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Abstract

The goal of the search for extraterrestrial intelligence (SETI) is the detection of nonhuman technosignatures, such
as technology-produced emission in radio observations. While many have speculated about the character of such
technosignatures, radio SETI fundamentally involves searching for signals that not only have never been detected,
but also have a vast range of potential morphologies. Given that we have not yet detected a radio SETI signal, we
must make assumptions about their form to develop search algorithms. The lack of positive detections also makes
it difficult to test these algorithms’ inherent efficacy. To address these challenges, we present setigen, a Python-
based, open-source library for heuristic-based signal synthesis and injection for both spectrograms (dynamic
spectra) and raw voltage data. setigen facilitates the production of synthetic radio observations, interfaces with
standard data products used extensively by the Breakthrough Listen project, and focuses on providing a physically
motivated synthesis framework compatible with real observational data and associated search methods. We discuss
the core routines of setigen and present existing and future use cases in the development and evaluation of SETI
search algorithms.

Unified Astronomy Thesaurus concepts: Technosignatures (2128); Search for extraterrestrial intelligence (2127);

Astrobiology (74); Astronomy data modeling (1859)

1. Introduction

Since the inception of radio search for extraterrestrial
intelligence (SETI) in the 1960s, technosignature searches
have greatly expanded to cover more sky area, wider frequency
ranges, and a larger variety of signal morphologies
(Drake 1961; Werthimer et al. 1985; Tarter 2001; Siemion
et al. 2013; Wright et al. 2014; MacMahon et al. 2018; Price
et al. 2018; Gajjar et al. 2021). Arguably the most developed
branch of radio SETI is the search for narrowband techno-
signatures, with signal bandwidths under 1kHz, for which
search algorithms are constantly being produced and improved
(Siemion et al. 2013; Enriquez et al. 2017; Pinchuk et al. 2019;
Margot et al. 2021). These algorithms operate on either voltage
time series data or time-frequency spectrogram data (i.e.,
dynamic spectra, waterfall plots).

The incoherent tree deDoppler method is the primary search
strategy for Doppler-accelerated narrowband signals in radio
spectrograms (Taylor 1974; Siemion et al. 2013; Enriquez et al.
2017; Margot et al. 2021). An ideal sinusoidal emitter will
appear to exhibit a frequency drift over time due to relative
acceleration between the emitter and receiving telescope
(Sheikh et al. 2019). Under a constant relative acceleration,
such a signal will have a linear drift or slope in a spectrogram
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of Stokes I intensities. The tree deDoppler algorithm efficiently
integrates spectra over potential drift rates and identifies signals
above a threshold signal-to-noise ratio (S/N). Breakthrough
Listen (BL), the most comprehensive SETI search program to
date (Worden et al. 2017), developed turboSETI,’ an open-
source implementation of the deDoppler algorithm that serves
as the backbone of many technosignature searches (Enriquez
et al. 2017; Enriquez & Price 2019; Price et al. 2020; Sheikh
et al. 2020; Gajjar et al. 2021).

This method works well for signals with high duty cycles
and linear drift rates, but it can struggle to properly detect more
complex signals (Pinchuk et al. 2019). This is particularly
problematic given the increasingly complex radio frequency
interference (RFI) environment within which these searches are
conducted. Moreover, the lack of robust, labeled, narrowband
signal data sets can make it difficult to quantify a given
implementation’s detection accuracy, especially in light of RFI
and variable bandpass responses.

For more complex signal morphologies, machine-learning
(ML) algorithms have been proposed that use computer vision
techniques to classify image-like spectrograms. However, the
same lack of labeled, narrowband signal data makes creating
supervised ML models difficult. Zhang et al. (2018a) used a
self-supervised approach in which spectrogram data were
divided in time into two halves, for which the ML task was to
predict the second half given the first. For an ML-based
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direction-of-origin filter, Pinchuk & Margot (2022) used a
separate non-ML method to detect signals and create an
algorithmically labeled spectrogram data set. In most cases,
however, supervised approaches have relied on generating
synthetic signals of various classes in order to guarantee correct
labels (Harp et al. 2019; Brzycki et al. 2020; Margot et al.
2021).

To address these issues, we present setigen, an open-
source Python library'” that facilitates the creation of synthetic
narrowband signals and supports injection into observational
data (Brzycki 2022). setigen is meant to provide a general-
use heuristic framework for creating mock radio SETI data. A
primary design aspect is ensuring that the synthesis process is
grounded as much as possible in physical quantities to better
interface with real observations and search algorithms.
setigen makes heavy use of NumPy'' for efficient matrix
operations (Oliphant 2006; Harris et al. 2020) and blimpy'?
for interfacing with data products routinely used by the BL
project (Price et al. 2019).

There are two main modules in setigen, “spectrogram”
and “voltage,” dedicated to the most common data formats
used in radio SETI. The spectrogram module works with
Stokes I (intensity) data stored as time-frequency arrays and is
designed to be flexible and heuristic-based. It can be used to
generate many small snippets of data containing synthetic
signals for quick algorithm test cases or for full labeled data
sets. The voltage module creates synthetic antenna voltages,
follows these voltages through a software-based signal
processing chain that models a standard single-dish signal
pipeline, including quantization and a PFB, and saves the final
complex voltages. This requires a lot more computational
power, so voltage setigen routines can be optionally GPU-
accelerated via CuPy'® (Okuta et al. 2017). As the voltage
module models the signal processing chain, it can be used to
produce more “realistic” signals, test complex voltage proces-
sing software, and evaluate how each signal processing element
affects the final signal sensitivity.

