift rate detectable by a search
to be when a signal starts drifting from the corner of the first observation and drift out near the opposite corner of the third ON
scan, spanning a total of four observations (ON-OFF-ON-OFF) worth of time (see bottom panel of Supplementary Fig. 6a).

We find a good compromise in using snippets of 4096 frequency bins, which provides sensitivity to a maximum drift rate of
4096⇥2.8 Hz over 16⇥18 s per observation over 4 observations ⇡±10 Hz/s. These higher drift rates have a proportionally
higher chance to drift out of at least one of the snippets depending on where the signals start, partially altering the expected
ON-OFF pattern and reducing the sensitivity of our model towards these cases. In order to alleviate this potential issue, we
devise an overlapping search that will cover snippets offset by 2048 frequency bins which is half the size of a snippet window
(Supplementary Fig. 6). In the scheme illustrated in the top panel of Supplementary Fig. 6a, any drift rate lower than the
diagonal drift rate, i.e. 4096⇥2.8 Hz/(6⇥16⇥18 s)⇡6 Hz/s will either be detectable by the blue snippets or by the red overlap
search. Only a very small yellow-highlighted region on the far left is missed since too much of the drifting signals happen
before the start of the snippet. Compared to the large number of snippets per cadence, this equates to a 99.999% of parameter
space coverage. For signals with higher drift rates than the diagonal, the overlap search would not be quite enough to fully
cover some of the parameter space. The bottom panel of Supplementary Fig. 6a shows the most extreme case at the maximum
detectable drift rate of 10 Hz/s. At this point, apart from a slightly larger triangle on the left that will be missed, there are now

7https://seti.berkeley.edu/opendata
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gaps between the blue and the red drifting signals that we are not sensitive to. The probability of having the signal detectable
within a cadence drops to ⇠75 % at ±10 Hz/s (Supplementary Fig. 6b).

ON

ON

ON

OFF

OFF

OFF

ON

ON

ON

OFF

OFF

OFF

Snippet 1 Snippet 2 Snippet n...........

Snippet 1 Snippet 2 Snippet n...........

Overlap 1 Overlap 2

Overlap 1 Overlap 2

Diagonal drift rate

Maximum drift rate

Figure 6. (a) A sketch of the overlap search method. Only positive drifting signals are shown for brevity as the negative drifts
are symmetric. The top panel shows the diagonal drift rate at 6 Hz/s. The blue drifting signals are detectable by the regular
snippets (blue), whereas the red drifting signals in between are detectable by the overlap search (red). A small triangular region
on the far left is not detectable by our search because any drifting signal starting there will have part of its pattern before the
start of the first snippet, in the sense that not all three “ON” scans contain a signal. This triangular region exists for all non-zero
drift rates and gets progressively larger. But in all cases, this represents a tiny region out of the many snippets within a cadence
and thus we have practically full coverage for any drift rate below the diagonal drift. The bottom panel shows the scenario with
the maximum detectable drift rate at 10 Hz/s. For example, this is when the first blue drifted signal barely shows up in the third
“ON” scan. In this case, apart from the triangular region on the left, there will be additional gaps throughout the cadence that are
not caught by neither the snippets nor the overlap search. The number of frequency channels missed are indicated on top of
each of the yellow-highlighted regions. (b) The corresponding parameter space coverage as a function of the absolute drift rate.
We have practically full detectability up to the diagonal drift rate of 6 Hz/s. Beyond that, the coverage drops to 75% at the
maximum drift rate of 10 Hz/s.

We further downsample the snippets in frequency by a factor of 8 (to a frequency resolution of 22.32 Hz or 22.72 Hz) by
averaging every 8 pixels. This results in an input spectrogram with shape [time, frequency]=[16, 512]. This helps to further
improve the training time and performance of the neural network, at the expense of decreasing the S/N of a potential signal
contained in one channel by

p
8.

