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L a r g e f o r m at a d diti v e m a n uf a ct uri n g ( L F A M) n e c e s sit at e s t h e u s e of s h ort fi b er t h er m o pl a sti c c o m p o sit e s, s u c h a s 

c ar b o n fi b er fill e d a cr yl o nitril e b ut a di e n e st yr e n e, t o e n a bl e pri nti n g. C urr e ntl y, w h e n L F A M p art s ar e m a c hi n e d 

i nt o  t h eir  fi n al  s h a p e,  t h e  m a c hi ni n g  s cr a p  (i. e., s m all  fl a k e  li k e  p arti cl e s  a n d  off c ut s)  i s  l a n d fill e d.  Pr e vi o u s 

st u di e s  h a v e  d e m o n str at e d  t h e  vi a bilit y  of  r e c y cli n g  e n d- of-lif e  L F A M  p art s  b y  s hr e d di n g  a n d  o pti o n all y  r e- 

c o m p o u n di n g  t h e  m at eri al  b a c k  i nt o  p ell et s.  H o w e v er,  t h er e  i s  littl e  u n d er st a n di n g  of  t h e  v al u e  a n d  p erf or -

m a n c e  of  r e c y cl e d  m at eri al  m a d e  fr o m  L F A M  m a c hi ni n g  s cr a p,  w hi c h  if  p ur s u e d  c o ul d  m oti v at e  m or e  br o a d 

r e c y cli n g  of  t hi s  w a st e  str e a m.  I n  t hi s  st u d y,  r e c y cl e d  i n- pr o c e s s  m a c hi ni n g  s cr a p  i s  e x pl or e d  a s  a n  L F A M 

f e e d st o c k s o ur c e. H er ei n, it i s f o u n d t h at t h e pri m ar y d e gr a d ati o n m e c h a ni s m of  t h e r e c y cl e d m at eri al i s si g -

ni fi c a nt  fi b er  l e n gt h  attriti o n  d uri n g  s urf a c e  m a c hi ni n g.  W hil e  t hi s  fi b er  attriti o n  n e g ati v el y  i m p a ct s  t h e  m e -

c h a ni c al p erf or m a n c e of t h e m at eri al i n t h e pri nt dir e cti o n, it s e e m s t h at t h e c h a n g e s i n pr o c e s si n g b e h a vi or s a n d 

pri nt  q u alit y,  n a m el y  t h e  s urf a c e  r o u g h n e s s  of  t h e  pri nt e d  str u ct ur e  a s s o ci at e d  wit h  s h ort er  fi b er  l e n gt h s,  i s 

b e n e fi ci al t o i nt erl a y er a d h e si o n. T h e t e n sil e str e n gt h a n d el a sti c m o d ul u s of t h e r e c y cl e d m at eri al, i n t h e pri nt 

dir e cti o n, d e cr e a s e d 1 1 % a n d 3 1 % r e s p e cti v el y c o m p ar e d t o t h e pri sti n e m at eri al. H o w e v er, i n t h e l a y er- wi s e 

dir e cti o n it w a s f o u n d t h at t h e r e c y cl e d m at eri al e x hi bit e d n o si g ni fi c a nt c h a n g e i n el a sti c m o d ul u s a n d a si g -

ni fi c a nt 2 1 % i n cr e a s e i n t e n sil e str e n gt h – a s ur pri si n g r e s ult. T hi s w or k i n di c at e s t h at m a c hi ni n g w a st e c o ul d b e 

a vi a bl e m at eri al str e a m f or r e c y cl e d L F A M f e e d st o c k m at eri al s.   

1. I nt r o d u cti o n 

C o m p o sit e  m at eri al s,  s u c h  a s  c ar b o n- fi b er  r ei nf or c e d  p ol y m er s 

( C F R P s), ar e i n d u stri all y d e sir a bl e m at eri al s d u e t o t h eir hi g h- str e n gt h- 

t o- w ei g ht  r ati o  a n d  d ur a bilit y  i n  m ulti pl e  m a n uf a ct uri n g  i n d u stri e s 

[ 1 – 4 ].  F or  e x a m pl e,  C F R P s  h a v e  s e e n  wi d e s pr e a d  a d o pti o n  i n  c o m -

m er ci al air cr aft ( e. g., B o ei n g 7 8 7) a n d r a pi d pr o d u cti o n a n d pr ot ot y pi n g 

f or t h e m ol d /t o oli n g i n d u str y [5 – 7 ]. T h e d e m a n d f or c o m p o sit e m at e -

ri al s, s p e ci fi c all y t h er m o pl a sti c c o m p o sit e s, i s e x p e ct e d t o h a v e a c o m -

p o u n d a n n u al gr o wt h r at e of 6. 9 % i n t h e U S m ar k et b et w e e n t h e y e ar s 

2 0 2 2 – 2 0 3 0, w h er e t h e pri m ar y d e m a n d i s f or s h ort di s c o nti n u o u s fi b er 

c o m p o sit e s [ 8 ] a s dri v e n b y t h e gr o wt h of t h e a er o s p a c e, m ari n e, a n d 

wi n d e n er g y a p pli c ati o n s e ct or s [ 9 – 1 2 ]. 

N e w m a n uf a ct uri n g pr o c e s s e s f or s h ort fi b er C F R P s, li k e l ar g e-f or m at 

a d diti v e m a n uf a ct uri n g ( L F A M), ar e gr o wi n g r a pi dl y a n d u s e hi g h v ol -

u m e s  of  C F R P s  [ 1 ,1 3 ].  Alt h o u g h  C F R P s  ar e  e x p e n si v e  a n d 

c ar b o n-i nt e n si v e m at eri al s, t h e a d diti o n of s h ort di s c o nti n u o u s c ar b o n 

fi b er  ( C F)  t o  p ol y m er s  r e d u c e s  w ar p a g e  d uri n g  t h e  pri nti n g  pr o c e s s 

w hil e  si m ult a n e o u sl y  i n cr e a si n g  t h e  m e c h a ni c al  p erf or m a n c e  of  t h e 

pri nt e d  str u ct ur e s;  t h e s e  b e n e fit s  m a k e  t h e m  n e c e s s ar y  f or  t h e 

l ar g e- s c al e pri nti n g of s o m e hi g h- p erf or m a n c e a p pli c ati o n s [4 ,1 4 ]. T h e 

Bi g  Ar e a  A d diti v e  M a n uf a ct uri n g  ( B A A M)  s y st e m,  d e v el o p e d  b y  O a k 

Ri d g e  N ati o n al  L a b or at or y  ( O R N L)  a n d  Ci n ci n n ati  I n c.,  i s  a n  L F A M 

s y st e m c a p a bl e of pr o d u ci n g si g ni fi c a ntl y l ar g er p art s t h a n tr a diti o n al 

b e n c ht o p A M t e c h n ol o gi e s, p arti all y e n a bl e d u si n g a hi g h-t hr o u g h p ut 

si n gl e- s cr e w  e xtr u d er  a n d  p ell eti z e d  m at eri al,  s u c h  a s  c ar b o n  fi b er 

a cr yl o nitril e  b ut a di e n e  st yr e n e  ( C F- A B S),  a s  a  f e e d st o c k  [ 4 ,1 5 ,1 6 ]. 

L F A M  a n d  C F R P f e e d st o c k  m at eri al s  h a v e  b e e n  criti c al  t o  d e v el o pi n g 

r a pi d m ol d a n d t o oli n g pr o d u cti o n – e s p e ci all y f or l o w- v ol u m e, hi g h- -

v al u e t o oli n g c o m p o n e nt s. F or e x a m pl e, t h e B A A M s y st e m h a s b e e n u s e d 

t o  m a n uf a ct ur e  a  c at a m ar a n  b o at  h ull  m ol d,  w hi c h  w a s  1 0. 3 6  m  i n 

l e n gt h a n d r e q uir e d t h e u s e of 2 4 9 4. 7 6 k g of m at eri al [1 ]. A s t h e d e m a n d 

*  C orr e s p o n di n g a ut h or. 
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f or  t h er m o pl a sti c  c o m p o sit e s  i n cr e a s e s,  n ot a bl y  dri v e n  b y  i n d u stri e s 

s u c h a s L F A M m ol d /t o oli n g, pr o d u cti o n s cr a p a n d e n d- of-lif e c o m p o sit e 

m at eri al s ar e al s o e x p e ct e d t o i n cr e a s e si g ni fi c a ntl y. 

A s  d e m a n d  f or  L F A M  f e e d st o c k s  gr o w s,  a  r o b u st  a n d  s u st ai n a bl e 

s u p pl y c h ai n of C F R P s m u st b e a v ail a bl e [ 2 3 ]. A s s u p pl y c h ai n i s s u e s 

r e m ai n a n i n d u stri al c o n c er n, s o m e ar e l o o ki n g t o u s e r e c y cl e d m at eri al s 

t o b ol st er t h e s u p pl y of pri sti n e f e e d st o c k m at eri al. H o w e v er, t h e r e c y -

cli n g  of  c o m p o sit e s  a n d  t h eir  fill er  m at eri al s  h a s  y et  t o  s e e  br o a d er 

m ar k et a d o pti o n, li k el y d u e t o c o m p o sit e p erf or m a n c e d e gr a d ati o n, a s 

r e c y cl e d  m at eri al s  c a n  e x hi bit  l o w er  m e c h a ni c al  pr o p erti e s  w h e n 

c o m p ar e d t o t h eir pri sti n e c o u nt er p art s [ 1 7 – 2 0 ]. I n a d diti o n, r e c y cli n g 

fi b er- fill e d c o m p o sit e s p o s e s a p arti c ul ar c h all e n g e d u e t o t h e i n cr e a s e d 

c o m pl e xit y  of  t h e  fl b er- m atri x  i nt erf a c e  a n d  v ari e d  mi cr o str u ct ur al 

c o m p o siti o n [ 2 1 ,2 2 ]. M e c h a ni c al r e c y cli n g, t h e pr o c e s s of si z e-r e d u ci n g 

b ul k m at eri al s eit h er t hr o u g h gri n di n g / gr a n ul ati o n or ot h er m e c h a ni c al 

m e a n s  s u c h  a s  milli n g  [ 2 3 ],  i s  a n  e m er gi n g  t e c h ni q u e  f or  r e c o v eri n g 

hi g h- v al u e c o m p o sit e m at eri al s fr o m L F A M e n d- of-lif e p art s wit h mi ni -

