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Abstract— This brief introduces a compact-size hardware accelerator 
for dynamic neural fields (DNF) used in object tracking. To address the 
substantial computational workload and memory occupancy associated 
with conventional DNFs, three key approaches are implemented: kernel 
size reduction and abstraction, the replacement of sigmoidal functions 
with comparison operations, and the approximation of rectangular- 
shaped objects. The design is realized in a 28-nm CMOS process, resulting 
in a layout with an area of 0.53 mm2. Simulation results demonstrate 
that the accelerator processes 256 × 256 dynamic vision sensor (DVS) 
frames at 211 frames per second (fps), with a power consumption of 
1.68 mW under such conditions. 

Index Terms— Dynamic neural fields (DNF), dynamic vision sensor 
(DVS), object tracking. 

I. INTRODUCTION 
The successful miniaturization of an active sensing system with 

an integrated battery down to the millimeter scale has opened up 
promising opportunities in various fields, including biomedical appli- 
cations [1], ecology research [2], and surveillance [3]. Specifically, 
incorporating a miniature image sensor and cutting-edge machine 
learning techniques into this millimeter-scale system, which features 
a bare-die-stacked structure without individual packaging, paves the 
way for creating compact artificial intelligence of things (AIoT) 

vision systems [4]. However, challenges persist with the traditional 
frame-based image-sensing approach. These challenges, including 
high latency and excessive power consumption, impede progress in 
developing more advanced systems, such as enhancing the control of 
miniature robots [5] through millimeter-scale object tracking sensors. 

To address these challenges, an alternative approach involves the 

Hence, this work proposes a DNF accelerator that can effectively 
interface with and process the output data from an event-based 
image sensor for a millimeter-scale motion-tracking vision system. 
By simplifying the kernel, the activation, and the object shape, the 
proposed accelerator reduces the computation workload and chip 
area. The designed layout shows an area of 0.53 mm2, and the system 
consumes 1.68 mW at a frame rate of 211 frames per second (fps). 

II. CONVENTIONAL APPROACH 
A. Conventional DNF Computing 

Fig. 1(a) illustrates a typical application of DNFs, involving the 
tracking of selected vehicles in moving traffic. A tiny tracking 
device can be integrated into miniature robots (e.g., drones [12]) 
for better monitoring performance. The DVS camera distinguishes 
moving vehicles from the background scenery and masks the static 
region. DVS events are then used in the DNF as input to track the 
position of a selected target. The standard DNF process simulates 
processes observed in animal brains. Equation (1) delineates its 
evolving process [9] 

τ · u˙(x, t) = −u(x, t) + h 
+ f (u(x ′, t))ω(x − x ′)dx ′ + S(x, t) (1) 

where τ is a timing constant determining the response speed, and h 
represents the negative resting level. It comprises three 2-D matrices: 
the activation u(x, t), the kernel ω(x − x ′), and the external DVS 
input S(x, t). The activation reflects neurons and their focused 
areas, continuously updating. The kernel is a 2-D Gaussian function 

use of event-based dynamic vision sensors (DVSs) [6], [7]. Typically 
developed for centimeter-scale embedded systems, these sensors 
provide pixel position and brightness change direction, only when 

expressed mathematically as 

ωi, j = Cexc · e 

2 
−  i, j  

exc − Cinh · e 

2 
− i, j  

inh (2) 

there is a change in a pixel. This approach significantly reduces data 
size and latency, unlocking new potential for millimeter-scale vision 
systems. Yet, the unique output format of event-based image sensors 
necessitates a novel type of data processing unit to convert the output 
data into desired information, such as tracking trajectories. While 
feedforward artificial neural networks [8] can efficiently process 
event-based sensor output for fast-moving objects, they encounter 
difficulties in certain conditions, such as distinguishing similar objects 
from the target. In addition, event-based sensors generate reduced 
outputs when a target slows down or comes to a stop. As an 
alternative, a recurrent neural network known as bio-inspired dynamic 
neural fields (DNF) [9], a well-established model in computational 
neuroscience and cognitive science, has been explored for object 
tracking [10], [11]. However, a data processing unit suitable for 
a millimeter-scale system with a small footprint and low power 
consumption has not yet been explored. 
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where d is the distance between any position and the center; 
Cexc and Cinh represent the strength of excitatory and inhibitory 
connectivity, respectively; and σexc and σinh represent their ranges, 
respectively. f (u(x ′, t)) denotes the activation function, typically a 
sigmoid function [9]. 