The dynamic range of these GBT data can vary by as much as a factor of 1011, as a result of the long Fast Fourier Transform
(FFT) used to generate these high spectral resolution data. After the injection stage, we log normalize the data, shift everything
to be positive and we scale the data to have a final range within 0 and 1. Note that the normalization is done per snippet of each
cadence and not across the entire cadence.

Drift rate range trained

Within the S/N, width, and drift range ranges specified in Table 2, we randomly draw a combination of S/N, drift rate and width
for each simulated signal. See Supplementary Fig. 7 for the distribution of the final set of injected parameters. Note that there
are fewer simulated signals at higher drift rates. This is partly because there is a higher chance for them to drift out of our
detectable parameter space as can be seen in Supplementary Fig. 6, and also because we have not simulated signals that start
outside of a snippet but drift into it. Supplementary Fig. 7b shows the density distribution of our simulated sample as a function
of drift rate. To quantify the overall detectability of this ML model as a function of drift rate, we should take into account
both the parameter coverage as provided by the overlap search (right panel of Supplementary Fig. 6), as well as the sampling
distribution of simulated data (right panel of Supplementary Fig. 7). We estimate that we have a ⇠80% sensitivity towards a
6 Hz/s signal that was present in this dataset, a ⇠60% sensitivity towards an 8 Hz/s signal and a ⇠25% sensitivity towards a
10 Hz/s signal. The fact that we do not have a balanced test class with respect to drift rate means our model is less well-trained
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Figure 7. (left) The distribution of widths vs drift rates for a randomly picked sub-set of 5000 synthetic signals generated for
the training set. The colors represent the S/N of each signal. There are fewer samples with higher drift rates as we discard
everything that drifts partially out of frame. (right) The corresponding density distribution of our simulated sample as a
function of absolute drift rate.

for the high-drift region of the parameter space.

Mathematical representations of the b -VAE ML Architecture

In this analysis, we use a VAE-based ML model15, which is one of two main families of deep generative models that can
produce highly realistic versions of the input data. Autoencoders are neural networks architectures with an encoder and a
decoder that form a bottleneck for the data to go through. They are trained to minimize the loss of information during the
encoding-decoding process, which is achieved by iterations of gradient descent with the goal of diminishing the reconstruction
error. A VAE is a special kind of autoencoder whose encoding distribution is regularized. The term “variational” reflects the
relationship between the regularization and the variational inference method in statistics. A mathematical representation of our
model is shown by Equation 1, which is a slightly modified version of Equation 3 in15. In the referenced paper, L was used to
represent the Lagrangian. Here we flip the sign of the equation to show the loss function L as follow:

L(q ,f ,b ;x,z) =

Reconstruction Lossz }| {
�Eqf (z|x)[log pq (x|z)]+

KL Divergence
z }| {
b (DKL(qf (z|x)||p(z))) . (1)

In this Equation, x is the observational data and we want to develop an unsupervised deep generative model which will learn
the joint distribution of the data x and a set of generative latent factors z. This effectively is the probabilistic decoder, pq (x|z),
with generative model parameters q , where for a given z it produces a distribution over the possible corresponding values of x.
Inversely, qf (z|x) is the probabilistic encoder with recognition model parameters f , where for a given data point x it produces
a distribution over the possible values of z from which the data point x could have been generated. Eqf (z|x) computes the
(log-)likelihood of effectively each pixel that the model reconstructs. The function DKL is the Kulback-Leibler (KL) Divergence.
To summarize, the two main terms in this Equation are the reconstruction loss and the b -weighted Kulback-Leibler (KL)
divergence. The KL divergence metric is used to measure the statistical similarities between the mean and the log-normalized
standard deviation layers.

