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Abstract—Movement control in autonomous robots requires
low-power, real-time models, especially for bio-mimetic loco-
motion in challenging terrains. Human intervention is often
impractical in such environments, making specialized neural
networks like central pattern geterators critical for offloading
computational resources. This paper presents a controller for a
bipedal robot using a modified spiking neuron model, adapted
for efficient deployment on field-programmable gate arrays.
Key modifications were made to ensure lightweight, real-time
performance. Additionally, we leverage a unique open-source
neuromorphic software platform for the network design and
deployment, making the technology accessible to developers
aiming to implement autonomous robot locomotion.

Index Terms—Central Pattern Generators, Spiking Neural
Networks, Field Programmable Gate Array, Neuromorphic Com-
puting, Neuromorphic Hardware, Robotics

1. INTRODUCTION

In the swiftly advancing field of robotics, locomotion con-
tinues to be a point of constant breakthroughs. In a com-
petitive field, successful deployment often depends on their
ability to traverse in diverse environmental conditions. This
can improve through two factors — adaptability and power
consumption. This is especially true for robots aiming to
be highly autonomous or deployed in situations where it is
unsafe for humans, such as space or collapsing buildings. Here,
robots need to dynamically change their trajectory, speed,
or even means of locomotion. Furthermore, these systems
need to operate at low power, such that the robot does not
deplete its battery in a location where it cannot communicate
or return safely. Central pattern generators (CPGs) offer a
control system that delivers both adaptability and efficient
power consumption.

The concept of CPGs first emerged in the early 1900s by
physiologist Thomas Graham Brown as a network of self-
governing neurons [1]. These neural networks — within the
nervous system — could take input from external inputs and
execute control signals for locomotion. CPGs could provide
dynamically evolving movement patterns independent of the
brain, allowing the organism to put more attention into higher
need tasks. In terms of hardware systems, the decoupling of
locomotion from the brain is important for biological systems
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Fig. 1. Top Level Diagram showing the connections between the XEM7310,
FEAGTI interface, and Petoi Bittle X over SPI

as it allows movement to occur as a subtask for the body rather
than requiring full attention. This concept led CPGs to be an
ideal motor controller for robotic locomotion.

In the past decade, researchers have implemented and de-
ployed CPGs with different methods, namely spiking CPGs.
Furthermore, research has identified Field Programmable Gate
Arrays (FPGAs) as an ideal platform for a controller as they
are reconfigurable, high-speed, and low power [2]. This paper
aims to build on those ideas in previous works to develop a
more streamlined and accessible FPGA-based solution using
the open-source neuromorphic platform FEAGI (Framework
for Evolutionary Artificial General Intelligence) as a basis for
the network. FEAGI is an open-source spiking neural network
simulator designed for rapid prototyping of neural circuits to
control embodied systems. Its no-code interface was used to
design, visualize, and fine-tune the CPG network, simplifying
the development process. The FEAGI platform enables the
development of a CPG from a connectome for a unique model
grounded in neuroscience principles. For this purpose, we have
chosen the Petoi Bittle X for its open-source code and ESP-32
microcontroller, enabling serial communication via physical
and Bluetooth connection. Moreover, we have chosen the
Opal Kelly XEM7310 for its high-abstraction communication
methods over serial protocol.
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In summary, we propose an approach to robotic locomotion
found in biological control systems for spiking neurons. An
overview of this design is show in Fig. 1. To our knowledge,
this is the first design process of this nature with support from
a large and ever-growing user base of open-source tools with
FEAGTI and Petoi.

This paper is organized as follows. In Section II, we discuss
the background on the neuron model and specific CPG net-
work. Section IIT will provide details on the implementation
using the FPGA development board and Petoi robot, as well
as the overall design of the system. In Section IV, we discuss
performance and benchmarking results. Finally, in section V,
we reflect on our results.

