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ABSTRACT

Quantification of population dynamics and predictions of species viability rely on estimates of vital rates and an
understanding of the ecological drivers of these rates. Most standard methods for assessing impacts of drivers,
such as climate, on vital rates require annual demographic data for many individuals over multiple years.
However, many real studies have either planned or unplanned data gaps. Vital rates are usually estimated over
annual transitions, therefore one year of missing data results in two missing estimates. Additionally, relating
annual climate variation to changes in vital rates is challenging if studies do not collect data annually. Te avoid
this loss of information due to missing data, we developed and then tested a Bayesian modeling approach for a
dataset with missing years. Using an 18-year study of the rare plant Eriogonum brandegeei we estimate vital rates,
their relationship to annual climate, and stochastic population growth. By comparing model performance across
data subsets, as well as in tests using simulated data, we find that the approach works well with missing years of
demographic data and removes the need to ignore information from multi-year transitions. This generalizable
approach increases the useability of available data to study species dynamics despite patchy demographic data.

1. Introduction

Assessing the viability of populations or the impacts of climate and
other stressors ideally uses the quantification of demographic, or vital,
rates and how environmental drivers determine these rates. The typical
approach for estimating effects of multiple drivers on vital rates requires
detailed demographic data for multiple individuals every year for
considerable periods of time (Morris and Doak, 2002). Such data allow
straightforward statistical modeling of how vital rates vary in time and
space (Coutts et al., 2021) and are influenced by climate, ecological
interactions and management actions using standard statistical models
(Gross et al., 1998; Baldker et al., 2009). However, collecting individual
demographic data is time and labor intensive, which commonly results
in either limited sample sizes or missing years of data (Doak et al.,
2005). These data gaps sometimes arise due to unforeseen logistical
challenges (e.g., COVID-19 in the summer of 2020 prevented planned
data collection in many studies around the world), as well as from
planned lapses in data collection due to budget constraints. In addition,
concerns of impact from disturbances caused by monitoring activities (e.
g., trampling) can also limit sampling visits to only some years. In most
cases, researchers simply do not use the data spanning the missing year
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(s), but this involves a serious loss of information. Since predictions of
population growth and most vital rates are made for annual transitions,
one missing year of data results in two missing transitions in what are
often already limited datasets (Kindsvater et al., 2018). In addition, it is
difficult to directly tie annual climate variation to vital rate changes if
demographic data collection does not occur each year.

To address this common problem, we develop and then apply a
flexible analysis approach for the estimation of vital rates and their
dependence on annual climate variables in the face of missing data. We
use a Bayesian modeling approach to estimate vital rates and their
dependence on climate drivers, and incorporate parameter uncertainty
in these estimates into downstream analyses. Using Bayesian modeling
with demographic data is not new (Ellison, 2004, Dorazio, 2016, Elderd
and Miller, 2016, de la Horra et al., 2017). Our general strategy is similar
to that of many ‘hidden process’ models (e.g. Clark et al., 2005; Shriver,
2016). Such models treat unobserved states of an individual as param-
eters that can be estimated, linking together observations that can occur
across multiple transitions or that have significant observation errors
(De Valpine, 2012). This general approach is the basis of mark-resight
analyses as well as multiple other population models that feature un-
certain or missing observations (Shefferson et al., 2001, Thomson et al.,
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Fig. 1. Ilustration of our approach for handling missing data to model de-
mographic rates. This figure shows a simplified schematic just for plant size
data. The left side of the figure shows the approach used in normal fitting
routines, and in our approach without missing data. After the first year, esti-
mated plant size in each year, SZescy1, is based on observed size the year
before, 8z, - These estimates are used to predict the observed size in year t+1,
with the comparisons then used to estimate the best parameters of the model.
Note that the estimated growth in each year is also influenced by annual
changes in environmental conditions, indicated by clim,, the climate conditions
from year t to t+1. On the right we indicate how we deal with missing plant size
data (year 3 in this example; red): the prediction for size in year t is in this case
based on at least one and possibly more years of estimated sizes, rather than
coming directly from an observed size the prior year. In the real model, pre-
dictions also include those for survival and reproductive rates.