Radio SETI searches typically operate on data in spectro-
gram format, as it compresses data and enables visualization
and analysis of broader signal morphology in the time-
frequency space (Enriquez et al. 2017; Margot et al. 2018;
Pinchuk et al. 2019; Price et al. 2020; Sheikh et al. 2020). As
such, setigen was initially written to create large data sets of
radio spectrograms for use in supervised ML search experi-
ments. The library was later expanded to support synthesizing
raw voltage-level data to complement existing use cases.

setigen has already been used in a variety of applications,
such as the development and testing of search algorithms. It has
been used to create synthetic data sets with position labels for
ML localization tasks in single observations (Brzycki et al.
2020). setigen has also been used to inject synthetic signals
within ON-OFF cadences; each comprised of six consecutive
observations and was used as a direction-of-origin filter for
SETI. Ma et al. (submitted) injected signals into ON-OFF
cadences taken with the Robert C. Byrd Green Bank Telescope
(GBT; MacMahon et al. 2018) to train a sophisticated
variational autoencoder model that can classify cadences as
potential SETI candidates. Similarly, setigen was used
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extensively to produce training and test data in BL’s first
Kaggle ML competition,'* in which contestants were tasked
with classifying synthetic technosignature candidates in ON-
OFF cadences.

Outside of ML, synthetic setigen data are used in
injection-recovery testing for turboSETI as well as for a
new search code, hyperseti.'” The voltage module has been
used to test and upgrade parts of the Allen Telescope Array’s
(Welch et al. 2009) software signal processing pipeline.
Furthermore, setigen has been used to test RFI rejection
and detection techniques for the Parkes Multibeam Galactic
Plane Survey SETI search, helping to discriminate terrestrial
signals from different regions in the sky as SETI surveys with
multiple antennas or beams become more popular (K. Perez
et al. 2022, in preparation).

This paper is organized as follows. Section 2 outlines the
standard signal-chain and processing pipeline used in single-
dish radio SETI observations to motivate details behind
setigen’s synthesis methods. Section 3 presents the code
methodology: Section 3.1 describes the spectrogram module
for producing and working with synthetic Stokes I time-
frequency data, while Section 3.2 describes the voltage
synthesis module in detail, connecting components of typical
radio signal chains to software analogs used in setigen. In
Section 4, we discuss current limitations of the library and
future directions for signal synthesis for SETL

2. Overview of Single-dish Signal Chains

To motivate the capabilities of setigen, we first give a
broad overview of the standard single-dish data recording
pipeline, as well as some details pertinent to the BL digital
recorder (BL DR) system at the GBT (MacMahon et al. 2018).

In a single-dish radio telescope, incoming radiation is
reflected off the dish surface toward a feed horn at the focus.
The feed couples incident free-space electromagnetic radiation
to voltages within the telescope’s receiver system.

These voltages are passed to an analog down-conversion
system containing a heterodyne mixer, which shifts the signal
from the target RF range into an intermediate frequency (IF)
range near baseband more suitable for receiver hardware. The
resulting voltages are then digitized by analog—digital con-
verters (ADC) to a specified number of bits Ny g at a given
sampling rate f;. The BL DR system digitizes voltages to 8 bit
at a sampling rate of f; =3 GHz for each linear polarization
(MacMabhon et al. 2018).

Radio telescope pipelines commonly use polyphase filter-
banks (PFBs; Bellanger et al. 1976; Harris & Haines 2011;
Price 2021) to help partition the usable band and improve the
spectral channel response of the system. For example, the BL
DR system uses an eight-tap PFB to divide the 1.5 GHz
Nyquist range into Neguse =512 “coarse” spectral channels,
which in turn are divided among eight compute nodes
(MacMahon et al. 2018). This procedure performs a fast
Fourier transform (FFT) with a length of P =2N_gase = 1024.
For receivers with wide bandwidths, such as the C band at
3.95-8.00 GHz, multiple copies of these elements, starting
from the analog mixer, are employed to cover the full band
(GBT Support Staff 2022).

" hitps: //www.kaggle.com/c/seti-breakthrough-listen
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The digital processing components of the BL DR system are
done on custom signal processing boards using field-program-
mable gate arrays (FPGAs), provided by the Collaboration for
Astronomy Signal Processing and Electronics Research
(CASPER; Hickish et al. 2016). These boards use fixed point
arithmetic and increase the numerical bit size when doing
computations (MacMahon et al. 2018). Accordingly, both the
real and imaginary components of the resulting complex
voltages must be requantized (e.g., to Npys,) before they are
written to disk. The BL DR system records these as 8 bit signed
integers in Green Bank Ultimate Pulsar Processing Instrument
(GUPPIL;, DuPlain et al. 2008) raw format, based on FITS
(Pence et al. 2010) and stored as . raw files (Lebofsky et al.
2019).

As raw voltage data come at the highest resolution possible
given the ADC sampling rate, data volumes are large,
especially during standard BL observing campaigns. Therefore,
we finely channelize or “reduce” raw data into spectrograms
(also known as dynamic spectra or “waterfall plots™), 2D arrays
of intensity (Stokes I) as a function of time and frequency
(Lebofsky et al. 2019). Multiple versions with different
resolutions can be created from the same set of raw data by
varying the FFT length Ng,. and integration factor Ny,,.

During fine channelization, an FFT of length Ng,. is
performed on complex raw voltages within individual coarse
channels, resulting in Nj,. fine channels each. So, we can
express the full Nyquist bandwidth as

_
fN - 5 - ]vcoarseNﬁneAf~ (1)
This gives us an expression for the spectrogram’s frequency
resolution:

2
A= B2 )
NcoarseNﬁne
If the total observation length is 7 and the number of time
channels (pixels) in the final spectrogram is N,, then

_ T
At’

assuming that 7 is a multiple of the spectrogram’s time
resolution At. In practice, extraneous samples are truncated
when necessary to satisfy this requirement.