To better align with the synchronized digital processing flow, the 
continuous updating operation is separated into a base of frames. 
The events with time stamps in a specific time range are binned into 
one 2-D DVS map using their coordinates and without polarity (all 
the events are treated as “+1”). The entire process can be divided 
into three main stages, which are shown in Fig. 1(b): convolution, 
normalization, and finding the center while updating the activation. 
During convolution, the current activation and kernel undergo a 2-D 
convolution to generate the interaction. The interaction encompasses 
both excitation and inhibition [9] toward input events for subsequent 
frames. The region near the target is highlighted (denoted by “+”), 
while the areas far from the target object are de-emphasized (denoted 
by “−”). The maximum interaction value is recorded in this stage. 
In the normalization phase, the entire convolution output is scaled to 
a range from −1 to +1, with the maximum noted in convolution. The 
subsequent stage updates the current activation using the interaction 
and the input DVS image. The discrete updating process of the 
activation can be expressed as 

dt I:  ( ) 
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un+1 = un + 
τ
 −un  + f 

i, j 

un,i, j · ωi, j + Sn+1 . (3) 
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Fig. 1. Working mechanism of DVS camera and DNF tracking. (a) DVS 
camera used for traffic monitoring. (b) DNF tracking using DVS as input. 

 

Fig. 2.  Kernel size reduction and shape abstraction. (a) Shape change in 
the kernel. (b) Error of each frame compared with the original kernel with 
different kernels. (c) Average error with different kernels. (d) Number of MAC 
operations needed across kernel size. (e) Required circuit area across kernel 
size and shape, implemented with logic and memory. 

B. Target Application and Challenges 

To ensure efficient processing of the DNF model, three signif- 
icant challenges need to be addressed. First, convolution poses a 
substantial computational and memory challenge. When working with 
a 256 ×256 activation matrix and a 512 ×512 kernel, the convolution 
operation demands 320 kB of memory space to store the input and 
output data. This memory requirement alone occupies 0.5 mm2 in 
a 28-nm CMOS process. Second, performing the convolution entails 
over 4 billion multiply–accumulate (MAC) operations, necessitating 
high-throughput parallel computing. The third challenge arises from 
normalization. Normalizing the convolution output involves finding 
its maximum value. Thus, such a task can only be performed after 
the entire convolution concludes. The un-normalized interaction array 
requires being stored in memory, consuming extra time and area. 

Fig. 3. Function and performance comparison of the sigmoid and com- 
parator-based activation. (a) Curve of comparison and sigmoid function. 
(b) Processing time. (c) Area. (d) Average error of tracking. 

III. PROPOSED DNF ACCELERATOR ARCHITECTURE 
To address the challenges mentioned earlier, we simplify the DNF 

model from multiple perspectives without sacrificing notable tracking 
performance: kernel size, activation, and shape. 

A. Kernel Size Reduction 
Conventionally, the subtraction of two 2-D Gaussian functions 

in (2) makes the kernel flat near the edges and convex in the 
center [11]. To reduce the computation workload, the kernel size 
needs to be reduced. Truncating the kernel size from 512 to 64 leads 
to a reduction of 93.8% in the number of MAC operations. The 
left and middle sections of Fig. 2(a) indicate the reduction of the 
kernel size. Such truncation removes the flat part that contributes 
to the bias of the output but keeps the convex center so that the 
shape of the output is unchanged. It is worth noting that the value 
range of the convolution result changes as the kernel size is reduced, 
while the normalization adjusts it back to [−1, 1]. Thus, it is of 
higher priority to guarantee the shape is close to that of the original 
kernel rather than making the range close. Then, the normalization 
masks the difference in the value, as is shown in the lower part of 
Fig. 2(a). In addition, the kernel shape expressed in (2) represents 
a bell-shaped 2-D Gaussian function. Generating the values for the 
shape requires excess resources for both computation using logic and 
storing the kernel in memory. To eliminate the complex computation, 
we apply approximation to the kernel function by transforming 
the shape from a bell to a pyramid, as shown in the right part 
of Fig. 2(a). Fig. 2(b) and (c) depicts the per-frame and average 
errors with different kernel specifications. Here, we define the error 
as the distance between the object centers tracked by the original 
and proposed DNF computing methods. Our objective is to develop 
energy-efficient hardware for processing the original DNF, rather than 
further advancing the algorithm itself. The DNF is applied to tracking 
the objects from the “shapes_translation” DVS dataset [13]. Tracking 
the same object across 350 continuous frames that last 15 s, the 
tracking center shifts maximally by 4.7% and averagely by 0.72% 
for the pyramid-shaped, 64 × 64 kernel compared with the original 
kernel. It meets the requirement of a 10% maximum and 1% average 
error. The simplification of the kernel reduces the number of MAC 
by 93.8% [Fig. 2(d)]. In addition, the pyramid kernel saves 99.35% 
of area compared with the Gaussian-shaped kernel using the logic 
processing blocks. 