2008, Sandercock, 2010, Rose et al., 2021), and include both Bayesian
and non-Bayesian methods (Kéry and Royle, 2020). However, our
approach of using Bayesian methods to address the problem of missing
data is not commonly used or understood in demographic analysis. Nor
has it been assessed for accuracy in the context of sampling that skips
entire years of data collection, as opposed to the vagaries of finding and
observing individuals within observation periods. We apply this method
to an 18-year study of the rare perennial plant Eriogonum brandegeei,
estimating all required vital rates and then using these to predict sto-
chastic growth rates.

2. Methods

Study species and datasets: Eriogonum brandegeei Rydberg (Polygo-
naceae; Brandegee’s buckwheat) is a mat-forming iteroparous perennial
herb endemic to Colorado, U.S.A. (Reveal, 1969). From 2004 to 2022,
twelve transects were monitored at two nearby locations on Bureau of
Land Management land in Fremont County, CO. Annual demographic
censuses were performed from 2004 to 2013 during August. To decrease
potential negative impacts from trampling, no data were collected from
2014 to 2015. Starting in 2016, censuses were performed every other
year with the intent of detecting long-term trends while minimizing
impact. Size of a plant is based on the number of vegetative rosettes;
further details of the monitoring and size classification are given in
Appendix A.

We obtained total monthly precipitation and mean monthly daily
mean temperature data from the PRISM Climate Group (Oregon State
University, http://prism.oregonstate.edu) for 1991-2022. Since sea-
sonal climate measures are likely to be more meaningful for plant per-
formance than annual values, we aggregated monthly climate variables
(mean daily temperature and total precipitation) into seasonal values for
fall (AugustNovember), winter (December—March), and summer
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(April-July). For each demographic transition, corresponding climate
data was from the 12 months preceding the ending census (e.g., climate
data for 2004 is August-November 2003 [fall], December 2003-March
2004 [winter], and April-July 2004 [summer]). Climate in the study
years was representative of the variation seen in longer term climate
records (Fig. A.1).

Statistical analysis: All analyses of demographic and climate data
were done using R version 4.3.1 (R Core Team, 2023). We first deter-
mined the functional form for size effects and the support for different
climate drivers using GLMM models and AIC for model selection with
the annual data from 2004 to 2013 that did not include any missing
years of field data (see Appendix A for detailed description). We used
GLMM model selection instead of Bayesian model selection due to
constraints on computational time for the latter. While ideally model
selection would also be done using the same approach as the final
parameter estimation, we suspect that many other researchers will face
the same constraints, necessitating use of a faster approach to run the
many analyses needed for model selection.

We then refit the best supported model form with all or subsets of the
data, including the use of transitions that contained missing informa-
tion. To allow model fitting when datasets had missing years, we
adopted a Bayesian framework which allowed estimation of size, sur-
vival, and reproduction and their dependence on climate variables in
years where a plant was not observed. Specifically, Markov Chain Monte
Carlo (MCMC) chains with a Gibbs sampler were used to estimate the
distributions of all vital rate model parameters, using JAGS ver. 4.3.0
(Plummer, 2017) called from the R package runjags (Denwood, 2016).