m al i m p a ct s o n m e c h a ni c al p erf or m a n c e, t h er e b y miti g ati n g t h e e n er g y 

d e m a n d  a n d  c o st  a s s o ci at e d  wit h  t h e s e  f e e d st o c k s  [ 6 ,1 7 ,2 4 ].  R e c e nt 

st u di e s  o n  t h e  utili z ati o n  of  gr a n ul at e d  f e e d st o c k  m at eri al s  f or  L F A M 

h a v e d e m o n str at e d t h e vi a bilit y of u si n g r e c y cl e d fi b er- fill e d m at eri al s 

i n  L F A M  p art s  s u c h  a s  pr e- c a st  c o n cr et e  m ol d s  [1 7 ,2 4 ,2 5 ].  R e c y cl e d 

t h er m o pl a sti c c o m p o sit e s h a v e al s o b e e n utili z e d i n t h e d e v el o p m e nt of 

ur b a n  f ur nit ur e  [ 2 6 ]  a n d  a ut o m oti v e  p art s,  s u c h  a s  a n  a er o d y n a mi c 

s plitt er  m ol d  [ 2 7 ].  I n  a d diti o n  t o  r e c y cli n g  e n d- of-lif e  w a st e,  it  w a s 

f o u n d  t h at  u p  t o  4 0 %  of  C F R P  w a st e  (i n cl u si v e  of  all  C F R P 

m a n uf a ct uri n g) i s g e n er at e d a s pr o c e s si n g s cr a p i n t h e m a n uf a ct uri n g 

st a g e, b ef or e t h e fir st a p pli c ati o n lif e of t h e m a n uf a ct ur e d p art [ 1 2 ]; it i s 

e sti m at e d t h at a p pr o xi m at el y 7 0 0 0 – 1 5, 0 0 0 t o n s of pr o c e s si n g w a st e i s 

g e n er at e d e a c h y e ar [ 2 3 ]. T hi s s cr a p i s a n u n-t a p p e d m at eri al str e a m 

c o n si sti n g of p ot e nti all y hi g h- v al u e C F R P m at eri al s. 

I n L F A M, w a st e g e n er ati o n o c c ur s at e v er y st e p of t h e m a n uf a ct uri n g 

pr o c e s s – e s p e ci all y  i n  t h e  s urf a c e  fi ni s hi n g  of  p art s.  T o  a c hi e v e  g e o -

m etri c  t ol er a n c e s  a n d  a  u nif or m  s urf a c e  fi ni s h,  L F A M  p art s  u n d er g o 

s urf a c e  m a c hi ni n g, a s u btr a cti v e pr o c e s s r e s ulti n g i n hi g h v ol u m e s of 

s m all, fi a k e-li k e p arti cl e s a n d off- c ut s t h at ar e t y pi c all y l a n d fill e d. W h e n 

c o n si d eri n g  t h e  vi a bilit y  of  utili zi n g  m a c hi ni n g  s cr a p s  a s  r e c y cl e d 

f e e d st o c k  m at eri al s,  u n d er st a n di n g  h o w  m at eri al  d e gr a d ati o n  m a y 

aff e ct  r e s ulti n g  pr o p erti e s  i s  criti c al.  T h er e  ar e  t w o  m aj or  a s p e ct s  of 

d e gr a d ati o n t h at m u st b e c o n si d er e d: ( 1) h o w t h e r e c y cli n g a n d r e m a -

n uf a ct uri n g  pr o c e s s  aff e ct  t h e  m atri x  p h a s e  of  t h e  m at eri al  ( e. g., 

m ol e c ul ar w ei g ht d e gr a d ati o n) a n d ( 2) h o w t h e r e c y cli n g a n d r e m a n u -

f a ct uri n g pr o c e s s aff e ct t h e fi b er p h a s e of t h e m at eri al (e. g., fi b er l o s s or 

attriti o n). 

A B S i s a n a m or p h o u s c o- p ol y m er t h at h a s b e e n s h o w n t o d e gr a d e vi a 

a  c h ai n- s ci s si o n  m e c h a ni s m  i n  t h e  pr e s e n c e  of  hi g h  t h er m al  a n d  m e -

c h a ni c al  e n er g y,  li k e  w h at  w o ul d  b e  e x p eri e n c e d  i n  t h e  milli n g  a n d 

r e p ell eti z ati o n  pr o c e s s  [ 2 8 ,2 9 ].  C h ai n  s ci s si o n  c a u s e s  t h e  br e a ki n g  of 

b o n d s  a n d  h a s  b e e n  s h o w n  i n  A B S  t o  pr o d u c e  l o w  m ol e c ul ar  w ei g ht 

o xi d ati o n pr o d u ct s, r e s ulti n g i n a l o w er m ol e c ul ar w ei g ht, a n d i n s o m e 

i n st a n c e s t h e f or m ati o n of st a bl e cr o s s-li n k e d str u ct ur e s [3 0 ]. A r e d u c -

ti o n  i n m ol e c ul ar  w ei g ht h a s b e e n  a s s o ci at e d  wit h d e cr e a s e d t h er m al 

pr o p erti e s,  d e cr e a s e d  vi s c o sit y,  a n d  d e cr e a s e d  m e c h a ni c al  pr o p erti e s, 

d u e t o t h e c h a n g e s i n t h e w a y i n w hi c h t h e p ol y m er c h ai n s ar e a bl e t o 

e nt a n gl e wit h e a c h ot h er – w h er e l e s s e nt a n gl e m e nt h a s b e e n dir e ctl y 

c orr el at e d t o a r e d u cti o n i n m e c h a ni c al p erf or m a n c e [ 3 1 ]. I n a pr e vi o u s 

st u d y B ai et al. [ 3 2 ] i n v e sti g at e d t h e d e gr a d ati o n b e h a vi or of A B S t h at 

h a d b e e n pr o c e s s e d t hr e e ti m e s o n a t or q u e r h e o m et er at 2 3 0 ◦ C. T h e y 

f o u n d t h at t h er e w er e mi ni m al d e gr a d ati o n eff e ct s o n t h e p ol y b ut a di e n e 

( P B) a n d st yr e n e- a cr yl o nitril e ( S A N) p h a s e s of t h e A B S. H o w e v er, t h e y 

al s o  f o u n d  t h at  w h e n  A B S  i s  r e- pr o c e s s e d  at  a  hi g h er  t e m p er at ur e, 

2 9 0 ◦ C,  t h e r e  w a s  si g ni fi c a nt  t h er m o- o xi d ati v e  d e gr a d ati o n  t h at 

o c c urr e d d u e t o cr o s sli n ki n g r e a cti o n s i n t h e P B- p h a s e of t h e A B S aft er 

t hr e e c y cl e s. 

A s C F- A B S i s a s h ort fi b er c o m p o sit e m at eri al, it i s al s o i m p ort a nt t o 

c o n si d er t h e p ot e nti al f or d e gr a d ati o n of t h e fi b er- p h a s e of t h e m at eri al. 

A s di s c u s s e d a b o v e, t h e m a c hi ni n g a n d r e p ell eti z ati o n pr o c e s s ar e m e -

c h a ni c all y  i nt e n si v e,  wit h  p ot e nti al  f or  fi b er  attriti o n  at  eit h er  t h e 

milli n g  pr o c e s s  or  t h e  hi g h  s h e ar / hi g h  e xt e n si o n al  fi o w  d ef or m ati o n 

d uri n g t h e t wi n s cr e w r e- p ell eti z ati o n pr o c e s s [ 3 3 – 3 5 ]. Fi b er attriti o n i s 

a pri m ar y c o n c er n i n t h e r e c y cli n g of c o m p o sit e s [ 1 2 ], a s r e d u cti o n s i n 

fi b er  l e n gt h  c a n  al s o  c a u s e  r e d u cti o n s  of  vi s c o sit y,  c h a n g e s  i n  fi b er 

ori e nt ati o n t h at w o ul d aff e ct t h er m o m e c h a ni c al pr o p erti e s s u c h a s t h e 

c o ef fi ci e nt  of  t h er m al  e x p a n si o n,  a n d  r e d u cti o n s  i n  b ul k  m e c h a ni c al 

pr o p erti e s s u c h a s t e n sil e str e n gt h a n d m o d ul u s. Q u a ntif yi n g m at eri al 

d e gr a d ati o n fr o m t hi s i n d u stri al pr o c e s s a n d el u ci d ati n g it s u n d erl yi n g 

m e c h a ni s m  i s  criti c al  t o  t h e  i n d u stri al  a d o pti o n  of  t hi s  r e c y cl e d 

f e e d st o c k. 

M a c hi ni n g  a n d  pr o c e s si n g  s cr a p  c o ul d  pr o vi d e  a  s u st ai n a bl e  a n d 

e c o n o mi c al f e e d st o c k t o t h e L F A M a n d C F R P i n d u str y, h o w e v er, f urt h er 

i n v e sti g ati o n i s n e c e s s ar y t o u n d er st a n d t h e v al u e a n d t h e vi a bilit y of 

r e c y cli n g  t h e s e  m at eri al s.  T hi s  r e c y cli n g  a p pr o a c h  i s  n ot  wit h o ut  it s 

Fi g. 1. A n o v er vi e w of t h e r e c y cli n g pr o c e s s i s s h o w n w h er e  t h e m at eri al ’s  fir st a n d s e c o n d  lif e i s s h o w n i n  t h e bl u e a n d gr e e n b a c k gr o u n d, r e s p e cti v el y. ( F or 

i nt er pr et ati o n of t h e r ef er e n c e s t o c ol or i n t hi s fi g ur e l e g e n d, t h e r e a d er i s r ef err e d t o t h e W e b v er si o n of t hi s arti cl e.) 
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c h all e n g e s; f or e x a m pl e, t h e c oll e cti o n of m a c hi ni n g w a st e p o s e s dif fi -

c ult y i n t h e r e c y cli n g pr o c e s s d u e t o t h e s h a p e a n d si z e of t h e m at eri al 

a n d t h e p ot e nti al f or c o nt a mi n ati o n. H er ei n, t h e p ot e nti al f or r e c y cli n g 

C F- A B S m at eri al s cr a p g e n er at e d d uri n g t h e s urf a c e fi ni s hi n g of L F A M 

p art s w a s i n v e sti g at e d ( Fi g. 1 ). B y r e p ur p o si n g m a c hi ni n g s cr a p, w e ai m 

t o  d e m o n str at e  it s  p ot e nti al  a s  a  r e c y cl e d  L F A M  f e e d st o c k  m at eri al, 

r e s ulti n g  i n  e n vir o n m e nt all y  s u st ai n a bl e  p art s,  r e d u c e d  d e m a n d  f or 

pri sti n e C F R P m at eri al s, a n d t h e cr e ati o n of a v al u e- a d d e d pr o c e s s f or 

C F R P w a st e m at eri al s. 