The integration factor Ny, is the number of spectra integrated
in the time direction. To get an expression for At, we can think
in terms of the total number of samples collected (for a single
linear polarization):

N, 3)

N, = 7. “)

The pipeline takes in N; real samples in time and, via a P-
point FFT, transforms the data into a complex 2D array in
time-frequency space, with nonintegrated dimensions NN, X
PN fine-

N; = N;Nin PNiine = ZNtMnthoarseNﬁne' (5)

Note that, as the FFT is performed on real voltages, the unique
frequency extent is ultimately halved per the Nyquist range.
Combining Equations (2)—(5), we get

A/S = Tf; = 2MMmNcoarseNfinea (6)

T
:Z_Mnt Ncoarse Nfine s (7)
At
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— 2]Vint]Vcoarse]vfine — % (8)

Js Af

Although N, and N, must both be integers, we otherwise
have fine control over Afand At through Equations (2) and (8).

At

3. Code Methodology

As object-oriented software, setigen has a set of
important classes and routines that are described below. For
more technical details and examples of the aé)plication
programming interface, see the full documentation.'

3.1. Spectrogram Module

The spectrogram module provides an interface for synthesiz-
ing Stokes I (waterfall) data in a format common to radio SETI
and is oriented around the Frame class. A Frame object
contains a 2D data array of intensities as a function of time and
frequency, as well as accompanying metadata, such as starting
frequency and time-frequency resolutions.

Data frames can be initialized from either saved observa-
tional data or frame parameters. Frames can extract Stokes I
data and observational metadata from filterbank (.fil) or
HDFS5 files (. h5). The most important metadata for setigen
are the physical parameters of the underlying intensity data:
resolutions and ranges in both time and frequency. Empty
frames can therefore be created simply by specifying these
parameters along with desired data array dimensions.

3.1.1. Noise Synthesis

In most SETI applications, we search for statistically
significant signals embedded in noise. As voltage noise in the
absence of RFI approximately follows a zero-mean normal
distribution (Thompson et al. 2017), the radiometer noise in
spectrogram data follows a chi-squared distribution (McDonough
& Whalen 1995; Nita et al. 2007). When the time and frequency
resolutions are coarse enough, the spectrogram noise approaches
a normal distribution by the central limit theorem.

In particular, suppose we have a sequence of input voltages
{x,} following a Gaussian distribution with zero mean. During
the coarse channelization process, the PFB applies, at its core,
an FFT to bring the voltages into frequency space:

N-1
X = wyxye 2™/N k=0, ,N—1, 9)
n=0

where N is the number of frequency bins, and {w,} are
coefficients of a windowing function applied to improve the
spectral response (Price 2021).

More specifically, the filterbank sums over M rows of P
samples before a P-point FFT, so that the response of the rth
row of P samples is:

P-1| M-1 )
X, =Y [Z wnfxnu]e%’kp/", (10)

p=0Lm=0

where n”’ = mP + pandn”” = (r — M + m)P + p are indices
of the windowing coefficients and voltages samples in terms of
m and p. Here, we assume that the MP windowing coefficients
are symmetric about the midpoint, so that w, =wyp_,_ .

16 https://setigen.readthedocs.io/
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Ignoring quantization for the moment, we store the complex
components of the resulting FFT voltages, Re(X}) and Im(X}),
as raw voltage data. As these are linear combinations of
independent zero-mean Gaussian variables (i.e., x,,), they both
follow zero-mean Gaussian distributions.

In the absence of a windowing function (w, = 1), for each
channel besides the real-valued DC and Nyquist bins, the
variances of the real and imaginary components are equal (o°;
McDonough & Whalen 1995). When a windowing function is
used, the underlying statistics can change such that the
variances of the complex components differ as a function of
the spectral bin (Nita et al. 2007). However, for commonly
chosen symmetrical windows (e.g., Hamming), this effect is
negligible in most spectral bins.

For a single linear polarization, the power is given by

Ly = [Xil* = Re(Xp)? + Im(Xp)%. (11)

Assuming both complex components have the same variance
o, the power follows a chi-squared distribution with two

degrees of freedom:
Ly ~ o>x*(2). 12)

During the fine channelization step, we integrate the N,
spectra in the time direction and combine the power from N,
polarizations. Therefore, in the final Stokes I spectrogram, the
total number of chi-squared degrees of freedom is given by:

DOF = 2Ny Nipt = 2Npot AF AL (13)
I ~ 02X* (2Npol Af AL, (14)

using Equation (8). For dual-polarization Stokes I data,
DOF =4AfAt. This allows us to generate synthetic chi-
squared noise with the correct number of degrees of freedom
just from frame resolutions, which are either directly specified
or inferred from observations. As noncalibrated intensity values
are arbitrarily scaled, we can simply scale the magnitudes of
synthetic chi-squared noise to match empirical observational
noise distributions.

The main function for noise synthesis across a frame is
add_noise, which adds random noise to every pixel in the
data array. By default, it generates chi-squared noise with a
user-specified mean intensity p. As the mean of a chi-squared
distribution equals the number of degrees of freedom, for dual-
polarization data, we have

1% 2
I ~ ANFA 1
k (4f t)x( \fAr), (15)
I
L) = CANfAL = 1
(I) (4ff2t) AT = p, (16)
2 2
I 1
Var(l) = -2 CAAfAL = . 1
ar(f) (4AfAt) A 2AfAt a7

In addition to chi-squared noise, add_noise can also
generate Gaussian noise. By the central limit theorem, as the
degrees of freedom increase, a chi-squared distribution
approaches a normal distribution. For example, N;, =351 for
BL’s standard high-spectral-resolution data product, so
DOF =204 and the resulting background noise is close to
Gaussian. Directly synthesizing Gaussian-distributed noise can
save normalization steps in the data processing but should be
used carefully when comparing with real observational data.

Brzycki et al.

A useful extension of the noise synthesis function is
add_noise_from_obs, which draws from archived obser-
vational statistics to set realistic intensity values. The
observations were taken using the GBT at the C band and
reduced to (1.4s, 1.4 Hz) resolution. For example, for chi-
squared noise, the function randomly selects an archived mean
intensity, scales it to the appropriate frame resolution, and
populates noise per Equation (15). An implementation detail of
BL'’s fine channelization software, rawspec,17 is that as part
of the FFT, intensity values are scaled up by a factor of the FFT
length Ng,e. So, for observations going through the BL data
pipeline (i.e., the same digitization and coarse channelization
hardware):

1 < Nfine Nine, (18)
X NfineAfAta (19)
o At. (20)

Alternatively, the function also accepts user-provided arrays of
background noise intensity statistics from which to sample
instead. This can be used for synthesizing data with intensity
ranges from other telescopes (e.g., Parkes) or even GBT data at
different frequency bands or sensitivities.