Fig. 1 illustrates our modeling approach and an example of how it
handles missing years. Across years without missing observations, the
vital rate models for survival and growth correspond to typical gener-
alized linear mixed models (GLMMs), with survival and size (if surviv-
ing) in year t+1 a function of size in year t and climate variables during
the transition, as well as random effects of transect. Similarly, proba-
bility of reproduction and inflorescence number (if reproducing) in year
t are functions of size and climate in that same year. For years without
field data, the model creates estimates of size, survival, and other vital
rate outcomes, which are then the basis for estimated growth and sur-
vival into the subsequent year, as well as reproduction in the current
year (Fig. 1). Note that survival probability after a multi-year transition
is estimated as the product of the estimated annual survival probabili-
ties, just as size at the end of a multiyear transition is estimated from
growth over each transition. This procedure allows us to estimate annual
climate effects even when missing some years of demographic data. It
also allows us to estimate total inflorescence production in transects,
and therefore to fit estimates of new plants arising per inflorescence,
even when a year of reproduction data is missing. Note that in making
these reproductive output estimates, we use the estimated probability
that each plant was alive in a year, multiplied by the size-specific esti-
mate of probability of reproducing and the inflorescences produced if
reproducing, summed across all plants. If a plant was observed to still be
alive at the first census following one or more missed years, it was then
known to be alive during those preceding periods and treated accord-
ingly in the models. Because estimated survival and growth influence
reproduction and recruitment, all vital rates and their dependence on
climate are fit simultaneously. Additional modeling details are in Ap-
pendix A and code to run these models is provided at github.
com,/DenverBotanicGardens,/ErBr_Goebl etal.

We ran all MCMC models with uninformative normal and uniform
priors (Table A.3). The posterior sampling was based on 30,000 itera-
tions after 10,000 steps of burn-in, 3 chains, and thinning to every 10
samples. Convergence and parameter correlation were checked for all
models (Figs. A.2-A.7).

To assess how well the MCMC model performed with missing years of
data as well as with different amounts of data, we compared model
outputs from datasets containing missing years versus no missing years
(consecutive year data). In addition to the full dataset of 1771 plant
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Fig. 2. Median parameter estimates from MCMC posterior distribution sampling for each variable (rows) in all vital rate models (columns) when using datasets with
missing years (full & pruned datasets) and consecutive year only data (2004-2013, 2004-2008, 2009-2013). Mean parameter estimates are also shown for GLMM
versions of each vital rate model (grey points). Error bars show 10th and 90th quantiles for posteriori parameter distributions (MCMC models) or + /-1 standard error
(GLMM models). Grwth = growth, Surv = survival, p(Repro) = probability of reproducing, Repro = amount of reproduction, Temp = temperature, Precip = pre-
cipitation. Horizontal solid lines are at zero to help visualize the magnitude and direction of effects. Horizontal dotted lines indicate the median estimate from the full
dataset for reference.



A.M. Goebl et al.

Plant size in t+1
(rosette number)

o
T T T T
0 50 100 150
Plant size in t (rosette number)
Probability of reproducing
o
£
= o
g
e o]
aco
c
i=]
2=
S o
g
[T
rc ©
=g
=]
T T T T
0 50 100 150

Plant size in t (rosette number)

Biological Conservation 301 (2025) 110855

Survival
8
8
£3
2
81
= o
=
c |
Sw |}
w § —
o
q —
o T T T T
0 50 100 150
Plant size in t (rosette number)
Reproduction amount
‘8_ _
= =
st
£ _
528
c o
i
88
(=3
g2 "
CE
o =
T T T T
0 50 100 150
Plant size in t (rosette number)
— Allyears
= Full dataset
2004-2013 Wettest year
- - Driest year

Fig. 3. Modelled vital rates for growth, survival, reproduction probability, and reproduction amount averaged across transects and parameter values in relation to
plant size. Vital rate models were parameterized with either the full dataset (2004-2022 with gaps; red), or consecutive year data from 2004 to 2013 (orange). Solid,
dotted, and dashed lines represent mean vital rate values across all years (2004-2022), the wettest (2015), and driest (2011) years of the data collection period,
respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

observation years (consecutive year data from 2004 to 2013, followed
by data only in years 2016, 2018, 2020, and 2022), we also fit models to
just the longest stretch of consecutive years (2004-2013; 1519 plant
observation years), and 2004-2013 data after pruning to include only
odd or even years, and to shorter consecutive year data (2004-2008 and
2009-2013; 821 and 698 plant observation years, respectively). These
different datasets include cases with and without missing data that also
span different total years of demographic observations. We then
compared results between datasets for annual vital rate parameter es-
timates and the effect of climate on the vital rate to plant size
relationship.