 
B. Activation Simplification 

A sigmoid function is commonly added at the end of the update 
to add nonlinearity to the activation [9] and filters the elements that 
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are not strong enough. However, it also requires specific arithmetic 
blocks, including exponential and division. To simplify the operation, 
we replace the sigmoid function with a comparison, as shown in 
Fig. 3(a). Fig. 3(b)–(d) shows comparison of its performance with the 
sigmoid function. The comparator-based activation saves 13.1% of 
processing time. Compared with an 8-bit look-up-table-based sigmoid 
function unit, the comparator cuts down the memory and saves 0.4% 
of circuit area while only generating 0.04% of the tracking shift for 
the pyramid-shaped kernel and sigmoid activation function. 

 
C. Shape Abstraction 

The center of mass and the centroid can represent the position of 
the target. The center of mass uses MAC operation and division that 
costs extra cycles while finding the centroid only requires finding 
the minimum bounding rectangle, which can be accomplished by 
comparison [14]. Fig. 4(a) shows the process that finds the centroid. 
The elements on the activation are compared with a threshold, and 
the positions on the farthest left, right, top, and bottom are used 
as the edges of the target object, and the edge coordinates are then 
averaged for the centroid position. This comparison can be merged 
with activation. 

Under such a method, the centroid found for the target is equivalent 
to the centroid of the rectangle formed by its four borders. Since the 
position of the centroid is used for tracking, the influence of the object 
shape is minor. Hence, all the values within the rectangle formed 
by the borders are considered as “1”s. This abstraction removes the 
memory that stores the activation map. Since only the coordinates of 
the four boundaries are needed, for a 256 × 256 array size, 4 bytes 
of registers can hold the values. 

With an abstracted object and the pyramid-shaped kernel, the con- 
volution can be accomplished without the iterative MAC operation. 
Fig. 4(b) describes the new process of convolution. The kernel sweeps 
across the activation map, generating an overlapped region. Due to the 
object being a rectangle and all the values inside it being 1, the MAC 
is equivalent to the sum of the overlapped region of the kernel. Next, 
we consider the 2-D kernel as a collection of 1-D functions. Each 
1-D function is a piecewise linear function (a piecewise arithmetic 
progression in the discrete domain). Its sum is derived by the equation 
given in Fig. 4(b). Then, the sum of multiple 1-D arrays can be 
converted into a second sum of arithmetic progressions, since each 
1-D map has the same shape but a linearly increasing bias. Such 
computation only requires five multipliers and 13 adders and emulates 
a 64 × 64 MAC process in a single cycle. Compared with this, 
a conventional MAC unit needs 4096 multipliers and 4095 adders 
to achieve the same workload in one cycle, which is 455× larger. 

For a rectangle object and a pyramid-shaped kernel, the max- 
imum value is fixed at the position where their center overlaps. 
Consequently, the maximum value is known before the convolution, 
as the left part of Fig. 4(c) depicts. The normalization, as well 
as the comparison for finding the boundaries, is merged into the 
loop of the convolution. The memory to store the entire temporal 
convolution result is replaced by a register that holds the convolution 
results of the current position. Moreover, the interaction forms a 
2-D parabolic shape only when the object and kernel overlap. Any 
input events outside such a region cannot trigger the activation to 
be “1.” Thus, there is no need to calculate the convolution and 
normalization outside this region. With a rectangular shape, the area 
that the kernel and object overlap is also a rectangle, and its position 
can be calculated. The elements outside it are skipped, as is shown 
in the right part of Fig. 4(c). 