Specifically for our analysis, we also want the model to be able to group observations with similar features together in the
model’s latent space. In order to achieve this we incorporate a clustering loss which we denote L. We use LS for SETI and LR
for RFI signals. We compute the latent vectors of the cadence for true SETI cases called S with corresponding latent factor s

0

and an input of s. Similarly, we label the corresponding parameters for false SETI cases (RFI) as R with corresponding latent
factor r

0 and an input of r:

S = qf (s
0|s) , R = qf (r

0|r) . (2)

Each parameter represents a set of six feature vectors corresponding to the six observations each encoded from the cadence. We
define two lists to index each vector in the set of features as follow:

ON = {0,2,4} , OFF = {1,3,5} . (3)
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We compute the distance between each encoded feature vector on the true SETI cadence we have for every pair of ON targets
(3⇥2 different combinations) and pair of OFF targets (another 3⇥2 different combinations). We compute their similarities,
whereas for a pair of adjacent ON-OFF (3⇥3 different combinations) we compute the inverse. The indices i and j represent the
ID of the observation and each goes from 0 to 5. The only condition is that i 6= j. We then average over n = 21 combinations to
get the clustering losses:

LS =
1
n
( Â

i2ON
Â

j2ON
||Si �S j||2 + Â

i2OFF
Â

j2OFF
||Si �S j||2 + Â

i2ON
Â

j2OFF

1
||Si �S j||2

) . (4)

For the false SETI (RFI) cadence, since we inject a continuous signal across all six observations, we can assume that every pair
of observations will look similar. Therefore, we compute the distance between each encoded feature vector for the RFI cadence
by calculating the similarity between every pair and average over them to get the clustering losses:

LR =
1
n
( Â

i2ON
Â

j2ON
||Ri �R j||2 + Â

i2OFF
Â

j2OFF
||Ri �R j||2 + Â

i2ON
Â

j2OFF
||Ri �R j||2) . (5)

A smaller LS implies that all the ON targets have vectors that are close together and all the OFF targets are close together,
whereas the ONs and OFFs are far apart. This is in contrast to a smaller LR where all the signals are close to each other. In
other words, we can identify true ETI signals this way because the ON scans (A) will be separated furthest from the rest of the
OFF scans (B, C, D).

By formulating the cost function in this manner, we help the neural network to make an “implicit” classification that groups
relevant features together. Finally we include another hyperparameter weight a to tune the relative “importance” of the loss
metric. We empirically set a = 10 as it gave the best performing model. In summary, the loss function (L) of our model can be
represented by:

L(q ,f ,b ;x,z,s,r) =

Reconstruction Lossz }| {
�Eqf (z|x)[log pq (x|z)]+

KL Divergence
z }| {
b (DKL(qf (z|x)||p(z)))+a

SETIz }| {
(LS(s,s

0)+

RFIz }| {
LR(r,r

0)) . (6)

Backgrounds used for the Training Data and Test Benches

For the training data, a total of 14,711 different snippets of backgrounds are used, obtained from three different cadences (see
Supplementary Table 2). These backgrounds are taken from regions of the band (1418.7 to 1587.9 MHz) that overall showed
higher than average RFI as determined by the previous TURBOSETI search3, which we can confirm by visually inspecting these
regions in the three cadences. The intention is that our model is trained with some examples of the most RFI-contaminated
observations. A more rigorous selection of backgrounds could be achieved by identifying snippets with statistical anomalies in
energy, as well as by employing a larger number of cadences to increase the diversity in the backgrounds. However, we believe
that our large sample of backgrounds should provide a good variety of scenarios to help the generalization of the training model.

Training target Cadence Freq range Bandwidth Freq. res No. of snippets No. of test samples
(MHz) (MHz) (Hz)

b -VAE
HIP 110750 1418.7�1475.1 56.4 2.79 4928

120,000HIP 13402 1475.1�1531.5 56.4 2.83 4855
HIP 8497 1531.5�1587.9 56.4 2.79 4928

Random Forest HIP 110750 1418.7�1475.1 57.139 2.79 4928 24,000

Table 2. The breakdown of the number of background snippets and the frequency ranges of each cadence used for the training
dataset. The number of test samples simulated in each training set is also listed.