After noise synthesis, the frame will update class attributes
storing the estimated mean i, and standard deviation o, of the
background noise. For an empty frame, the first noise synthesis
function will set these properties directly. For preloaded
observational data and further noise injection, the frame
estimates the background noise through iterative sigma
clipping at the 30 level to exclude outliers. For frames small
enough that noise statistics do not change over the frequency
bandwidth, this enables signal injection at desired S/N levels.

3.1.2. Signal Synthesis

For narrowband signal synthesis, the add_signal function
creates heuristic, user-defined signals in spectrogram data. Our
convention is that the spectrogram data have time on the y-axis
and frequency on the x-axis.

In spectrogram setigen, narrowband signals have a
“central” frequency at each time step and a unique spectral
profile centered at that frequency. As such, there are four main
heuristic descriptors for a narrowband signal in setigen:

1. path—I,(?): Central signal frequencies as a function of
time, e.g., linear (constant) drift rate, quadratic drift rate

2. t_profile—I(): Signal intensity as a function of time,
e.g., constant intensity, Gaussian pulses

3. f_profile—I[f, fo): Spectral profile as a function of
frequency (offset from central frequency), e.g., sinc’
profile, Gaussian profile

4. bp_profile—I,,(f): Bandpass profile as a function of
absolute frequency

These descriptors are parameters for add_signal and are
Python functions by type. A set of common functions are
provided with setigen, and others can be custom-written.
The simplest and most ideal kind of narrowband signal has a
constant intensity and drift rate; such signals can be
created straightforwardly through the wrapper function
add_constant_signal.

17 https://github.com/UCBerkeleySETI /rawspec
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For a pixel at (z, f) in the time-frequency spectrogram, the
intensity of a synthetic signal is calculated as

1, f) = L1 (f, I,(0) Iy (f). 21

As such, Equation (21) is computed for every pixel in the
spectrogram, as there is no robust way to constrain arbitrary
intensity profiles. For example, even an ideal Gaussian function
is nonzero at all distances and defining a suitable range depends
on the experiment. For large spectrograms, it can be inefficient
to calculate intensities for pixels far from the main signal, so
users can provide a custom frequency range to limit the signal
calculation.

The signal calculation is fully heuristic, in that the
calculation is completely user-specified and does not take
other effects into account, such as FFT leakage or spectral
responses. As intensity is treated as a function of time and
frequency, this process can overlook how intensities are
integrated in reality. As a partial solution, add_signal
provides the option to separately subintegrate within each pixel
in the time and frequency directions.

In a similar vein, a difficult effect to handle robustly is
Doppler smearing, in which a highly drifting signal will have
its power spread into multiple frequency channels within the
same time channel (Sheikh et al. 2019). While an analytical
form exists for the spectral profile of a linearly drifting cosine
signal, the smearing effect will naturally apply to more
complex signals. Variable spectral profiles are not yet
supported in setigen, but from a user standpoint, it would
be tedious to manually construct custom smearing profiles that
change at each time step. Using a similar process to numerical
integration, add_signal has the option to approximate
Doppler smearing by computing and averaging a given number
of copies of the signal, spaced evenly between signal center
frequencies in adjacent time steps. For instance, for the ith time
channel at ¢t = #;, copies of the signal centered at even spacings
between I,(#;) and I,(t;,,) are averaged together to get the ith
spectral profile. This is done for all time channels, so that
channels with smaller signal drifts will be brighter than those
with larger signal drifts by the correct ratio, as long as the
number of copies gives enough coverage over the channel with
the largest signal drift.

Sometimes it can be difficult or unwieldy to wrap up a
desired signal property into a separate function, or perhaps
there is existing external code that produces such properties. In
these cases, we can instead use NumPy arrays to describe these
signals, rather than functions. As of now, the path,
t_profile, and bp_profile arguments can be arrays.

3.1.3. Common Frame Operations

Besides supporting noise and narrowband signal injection,
setigen comes with a set of tools for radio spectrogram
analysis. These range from convenience functions for para-
meter calculations to frame-level data transformations.

For instance, estimating the S/N of a signal in an integrated
spectrum is a common step in radio analysis. This can be done
through a frame’s integrate function, which can also be
used along the frequency axis to produce an intensity time
series array.

Brzycki et al.

To inject a signal at a desired S/N, the get_intensity
function calculates the requisite signal level as

— %
I[—S/N W,

(22)
assuming that the frame has background noise with standard
deviation o}, and that the S/N is measured by dividing the
integrated signal maximum by the integrated noise deviation.
As discussed in Section 3.1.1, each frame tracks an estimate of
o, calculated using iterative sigma clipping and updates it when
synthetic noise is injected.

It can be convenient to define signals in terms of the pixels
they traverse rather than the frequencies. To convert between
these for a given frame, one can use the get_frequency and
get_index functions. We define the unit drift rate for a given
spectrogram resolution to be the drift rate given by

=L, 23)

At
which can be accessed with the unit_drift_rate attribute.
For a linearly drifting signal passing through the top and
bottom of the frame, the corresponding drift rate can be
calculated using the get_drift_rate function.

Given a frame with a linearly drifting signal, we can “de-
drift” the frame using setigen.dedrift. This shifts each
spectrum an appropriate amount along the frequency direction
so that such a signal would, on average, appear to have zero
frequency drift, making it simpler to calculate the S/N. In
practice, empirical drift rates are not generally multiples of the
unit drift rate, so de-drifted signals will not be perfectly
aligned.