Fig. 4(d) shows comparison of the performance of the shape 
abstraction with the original method. Merely using the sum of 
arithmetic progression to replace the MAC in the convolution brings 

 

 
Fig. 4. Diagram of shape approximation and performance comparison. 
(a) Method of finding the centroid and replacing the shape with a rectangle. 
(b) Convolution simplification for the pyramid-shaped kernel and rectan- 
gle. (c) Method of finding maximum and skipping nonoverlapped region. 
(d) Performance comparison. 

 
a 48.9% reduction in processing time. Adding the skipping of the 
positions outside the range generates an additional 82.5% time- 
saving. The proposed shape approximation reduces 75% of the 
memory and 51.6% of the total area while adding 0.08% of the 
tracking error. 

IV. CIRCUIT IMPLEMENTATION 
Fig. 5 describes the block diagram of the proposed DNF accel- 

erator, applying the techniques introduced in Section III. The 
system comprises an event-to-frame converter (EFC), a DVS frame 
FIFO (DFF), four DNF processing engines (PEs), and a finite- 
state-machine-based controller (CTL). Each PE consists of a range 
comparator (RGC), a convolution sum calculation unit (SUM), 
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Fig. 5.  Diagram of the proposed system architecture. 
 

 
Fig. 6.  Layout of the proposed DNF accelerator. 

 
a divider (DIV), the update adder (UAD), an activation compara- 
tor (ATC), the center-finding comparator (CTC), and the boundary 
register (BDR). 

To support DVS camera resolution up to 640 × 480 [7], EFC 
connected to the DVS camera converts events into frames. It inte- 
grates 80-kB single-port SRAM blocks partitioned into two groups 
(SPSRAM0 and SPSRAM1). The two groups alternately undertake 
the task of receiving address-event representation (AER) [15] signals 
and storing the converted DVS frames into DFF. DFF includes 40-kB 
dual-port SRAM blocks (DPSRAM), storing one entire DVS frame. 
CTL counts the horizontal and vertical coordinates that traverse the 
entire 2-D activation map. The current position is first sent to RGC, 
which monitors whether the received position is within the range of 
the effect area. If inside the effective area, the position is sent to 
SUM for the calculation of the sum of the arithmetic progression. 
Since the pyramid-shaped kernel is piecewise linear, four identical 
blocks are included in SUM, each calculating a quarter of the kernel 
[top-left (TL), top-right (TR), bottom-left (BL), and bottom-right 
(BR)]. The convolution result is divided by the maximum value in 
DIV for normalization, and UAD adds the current activation value, 
input DVS event, and the normalized interaction to obtain the updated 
activation. ATC activates the UAD output to either 0 or 1, and then 
the CTC monitors the position as the boundary of the rectangle and 
updates BDR. The first PE also receives the center position, used 
for computing the maximum convolution result. Its value is stored 
in a maximum value register (MAX), and other data paths read this 
value for normalization. Targeting a circuit area less than 0.5 mm2, 
the proposed design includes four PEs and obtains the synthesized 
area of 0.42 mm2. 

V. EXPERIMENTAL RESULTS 
The prototype design is implemented in a 28-nm CMOS process 

with an area of 0.53 mm2 as shown in Fig. 6. The netlist generated 
from place-and-route is used for transistor-level simulation to ensure 
accurate power analysis. To maintain acceptable simulation time, 
parasitic extraction is not applied. The logic cells are simulated using 
models at the TT corner with the Synopsys CustomSim Simulator. 
In addition, the power consumption of memory cells is derived from 
the datasheet created by the memory compiler. 

Fig. 7(a) demonstrates the tracking of moving vehicles with the 
DVS dataset from the Metavision traffic_monitoring [16]. The frames 
are scaled to 256 × 256. The evolution of the DNF shows that the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7. Tracking of the vehicle in the moving traffic and the performance 
and consumption. (a) Exemplary images. (b) Error. (c) Number of cycles and 
target size. (d) Processing time and throughput across frequency. (e) Power 
across throughput. 