2.  M at e ri al s a n d m et h o d s 

Pri sti n e C F- A B S p ell et s w er e utili z e d a s t h e st arti n g m at eri al f or t hi s 

st u d y. T e c h m er P M ( Cli nt o n, T N) pr o vi d e d t h e El e ctr a fil A B S 1 5 0 1 3 D P 

wit h 2 0 wt % s h ort c ar b o n fi b er ( C F). T h e r e c y cl e d C F- A B S w a s pr o d u c e d 

fr o m m a c hi ni n g s cr a p s i n t h e f or m of fl a k e d p arti cl e s (i. e., mill fi a k e s) 

fr o m  s u btr a cti v e  s urf a c e  m a c hi ni n g  pr o c e s s e s,  s p e ci fi c all y  l ar g e- s c al e 

c o m p ut er  n u m eri c al  c o ntr ol  ( C N C)  a n d  b e n c h  t o p  s c al e  C N C 

m a c hi ni n g,  of  pri nt e d  str u ct ur e s.  T h e s e  mill  fi a k e s  ( cf. Fi g.  1 )  w er e 

c o m p o u n d e d a n d r e p ell eti z e d b y T e c h m er P M vi a t wi n- s cr e w e xtr u si o n 

( T S E). 

2. 1. Pri nti n g 

Pri sti n e  C F- A B S  a n d  r e c y cl e d  C F- A B S  p ell et s  w er e  pri nt e d  o n  t h e 

B A A M s y st e m at O R N L ’s M a n uf a ct uri n g D e m o n str ati o n F a cilit y ( M D F). 

T h e m at eri al s w er e dri e d at 8 0 ◦ C f o r 4 h p ri o r t o pri nti n g. T h e pri sti n e 

a n d r e c y cl e d p ell et s w er e pri nt e d at 2 5 0 ◦ C a n d 4 5 R P M, wit h a 0. 7 6 c m 

n o z zl e di a m et er a n d a 9 0- s l a y er ti m e t o a c hi e v e 2 4 ” x 2 4 ” x 1 2 ” b o x e s. 

T h e pri nt e d s a m pl e s w er e all o w e d t o c o ol f or 1 5 mi n o n t h e pri nt b e d, 

m ai nt ai n e d at 1 0 0 ◦ C, b ef o r e r e m o v al t o r e d u c e p art w ar p a g e. 

2. 2.  G el p er m e ati o n c hr o m at o gr a p h y 

T h e m ol e c ul ar w ei g ht di stri b uti o n of n e at A B S p ell et s, pri sti n e a n d 

r e c y cl e d p ell et s, mill fi a k e s, a n d t h e pri sti n e a n d r e c y cl e d pri nt s w er e 

m e a s ur e d u si n g g el p er m e ati o n c hr o m at o gr a p h y ( G P C), a t y p e of si z e 

e x cl u si o n c hr o m at o gr a p h y ( S E C). N e at A B S w a s utili z e d i n t hi s e x p eri -

m e nt a s a c o m p ari s o n m at eri al a s it i s t h e b a s e m atri x of t h e m at eri al s of 

i nt er e st.  T h e  m at eri al s  w er e  di s s ol v e d  i n  t etr a h y dr of ur a n  ( T H F)  wit h 

m a g n eti c stirri n g. T h e r e s ulti n g s ol uti o n s w er e t h e n filt er e d t o r e m o v e 

fi b er  fr o m  t h e  s ol uti o n s  a n d  di stri b ut e d  i nt o  hi g h- p erf or m a n c e  li q ui d 

c hr o m at o gr a p h y ( H P L C) vi al s. T H F w a s u s e d a s t h e m o bil e p h a s e at a 

fi o w r at e of 1. 0 m L / mi n. T h e G P C pr o c e s s w a s c o m pl et e d wit h a n A gi -

l e nt 1 2 6 0 I n fi nit y II. R e p ort e d m ol e c ul ar w ei g ht v al u e s w er e a c q uir e d 

vi a c o n v e nti o n al c ali br ati o n a n al y si s u si n g p ol y st yr e n e st a n d ar d s o v er 

t h e r a n g e of 1 0 0 0 g / m ol t o 1, 0 0 0, 0 0 0 g / m ol. 

2. 2. 1.  T h er m o gr a vi m etri c a n al ysis 

A  T A  I n str u m e nt s  Di s c o v er y  s eri e s  t h er m o gr a vi m etri c  a n al y z er 

( T G A) w a s u s e d o n n e at A B S p ell et s, pri sti n e a n d r e c y cl e d p ell et s, mill 

fi a k e s, a n d t h e pri sti n e a n d r e c y cl e d pri nt s t o u n d er st a n d t h e d e gr a d a -

ti o n  m e c h a ni s m s  of  t h e  C F- A B S.  A  t e m p er at ur e  r a m p  fr o m  3 0 ◦ C  t o 

6 0 0 ◦ C wit h a h e ati n g r at e of 1 0 ◦ C / mi n w a s c o m pl et e d f or all s a m pl e 

t y p e s i n b ot h a n air a n d ar g o n e n vir o n m e nt. A tri pli c at e w a s r u n f or all 

s a m pl e t y p e s. T h e d e c o m p o siti o n t e m p er at ur e w a s m e a s ur e d at 2 wt % 

a n d 5 wt % l o s s t o d et er mi n e t h er m al st a bilit y. T h e fi n al m a s s of e a c h 

s a m pl e t y p e at 6 0 0 ◦ C w a s r e c o r d e d t o q u a ntif y t h e fi b er a m o u nt i n t h e 

c o m p o sit e a n d d et er mi n e if a n y fi b er w a s l o st d uri n g t h e r e c y cli n g or 

pri nti n g pr o c e s s e s. 

2. 3. Fi b er l e n gt h a n al ysis 

Mi cr o s c o p y w a s utili z e d t o i m a g e t h e fi b er s fr o m pri sti n e a n d r e c y -

cl e d p ell et s, mill fi a k e s, a n d t h e pri sti n e a n d r e c y cl e d pri nt ( Fi g. 1 ). I n 

or d er t o i s ol at e t h e c ar b o n fi b er fr o m t h e p ol y m er m atri x, ultr a s o ni c- 

ai d e d  di g e sti o n  w a s  utili z e d  [ 3 6 ],  u si n g  a c et o n e  a s  t h e  s ol v e nt. 

A p pr o xi m at el y 3 – 5 g of m at eri al s a m pl e s, eit h er p ell et, fi a k e, or s m all 

pri nt s a m pl e s r e c o v er e d wit h a c hi s el, w er e mi x e d wit h a p pr o xi m at el y 

5 0 m L of a c et o n e. T h e s ol uti o n s w er e pl a c e d i n a n ultr a s o ni c b at h a n d 

all o w e d  t o  s o ni c at e  f or  at  l e a st  9 0  mi n  at  r o o m  t e m p er at ur e.  T h e 

r e s ulti n g s ol uti o n s w er e t h e n a p pli e d t o mi cr o s c o p y sli d e s, gi v e n ti m e 

f or t h e  a c et o n e t o  e v a p or at e fr o m t h e  sli d e s urf a c e, a n d i m a g e d  o n a 

K e y e n c e O pti c al Mi cr o s c o p e wit h 5 0 x t ot al m a g ni fi c ati o n. T h e i m a g e s 

w er e  pr o c e s s e d  a n d  m e a s ur e d  u si n g  I m a g e J  [ 3 7 ].  T h e  l e n gt h s  of  t h e 

fi b er s w er e t h e n m e a s ur e d, e x cl u di n g u n cl e ar, i n c o m pl et el y i m a g e d, or 

o v erl a p pi n g  fi b er s.  A  mi ni m u m  of  1 5 0 0  fi b er s  w er e  i m a g e d  a n d 

m e a s ur e d  f or  e a c h  s a m pl e.  T h e  r e s ult s  w er e  a n al y z e d  f or  st ati sti c al 

si g ni fi c a n c e ( p < 0. 0 5), a n d t h eir di stri b uti o n s w er e o b s er v e d u si n g a 

l o g– n or m al  di stri b uti o n  a n al y si s  [ 3 8 ].  W ei g ht e d  a v er a g e  fi b er  l e n gt h 

w a s u s e d t o r e p ort t h e a v er a g e fi b er l e n gt h of e a c h s a m pl e [ 3 9 ]. 

2. 4.  R h e ol o gi c al c h ar a ct eri z ati o n 

T h e r h e ol o gi c al b e h a vi or of n e at A B S p ell et s, pri sti n e a n d r e c y cl e d 

p ell et s, mill fl a k e s, a n d t h e pri sti n e a n d r e c y cl e d pri nt s w er e m e a s ur e d 

u si n g a Di s c o v er y H y bri d R h e o m et er- 2 ( D H R- 2), u si n g a p ar all el pl at e 

g e o m etr y wit h a di a m et er of 2 5 m m. T h e r h e ol o gi c al t e sti n g w a s p er -

f or m e d at 2 5 0 ◦ C, w hi c h i s t h e B A A M pri nti n g n o z zl e t e m p er at ur e f or 

pri sti n e C F- A B S. T h e m at eri al s w er e e x p o s e d t o a n o s cill at or y fr e q u e n c y 

s w e e p i n air at a  fr e q u e n c y r a n g e of 0. 1 – 6 2 8 r a di a n s p er s e c o n d a n d 

a p pli e d str ai n of 0. 1 %. T h e fr e q u e n c y r a n g e s w er e c h o s e n t o si m ul at e 

t h e s h e ar r at e r a n g e of m at eri al wit hi n t h e pri nti n g n o z zl e a n d at t h e 

n o z zl e e xit. T h e a p pli e d str ai n w a s c h o s e n t o f all wit hi n t h e m at eri al s ’ 

li n e ar  vi s c o el a sti c r e gi o n. T h e g a p h ei g ht  b et w e e n  t h e pl at e s  w a s  1. 5 

m m. T h e m at eri al s w er e dri e d at 8 0 ◦ C f o r 4 h p ri or t o t e sti n g. 