In order to evaluate the model performance, we generate different test benches of labelled data. Supplementary Table 3
summarizes the properties of these test sets. For the test where we compare our b -VAE model with other ML models, we
create a test bench that consists of an RFI-free band (1418.7�1475.1 MHz) of a new observation of HIP15638 that our model
has not seen before, as well as an RFIaffected band (1644.5�1700.7 MHz) from HIP 13402. 24,000 samples are drawn, with
the same ratio of labelled events as our training set, i.e. half False data, a quarter “True Single Shot” and a quarter “True Double
Shot”. The goal is to subject different ML models to this test bench and see how successful they are in recovering the correct
signal classifications.

In order to evaluate the model performance across the frequency band and across the S/N range, we create one test bench
using an observation of HIP 15638 as the background. We split the full GBT data into 16 sub-bands and we step through the
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S/N range of 20 to 80 with a step size of 2, resulting in 30 S/N bins. We deliberately simulate signals brighter than the max S/N
of 50 used in the initial training dataset. The idea is to see if our model has successfully generalized to high S/N signals that it
was not previously trained on. For each frequency sub-band and each S/N bin, we simulate 1000 test samples. This amounts to
a total of 16⇥30⇥1000=48,0000 simulated signals, again with the same ratio of labelled events and same ranges of widths and
drift rates as our training set.

For the frequency test, we average over all S/N and compare across the 16 sub-bands. Since our test bench consists of
balanced data, i.e., an equal amount of False and True signals, we show the performance at the standard probability threshold of
50% in Supplementary Fig. 8a and we consider a more stringent classification threshold of 90% in Supplementary Fig. 8b. For
the S/N test, we average over all frequency sub-bands and compare across the 30 S/N bins in Supplementary Fig. 9a.

For the drift rate performance evaluation, we simulate “Single True” signals between a drift rate range of 0.5 to 10 Hz/s with
a step size of 0.5 Hz/s. At each drift rate, we loop through the 16 sub-bands each with 1000 samples of randomly selected S/N
within the range of 20�80. This sums to a total of 16,000 samples per drift rate and the result can be seen in Supplementary
Fig. 9b.

Test type Source Freq range N. Bgs N. Tests S/N range Nbin S/N |DR| Nbin DR
(MHz) (Hz/s)

Other models HIP 15638 1418.7�1475.1 4928 24000 20�80 30 0�8 n/aHIP 13402 1644.5�1700.7 4928
Full-band & HIP 15638 1023.9�1926.3 78848 480000 20�80 30 0�8 n/aS/N
Drift rate HIP 15638 1023.9�1926.3 78848 320000 20�80 n/a 0.5�10 20
Latent Space HIP 110750 1531.5�1587.9 4928 4928 n/a n/a n/a n/a

Table 3. Summary of the simulated data parameters for the test benches. We list the test type for each test bench. The source
name of the cadence and the frequency range used are shown. The corresponding number of unique background snippets (N.
Bgs) is listed, from which we randomly draw the said number of test samples (N. Tests) to inject simulated signals. The S/N
range for each case is shown as well as the number of S/N bins evenly distributed within the range — except when the S/N are
randomly chosen from the range specified we denote the cell with “n/a”. Similarly, we list the absolute value of drift rate (DR)
and its number of bins. For the latent space test, no simulated signal is injected.

Alternative Model Hyperparameter Tuning

Four alternative ML models were considered for this SETI project, namely Random Forest, SVM, ANN, and CNN. We conduct
a large-scale hyperparameter search in order to find the best configurations for each model. We search 1000 different variations
for Random Forest and SVM. For the ANN and CNN, we search 3000 variations and each time train with 100 epochs. Using a
Bayesian optimization technique, we sample a total of 128 variations out of all these possibilities, executed on a k-fold cross
validation set with 5 splits. In other words, a total of 640 variations were trained. Parameters that have led to the best performing
models are highlighted in bold in Table 4. The averaged and best AUC from this search can be found in Table 5. The averaged
AUCs all have very small standard deviations, which is to say that the performance of each of these four models are pretty
consistent across the hyperparameter space searched, and only marginal improvement has been achieved by fine tuning the
hyperparameters over the default, ‘out-of-the-box’ configurations. Note that these AUCs are results of the hyperparameter
search using the validation data set, which are not the same as the AUCs listed in Table 6 from the test data. The AUCs from the
hyperparameter search appear to be a little higher than those from the test data. This is expected as some degree of overfitting
can happen when optimizing on the validation set.