We can create a “slice” of a frame by specifying left and
right frequency indices, analogous to NumPy array slicing, by
using the frame’s get_s1ice function. This results in a new
frame with a truncated range, which can be helpful for
isolating signals in the time-frequency space for further
analysis.

If one is interfacing with other BL or astronomy code bases,
outputting setigen frames to filterbank or HDF5 format can
be very useful. These are done via the save_fil and
save_hdf5 functions. Frame objects can also be written and
loaded with pickle, a convenient serialization method that
can keep data and user-provided metadata together.

3.1.4. Demonstration: Spectrogram Module

We present a minimal working example of creating a data
frame with synthetic noise and a drifting signal. First, we
construct an empty frame with the desired resolution; here, we
use parameters that match those of BL’s high-frequency-
resolution data product:

from astropy import units as u
import setigen as stg

frame=stg.Frame (fchans=256,
tchans=16,
df=2.7939677238464355"u.Hz,
dt=18.253611008u.s,
fch1=6095.214842353016"u.MHz)
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Figure 1. Radio spectrogram plots created from setigen frames. A: Frame with only synthetic chi-squared noise. B: Frame from panel (A) with an injected
synthetic signal at S/N = 30. C: “Real” GBT observation of Voyager I carrier signal at the X band. D: Frame from panel (C) with an injected synthetic signal at

S/N = 1000, with the same drift rate as the injected signal in panel (B).

Then, we add chi-squared noise with a desired mean, such
as 10:

frame.add_noise(x_mean = 10, noise_type = 'chi2’)

Finally, we add a simple drifting signal through our frame at
S/N =30 and plot the result in decibels (dB). The inputs to
add_signal shown below are pre-written library functions
that themselves return the functions described in Section 3.1.2.
As they are indeed Python functions by type, the signal
parameters allow for much more flexibility beyond this basic
example.

frame.add_signal (
stg.constant_path (
f_start=frame.get_frequency(index=100),
drift_rate=2"u.Hz/u.s
)I
stg.constant_t_profile(
level=frame.get_intensity(snr=30)
)I
stg.gaussian_f_profile(width=10"u.Hz),
stg.constant_bp_profile (level=1)
)

frame.bl_plot ()

The frames after adding noise and after adding the signal are
shown in Figures 1(A) and 1(B).

We also show an example with a signal detected from
Voyager 1 in an X-band observation using the GBT, in
Figure 1(C). Injecting a signal into the Voyager frame with the

same drift rate as in the example (Figure 1(B)), now at S/
N = 1000, we get Figure 1(D).

3.2. Raw Voltage Module

The raw voltage module is designed for synthesizing
complex voltage data, providing a set of classes that model
the signal processing pipeline described in Section 2. Instead of
directly synthesizing spectrogram data, we can produce real
voltages, pass them through a virtual pipeline, and record to file
in GUPPI raw format. As this process models actual hardware
used by BL for recording raw voltages, this enables lower level
testing and experimentation.

The basic signal flow is shown in Figure 2. At the lowest
level, a DataStream can accept noise and signal sources (as
Python functions) and generate real voltages on demand. An
Antenna models an antenna or dish used in radio telescopes
and has one or two DataStream objects, corresponding to
linear polarizations that are unique and not necessarily
correlated. As described in Section 2, the sampled real voltages
are passed to a processing pipeline, which consists, at its core,
of a digitizer, a PFB, and a requantizer. In hardware, processing
is done in fixed point arithmetic on an FPGA, but for
simplicity, we use floating point. The digitizer quantizes input
voltages to a specified number of bits and a target FWHM in
the quantized voltage space. The filterbank implements a
software PFB, coarsely channelizing input voltages. The
requantizer takes the resulting complex voltages and quantizes
each component to either 8 or 4 bits, suitable for saving into
GUPPI raw format.

The RawVoltageBackend object wraps around these
elements and connects the full pipeline together. Given an
observation length in seconds or a number of data recording
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Figure 2. Basic layout of a voltage pipeline written using setigen.voltage.

“blocks,” the main function record retrieves real voltage
samples as needed and passes them through each backend
element, finally saving the quantized complex voltages out
to disk.

As voltage data are taken with very high sample rates, e.g.,
Gigasamples s (Gsps), the voltage module is much more
computationally expensive than the spectrogram module. To
increase efficiency, most of the data manipulations are done
with matrix operations, allowing for GPU acceleration with
CuPy (Okuta et al. 2017).

3.2.1. Antennas and Data Streams

The DataStream class represents a stream of real voltage
data for a single polarization and antenna. A data stream has an
associated sample rate f;, such as 3 GHz for the BL DR. As of
now, the voltage module does not implement heterodyne
mixing or bandpass filtering. Instead, data streams use a
reference frequency fchl and frequency sign (ascending or
descending from fchl) for voltage calculations.

The Antenna class is similarly defined by a sample rate,
reference frequency, and frequency sign. For two linear
polarizations, an Antenna’s data streams are available via
the x and vy attributes. For one polarization, only the former is
available. For convenience, the streams attribute gets the list
of available data streams for an antenna. One can add noise and
signal sources to these individual data streams.

Real voltage noise is modeled as ideal Gaussian noise and
added through the add_noise function. Note that this
actually stores a Python function to the data stream that is
only evaluated when get_samples is called. It also updates
the data stream’s noise_std attribute, which keeps track of
the standard deviation of the voltages in that data stream. This
is useful for injecting signals at target spectrogram S/Ns.

Drifting cosine signals can be added to a data stream using
add_constant_signal. For more complex signals, one
can write custom voltage functions to add using add_signal.
Voltage signal sources are Python functions that accept an
array of time stamps and output a corresponding sequence of
real voltages. Here is a simple example that adds a nondrifting
cosine signal with frequency f_start:

def cosine_signal (ts):
delta_f=f_ start---antenna.x.fchl
return np.cos (2 “np.pi “delta_f * ts)

antenna.x.add_signal (cosine_signal)

As custom signals are added, the noise_std parameter
may no longer accurately reflect the background noise. In these
cases, one can run the data stream’s update_noise function
to estimate noise empirically. This is not done by default to

save computation, especially when there are multiple well-
behaved voltage sources (e.g., Gaussian noise, cosine signals).