2. 5.  D e nsit y m e as ur e m e nts 

T h e  d e n sit y  of  t h e  pri sti n e  a n d  r e c y cl e d  C F- A B S  p ell et s,  t h e  mill 

fl a k e s,  a n d  t h e  pri sti n e  a n d  r e c y cl e d  pri nt s  w er e  m e a s ur e d  u si n g  a 

Mi cr o m er eti c s A c c u P y c 1 3 4 0 g a s p y c n o m et er. S a m pl e w ei g ht s r a n g e d 

fr o m ~ 0. 4 g ( fl a k e s) t o ~ 2. 5 g ( pri nt e d s a m pl e s). E a c h s a m pl e w a s dri e d 

a n d  all o w e d  t o  c o ol  pri or  t o  t e sti n g.  T h e  m a s s  of  e a c h  s a m pl e  w a s 

r e c or d e d pri or t o pl a ci n g i n t h e s y st e m. T h e s a m pl e w a s s e al e d i n t h e 

t e sti n g c h a m b er a n d w a s fl o o d e d wit h H eli u m g a s a n d all o w e d t o r e a c h 

e q uili bri u m t o r a pi dl y fill s a m pl e p or e s a n d t h e n w a s di s c h ar g e d i nt o a 

s e c o n d c h a m b er a n d all o w e d t o r e a c h e q uili bri u m t o c al c ul at e t h e s oli d 

p h a s e v ol u m e of e a c h s a m pl e. O n e s a m pl e w a s u s e d t o a c q uir e 5 d e n sit y 

m e a s ur e m e nt s  a n d  u s e d  t o  d et er mi n e  t h e  a v er a g e  d e n sit y  of  e a c h 

m at eri al. 

2. 6. S urf a c e r o u g h n ess c h ar a ct eri z ati o n 

D u e  t o  n oti c e a bl e  diff er e n c e s  i n  t h e  s urf a c e  fi ni s h  of  t h e  r e c y cl e d 

pri nt c o m p ar e d t o t h e pri sti n e pri nt ( cf. Fi g. 2 ), t h e t o p ol o g y a n d s urf a c e 

r o u g h n e s s of t h e s urf a c e of e a c h pri nt e d s a m pl e w a s i n v e sti g at e d. U si n g 

a K e y e n c e V R- 5 0 0 0 Wi d e Ar e a 3 D M e a s ur e m e nt S y st e m, a n o n- c o nt a ct 

Fi g. 2. S urf a c e i m a gi n g i s pr o vi d e d f or t h e pri sti n e (l eft) a n d r e c y cl e d (ri g ht) 

pri nt e d p art s. 
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pr o fil o m et er, 1 5 m m × 3 0 m m s a m pl e s fr o m e a c h pri nt e d str u ct ur e w er e 

s c a n n e d at 4 0 X hi g h- d e fi niti o n m a g ni fi c ati o n. Aft er s c a n ni n g, fi v e 3 m m 

× 7  m m  s urf a c e  r o u g h n e s s  m e a s ur e m e nt s  w er e  o b s er v e d  u si n g  ar e a 

s c a n s a n d q u a nti fl e d u si n g K e y e n c e V R- 5 0 0 0 a n al y si s s oft w ar e. T h e s e 

v al u e s w er e a v er a g e d a n d t e st e d f or st ati sti c al si g ni fi c a n c e ( p < 0. 0 5). I n 

a d diti o n  t o  s urf a c e  r o u g h n e s s,  s urf a c e  t o p ol o g y  w a s  vi s u ali z e d.  E a c h 

pri nt e d  s a m pl e  w a s  n or m ali z e d  t o  t h e  fi at  s c a n ni n g  pl at e  f or  s urf a c e 

t o p ol o g y  vi s u ali z ati o n  a n d  i s  o nl y  u s e d  a s  a  q u alit ati v e  ai d  i n  u n d er -

st a n di n g t h e diff er e n c e i n s urf a c e fi ni s h a s a f u n cti o n of r e c y cli n g. 

2. 7.  Di git al i m a g e c orr el ati o n f or t h er m o m e c h a ni c al pr o p erti es 

T h er m o m e c h a ni c al pr o p erti e s of L F A M m at eri al s c a n b e c h ar a ct er -

i z e d u si n g 2 D di git al i m a g e c orr el ati o n ( DI C) b y u si n g a u ni q u e s p e c kl e 

p att er n t o tr a c k t h e m o v e m e nt of e ntir e s urf a c e s b ef or e a n d aft er t h er -

m al l o a di n g [ 4 0 ,4 1 ]. T h e Di git al I m a g e C orr el ati o n O v e n ( DI C O v e n) i s a 

t e c h ni q u e  t h at  w a s  d e v el o p e d  t o  c h ar a ct eri z e  c o ef fi ci e nt  of  t h er m al 

e x p a n si o n ( C T E) e x p eri e n c e d b y a n L F A M str u ct ur e b y u si n g DI C a s a 

gl o b al m et h o d t o m e a s ur e t h er m al-i n d u c e d str ai n [ 4 2 ]. Pri nt e d pri sti n e 

a n d r e c y cl e d s a m pl e s f or t hi s w or k w er e pr e p p e d f or DI C O v e n t e sti n g b y 

m a c hi ni n g  t h e  f a c e  of  i nt er e st  t o  a  fi at  s urf a c e.  T h e  L F A M  str u ct ur e s 

w er e t h e n dri e d at 8 0 ◦ C f o r 8 h. T h e m a c hi n e d f a c e of i nt er e st w a s t h e n 

c o at e d wit h a t hi n l a y er of m att e w hit e c ol or e d hi g h-t e m p er at ur e Kr yl o n 

s pr a y p ai nt a n d c o v er e d i n bl a c k i n k s p e c kl e s t o cr e at e a cl e ar c o ntr a st of 

u ni q u e  p oi nt s  f or  a c c ur at e  DI C  m e a s ur e m e nt s.  T h e  s a m pl e  w a s  p o si -

ti o n e d, t e st e d at r o o m t e m p er at ur e t o pr o vi d e b a s eli n e p o siti o n s of t h e 

s p e c kl e s, a n d t e st e d at a n el e v at e d ( st e a d y st at e) t e m p er at ur e of 9 0 ◦ C 

u si n g t h e DI C O v e n a s e x pl ai n e d i n pr e vi o u s lit er at ur e [ 4 2 ]. T h e r o o m 

t e m p er at ur e  a n d  st e a d y  st at e  t e m p er at ur e  i m a g e s  w er e  u pl o a d e d  t o 

C orr el at e d S ol uti o n s ’ Vi c- 2 D s oft w ar e t o c al c ul at e t h e t h er m al-i n d u c e d 

str ai n s  e x p eri e n c e d  b y  t h e  s a m pl e.  T h e  k n o w n  t e m p er at ur e  st at e s, 

c al c ul at e d r o o m t e m p er at ur e str ai n s, a n d c al c ul at e d st e a d y st at e str ai n 

w er e  u s e d t o c al c ul at e C T E  of t h e  L F A M  str u ct ur e s u si n g  t h e m et h o d 

d e s cri b e d i n t hi s a ut h or s pr e vi o u s w or k [ 4 2 ]. T h e DI C O v e n i s a gl o b al 

t e c h ni q u e t h at b ett er r e pr e s e nt s t h er m o m e c h a ni c al pr o p erti e s of L F A M 

str u ct ur e s  t h a n  b y  tr a diti o n al,  l o c al  t e c h ni q u e s  s u c h  a s  t h er m o -

m e c h a ni c al a n al y si s ( T M A) d u e t o t h e c o m pl e x mi cr o str u ct ur e of pri nt e d 

p art s [ 4 2 ]. 

2. 8.  M e c h a ni c al c h ar a ct eri z ati o n 

M e c h a ni c al pr o p erti e s ( i. e., Y o u n g ’s el a sti c m o d ul u s a n d t h e ulti m at e 

t e n sil e str e n gt h ( U T S)) of t h e pri sti n e a n d r e c y cl e d pri nt s w er e m e a s ur e d 

t o d et er mi n e t h e i n fi u e n c e of t h e r e c y cli n g pr o c e s s o n m e c h a ni c al p er -

f or m a n c e. Fi v e t e n sil e s a m pl e s w er e c ut fr o m b ot h t h e X a n d Z dir e cti o n s 

(Fi g. 2 ) t o d et er mi n e t h e c h a n g e s i n t e n sil e str e n gt h i n t h e pri nti n g di -

r e cti o n ( X- dir e cti o n) a n d al s o t o o b s er v e t h e l a y er-l a y er str e n gt h of t h e 

n or m al dir e cti o n ( Z- dir e cti o n). T h e t e n sil e s p e ci m e n s w er e w at er j et c ut 

fr o m m a c hi n e d w all s fr o m e a c h pri nt e d s a m pl e t o A S T M D 6 3 8 T y p e 1 

si z e s p e ci fi c ati o n s. T h e t e n sil e t e sti n g w a s c o m pl et e d at a r at e of 5 m m / 

mi n o n a n M T S Crit eri o n S eri e s, M o d el 4 5, wit h a 1 0 k N l o a d c ell, a n d 

e xt e n si o n w a s m e a s ur e d u si n g a n M T S L X 5 0 0 L a s er E xt e n s o m et er. 