We also generated simulated data with known vital rate parameters
for three different life history patterns to test model performance with
missing data. One life history uses the growth and survival rate pa-
rameters estimated for E. brandegeii, while the other two have increased
growth rates and either moderate or highly reduced survival for larger
plants (Fig. A.8), which we hypothesized would make parameter esti-
mation with missing years of data more challenging. For each life his-
tory, we generated 10 replicate simulations of individual plant fates over
20 years. For the observed life history (that of E. brandegeii) we also
generated longer datasets representing 40 years. To test the effects of

missing data on model performance, and similar to our real data, the
simulated datasets contained 10 consecutive years of demographic data,
plus an additional 10 or 30 years with missing data every other year. In
these simulations, we maintained sample sizes of approximately 50 to
300 individuals per year by adding seedlings to the sample in each year.
For each simulated dataset, we then used either our MCMC model or a
GLMM (fit using all data, with no missing information) to estimate
growth and survival parameters. We compared the resulting parameter
estimates to each other and to the input parameters used to generate the
simulated data. Further details of these simulations are provided in
Appendix A.

To gauge the downstream effects of our estimation method on
E. brandegeei population inference, we used the estimated annual vital
rates to construct size-structured demographic models (SSDMs) and
used them to predict population numbers over the course of the study
period as well as short-term stochastic population growth rates (hss).
SSDMs, which can be viewed as either matrix models of high dimension
or as integral projection models (Doak et al., 2021), use discrete time
intervals for analyzing discretized vital rates that are continuous func-
tions of a state variable, usually size. Details of model construction and
analysis are given in Appendix A.
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Fig. 4. Observed (black) and predicted (colors) number of individual plants over the study period. We present values starting in 2007, as the number of observed
individuals between 2004 and 2007 changed substantially due to additional (mostly large) plants being added to the study. Only plants larger than 5 rosettes are
included. Predicted population sizes are based on a demographic projection model using vital rate models parameterized with either the full dataset (2004-2022 with
gaps; red), or consecutive year data from 2004 to 2013 (orange). The observed population size in 2007 of 133 individuals was set as the starting point for predictions
to allow comparison. Error bars show 5th and 95th quantiles to reflect parameter uncertainty (n = 1000). (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

3. Results

In analyses of E. brandegeei data, we found satisfactory convergence
within- and between chains and low autocorrelation from our MCMC
model for all vital rate parameters (Table A.5, Figs. A.2-A.7). The a
posteriori parameter distributions of most vital rates were similar be-
tween datasets with missing (full or pruned datasets) and no-missing
data (2004-2013, 2004-2008, or 2009-2013) and between the GLMM
and MCMC model fits (Fig. 2). In particular, GLMM parameter estimates
and MCMC parameter estimates using the full and long consecutive year
(2004-2013) datasets were very similar. We found that use of the
shortest sets of data (pruned, 20042008, and 2009-2013) led to the
widest posterior distributions and also resulted in some model conver-
gence issues (Fig. 2; Tables A.7-A.10). In general, these short datasets
(pruned and consecutive) produced less consistent estimates.

Predicted size-dependent vital rate curves, and their dependence on
rainfall, were similar for models fit with the full and long consecutive
year data (Fig. 3). We saw the largest deviations between these two
datasets in size-dependent growth and swvival curves in the wettest
year. This is presumably since the wettest year, 2015, was not in the
consecutive year data and therefore this model is less reliable for making
predictions for climate years that are more extreme than those in the
dataset. Following from the higher deviations in parameter estimates,
vital rate curves for the shorter datasets (pruned and consecutive) were
less consistent (results not shown).