II. BACKGROUND

A core motivation in the exploration of this work is to
develop a bio-mimetic CPG system that can be easily scaled
to high-volume applications. For this, we have taken care to
design a system at multiple scales of abstraction.

First, we discuss the decision to implement the Leaky
Integrate and Fire (LIF) neuron over other more accurate
models. Furthermore, we extend this to an 18-neuron CPG
network for a bipedal robot with discussion on the manner of
control and capacity for reconfiguration.

A. Leaky Integrate-and-Fire Neuron Model

In both neuroscience and neuromorphic engineering, the
study of neuron models has been a thoroughly discussed
topic. For neuroscientists, a model that provides an elegant yet
exhaustive description of the underlying mechanisms within
and around the neuron is key. In related work [3], we explore
a bursting neuron model for a CPG controller with the Petoi
robot. This model, while more bio-realistic, presents a burden
on the computational resources of it’s platform. In this vein,
engineers must work with the design constraints of their given
domain. For this work, it is critical to balance bio-realism with
simplicity. Considerations for selecting a model include digital
footprint, complexity, and desired spiking behavior. We aim
to capitalize on a small digital footprint with low complexity
by using regular spiking behavior [4]. For this, we chose the
Leaky Integrate and Fire (LIF) neuron model. The LIF neuron
model capitalizes on the fact that the behavior of the action
potential is roughly the same across any given neuron [5].
Therefore, information is transmitted through spike outputs,
rather than the shape of the action potential. This simplifies
the model to be described by (1).

du
T 4 = —[u(t) = we] + RIY) )
t

Where the membrane potential u(f) returns to t.s: when
it reaches or exceeds the threshold voltage 6. In the scope of
electrical engineering, this is a leaky RC-circuit evolves over
time, governed by the time constant t,, where R and C are
in parallel.
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Fig. 2. (a) CPG Network Architecture and (b) Rythmic Timing Diagram.
Here the naming convention is as follows: FLT is Front Left Top, FLB is
Front Left Bottom, FRT is Front Right Top, FRB is Front Right Bottom, BLT
is Back Left Top, BLB is Back Left Bottom, BRT is Back Right Top, BRB
is Back Right Bottom. In (a), the suffixes B and F represent backward and
forward respectively. Solid lines represent excitatory connections and dotted
lines for inhibitory. In (b), blue events represent forward spikes and orange
events backward.
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B. Bipedal Locomotion using CPGs

Central pattern generators (CPGs) are self-contained net-
works of neurons responsible for various unconscious tasks
in organisms. Neuroscientists have observed their role in
biological processes such as breathing, chewing, and, most
relevant to this work, locomotion. In one exploration, scientists
fabricated a silicon chip to control spinal cords in lampreys,
proving the fundamental reasoning that CPGs can be modeled
using electrical systems [6]. In another study, researchers
explore complex bipedal locomotion through a hierarchical
model, with a top-level controller for synchronization and
modulation and a low-level for joint control [7]. This provided
the modality for precise movement, while maintaining compo-
sure in the whole system. For this work’s implementation of
bipedal locomotion, we model the system using 16 neurons:
each leg is represented by four neurons, corresponding to the
top and bottom joints. Each joint has two neurons, one for
forward motion and one for backward motion. Additionally,
we incorporate two control neurons — start and stop — to
activate and inhibit the network.

As shown in Fig. 2(a), each leg consists of a cluster of
four neurons. The spiking activity propagates in a specific
sequence: top forward, bottom forward, top backward, and
bottom backward. Moreover, the forward and backward mo-
tions of the opposing legs are coupled so that the front left
and back right legs move in sync, while the front right and
back left legs move in sync but out of phase with the first
pair. This configuration produces a trotting gait pattern with
four distinct states. Additionally, the forward-bottom neurons
in each leg excite the forward-top neurons in the same-side-
leg cluster. So, the FLB neuron excites the BL-cluster and the
BLB neuron excites the FL-cluster, and similarly for the FR
and BR clusters. To initialize movement, the start neuron first
excites the clusters controlling the front-right and back-left
legs. To stop, the stop neuron inhibits the four forward-acting
neurons.