3.2.2. Quantization

The quantization process takes a continuous input voltage
distribution and scales it to a target distribution that can be
described by M bits. As real voltage noise can be modeled by
a Gaussian process, we can define this scaling in terms of the
standard deviation or FWHM.

For real voltages {v}, target bit size Ny, target mean g,
(ideally 0), and target standard deviation o, the quantized
voltages v, are given by:

vy = l%(" — () + MqJ’ (24)
v, = min (max(—2Mis— 1y 2Nl — 1), (25)

We can define quantizers in terms of a target FWHM w,, in
. W,
which case o, = ﬁ
The digitizer quantizes real voltages, while the requantizer
receives complex voltages and quantizes per complex comp-
onent. Quantization is run per polarization and antenna, and
background statistics can be cached to save computation in
subsequent calls. This is facilitated by the RealQuantizer
and ComplexQuantizer classes.

3.2.3. Polyphase Filterbank

The PolyphaseFilterbank class implements and
applies a PFB to quantized input voltages. Instead of directly
applying a P-point FFT, a PFB first splits incoming voltages
between P branches and lets M samples accumulate in each
branch (Price 2021). A windowing function is applied over the
M x P samples, the samples are summed over the M so-called
polyphase taps, and finally a P-point FFT is taken of the result
to get complex raw voltages in Neouse = P/2 coarse channels.
Further samples are read in groups of P and split between the
PFB branches; accumulated samples step forward to the next
tap to make room. PFBs have a better channel response than
standard FFTs, especially as M increases, and are common in
high-spectral-resolution radio back ends (Price 2021).

The two main parameters for a PolyphaseFilterbank
are the number of taps M and the number of branches P. As the
PFB works on MP samples at once, the object continuously
caches samples for on-demand computation. The PFB also
accepts a symmetric windowing function as an argument
(Hamming, by default) and generates MP coefficients up front
(Blackman & Tukey 1958).

3.2.4. Combining Components and Recording Data

The RawVoltageBackend class contains the full machin-
ery to collect, process, and write complex voltage data to
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GUPPI raw files, as in the standard pipeline shown in Figure 2.
Nevertheless, as the individual signal processing components
are all exposed as part of the voltage module, custom pipelines
can be written by chaining them in different ways.

A RawVoltageBackend takes in components external to
the data recording process as parameters, such as the antenna,
digitizer, PFB, and requantizer. All other parameters and
functions are specific to data recording and actually obtaining
data from the external components.

As described by Lebofsky et al. (2019), the block size
Nplocksize Tefers to the number of bytes in a single block of data
in GUPPI format. Each data block has an associated header
with observing metadata, such as target and frequency
information. The number of blocks per file must also be
specified to size individual raw files; multiple raw files may be
associated with a single pointing. For standard 5 minute GBT
observations, BL DR uses Nyjocksize = 134217728 with 128
blocks per file.

To specify the coarse channels that are actually recorded to
disk, we can set the starting index and the number of
consecutive channels N, to ultimately save. Purely for
computational efficiency, we always perform a full FFT and
truncate to obtain the desired coarse channels, instead of
directly doing the transform operation on the subset of coarse
channels. Especially when using a GPU to accelerate synthesis,
this can fill up memory rather quickly, potentially to the point
of overflow. Therefore, the RawVoltageBackend has an
additional option to divide individual data blocks into a given
number of subblocks, such that each subblock will fully fit in
memory.

For a single antenna, the number of bytes Npjocksize N @ block
can be related to the number of time channels N,pjock
corresponding to a single block in (nonintegrated) spectrogram
format as

N .
Nblocksize = ZNPOI(%)]VChaHM,bIOCk’ (26)
1
:ZNpolNbils,rNchanNz,blocb (27)

based on the structure of raw files as described by Lebofsky
et al. (2019).

3.2.5. Multiantenna Support

To simulate voltage data for interferometric pipelines, it can
be useful to synthesize raw voltage data from multiple
antennas. setigen supports synthesizing multiantenna output
through the MultiAntennaArray class, which creates a list
of N, antennas each with an associated integer delay (in time
samples). In addition to the individual data streams that allow
the user to add noise and signals to each antenna, there are
“background” data streams bg_x and bg_y in Multi-
AntennaArray, representing correlated noise or RFI that is
detected at each antenna, subject to the (relative) delays.
Signals and noise can therefore be added to the background
across all array elements as well as to individual antennas.

The only difference in the pipeline is instead of supplying a
Antenna as input to a RawVoltageBackend, one would
supply aMultiAntennaArray. Then, the output is saved as
a multiantenna extension of the GUPPI raw format.
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3.2.6. Creating Signals at a Target Spectrogram S/N

During the course of the full signal processing pipeline, an
injected cosine signal passes through multiple quantization and
FFT steps. In many SETI experiments, a signal’s S/N in
spectrogram data is used for thresholding and analysis, so it is
important to be able to estimate this S/N given pipeline
parameters.

Suppose that we have a cosine signal with amplitude A at a
frequency corresponding to the center of a fine spectral
channel, and that this signal is injected onto a background of
Gaussian noise N(0, 03). As the voltage data are real-valued,
the signal magnitude becomes A/2 in the frequency space. As
the voltages pass through the coarse and fine channelization
steps, the signal magnitude picks up factors of P and Ngye,
respectively, compared to the background noise.