Further details on the Performance Assessments

For the benchmark test against other ML models, we compute the standard metrics of precision, recall and F1 scores as recorded
in Supplementary Table 6. Precision describes how well the positive labels are determined, and is defined by the number of true
positives (TP) divided by the number of true positives plus false positives (TP+FP). Recall is defined as TP divided by the
total positive samples (true positives plus false negatives; TP+FN). The F1 score is a measure of both of those metrics, where
F1=2⇥(Recall ⇥ Precision) / (Recall + Precision). Supplementary Figs. 8 and 9 show our model accuracy as a function of the
observing frequency, S/N and drift rate.
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Figure 8. Performance evaluation across the full band for a classification threshold of (a) 50% and (b) 90% as a function of
the frequency band. The regions of the band discarded due to instrumental artifacts are shaded in gray. The colored bands
represent one standard deviation.

Figure 9. (left) Performance evaluation as a function of S/N for a threshold of 50%. The colored bands represent one standard
deviation. (right) Performance evaluation on “Single True” signals as a function of drift rate for a threshold of 90%. The
colored bands represent one standard deviation.

Latent Space Analysis

In order to understand and interpret how our ML algorithm makes classification decisions, we study the latent space of the
decoder with the goal of finding out whether the network is able to disentangle each of the learned features. The first three axes
appear to produce human interpretable results and so we further study their feature vectors and we perturb each axis in steps of
0.1. These variations are then fed back into the decoder and we visualize the resultant spectrograms in Supplementary Fig. 10.
Axis z1 looks to have encoded the feature of S/N as perturbing this axis creates a brighter signal. Axis z2 appears to represent
the level of background noise and axis z3 corresponds to instrumental artifacts which are commonly seen as bright horizontal
bands across part of the spectrum. We interpret this outcome as evidence that the network has learnt relevant features from the
dataset, helping it make the right decisions during the classification stage.
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Figure 10. Spectrograms showing the effects of varying the first three axes of the latent space vectors. The perturbations are
in steps of 0.1 and are indicated on the left hand side of the plots.

To quantify this performance, we implement a disentanglement metric14 by simulating idealized signals with four axes of
latent space vectors, namely drift rate, width of the signal, SNR and frequency. We then applying a linear classifier on the
latent space vectors to differentiate between different perturbations of simulation parameters. If disentanglement is successful,
a linear classifier is sufficient in separating changes in the four axes just from the latent vectors. The accuracy of the benchmark
b -VAE from14 achieved a maximum accuracy of 99.2% where as the traditional VAE had only 61.6%. Our model returns
an accuracy of 70.1%, which is superior compared to that of a traditional VAE model and confirming our improvement in
disentanglement and interpretability scores. The drop in disentanglement score in respect to the b -VAE is due to the fact that
our model used a smaller b = 1.5 factor rather than b = 4 factor from the original implementation. This difference in factors
was to balance the custom loss function we constructed for the cadence clustering.

Search Pipeline

We develop a processing pipeline in order to systematically analyze the 120 TB of GBT 1.1–1.9 GHz data. Within each 4096-
channel snippet, each search is completely independent and hence can be easily parallelized. We have access to three compute
nodes at the Berkeley data centre for this analysis (see Supplementary Table 7 for the hardware specifications), therefore we
divide up the dataset into three equal sub-sets to run on the three machines independently as shown in Supplementary Fig. 11.
On each machine, we launch five parallel instances of the processing that independently work on different cadences. The status
of the processing on each machine is monitored and managed manually.