 

Fig. 8. Effect of input noise to the activation. (a) Passing and failure cases and 
the definition of noise. (b) Distribution of noise ratio for passing and failure 
conditions. (c) Effect of threshold toward the range of object and noise. 

 
convolution of the current activation and the pyramid kernel results 
in a circle interaction with the highest values at the center point. 
The overlapped area forms a rectangle, encompassing the range 
within which the object can move while excluding other objects. 
The highlighted target object has its four edges detected and is 
abstracted into a rectangle again. The tracking error compared with 
the original DNF method (512 × 512 Gaussian kernel, activated with 
sigmoid function and keeping origin shape) is shown in Fig. 7(b). 
The hardware accelerator generates 5.37% of center shifts on average. 
At the beginning frames, the object is close to the camera so that it is 
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TABLE I 
PERFORMANCE COMPARISON 

 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 

  
 

 
 

 
 

 

  
 

 
 

 
 

 

  

 

 
 

 
 

 

 

 
large and moves fast. The tracking centers focus on different parts of 
the same vehicle, which leads to larger errors near the tenth frame, 
such as Frame 12 of Fig. 7(a). However, both the tracking centers are 
within the target object as shown in the second image of Fig. 7(a). 
Fig. 7(c) implies the number of cycles and object size. More positions 
are skipped as the size reduces when the object moves further. The 
average cycle is 47.4k, which brings 211 fps under a 10-MHz clock 
as indicated by Fig. 7(d). The EFC combines 2.4k events into a single 
frame at 211 fps. Objects in the frame appear clearer if more events 
are captured at a slower frame rate. Fig. 7(e) shows the average power 
consumption across throughput. The power increases by 12.7× as 
throughput increases from 21 to 21k fps. The static power is 1.26 mW, 
which takes the major portion at low frequency. At a frame rate of 
211 fps, the accelerator consumes 1.68 mW of power. 

Fig. 8 displays the effect of noise in the DVS images. About 23 test 
cases out of 32 from the FE-108 dataset [17] are applied. The unused 
test cases are due to the large file size and exceed the simulation 
capability. The events within the ground-truth box are considered as 
the object and those outside the box while within the overlap area 
are calculated as the noise. The ratio of noise and object event is 
calculated to represent the noise intensity. When the tracking results 
and ground-truth overlap by 50%, the result is considered as passing 
the test of the current frame and otherwise considered as failure. Per 
the noise being close to the object event, part of the noise object may 
get involved and detected as the target, bringing a larger detected area 
and resulting in the failure, as shown in Fig. 8(a). Fig. 8(b) shows 
the distribution of noise ratio level leading to passing and failure for 
both the proposed and original DNFs. As failure cases result from 
stronger noise, the proposed DNF tolerates a similar level of noise 
intensity compared with the original. Fig. 8(c) shows a row of 1-D 
activation in the 2-D array. Assuming all the input events are 1, the 
threshold determines the region that is recognized as the target object. 
With a higher threshold, the range that the object can move becomes 
narrower, limiting the acceptable speed. On the other hand, setting a 
lower threshold allows faster moving speed but leads to more noise 
events being recognized as the target object. 

Table I shows comparison of the proposed DNF tracking system 
with the state-of-the-art approaches. Among the approaches, this work 
occupies the smallest area and consumes the lowest power, which is 
significantly important for miniature systems. Basing on deep neural 
network (DNN), the work proposed in [18] detects objects from 
conventional RGB images and does not require DVS cameras, but 
the DNN inference consumes a long processing time, limiting the 
frame rate. The design of [19] uses SNN to predict the position that 
uses historical data as input for higher accuracy. However, it requires 
irregular-shaped kernels and MAC operations so that hardware sim- 
plification similar to our proposed idea cannot be applied. The work 
of [11] using DNF achieves the highest throughput among the works 
being compared, but the design cannot be implemented in our target 
miniature system since the Loihi platform consumes a large area and 
requires control from a personal computer. In addition, the design 

integrates an extra layer to highlight all the objects and another 
self-sustained layer to track the target object. 

VI. CONCLUSION 
In this brief, we propose a hardware accelerator for tracking DVS 

inputs. The proposed accelerator offers improved speed with reduced 
area by optimizing the kernel size, replacing the sigmoid function 
with a comparison, and simplifying the object shape to a rectangle. 
The implemented layout indicates that the design occupies a silicon 
area of 0.53 mm2. Simulation results show that the processing speed 
reaches 211 fps, with a power consumption of 1.68 mW. 
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