Models fit to our simulated datasets showed that our MCMC
approach returns parameter values for growth and survival models that
are as accurate as those from GLMMs that use data without missing
years. For all three life histories, there is no qualitative difference in the
accuracy of these two methods, even though the MCMC approach is
dealing with alternate year missing data (Figs. A.9-A.11). In addition,
our comparison of results from MCMC fits with and without missing data
show little difference in accuracy (Fig. A.12). The longer, 40-year
datasets show only slightly improved accuracy in parameter estima-
tion over the 20-year datasets (Fig. A.13). We also note that the pa-
rameters for annual climate effects are estimated well, in addition to size

coefficients (Figs. A.9-A.13). Translating parameter estimates into size-
and climate-specific vital rates also indicate that the MCMC fits are as
accurate as the GLMM estimates that model data without missing years
(Figs. A.14-A.16). Both GLMM and MCMC models tended to perform
somewhat less well with life histories with lower survival rates. In both
cases, size parameters were systematically under-estimated for these life
histories (Figs. A.10-A.11). This is probably due to both the ‘regression
to the mean’ effect and also due to the capping of low numbers of
particularly large predicted sizes, which, though rare, have high
leverage.

Returning to the E. brandegeii data, we used the posterior distribu-
tions of parameter estimates from the full and long consecutive year
datasets to predict the changing numbers of individuals in each year of
the study period and compared these estimates to the actual recorded
number of individuals over the same timeframe (Fig. 4). While predicted
numbers from both model fits were similar to the observed numbers,
both slightly overestimated population size in most years; this over-
estimation was less pronounced when using the full compared to the
consecutive year dataset (Fig. 4).

Finally, we used the vital rate fits to predict Ags from year to year,
using the structured population models and the observed sequence of
climate years over this period (Fig. 5). We find that the full and long
consecutive year datasets produce similar distributions of Agg estimates
that center around 0.96. Results based on the shorter datasets all have
wide, often multi-modal, distributions that largely overlap Ags = 1.

4, Discussion

We developed a modeling approach to estimate population viability
of a rare species from a dataset with multiple years entirely lacking data.
Our modeling approach allows better use of datasets with missing years
of demographic data by negating the need to throw away information
over multi-year transitions. Thereby this approach increases the power
of available datasets to study the dynamics of populations for which only
patchy demographic data often exists. Importantly, the modeling
approach allows estimation of not only the mean and variance of vital
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Fig. 5. Short-term stochastic population growth rate (Ags) estimates from climate-driven projection models run for 100-year simulations. Each iteration of the
simulation consisted of randomly selecting climate conditions from climate data of the recent past (2002—2021). Different colors represent different datasets.
Variation in estimates is due to parameter uncertainty (n = 1000) as well as environmental stochasticity (n = 100). The red vertical lines indicate a Agg value of 1.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

rates, but also their dependence on environmental drivers, a critical part
of population analysis in the age of climate change. This approach is
designed to be applicable to any demographic study, regardless of taxa.
In particular, our simulation results indicate that the approach will work
for shorter-lived species as well as medium to long lived ones, such as
E. brandegeii. Having high survival over multiyear transitions is there-
fore not a prerequisite for results that are as accurate as those coming
from complete datasets of the same duration.

While this approach works well for the presented 18-year dataset,
there are limitations to obtaining robust results driven by dataset length
and quality. Our results suggest that if every other year data collection
had been used for the entirety of this study, the data may have been
insufficient to generate robust vital rate models. This conclusion is based
on the high uncertainty in results based on models parameterized with
the short, pruned data. These pruned datasets were at most half as large
as the long consecutive year and full datasets, so convergence issues are
likely to arise as much from small datasets as missing year data per se.
This is corroborated by the results of the short consecutive year datasets,
which also show high uncertainty in parameter and downstream esti-
mates. For the short datasets, estimates of a given parameter varied
substantially when using even versus odd years between 2004 and 2013,
or when using the consecutive years 2004-2008 versus 2009-2013

(Fig. 2). This demonstrates model sensitivity to inputs when datasets are
small, particularly in systems with high interannual climate variability
(Fig. A.17). But the results do not suggest that missing annual data per se
was an issue.