Initially, we divide up the full frequency band into 16 sub-bands. This allows us to load observations faster into memory
compared to reading in and processing each 4096-channel snippet one by one, because of the switching cost during input/output
(I/O) vs processing. The I/O was done using the python package BLIMPY8 as described in27. We concatenate the six
observations of a cadence before feeding it into the neural network, which is built using the Tensorflow API and is GPU-
accelerated. Furthermore we distribute the training across multiple GPUs implementing a typical asynchronous mirrored
approach. Because we mirror each model on different GPUs we can afford to execute the model on batch sizes of 104 snippets
given the GPU memory constraints to further parallelize execution. Finally the features are fed into the Random Forest classifier
which runs in parallel on the CPU.

The search pipeline, disregarding I/O, takes <5 s to search 1/16th of the band. The I/O and the preprocessing take the most
amount of compute time despite it being implemented to compute in parallel and with just-in-time compilers (JIT) such as
NUMBA9, taking 50�60 s to run on the same 1/16th band. The search time on a single 30 min cadence is 18.7±1.6 min. The

8https://github.com/UCBerkeleySETI/blimpy
9https://numba.pydata.org/
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variation is mostly due to cache preloading for some data. However the runtime of the core of the search pipeline disregarding
the I/O stays relatively constant from cadence to cadence.

We achieve further speed-up via a custom container orchestration using SINGULARITY10 and the schematic is shown in
Supplementary Fig. 11. By running multiple instances of the same search on smaller subsystems on the same compute node,
it scales faster in practice than running a single instance on all the resources28. This is because each search is completely
independent from each other and hence does not require sharing memory or data. This is far more efficient than parallelizing
individual operations such as I/O where data needs to then be recombined together.
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Figure 11. Figure depicts the orchestration of singularity containers and how the computing resources were distributed to
perform individual searches.

Signal of interest visualization

In order to display the information for each signal of interest snippet and to visually assess them, we create diagnostic plots for
each of the 20,515 events returned by the ML model using a Python script. Supplementary Fig. 12 shows two examples of
these diagrams, one for an event measured in the observation of HIP 54677 (described in Table 1 as MLc5, one of the top 8
signals of interest of our search) and one for an event in HIP 114456, which is ultimately rejected upon human assessment due
to the non-uniform drift rate across the three ON observations.

The header contains information about both the whole cadence and the signal of interest snippet from that cadence returned
by the ML model. The information on the cadence includes the catalog name of its target star (the ON observation), its celestial
coordinates (right ascension and declination), the telescope used, the start time of the observation written in both modified
Julian day (MJD) and in ISO 8601 format for date and time (ISOT), the time spent observing ON-target, the cadence type
(ABABAB or ABACAD), as well as the minimum and maximum frequency of this cadence recorded during the observation.
Adding to this information are the number of events identified by the ML model for this specific cadence and the average
number of events identified for all cadences. The information presented on the signal of interest includes the start and end
frequencies of the snippet, the bandwidth of the snippet as well as the confidence rating according to the ML model. Each
signal of interest is given a numerical identification composed of a number representing the cadence and a number representing
the event snippet in that cadence. The header is juxtaposed with a QR code which encodes the ID of the signal of interest, the
cadence target name, the start and end frequencies of the snippet as well as paths to the visualizer itself and to each of the six
HDF5 files that make up the cadence. Paths correspond to locations on the Breakthrough Listen computers.

10https://sylabs.io/
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Figure 12. Two examples of the diagnostic plots. (Left) One of the top 8 signals of interest described in Table 1. (Right) An
interesting event returned by the ML model that is rejected as a SETI candidate upon human inspection because of the
non-uniform drift rate across the three ON-scans.