This behavior is further observed in Fig. 2(b) where the
network begins with the FRT and BLT neurons exciting
proceeding neurons which then in turn excite other clusters
in the network.

C. FEAGI Interface

FEAGI [8], [9] (Framework for Evolutionary Artificial
General Intelligence) is an open-source neuromorphic software
platform that facilitates the rapid design and development of
brain-inspired control systems. Built on the foundational prin-
ciples of spiking neural networks, FEAGI employs event-based
computation alongside a user-friendly, no-code interface. This
combination enables intuitive design, development, and inte-
gration of adaptable learning systems capable of controlling
both physical and simulated embodiments.

At the core of FEAGI’s architecture is the concept of the
artificial genome, a dense data structure that encodes the
spiking neural network’s structure, mappings, parameters, and
configurations through indirect encoding. This genome serves
as a blueprint for the neural network, enabling intricate spatial

mappings between layers of neurons, much like how biological
neurons project axons to target neurons. These mappings
allow for flexible and complex neural connectivity, which
can be fine-tuned for different applications. The platform is
designed in a modular fashion, where microcircuits — bundled
as distinct brain regions — act as building blocks that can be
assembled into larger, more sophisticated neural circuits. The
comprehensive data structure that details individual neurons,
synapses, and their run-time state parameters is referred to as
the connectome.

In this project, we used the web-based version of FEAGI,
known as Neurorobotics Studio (NRS), to design, develop,
and tune a CPG network. NRS provided an intuitive 3D brain
visualizer, which we utilized to create independent motor
neurons packaged as isolated nodes, referred to as cortical
areas. Our chosen embodiment, the Petoi robot dog, features
four legs, each controlled by two servomotors. To achieve
effective motor control, we allocate two motor neurons to each
servo: for moving the servo forward and backward. Once all
motor neurons were defined, we use circuit builder in FEAGI
to establish the synaptic mappings necessary to form the CPG
network. As depicted in Fig. 3, excitatory connections, in
green, were used to link motor neurons, forming the core of
the CPG network. To enable the ability to stop the network, we
added inhibitory connections, in red, to select motor neurons.
These were activated by a neuron responsible for issuing the
stop command, ensuring precise control over motor activity.

III. IMPLEMENTATION
A. Modified LIF Neuron Model

As discussed, we have chosen the LIF neuron for our
implementation of a CPG network. As it stands, we do not
need to compute the decay using an exponential function,
instead considering the next-state value of the potential as a
factor of the previous state in addition to the input current. So,
the solution for the next state value of the membrane potential
u(t+ 1) can be further simplified into the form of (2).

u(t+ 1) = It) + Bu(d) )

The membrane potential wu(f) decays at a rate of 8 without
input. With an input current I{£) being a weighted sum of each
synaptic current with its weight. When the threshold voltage
6 is reached, u(f) is reset to 0 and a spike event is assigned to
the output. The following high-level circuit diagram outlines
the behavior of this neuron.

As seen in Fig. 4, the neuron can be reduced to a multi-
plexer, comparator, and flip-flop. The MUX is controlled by
the presence of a spike at the current time step. The comparator
will output high when u(f) is greater than 6, otherwise it will
remain low.

B. CPG Architecture on FPGA

For this work, we selected the Opal Kelly XEM7310 devel-
opment board, which integrates the Artix-7 FPGA along with
various peripherals and external hardware interfaces. The Opal
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Fig. 3. CPG circuit representation in FEAGI environment showing the neuron inputs and outputs.
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Fig. 4. Modified Leaky Integrate and Fire Circuit Diagram.

Kelly platform offers notable flexibility, particularly through
its Python API and Verilog modules, which streamline serial
communication, deployment, and testing of our CPG model.
The network is uniquely fitted for an FPGA. As mentioned, the
modified LIF neuron has been tailored to reduce computational
resource demands.