3.  R e s ult s a n d di s c u s si o n 

3. 1. Eff e ct of r e c y cli n g o n m atri x p h as e a n d fi b er r ei nf or c e m e nt 

T o  d et er mi n e  a n y  d e gr a d ati o n  i m p a ct s  o n  t h e  m atri x  p h a s e,  t h e 

m ol e c ul ar w ei g ht of C F- A B S, a s a f u n cti o n of r e c y cli n g, w a s o b s er v e d 

wit h  G P C  a n al y si s  ( cf. Fi g.  3 a n d T a bl e  S 2 ).  A s  t h e  m a c hi ni n g  a n d 

r e p ell eti z ati o n  pr o c e s s e s  ar e  m e c h a ni c all y  a n d  t h er m all y  i nt e n si v e, 

p ot e nti all y l e a di n g t o c h ai n s ci s si o n i n t h e m atri x p h a s e, m o nit ori n g t h e 

m ol e c ul ar w ei g ht a s a d e gr a d ati o n i n di c at or all o w s f or a b ett er u n d er -

st a n di n g of t h e p ot e nti al d e gr a d ati o n of b ul k m e c h a ni c al pr o p erti e s. D u e 

t o t h e pri m ar y s h a p e of m a c hi ni n g w a st e b ei n g fi a k e-li k e p arti c ul at e, it 

m u st  b e  c o m p o u n d e d  i nt o  p ell et s  pri or  t o  pri nti n g,  i ntr o d u ci n g  a n 

a d diti o n al  t h er m o- m e c h a ni c al  c y cl e  b ef or e  pri nti n g,  p ot e nti all y 

i n cr e a si n g t h e li k eli h o o d of p ol y m er d e gr a d ati o n. It w a s i m p ort a nt t o 

o b s er v e t h e m ol e c ul ar w ei g ht at e a c h st e p of t h e c o n v er si o n a n d pri nti n g 

pr o c e s s i n or d er t o u n d er st a n d h o w st a bl e t h e m at eri al s w er e aft er e a c h 

t h er m o- m e c h a ni c al c y cl e a s r e d u cti o n s i n m ol e c ul ar w ei g ht c a n r e s ult i n 

r e d u cti o n s i n m e c h a ni c al pr o p erti e s [ 4 3 ]; s p e ci fi c all y, if t h e m ol e c ul ar 

w ei g ht d e cr e a s e s b el o w t h e criti c al w ei g ht of e nt a n gl e m e nt, it c a n c a u s e 

a r e d u cti o n i n t e n sil e str e n gt h, m o d ul u s, a n d gl a s s tr a n siti o n t e m p er a -

t ur e d u e t o a r e d u cti o n i n e nt a n gl e m e nt b et w e e n c h ai n s [4 4 ]. N o si g -

ni fi c a nt  ( p > 0. 0 5)  r e d u cti o n  i n  m ol e c ul ar  w ei g ht  w a s  r e c or d e d  a s  a 

r e s ult of eit h er t h e r e c y cli n g or pri nti n g pr o c e s s. I n a d diti o n t o n o si g -

ni fi c a nt d e cr e a s e i n m ol e c ul ar w ei g ht, it w a s al s o o b s er v e d t h at t h er e 

w a s n o si g ni fi c a nt c h a n g e i n p ol y di s p er sit y i n d e x ( P DI), i n di c ati n g t h at 

t h e  r e c y cl e d  m at eri al  i s  a s  h et er o g e n e o u s  i n  m ol e c ul ar  w ei g ht  a s  t h e 

pri sti n e m at eri al. B a s e d o n t h e s e r e s ult s, t h er e i s n o i n di c ati o n t h at t h e 

m ol e c ul ar  w ei g ht  of  t h e  r e c y cl e d  m at eri al  w o ul d  c o ntri b ut e  t o  a 

r e d u cti o n  of  m e c h a ni c al  pr o p erti e s  or  t h er m al  b e h a vi or.  A s  f urt h er 

c o n fir m ati o n of t h e mi ni m al r e d u cti o n i n m ol e c ul ar w ei g ht a n d t h e ef -

f e ct o n t h er m al pr o p erti e s, diff er e nti al s c a n ni n g c al ori m etr y ( D S C) w a s 

p erf or m e d a n d c o n fir m e d t h at t h er e w a s n o si g ni fi c a nt c h a n g e i n gl a s s 

tr a n siti o n  t e m p er at ur e  (T g )  a s  a  f u n cti o n  of  t h e  r e c y cli n g  or  pri nti n g 

pr o c e s s ( Fi g ur e S 1 a n d T a bl e S 1 ). T h e d e gr a d ati o n pr o fil e s of t h e r e c y -

cl e d  m at eri al s  w er e  al s o  o b s er v e d  wit h  T G A  aft er  e a c h  st e p  i n  t h e 

r e c y cli n g a n d pri nti n g pr o c e s s ( T a bl e S 3 ), t h er e w a s n o si g ni fi c a nt ( p >

0. 0 5) diff er e n c e i n t h e m at eri al w ei g ht at t h e pri nt d e p o siti o n t e m p er -

at ur e of t h e r e c y cl e d p ell et s c o m p ar e d t o t h e pri sti n e p ell et s. 

Aft er  c o n fir mi n g  t h er e  w a s  n o  si g ni fi c a nt  m ol e c ul ar  w ei g ht  r e -

d u cti o n s, t h e fi b er r ei nf or c e m e nt p h a s e w a s e x pl or e d a s a f u n cti o n of 

r e c y cli n g a n d pri nti n g t o u n d er st a n d p ot e nti al d e gr a d ati o n m e c h a ni s m s 

t h at  c o ul d  i n fi u e n c e  m e c h a ni c al  p erf or m a n c e.  I n  t h e  c oll e cti o n  of 

m a c hi ni n g  s cr a p s,  t h er e  w er e  c o n c er n s  t h at  fi b er  c o nt e nt  w o ul d  b e 

r e d u c e d d u e t o t h e g e n er ati o n of s m all fl a k e-li k e p arti c ul at e s a n d d u st 

t h at m a y b e u n a bl e t o b e r e cl ai m e d pri or t o r e p ell eti z ati o n, p ot e nti all y 

d e cr e a si n g t h e  fl b er w ei g ht c o nt e nt b el o w 2 0 wt %. T o  d et er mi n e t h e 

fl b er  w ei g ht  c o nt e nt  of  e a c h  s a m pl e,  T G A  w a s  p erf or m e d  i n  a n  i n ert 

Fi g. 3. G P C r e s ult s f or t h e m at eri al s of i nt er e st: A) w ei g ht e d a v er a g e m ol e c ul ar 

w ei g ht ( M w ) a n d B) p ol y di s p er sit y i n d e x ( P DI); t h e r e s ult s s h o w t h at t h er e i s n o 

si g ni fl c a nt c h a n g e i n M w o r P DI i n t h e r e c y cl e d C F- A B S s a m pl e s c o m p ar e d t o 

t h e pri sti n e C F- A B S. 

Fi g. 4. A)  C ar b o n fi b er  c o nt e nt a s m e a s ur e d  vi a  T G A at  6 0 0 ◦ C.  T h e r e i s  n o 

si g ni fi c a nt  c h a n g e  i n  r e si d u al  fi b er  c o nt e nt  c o m p ar e d  t o  t h e  pri sti n e  C F- A B S 

m at eri al s.  B)  Fi b er  l e n gt h  a n al y si s  of  all  s a m pl e s  i s  vi s u ali z e d  u si n g  a  l o g 

n or m al di stri b uti o n. A si g ni fi c a nt r e d u cti o n i n fi b er l e n gt h w a s o b s er v e d, wit h 

t h e m o st si g ni fi c a nt r e d u cti o n o c c urri n g aft er t h e s urf a c e m a c hi ni n g pr o c e s s. 
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e n vir o n m e nt t o q u a ntif y t h e r e si d u al fi b er c o nt e nt at 6 0 0 ◦ C ( Fi g. 4 A). 

Aft er  c o m p ari n g  t h e  r e m ai ni n g  fi b er  c o nt e nt  of  t h e  pri sti n e  pri nt 

( 1 8. 5 3 % ± 0. 5) t o t h e r e c y cl e d pri nt ( 1 7. 0 9 % ± 0. 3), n o si g ni fi c a nt ( p >

0. 0 5) diff er e n c e i n fi b er w ei g ht p er c e nt a g e w a s o b s er v e d aft er r e c y cli n g 

(T a bl e S 3 ). 

Aft er  c o n flr mi n g  t h e  fi b er  c o nt e nt  w a s  mi ni m all y  i m p a ct e d,  t h e 

a v er a g e  fi b er  l e n gt h  w a s  t h e n  e x pl or e d  at  e a c h  st e p  of  t h e  r e c y cli n g 

pr o c e s s a n d t h e i n di vi d u al m e a s ur e m e nt s w er e vi s u ali z e d u si n g a l o g- 

n or m al  di stri b uti o n  ( Fi g.  4 B).  Pr e s er vi n g  fi b er  l e n gt h  i n  s h ort  fi b er 

c o m p o sit e s  i s  i m p ort a nt  i n  t h e  pr e s er v ati o n  of  m e c h a ni c al  pr o p erti e s 

aft er t h e r e c y cli n g a n d r e m a n uf a ct uri n g pr o c e s s. C o m p o sit e s wit h fi b er 

l e n gt h s gr e at er t h a n t h e criti c al fi b er l e n gt h ( C F L), t h e mi ni m u m fi b er 

l e n gt h n e c e s s ar y f or m a xi m u m r ei nf or c e m e nt, e x hi bit s u p eri or p erf or-

m a n c e c o m p ar e d t o s y st e m s wit h fi b er l e n gt h s l e s s t h a n t h e C F L [ 4 5 ,4 6 ]. 

T h e d o c u m e nt e d C F L f or s h ort di s c o nti n u o u s C F- A B S i s ~ 3 m m [ 4 7 ]. 

T h e a v er a g e fi b er l e n gt h of t h e c oll e ct e d mill fi a k e s w a s c o m p ar e d t o t h e 

a v er a g e  fi b er  l e n gt h  of  t h e  pri sti n e  pri nt  t o  d et er mi n e  t h e  eff e ct  t h e 

m a c hi ni n g  pr o c e s s  h a s  o n  fi b er  attriti o n;  it  w a s  o b s er v e d  t h at  t h e 

a v er a g e fi b er l e n gt h of t h e mill fi a k e s ( 4 5 μ m) w a s 8 0 % s h ort er t h a n t h at 

of t h e pri sti n e pri nt ( 2 2 6 μ m) aft er t h e m a c hi ni n g pr o c e s s. T hi s a v er a g e 

i s r el ati v el y st a bl e d uri n g t h e T S E c o n v er si o n a n d pri nti n g st e p s, i n di-

c ati n g t h at t h e m a c hi ni n g pr o c e s s i s t h e st e p i n w hi c h t h e m o st fi b er 

d e gr a d ati o n  o c c ur s.  F urt h er,  9 1 %  of  t h e  m e a s ur e d  fi b er s  wit hi n  t h e 

r e c y cl e d  C F- A B S  pri nt e d  m at eri al  w er e  l e s s  t h a n  or  e q u al  t o  1 0 0 μ m 

c o m p ar e d t o 4 4 % i n t h e pri sti n e C F- A B S pri nt, w hi c h i s vi s u ali z e d i n 

Fi g. 4 B. 

It  i s  i m p ort a nt  t o  n ot e  t h at  fi b er  l e n gt h  dir e ctl y  aff e ct s  t h e  l o a d 

tr a n sf er  pr o c e s s,  w hi c h  h a s  b e e n  wi d el y  r e s e ar c h e d  f or  s h ort  fi b er 

c o m p o sit e m at eri al s  a s d o c u m e nt e d i n pr e vi o u s lit er at ur e [ 3 9 ,4 8 ,4 9 ]. 