Two analytical plots are included in the middle of the diagram. The plot on the left is a histogram which classifies the
cadences by the number of events identified in them, with the bin of the cadence in question highlighted in red. This is used to
give a sense whether the specific cadence contains an unusually high amount of events (signals of interest) or not, as that might
indicate an observation that is heavily contaminated by RFI and thus potentially less reliable. The plot on the right shows the
positions of all events of a cadence in frequency space (i.e. where they fall in the bandwidth of the cadence) as well as the
confidence ratings of the signals of interest. The signal of interest in question is represented by a large red dot in this plot. This
plot helps to assess whether the specific signal of interest comes from a region of the frequency band that has a large number of
events (higher chance that the signal of interest is also RFI) or if the region is relatively empty of events (higher chance that the
signal of interest is genuinely special). Finally, the bottom half of the diagram is dedicated to the waterfall plot, a representation
of frequency vs. time showing the signal of interest snippet across each of the six ON and OFF observations with lighter color
signifying higher intensity. The waterfall plot is created using a modified version of the Python package BLIMPY11 and is
downsampled by a factor of 8 in frequency, the same as the input dimension to the ML model. In other words, each frequency
bin in the plot has a resolution about ⇠ 22.4 Hz.

All 20,515 diagrams generated are collated into an mp4 file to be viewed as a movie with four frames per second. The full
video can be found at this weblink12.

Comparison with TurboSETI

One of the most extensively used SETI algorithms in Breakthrough Listen’s analysis is TURBOSETI13 as described in3, 7, which
is designed to detect these narrowband drifting signals by implementing the “tree de-Doppler” algorithm for incoherent Doppler
acceleration searches29. One of the reasons we have chosen to work with this GBT dataset is because a thorough ETI search has
previously been conducted on it using a standard de-Doppler technique3, 5. This provides a way to benchmark our algorithms as

11https://github.com/UCBerkeleySETI/blimpy
12https://www.youtube.com/watch?v=iSdVfOwPVCI
13https://github.com/UCBerkeleySETI/turbo_seti
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we can compare the output of two completely different methods. Out of the 1004 cadences analyzed here, 688 were studied by3

and 755 were in the sample used by5. The small mismatch in the source list is because we have rejected several cadences that
have incomplete observations with less than 16 time bins, which are incompatible with our ML algorithm.

Supplementary Fig. 13 shows a comparison of the hits (not yet grouped per cadence to be considered as events) reported by
these two TURBOSETI searches versus the events found by our ML algorithm on target HIP 54677 in the frequency ranges
where we have detected our ETI signal of interest MLc5. The region around the signal of interest is clearly empty of any other
detections. The blue and green TurboSETI hits essentially outline the GPS signal in the observing band. In fact eight out of the
11 prime signals-of-interest presented in3 are from that particular region of 1370�1380 MHz. Overall, we find that for every
cadence, on average 64% of the events (with a deviation of 15%) flagged by our ML were not found by3 and on average 61%
(with a deviation of 37%) were not found by5. It thus appears that the events identified by the two search algorithms are quite
distinct from each other.

Figure 13. The S/N-confidence vs frequency distribution of the hits identified by TURBOSETI as reported by5 (blue) and by3

versus events detected by our ML model (red) in the cadence of target HIP 54677. The ML event that corresponds to MLc5 is
marker by a black triangle symbol.

Comparing our method to the conventional TURBOSETI, we find that our ML mode is successful in returning fewer false
positives and more convincing signals of interest. Part of this is due to the fact that our ML model is built to consider the
cadence pattern as a whole, whereas TURBOSETI searches each observation separately to produce hits, which then require a
secondary grouping stage to cluster hits that come from the same signal of interest. We also note that our search has been able
to cover a wider drift rate range up to ±10 Hz/s and none of our top 8 signals of interest were identified by the TURBOSETI
searches3, 5. Our ML algorithm also has some disadvantages compared to TURBOSETI. One of them is that unlike TURBOSETI,
we do not directly obtain drift rate and S/N as output of the pipeline. We also do not know precisely where the signal of interest
lies in terms of observing frequency and only know within which 4096-channel snippet (⇠11.6 kHz width) it is.