The background noise will follow a chi-squared distribution
with DOF = 2N, 1Viy, (Section 3.1.1), scaled by multiplicative
factors arising from quantization and FFT calculations. As the
input voltage noise has variance o2, the standard deviation of
the noise power o, will be proportional to the standard
deviation 0, of a chi-squared distribution with mean o2. The
time integration step to get the S/N will reduce this noise by a
factor of Ml/ 2,

To get an expression for N, given observation parameters,
suppose our synthetic observation has Nyjo total blocks and
that the time covered by a single block is T,10ck- Then, we have
the following equations:

Ar =N P N, (28)
Aff,
Tolock = Ne,block AL, (29)

_ Noiock Toiock _ Nolock Vi block 30)

Nint At Nim
Combining all of these factors, we can express the final S/N

of the signal as the ratio between the integrated (mean) signal
power and the integrated background noise standard deviation

N,

as
2 1/2
0p,0 = U%(ﬁ) s 31
2
S/N — i — (A/Z) vaf;ne (32)
o o.0/N}/

This yields the amplitude or signal level in terms of the target
S/N:

2
4030 )1/ 33)

A=|S/N  ——
( PNgine N2

Notice that A has a linear dependence on the standard deviation
o, of the real voltage noise in a data stream, which can arise
from multiple sources, especially in a multiantenna array.
Given pipeline parameters, the get_level function can be
used to calculate A/o,.

For a nondrifting cosine signal, we can also approximate the
effect of spectral leakage between fine channels by comparing
the signal frequency to the nearest channel central frequency. A
signal with amplitude A centered at a frequency f away from
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the center of the closest fine spectral channel will have its
power I attenuated by'®

17/ = sincz(@). (34)

As intensity goes as voltage squared, we provide a function
get_leakage_factor to calculate an amplitude adjustment
factor f; to easily scale from A to a new amplitude A’ that
corresponds to the nonattenuated intensity:

1
f=— (35)
: sinc(%)
Al = fA. (36)

Finally, for a linearly drifting cosine signal, if the drift rate ©
exceeds the unit drift rate i, signal power will be smeared
across multiple frequency bins in spectrogram data. This is a
linear effect in spectrogram data, so cosine amplitudes should
be increased by a factor of (/ )Y/2 to counteract the apparent
loss in power.

3.2.7. Injecting Synthetic Signals into Raw Voltage Data

In addition to creating fully synthetic complex voltage data
from scratch, the RawVoltageBackend supports injecting
or adding synthetic data to existing observational GUPPI raw
data. The pipeline remains mostly the same, except for a few
important differences that we detail below.

In order to get meaningful results, we must know and match
details about the specific signal processing pipeline that
produced the existing raw data. setigen provides a helper
function called get_raw_params to extract header informa-
tion from the raw data file, but other information must be
provided separately by the user, such as the sampling rate and
PFB parameters.

As recorded voltage data have already gone through multiple
quantization steps, we cannot directly add time series voltages
together (i.e., at the original ADC sampling rate). Instead, we
choose to synthesize complex voltage data separately, add them
to the recorded voltage data, and apply a final quantization step
to match the initial distribution as best as possible.

However, this process requires that we create and process
signals that are not necessarily embedded in noise. In typical
narrowband signal injection scenarios, we wish to synthesize
and inject signals whose distributions are non-Gaussian (e.g., a
cosine signal). As the quantization steps assume that the input
and output voltage distributions are both Gaussian, attempting
to quantize bare narrowband signals will cause distortion and
introduce clipping artifacts. Furthermore, without a reference
noise distribution, quantization can scale the magnitude of
processed signals in undesired ways, making S/N estimation
difficult.

To address these issues, we approach the quantization steps
differently. If there is already a synthetic noise source, we
proceed normally through all steps in the pipeline. Otherwise,
we skip the initial digitization step before the PFB, and instead
treat the input voltages as if they followed a zero-mean
Gaussian distribution with variance 1. Using a reference
distribution allows us to set signal magnitudes with the
get_level function to achieve target S/N levels. We then

18 _. -
sinc x = sinx/x.
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estimate the post-PFB mean and standard deviation of the
reference Gaussian voltages and quantize the synthetic voltages
based on these values instead of those from the “real synthetic
distribution. This ways, if the synthesized voltages were actually
embedded in N(0, 1) noise, the resulting signal quantization
would be very similar.

For each data block in the recorded raw file, the
RawVoltageBackend will set requantizer statistics (target
mean /i, and target standard deviation o) calculated from the
existing data for each combination of antenna, polarization, and
complex component. The synthetic voltages are requantized to
the corresponding standard deviations in each complex
component, but instead of centering to the target mean, they
are centered to zero mean. This is so that when we add the
quantized synthetic data to the existing data, we do not change
the overage voltage mean. After these are added together, we
finally requantize once more to the target mean and target
standard deviation to match the existing data statistics and
magnitudes as best as possible.

3.2.8. Demonstration: Voltage Module

Here, we present a simple pipeline created with the raw
voltage module to inject a drifting cosine signal in Gaussian
noise. First, we create the signal processing elements:

from astropy import units as u
from setigen.voltage import *

d=RealQuantizer (target_fwhm=32,
num_bits=8)

f=PolyphaseFilterbank (num_taps=8,
num_branches=1024)

r=ComplexQuantizer (target_fwhm=32,
num_bits=8)

Then, we create the antenna, setting the sampling rate and
reference frequency. With two polarizations, we can add
Gaussian noise and a constant amplitude, Doppler drifting
cosine signal to both data streams:

a=Antenna (sample_rate=3"u.GHz,
fch1=6000"u.MHz,
ascending=True,
num_pols=2)

for s in a.streams:
s.add_noise (v_mean=0,
v_std=1)

s.add_constant_signal (f_start=6002.1"u.MHz,
drift_rate=-2"u.Hz/u.s,
level=0.004)

We connect these components through the recording back-
end, defining the dimensions and size of the final raw voltage
data product, and record a block of data to file.

rvb=RawVoltageBackend (a,
digitizer=d,
filterbank=f,
requantizer=r,
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Figure 3. Spectrogram derived from synthetic raw voltages, showing the edge
of the coarse channel bandpass shape and a bright, slightly drifting cosine
signal. The top panel shows an integrated profile, showing the PFB scalloping
loss toward the left and the synthetic signal toward the right.