T h e pri sti n e pri nt a n d r e c y cl e d pri nt h a v e a n a v er a g e fi b er l e n gt h t h at i s 

f ar b el o w t h e d o c u m e nt e d C F L, w h er e t h e pri sti n e pri nt’s a n d r e c y cl e d 

pri nt ’s  a v er a g e  fi b er  l e n gt h  i s  9 3 %  a n d  9 6 %  s h ort er  t h a n  t h e  d o c u -

m e nt e d  C F L,  r e s p e cti v el y.  T h er ef or e,  it  i s  e x p e ct e d  t h at  w hil e  b ot h 

m at eri al s ar e u n a bl e t o a c hi e v e m a xi m u m l o a d tr a n sf er [ 2 1 ,4 5 ,4 9 ,5 0 ], 

t h e pri sti n e m at eri al s h o ul d e x hi bit hi g h er m e c h a ni c al pr o p erti e s t h a n 

t h e r e c y cl e d m at eri al. A s t h e m ol e c ul ar w ei g ht a n d fi b er c o nt e nt ar e n ot 

si g ni fi c a ntl y c h a n gi n g w hil e t h e a v er a g e fi b er l e n gt h i s r e d u c e d si g nif -

i c a ntl y, w e p o st ul at e t h at fl b er attriti o n d uri n g t h e m a c hi ni n g pr o c e s s i s 

t h e  pri m ar y  m e c h a ni s m  f or  a n y  o b s er v e d  r e d u cti o n  i n  t h e  b ul k  m e -

c h a ni c al pr o p erti e s of t h e r e c y cl e d m at eri al. 

3. 1. 1. Eff e ct of r e c y cli n g o n pr o c ess a bilit y a n d pri nt q u alit y 

B e y o n d  t h e  a nti ci p at e d  i m p a ct s  t o  m e c h a ni c al  p erf or m a n c e,  it  i s 

e x p e ct e d t h at t h e si g ni fl c a ntl y r e d u c e d fl b er l e n gt h will al s o i m p a ct t h e 

c o m p o sit e pr o c e s si n g, n ot a bl y t h e c o m pl e x vi s c o sit y i n r el ati o n s hi p t o 

a n g ul ar fr e q u e n c y [ 5 1 – 5 5 ], a s r e p ort e d i n Fi g. 5 . C o m pl e x vi s c o sit y of 

L F A M f e e d st o c k s i s i m p ort a nt a s t h e vi s c o sit y dir e ctl y i m p a ct s t h e s h e ar 

e x p eri e n c e d b y t h e m at eri al i n t h e n o z zl e d uri n g d e p o siti o n a n d t h er e -

f or e fl b er ali g n m e nt i n t h e pri nt e d str u ct ur e. T h e r e c y cl e d C F- A B S p el-

l et s  e x hi bit  a n  o v er all  d e cr e a s e d  c o m pl e x  vi s c o sit y;  at  ~ 1 0 0  s− 1 ,  t h e 

a p p r o xi m at e  s h e ar  r at e  at  t h e  n o z zl e  e xit  [ 1 4 ],  t h e  r e c y cl e d  C F- A B S 

s h o w s  a  9 7 %  d e cr e a s e  i n  c o m pl e x  vi s c o sit y  w h e n  c o m p ar e d  t o  t h e 

pri sti n e C F- A B S p ell et s a n d a 4 1 % i n cr e a s e i n c o m pl e x vi s c o sit y w h e n 

c o m p ar e d  t o  n e at  A B S.  D u e  t o  t h er e  b ei n g  n o  si g ni fi c a nt  c h a n g e  i n 

m ol e c ul ar w ei g ht or fi b er c o nt e nt, w e pr o p o s e t h at t h e d e gr a d ati o n of 

c o m pl e x vi s c o sit y i s dir e ctl y r el at e d t o t h e d e gr a d ati o n of fi b er l e n gt h 

(Fi g ur e S 2 ). At l o w s h e ar r at e s, t h e eff e ct of fi b er attriti o n i s m or e pr o -

n o u n c e d  t h a n  at  hi g h  s h e ar  r at e s,  t hi s  p h e n o m e n a  i s  c o n si st e nt  wit h 

pr e vi o u s lit er at ur e [ 5 2 ,5 6 ]. 

Fi b er l e n gt h i m p a ct s t h e c o m p o sit e r h e ol o g y a n d s u b s e q u e nt pri nt -

i n g c o n diti o n s a s vi si bl y n oti c e d o n t h e s urf a c e fi ni s h e s of t h e pri sti n e 

a n d r e c y cl e d pri nt s, w h er e t h e r e c y cl e d pri nt w a s si g ni fi c a ntl y s m o ot h er 

( cf. Fi g. 2 ). T o q u a ntif y t h e c h a n g e i n a v er a g e s urf a c e r o u g h n e s s, pr o -

fil o m etr y s c a n s w er e c o m pl et e d f or e a c h pri nt s urf a c e w h er e 3 D h ei g ht 

m a p s of t h e s urf a c e t o p ol o g y ar e vi s u ali z e d f or e a c h pri nt i n Fi g. 6 . 

Utili zi n g ar e a s c a n s, t h e s urf a c e r o u g h n e s s of t h e pri nt e d str u ct ur e s 

w a s c h ar a ct eri z e d, w h er e t h e r e c y cl e d pri nt w a s f o u n d t o e x hi bit a 1 9 % 

d e cr e a s e i n s urf a c e r o u g h n e s s c o m p ar e d t o t h e pri sti n e pri nt. It i s n ot 

u n c o m m o n f or a d diti v el y m a n uf a ct ur e d str u ct ur e s t o e x hi bit p o or s ur -

f a c e fi ni s h, n a m el y s urf a c e r o u g h n e s s, a n d i s a r e s ult of t h e pr o c e s si n g 

c o n diti o n s  of  t h e  m at eri al.  Pr e vi o u s  lit er at ur e  h a s  i d e nti fi e d  t h at  t h e 

i n cr e a s e d fl ui dit y of t h e d e p o sit e d m at eri al r e s ult s i n s m o ot h er s urf a c e 

fi ni s h  [ 5 7 ]  a n d  t h at  m at eri al s  e x p o s e d  t o  l o w er  s h e ar  r at e s  d uri n g 

d e p o siti o n h a v e m or e u nif or m s urf a c e f e at ur e s [ 5 8 ]. I n cr e a s e d fl ui dit y 

d uri n g pri nti n g i s m o st oft e n c o ntr oll e d b y t h e d e p o siti o n t e m p er at ur e; 

i n t hi s st u d y t h e r e c y cl e d m at eri al s e x hi bit a n i n cr e a s e d fl ui dit y d u e t o 

t h e  r e s ulti n g  d e cr e a s e d  vi s c o sit y  ( cf. Fi g.  5 )  a n d  s h e ar  r at e s  d uri n g 

e xtr u si o n d u e t o fi b er attriti o n r at h er t h a n a c h a n g e i n pr o c e s si n g t e m -

p er at ur e.  T h e  si g ni fi c a nt  r e d u cti o n  i n  s urf a c e  r o u g h n e s s  c o ul d  p ot e n -

ti all y h a v e a dir e ct eff e ct o n t h e m e c h a ni c al p erf or m a n c e of t h e pri nt e d 

str u ct ur e s,  s p e ci fi c all y  t h e  z- dir e cti o n t e n sil e  str e n gt h,  a s  a  c h a n g e  i n 

s urf a c e r o u g h n e s s c o ul d i n fl u e n c e t h e i nt erl a y er b o n di n g. 

F urt h er, t h e d e n sit y of t h e pri nt e d s a m pl e s w a s m e a s ur e d t o d et er -

mi n e if t h e r e c y cl e d m at eri al e x hi bit e d d e cr e a s e d d e n sit y, w hi c h w o ul d 

b e i n di c ati v e of i n cr e a s e d c o n c e ntr ati o n s of p or o sit y wit hi n t h e str u c -

t ur e.  Pri nt  d e n sit y  h a s  b e e n  s h o w n  t o  dir e ctl y  aff e ct  m e c h a ni c al  p er -

f or m a n c e, w h er e r e d u c e d pri nt d e n sit y oft e n c a u s e s a r e d u cti o n i n b ul k 

m e c h a ni c al pr o p erti e s li k e t e n sil e str e n gt h. D e n sit y, m e a s ur e d vi a g a s 

p y c n o m etr y  of  pri nt e d  pri sti n e  a n d  r e c y cl e d  s a m pl e s,  c o n fir m s  t h at 

t h er e i s al s o n o si g ni fi c a nt c h a n g e i n pri nt d e n sit y w h e n c o m p ari n g t h e 

r e c y cl e d a n d pri sti n e pri nt e d m at eri al s ( Fi g ur e S 3 ). B a s e d o n t h e s e r e -

s ult s, it i s n ot a nti ci p at e d t h at d e n sit y will i n fl u e n c e t h e fi n al b ul k m e -

c h a ni c al pr o p erti e s. 

3. 1. 2. Eff e ct of r e c y cli n g o n pri nt p erf or m a n c e 

A s pr e vi o u sl y di s c u s s e d, t h e a d diti o n of s h ort C F t o p ol y m er f e e d -

st o c k s u s e d i n L F A M a p pli c ati o n s r e d u c e s w ar p a g e t h at o c c ur s d uri n g 

pri nti n g.  D uri n g  pri nti n g,  d e p o siti o n  of  m at eri al  c a n  r e s ult  i n  p art 

w ar p a g e  d u e  t o  t h e  t h er m al  c o n diti o n s  d uri n g  pri nti n g  a n d  t h e  t h er -

m o m e c h a ni c al pr o p erti e s of t h e m at eri al it s elf. Miti g ati n g a n d r e d u ci n g 

p art w ar p a g e i n L F A M m at eri al s i s criti c al t o e n s uri n g t h at t h e pri nt h e a d 

d o e s n ot c olli d e wit h t h e p art d uri n g t h e d e p o siti o n pr o c e s s a n d t h at t h e 

fi n al str u ct ur e i s g e o m etri c all y a c c ur a c y [ 1 4 ]. T h er ef or e, t h e C T E of t h e 

r e c y cl e d C F- A B S pri nt e d str u ct ur e w a s m e a s ur e d a n d c o m p ar e d t o t h e 

pri sti n e C F- A B S pri nt e d m at eri al wit h t h e u s e of a DI C o v e n ( T a bl e 1 ). It 

w a s  o b s er v e d  t h at  t h er e  w a s  a  si g ni fi c a nt  i n cr e a s e  ( 6 0 %)  i n  t h e 

Fi g. 5. Fr e q u e n c y s w e e p s w er e utili z e d t o o b s er v e t h e c o m pl e x vi s c o sit y of t h e 

pri sti n e  a n d  r e c y cl e d  p ell et s  t o  c h ar a ct eri z e  t h e  eff e ct  of  r e c y cli n g  o n  fl o w 

pr o p erti e s.  N e at  A B S  i s  u s e d  a s  a  c o m p ari s o n  t o  ill u str at e  t h e  s u b st a nti al 

r e d u cti o n i n c o m pl e x vi s c o sit y c o m p ar e d t o t h e pri sti n e c o m p o sit e m at eri al. 
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x- dir e cti o n C T E ( C T E X ) w h e n c o m p a ri n g t h e pri sti n e pri nt e d str u ct ur e t o 

t h e r e c y cl e d pri nt e d str u ct ur e a n d a si g ni fi c a nt r e d u cti o n ( 7 %) i n t h e 

z- dir e cti o n C T E ( C T E Z ), a s vi s u ali z e d b y t h e str ai n c o nt o ur pl ot s i n Fi g. 7 . 