Code Availability

The code is available for review here at (https://github.com/PetchMa/ML_GBT_SETI)

Data Availability

All data used in this manuscript are stored as high-resolution FILTERBANK and HDF5 format collected and generated from
observations by the Robert C. Byrd Green Bank Telescope, which are available through the Breakthrough Listen Open Data
Archive at http://seti.berkeley.edu/opendata. Correspondence and requests for other materials should be addressed to P.M.
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Supplementary information

Diagnostic plots for the remaining seven signals of interest listed in Table 1.

Figure 14. Diagnostic plots for (Left) MLc1 (Right) MLc2.
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Figure 15. Diagnostic plots for (Left) MLc3 (Right) MLc4.
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Figure 16. Diagnostic plots for (Left) MLc6 (Right) MLc7.
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Figure 17. Diagnostic plot for MLc8.
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Random forest
Parameters Values
Number of estimators 10, 50, 100, 200, 500, 1000
Parameter criterion gini, entropy
Maximum depth 5, 10, 20, 30, None
Maximum features auto, sqrt, log2

SVM
Parameters Values
C regularization 0, 1⇥10�6, 1, 2, 10, 50, 100
Degree 1, 2, 3, 5, 7, 9
Kernels linear, poly, rbf, sigmoid

Artificial neural net
Parameters Values
First layer weights 256, 512
Number of first layers 1, 2
Activations for the first layers ReLU, sigmoid
Second layer weights 128, 256
Number of second layers 1, 2
Activations for the second layers ReLU, sigmoid
Third layer weights 32, 64
Number of third layers 1, 2
Activations for the third layers ReLU, sigmoid
Final activation sigmoid, softmax
Learning rate 0.001, 0.0001, 0.00001

Convolutional neural net
Parameters Values
First-layer filter size 8, 16, 24
Number of first layers 1, 2, 3
Activations for the first layers ReLU, sigmoid
Second-layer filter size 32, 64, 128
Number of second layers 1, 2, 3
Activations for the second layers ReLU, sigmoid
Third-layer filter size 64, 128
Number of third layers 1, 2, 3
Activations for the third layers ReLU, sigmoid
Hidden layer weights 256, 128
Final activation sigmoid, softmax
Learning rate 0.001, 0.0001, 0.00001

Table 4. Parameter values searched for each of the four sets of alternative models. The values in bold indicate the best
performing model.

Model N. variations Averaged AUC Best AUC
Random Forest 1000 0.77(1) 0.79

SVM 1000 0.72(9) 0.78
ANN 3000 0.73(1) 0.74
CNN 3000 0.95(2) 0.98

Table 5. The number of variations of parameter values searched, the averaged AUCs with standard deviation shown in
brackets, as well as the best AUCs of the four alternative ML models from the hyperparameter tuning using the validation data
set.
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Model Best AUC Precision Recall F1
Random Forest 0.7123 0.641 0.956 0.767

SVM 0.7115 0.643 0.951 0.767
ANN 0.6768 0.636 0.659 0.647
CNN 0.9817 0.992 0.934 0.959

Our Model 0.9993 0.994 0.985 0.989

Table 6. The best AUCs, precision, recall, and F1 scores of the five ML models applied on the test data set.

Compute Node 0 Compute Node 1 Compute Node 2
CPU Intel Xeon E5-2630 Intel Xeon E5-2630 Intel Xeon Silver 4210
GPU[0] NVIDIA TITAN X NVIDIA TITAN X NVIDIA TITAN X
GPU[1] NVIDIA TITAN X NVIDIA TITAN XP NVIDIA GTX 1080
GPU[2] NVIDIA TITAN X NVIDIA GTX 1080 NVIDIA GTX 1080 Ti
GPU[3] NVIDIA TITAN X NVIDIA TITAN XP NVIDIA GTX 1080 Ti
RAM 256 GB 256 GB 196 GB

Table 7. The hardware specifications for each compute node used in this analysis.
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