(Continued)

start_chan=0,
num_chans=64,
block_size=134217728,
blocks_per_file=128,
num_subblocks=32)

rvb.record (output_file_stem=’example_lblock’,
num_blocks=1,
length_mode='"num_blocks’,
header_dict='TELESCOP’: 'GBT’,
verbose=True)

After saving the raw voltages to disk, we reduce using
rawspec with Ng,.=1024 and N;,,=4. A snippet of the
resulting spectrogram output is shown in Figure 3, where
intensities are plotted on a decibel scale. The signal is readily
apparent, as is the frequency bandpass shape arising from
the PFB.

4. Discussion
4.1. Limitations

While setigen is a flexible library that enables quick
narrowband data set generation, it is important to discuss the
limitations when using it for science.

First and foremost, setigen relies on heuristic, user-
defined signals, rather than simulations from first principles.
The search for technosignatures is necessarily informed by
human bias, specifically applied via our assumptions about a
technosignature’s potential characteristics and morphology. It
is possible that radiation from an extraterrestrial intelligence
will exist in a form that we have not considered or designed
searches for. Even when we consider only the problem of
excision of anthropogenic RFI, we have to be careful when
applying algorithms developed using the simplest of narrow-
band signals. Although there might never be a way of fully
emulating the breadth and variety of the RFI environment,
setigen can still be used to generate labeled, complex
signals to test the efficacy of new and existing algorithms.

In a similar vein, the spectrogram module enables users to
quickly generate signals that “look™ like the narrowband
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signals we see in observations. However, as spectrogram signal
injection does not have access to phase information, it is
impossible to replicate the “correct” intensity statistics when
adding a signal to integrated Stokes I noise. For example,
adding a perfect cosine signal to zero-mean Gaussian noise in
the voltage domain results in a noncentral chi-squared intensity
distribution in Stokes I data, but adding a signal with constant
intensity directly to chi-squared noise in a spectrogram does not
result in the same distribution (over the pixels occupied by that
signal; McDonough & Whalen 1995). While this effect is
negligible for high S/N signals, algorithms developed to target
low S/N signals may suffer from intrinsic inaccuracies in the
intensity statistics.

Signal injection in the complex voltage domain also has
limitations as we are not able, in software, to directly add
signals in the real (analog) voltage stage. Raw data are
quantized multiple times in hardware, so the injection step has
to take place using complex voltages that are quantized in a
similar way. While fundamental steps in the pipeline are linear,
such as PFB operations (Equation (10)), quantization inher-
ently breaks this linearity. Because of this, summing real and
synthetic voltages that are independently processed can lead to
artifacts and intensity discrepancies that would not arise if we
could inject at the start of the signal processing pipeline.

4.2. Future Directions

setigen is written and developed with the needs of SETI
researchers in mind, so new functionality and improvements
are constantly being added. Here, we describe some potential
enhancements that may be added in the near future.

As it stands, the spectrogram module is especially targeted at
producing small frames with synthetic signals rather than
injecting into large, broadband observations. While this suffices
in many cases, it may be useful to inject within large data files
in which frequency bandpass shapes significantly change the
background intensities. For instance, for use in S/N estimation,
setigen calculates background noise statistics over an entire
frame rather than localized around the target signal injection
frequency. For a large enough frame, this is both an inefficient
and inaccurate calculation due to variable bandpass shapes. An
improvement would be to localize the noise calculation to a
window around the target injection site, as well as to similarly
localize the signal injection calculation to prevent unnecessary
computation.

The spectrogram module is also currently designed expressly
to synthesize narrowband signals. There are many similarities
in both signal processing and experimental design between
technosignature searches and searches for time-varying phe-
nomena such as pulsars and fast radio bursts (FRBs);
setigen could thus be expanded to include broadband signal
injection (Zhang et al. 2018b; Gajjar et al. 2021).

An exciting potential addition is to use parameterized ML
methods to create labeled, realistic signals. By taking ideas
from style transfer, a synthetic RFI signal could be created by
specifying heuristic parameters and having an ML model
generate such a signal with RFI-like properties (Gatys et al.
2016; Dai et al. 2017). While generative adversarial networks
(GANs) have been used before to create radio spectrograms
(Zhang et al. 2018a), conditional GANs that accept input
parameters might help produce more specific, labeled signals,
which can be better for certain SETI experiments. Furthermore,
better RFI modeling could help improve ML-based searches for
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astrophysical phenomena like FRBs in the presence of different
classes of RFL

Some of these enhancements may use a lot more computa-
tional power than the current synthesis process, so the option to
GPU-accelerate the standard spectrogram module would be
critical. Some of these enhancements may require a more
careful look at file input/output methods when reading and
writing large observational data files to avoid unnecessary or
slow operations.

The raw voltage module can also be expanded to support
alternate radio telescope configurations and back ends, such as
those behind interferometers like MeerKAT (Jonas 2009).
While setigen already has basic multiantenna functionality,
it could be helpful to build on this with general-use utilities,
such as routines that predict how a given injected signal would
appear across multiple antennas or beams. The voltage module
could also support additional requantization and recording
modes, such as 2 and 16 bit. As interferometer usage in modern
radio SETI continues to grow, setigen capabilities can be
extended to help test signal detection in commensal and beam-
formed observations (Czech et al. 2021).

5. Summary

In this paper, we presented setigen, an open-source
Python library for the creation and injection of synthetic
narrowband radio signals. setigen can produce both finely
channelized spectrogram data and coarsely channelized com-
plex voltage data. The spectrogram module is designed to be
intuitive and quick to use to facilitate the construction of
synthetic data sets for SETI experiments and testing. While the
voltage module is more complex and computationally
intensive, it enables analysis of signals that pass through a
software-defined pipeline, which can be helpful in under-
standing the implications of the instrumentation pipeline itself
in SETT searches.

setigen is constantly being improved with the needs of
SETI research in mind. As open-source software, the library is
freely available, and we encourage the SETI community to use
and contribute to it.
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