T h e str ai n c o nt o ur pl ot s cr e at e d u si n g Vi c- 2 D vi s u all y r e pr e s e nt t h e 

t h er m al-i n d u c e d  str ai n s  e x p eri e n c e d  b y  t h e  L F A M  str u ct ur e  at  st e a d y 

st at e h e ati n g c o n diti o n s. Fi g. 7 A a n d B vi s u all y r e pr e s e nt t h e t h er m al 

i n d u c e d str ai n e x p eri e n c e d i n t h e x- dir e cti o n of t h e pri sti n e a n d r e c y cl e d 

pri nt e d s a m pl e s, r e s p e cti v el y. T h e x- dir e cti o n str ai n c o nt o ur pl ot s s h o w 

l o w, h o m o g e n o u s str ai n v al u e s f or b ot h t h e pri sti n e a n d r e c y cl e d m a-

t eri al; w hil e t h e str ai n m a p s ar e h o m o g e n o u s i n b ot h c a s e s, it i s w ort h 

n oti n g t h at t h e str ai n v al u e s ar e n e arl y d o u bl e f or t h e r e c y cl e d m at eri al 

i n c o m p ari s o n t o t h e pri sti n e m at eri al. H o m o g e n eit y of str ai n i n t h e x- 

dir e cti o n w a s e x p e ct e d a s t h e r ei nf or c e m e nt m at eri al i s p o st ul at e d t o b e 

ali g n e d  i n  t hi s  dir e cti o n  d uri n g  pri nti n g  a n d  t h e  fi b er  b e st  r e si st s 

e x p a n si o n  i n  t hi s  dir e cti o n.  H o w e v er,  t h e s e  r e s ult s  i n di c at e  t h at  t h e 

fi b er s i n t h e r e c y cl e d s a m pl e ar e u n a bl e t o r e si st e x p a n si o n a s w ell a s t h e 

pri sti n e m at eri al. D ut y et al. [ 1 4 ] s h o w e d t h at di m e n si o n al st a bilit y of 

L F A M p art s, s u c h a s t h e pr o p e n sit y of d etri m e nt al p art w ar p a g e, w a s 

dir e ctl y r el at e d t o t h e C T E of t h e m at eri al i n t h e pri nt dir e cti o n. It w a s 

f o u n d t h at n e at A B S, w hi c h h a s a r e p ort e d C T E of ~ 1 0 0 μ / m / ◦ C, w a s 

m u c h  l e s s  di m e n si o n all y  st a bl e  at  l ar g e str u ct ur al  r ati o s  t h a n C F- A B S 

wit h  a  C T E  of  ~ 1 9 μ / m / ◦ C  [ 1 4 ,5 9 ].  A n  i n cr e a s e  i n  C T E X w o ul d  i n -

c r e a s e  t h er m al  e x p a n si o n / c o ntr a cti o n  d uri n g  pri nti n g  c a u si n g  p ot e n -

ti all y d etri m e nt al w ar p a g e at i n cr e a s e d str u ct ur e si z e s, i n- sit u c olli si o n s 

b et w e e n t h e pri nt h e a d a n d t h e pri nt e d str u ct ur e, a n d u n u s a bl e pri nt e d 

p art s  [ 1 4 ].  D u e  t o  t h e  i n cr e a s e  i n  C T E X o b s e r v e d  i n  t hi s  st u d y,  t h e 

pri nt a bilit y of t hi s m at eri al m a y b e li mit e d, s p e ci fi c all y t h e m a xi m u m 

pri nt si z e. 

I n pr e vi o u s lit er at ur e, C T E h a s b e e n s h o w n t o b e i n fl u e n c e d b y t h e 

ori e nt ati o n of fi b er s wit hi n a pri nt e d str u ct ur e [ 2 2 ], w h er e C T E v al u e s 

ar e t h e l o w e st at hi g hl y ori e nt e d r e gi o n s ( e. g. t h e b e a d e d g e) a n d hi g h e st 

i n  r e gi o n s  wit h  m or e  r a n d o m  fi b er  ori e nt ati o n  (e. g. t h e  c e nt er  of  t h e 

b e a d).  Utili zi n g  t h e  DI C  O v e n  a n d  str ai n  c o nt o ur  pl ot s,  t h e  p ot e nti al 

c h a n g e i n fi b er ori e nt ati o n c a n b e i n dir e ctl y o b s er v e d. I n Fi g. 7 C a n d D, 

t h e z- dir e cti o n c o nt o ur pl ot s hi g hli g ht t h e i n fi u e n c e of fi b er ori e nt ati o n 

o n t h e t h er m o m e c h a ni c al p erf or m a n c e of t h e pri nt. T h e r e d b a n d s t h at 

r e pr e s e nt hi g h str ai n r e gi o n s ar e pr e s e nt at t h e i nt erf a c e of l a y er s w h er e 

hi g hl y ali g n e d e d g e s of b e a d s m e et. A s s h ort c ar b o n fi b er s p o orl y r e si st 

t h er m al  l o a di n g  i n  t hi s  dir e cti o n,  p er p e n di c ul ar  t o  ali g n m e nt,  t hi s 

Fi g. 6. H ei g ht m a p vi s u ali z ati o n of t h e pri nt e d s urf a c e t o p o gr a p hi e s. A) S urf a c e t o p o gr a p h y of pri sti n e C F- A B S ( S urf a c e R o u g h n e s s = 2 3 9. 4 ± 1 2. 6 μ m) a n d B) 

s urf a c e t o p o gr a p h y of r e c y cl e d C F- A B S ( S urf a c e R o u g h n e s s = 1 9 3. 5 ± 4. 9 μ m). T h er e w a s a si g ni fi c a nt d e cr e a s e ( p < 0. 0 5) i n s urf a c e r o u g h n e s s of t h e r e c y cl e d pri nt 

c o m p ar e d t o t h e pri sti n e s a m pl e. 

T a bl e 1 

A v er a g e C T E v al u e s f or e a c h pri nt e d str u ct ur e w h er e si g ni fi c a nt c h a n g e ( p <

0. 0 5,  d e n ot e d  vi a  *)  i s  s e e n  i n  b ot h  dir e cti o n s  of  t h e  r e c y cl e d  pri nt  w h e n 

c o m p ar e d t o t h e pri sti n e pri nt.  

M at eri al X- Dir [ μ m / m ◦ C ] Z- Di r [ μ m / m ◦ C ] 

P ri sti n e P ri nt 2 7. 5 1 ± 1. 0 4 1 2 6. 7 5 ± 4. 2 5 

Mill Fl a k e P ri nt 4 3. 9 9 ± 1. 0 2 * 1 1 7. 6 0 ± 3. 2 6 *  

Fi g. 7. St r ai n c o nt o ur pl ot s c a pt ur e d t hr o u g h DI C m e a s ur e m e nt s. A a n d B) Vi s u ali z ati o n of str ai n i n X- dir e cti o n str ai n f or pri sti n e a n d r e c y cl e d C F- A B S. C a n d D) Z- 

dir e cti o n vi s u ali z ati o n f or pri sti n e a n d r e c y cl e d C F- A B S. T h er e w a s a si g ni fi c a nt i n cr e a s e i n C T E x a n d a si g ni fi c a nt d e cr e a s e i n C T E z w h e n c o m p a r e d t o t h e pri s -

ti n e pri nt. 
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c a u s e s hi g h r e gi o n s of str ai n (r e d) at l a y er i nt erf a c e s i n t h e z- dir e cti o n 

pl ot s. T h e r e gi o n s of r el ati v el y l o w str ai n b a n d s ( gr e e n) ar e r e pr e s e n -

t ati v e of t h e m or e r a n d o ml y ori e nt e d fi b er at t h e c e nt er of t h e b e a d. T h e 

r e d  b a n di n g  p h e n o m e n a  i s  n oti c e a bl y  a b s e nt  i n  t h e  z- dir e cti o n  str ai n 

c o nt o ur pl ot of t h e r e c y cl e d m at eri al, w h er e t h e e d g e r e gi o n i s i n st e a d 

c h ar a ct eri z e d b y a l o w er str ai n r e pr e s e nt e d b y y ell o w- gr e e n b a n di n g at 

l a y er i nt erf a c e s. T h e c o nt o ur pl ot s s u g g e st a r e d u cti o n of fi b er ali g n m e nt 

i n t h e dir e cti o n of t h e pri nt ( x- dir e cti o n) i n r e c y cl e d s a m pl e s; f urt h er 

v eri fi c ati o n  of  t hi s  p h e n o m e n a  c o ul d  p ot e nti all y  b e  o b s er v e d  b y  a 

r e d u cti o n i n t h e x- dir e cti o n m e c h a ni c al p erf or m a n c e. 