Similarly, we find that use of 40- rather than 20-years of simulated
data resulted in more consistent parameter estimates (Fig. A.13),
although this improvement was surprisingly small. Future work to test a
wider range of missing data patterns (such as irregular gaps) and sample
sizes, including both monitored individuals and number of years, will be
needed to fully confirm how robust the method is. As well as if having
some consecutive years of data collection will always be important to
improve model parameterization. This will likely depend on the indi-
vidual growth patterns of the focal species (Che-Castaldo and Inouye,
2011), the level of year-to-year observation error, and how strongly vital
rates depend on annually varying drivers. An added complication arises
from a particular type of observation error: the ability to consistently
define individuals when clonal or spreading growth patterns are com-
mon, which can add substantial error in both survival and growth esti-
mates (DePrenger-Levin, 2024). Beyond observation error, species with
large decreases or increases in size from year to year may also make
growth estimation more challenging over years of missing data, because
there is greater variance in true outcomes and hence much greater



A.M. Goebl et al.

variance in potential size changes over multiple transitions that would
still result in the same ending sizes (Doak and Morris, 1999).

Beyond the analysis of existing data, our modeling approach could
also be used to plan future data collection. In particular, to quantify the
statistical costs of skipping some years of data collection versus the
benefits of reduced monitoring time and expense. As we suggested
above, this tradeoff is likely to differ with life history, responsiveness to
climate or other annual environmental variation, as well as with aspects
of monitoring method that influence observation errors. Other studies
have concluded that having higher quality, longer-term, but less
frequent data collection can be preferable for inferring temporal changes
in population size using abundance data, given that demographic rates
have already been established (Humbert et al., 2009). And some authors
have argued sparse temporal data for many populations can produce
robust estimates of species demographic distributions using integral
projection models (Merow et al., 2074).

The approach used here suggests that for continued monitoring of
E. brandegeei, maintaining every other year sampling shows no obvious
downsides and should be sufficient for capturing population dynamics.
Predicted changes in population size over the study period were close to
those observed (Fig. 4). It should be noted, however, that the models
consistently overestimated population size. This is mostly due to an
overestimation of small plants, which were disproportionately over-
estimated compared to any other size class (Fig. A.18). We found
improvement in predicted numbers when small plants (<5 rosettes)
were excluded. This is likely due to poor estimation of seedling
recruitment and the difficulty in finding small plants, leading to mis-
estimation of their vital rates. This is likely to be a challenge for many
species with low recruitment and many small, difficult to spot in-
dividuals. Which emphasizes the need to expand field efforts devoted to
seedling (or offspring more generally) data collection, when possible, to
improve model performance. Another notable difference between
observed and predicted values was in 2011 when there was a sharp
decline in population size that largely rebounded the following year.
This decline was due to some plant mortality following a particularly dry
year (Fig. A.17) but most of the decline was likely due to detection issues
of plants that appeared dead above-ground but that resumed growth the
following year. The models captured a slight decline in 2011, likely
explained by drought-driven mortality, but the majority of the decline
was not captured well.

Our results can help guide future monitoring efforts for rare species,
specifically in developing strategies to obtain robust vital rates in early
stages of monitoring that can then allow for reduced sampling efforts in
future years. A main application of our modeling approach is for
determining population dynamics of rare or threatened species. Our
estimates of short-term stochastic lambda for E. brandegeii were below 1,
indicating population decline. Future analyses will use our vital rate
modeling approach in combination with population models driven by
climate change predictions to assess dynamics of this rare species and
predictions of extinction risk with increasing climate alterations. In-
vestigations of this kind, in general, can facilitate an understanding of
how populations may respond to climate change and allow for appro-
priate conservation actions that can increase the likelihood of persis-
tence (Wan et al., 2022, Hindle et al., 2023).
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