I n  or d er  t o  o b s er v e  t h e  i m p a ct  of  utili zi n g  r e c y cl e d  C F- A B S  m a d e 

fr o m  m a c hi ni n g  w a st e  (i. e., mill  fi a k e s)  o n  t h e  r e s ulti n g  m e c h a ni c al 

pr o p erti e s,  t h e  t e n sil e  str e n gt h  a n d  m o d ul u s  w er e  m e a s ur e d  a n d 

c o m p ar e d  t o  t h e  pri sti n e  C F- A B S  s a m pl e s  ( Fi g.  8 ).  I n  t h e  pri nti n g  di-

r e cti o n ( x- dir e cti o n),  t h e a v er a g e t e n sil e str e n gt h a n d  m o d ul u s of t h e 

r e c y cl e d  pri nt s  d e cr e a s e d  1 1 %  a n d  3 1 %  r e s p e cti v el y  ( p < 0. 0 5), 

c o m p ar e d t o t h e pri sti n e pri nt s. A r e d u cti o n i n x- dir e cti o n m e c h a ni c al 

pr o p erti e s i s c o n si st e nt wit h pr e vi o u s lit er at ur e o n C F- A B S r e c y cli n g f or 

L F A M [ 1 7 ] a n d c a n b e attri b ut e d t o c h a n g e s i n t h e mi cr o str u ct ur e of t h e 

pri nt e d p art, c orr o b or at e d b y t h e r e d u cti o n i n fl b er l e n gt h o b s er v e d i n 

t hi s w or k. H o w e v er, p er p e n di c ul ar t o t h e pri nt dir e cti o n ( z- dir e cti o n), 

t h e r e c y cl e d pri nt di s pl a y e d a 2 1 % i n cr e a s e i n t e n sil e str e n gt h ( p < 0. 0 5) 

wit h n o si g ni fi c a nt c h a n g e i n m o d ul u s w h e n c o m p ar e d t o t h e pri sti n e 

m at eri al. T hi s i s s ur pri si n g a s i n A M str u ct ur e s, t h e z- dir e cti o n str e n gt h 

i s oft e n m u c h l o w er t h a n t h e x- dir e cti o n str e n gt h d u e t o: 1) t h e i nt er-

l a y er  a d h e si o n f or c e s b ei n g w e a k er  t h a n t h e c o h e si v e f or c e s  wit hi n a 

b e a d, a n d 2) t h e r e d u cti o n of fi b er ali g n m e nt, w h er e fi b er s ar e t y pi c all y 

m or e  ali g n e d  i n  t h e  pri nt  dir e cti o n  d u e  t o  s h e ar  e x p eri e n c e d  i n  t h e 

n o z zl e  d uri n g  t h e  pri nti n g  pr o c e s s  [ 1 7 ,6 0 ],  r e s ulti n g  i n  m e c h a ni c all y 

a ni s otr o pi c str u ct ur e s. I n cr e a si n g z- str e n gt h h a s s el d o m b e e n o b s er v e d 

a n d  r e pr e s e nt s  a  k n o w n  w e a k n e s s  i n  m a n y  a d diti v e  m a n uf a ct uri n g 

pr o c e s s e s, y et i n t h e pr e s e nt st u d y, t h e utili z ati o n of m a c hi ni n g w a st e a s 

L F A M  f e e d st o c k  si g ni fi c a ntl y  e n h a n c e d  t h e  z- str e n gt h  of  t h e  pri nt e d 

str u ct ur e. T o t h e b e st of t h e a ut h or s ’ k n o wl e d g e, t hi s i s t h e fir st ti m e t h at 

a n i n cr e a s e i n z- str e n gt h h a s b e e n o b s er v e d i n a r e c y cl e d m at eri al f or 

L F A M a p pli c ati o n s. 

T o  e x pl or e  t h e  u n e x p e ct e d  i n cr e a s e  i n  z- dir e cti o n  str e n gt h  wit h 

r e c y cli n g, it i s criti c al t o u n d er st a n d h o w m at eri al c h a n g e s i m p a ct e d it s 

pr o c e s si n g a n d aff e ct e d t h e b o n di n g q u alit y b et w e e n l a y er s. F or a m or -

p h o u s p ol y m er s, li k e A B S, t h e pri m ar y m e c h a ni s m of b o n di n g i s vi s c o u s 

si nt eri n g w h er e b o n d c o al e s c e n c e o c c ur s i n st a nt a n e o u sl y aft er s urf a c e 

c o nt a ct [ 6 1 ,6 2 ]. O n c e i n c o nt a ct, t h e b o n d str e n gt h will i n cr e a s e u ntil 

t h e  t e m p er at ur e  of  t h e  m at eri al  f all s  b el o w  t h e  gl a s s  tr a n siti o n  t e m -

p er at ur e,  a s  m ol e c ul ar  m o bilit y  a cr o s s  b e a d s  b e c o m e s  i n hi bit e d  [ 6 3 ]. 

I n cr e a s e d r at e s of c o al e s c e n c e h a v e b e e n dir e ctl y r el at e d t o l o w er m a-

t eri al vi s c o siti e s a n d i n cr e a s e d i nt erl a y er str e n gt h [6 0 ]. It i s p o st ul at e d 

t h at  t h e  r e d u cti o n  i n  fi b er  l e n gt h,  pr e vi o u sl y  n ot e d,  i s  t h e  pri m ar y 

r el e v a nt m at eri al c h a n g e t hr o u g h o ut pr o c e s si n g, w h er e t h e r e d u cti o n i n 

fi b er l e n gt h i s t h e r e a s o n f or t h e r e d u cti o n i n vi s c o sit y of t h e r e c y cl e d 

m at eri al s. 

It  i s  i m p ort a nt  t o  n ot e  t h o u g h,  t h at  t h e  ar e a  of  c o nt a ct  m u st  b e 

c o n si d er e d w h e n a s s e s si n g b o n d q u alit y a s b o n d c o al e s c e n c e c a n o nl y 

o c c ur w h e n t h e d e p o sit e d m at eri al i s i n c o nt a ct wit h a s u b str at e m at eri al 

[ 6 0 ,6 4 ]. D u e t o mi cr o str u ct ur al d ef e ct s t h at o c c ur d uri n g d e p o siti o n, a 

wi d el y k n o w n li mit ati o n of A M, c o nt a ct ar e a m a y b e li mit e d. Di s c u s s e d 

i n a pr e vi o u s s e cti o n, t h e vi s c o u s pr o p erti e s of a m at eri al d uri n g d e p o-

siti o n dir e ctl y i m p a ct t h e s urf a c e fi ni s h of a pri nt e d str u ct ur e, w h er e t h e 

r e c y cl e d  m at eri al  e x hi bit e d  b ot h  a  d e cr e a s e d  vi s c o sit y  a n d  a  si g ni fi -

c a ntl y  l o w er  s urf a c e  r o u g h n e s s.  It  i s  r e a s o n a bl e  t o  a s s u m e  t h at  t h e 

d e cr e a s e d  vi s c o sit y  a n d  s urf a c e  r o u g h n e s s  o b s er v e d  i n  t h e  r e c y cl e d 

Fi g. 8. T h e U T S ( A) a n d t e n sil e m o d ul u s ( B) of t h e X- a n d Z- dir e cti o n s of pri nt e d pri sti n e C F- A B S a n d r e c y cl e d C F- A B S. S c h e m ati c s ar e pr o vi d e d (ri g ht) t o ill u str at e 

t h e dir e cti o n alit y of t h e m e c h a ni c al pr o p erti e s. 

Fi g. 9. Pr o p o s e d m e c h a ni s m f or i n cr e a s e d z- dir e cti o n str e n gt h of t h e r e c y cl e d m at eri al a s a f u n cti o n of pri nt s urf a c e r o u g h n e s s.  
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material allowed for an increased contact area between print layers. This 
increased surface area of contact between print layers would allow for 
better molecular diffusion and increased molecular entanglements be
tween the substrate layer and the depositing layer [31], leading to an 
increased z-direction strength as observed in Fig. 8A. This proposed 
mechanism is illustrated in Fig. 9. It should be noted that while the print 
density of the recycled material was not significantly different from the 
pristine material, the location and size of voids at the interface may also 
contribute to the available contact area for bonding and will be 
considered in future work. Further work is still needed to investigate and 
validate the role that surface roughness plays in the contact area be
tween layers and ultimately the mechanism by which interlayer adhe
sion occurs in the recycled printed structure. 

4. Conclusions 

In summary, this study demonstrated the successful recycling and 
utilization of CF-ABS machining scraps as an LFAM feedstock. The pri
mary degradation mechanism was determined to be the significant fiber 
length attrition that occurred during the surface machining process, 
where there was an 80% reduction in average fiber length. The recycling 
and printing process showed no significant effect on the molecular 
weight or the fiber content of the recycled material. Both the pristine 
and recycled materials were printed under the same conditions, but the 
recycled material displayed a significant 97% reduction in viscosity 
from the pristine material, which can be attributed to the reduction in 
fiber length. Reductions in viscosity during processing reduce the shear 
rates experienced during extrusion, potentially resulting in decreased 
fiber orientation in the x-direction (printing direction) of the part. 
Though fiber orientation was not directly measured in this study, 
orientation effects in printed structures can be observed through visu
alization of strain using x- and z-direction contour plots when measuring 
CTE. This study identified a significant increase in CTEX (60%) and a 
significant decrease in CTEZ (7%), where the strain contour plots in the 
x-direction show homogeneous strain in the recycled print twice that of 
its pristine counterpart. The orientation effects are most noticeable in 
the z-direction contour plots, where decreased visualized strain, typi
cally associated with increased random orientation of fibers, was 
observed in the recycled print. A future area of study will be focused on 
characterizing the changes in microstructural composition due to utili
zation of recycled feedstock materials, specifically the direct effect on 
fiber orientation. 

As a result of the changing microstructure, the recycled print in the x- 
direction exhibited reductions of both tensile strength and modulus, 
11% and 31% respectively, when compared to the pristine print. A 
particularly significant finding, however, was the unexpected 21% in
crease in z-direction tensile strength when compared to the pristine 
print. As discussed, the reduced fiber length in the recycled material 
resulted in a decreased complex viscosity, influencing the interlayer 
bonding mechanism in the recycled print. It was found that the recycled 
print had a significantly lower surface roughness compared to the pris
tine print, potentially increasing the amount of contact area for bonding 
during deposition. These findings indicate that both the viscosity during 
deposition and the amount of available contact area for bonding play a 
role in the observed z-direction tensile strength increase. Future work 
will focus on investigating the influence of surface roughness and the 
role it plays in interlayer adhesion. Herein, this study shows the suc
cessful recovery, recycling, and utilization of CF-ABS machining waste 
as an LFAM feedstock and highlights a previously unutilized material 
sources’ industrial viability. This study also highlights broader impli
cations for the use of processing waste as a material source for more 
sustainable material development and maintaining a robust supply 
chain for the composite manufacturing industry. 
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