Moreover, our architecture leverages a modular design
methodology that allows for minimal additional hardware to
operate well. Essentially, the top-level model encapsulates all
18 neurons with input, output, and internal connections. This
intention allows the network to be rewired if a different gait
pattern is desired. Finally, this design framework paves the
way for the potential development of a script that automates
the generation of key network topologies, thereby reducing
the need for direct implementation in hardware description
languages such as Verilog or VHDL.

For deployment on an FPGA, our design includes a counter
module that steps down the internal clock on the development
board by a tunable scale. This counter is adjustable in real-
time with a 32-bit threshold value that when reached releases
a single clock pulse to the CPG. The XEM7310 board houses
a 200MHz clock oscillator. So, with the counter, this network
has an operating range from 5ns to roughly 21s. However,

for a typical gait, the time-scale runs in the range of tens to
hundreds of milliseconds.

C. Communication with the Petoi Bittle X

The Petoi Bittle X is a quadruped robotic pet built on the
open-source OpenCat software framework [10]. We selected
this platform for its accessibility and its active user base.
The Bittle X is powered by an ESP32 microcontroller, which
supports SPI protocol, USB-C, and Bluetooth connectivity.
Furthermore, the OpenCat documentation provides a compre-
hensive list of serial commands and predefined functions for
various gait patterns and actions.

To facilitate communication between the FPGA and the
Petoi robot, we use a PC as an intermediary. The PC runs a
Python script that translates the spike outputs from the FPGA
into commands for the ESP32. Our network topology defines
six states—four for gait patterns and two for starting and
stopping movement. The PC periodically polls the FPGA for
changes in the bitstream; if a change is detected, it encodes
the new state into angles for the robot’s eight servomotors
(two per leg). These commands are then sent to the ESP32,
which adjusts the servomotor angles accordingly. This setup
is demonstrated in Fig. 5 where the FPGA and Bittle X are
connected to the PC via USB-C SPI. Here, the FPGA is
controlled over SPI by setting and resetting the reset pins,
start and stop neurons. The output spikes are read using a
Python script as a stream of 16 bit binary values and decoded
into the spike-out values from each motor neuron.

IV. RESULTS
A. Comparison of Platforms

To better understand the leverage FPGAs provide over
traditional CPU based motor controllers, we must quantify this
by implementing a similar SNN model implementing with a
variable size. In doing so, we have designed a comparable
model in software using Python with which we can compare
the latency and utilization of SNNs on hardware and software.
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Fig. 5. Event plot from FPGA data stream and deployment setup. The naming and coloring conventions remain the same as in Fig. 2(b). The start neuron
excites the network, initializing motion in the robot. This continues for multiple iterations of the gait denoted by dark verticle lines every 400 time stepsuntil
the stop neuron inhibits the forward acting neurons. The residual spikes propagate through the network and motion stops.

TABLE 1
COMPARISON OF CPG IMPLEMENTATIONS ON FPGA

Paper Neuron Model Neurons Synapses LUTs FFs Utilization = Deployed
Rostro-Gonzalez [2] glF 12 20 796 449 0.88% v
Ambroise [11] IZH 8 14 1037 1093 1.50% X
Chen [12] Modified KK 2 2 27,872 533 20.0% X
This Work Modified LIF 18 30 813 989 1.30% v

Scalability ot LIF Network

-
2}
—_ I_ (‘I'l' I I I , x :
= 10 F== cprU Trend 7]
— [ FPGA Trend ]
£ L X rraa 1
g= [ X Final Design i
S ]
> [ 2
0t x M [ B 1
0 50 100 150 200
# of Neurons

Fig. 6. Latency and utilization metrics on CPU and FPGA implementations

For valid readings, we employ the following test bench.
We first sweep across a range of various model sizes. Then,
we let the network run for 6000 time steps and measure the
latency and CPU utilization for each step. To measure latency,
we take the difference in time for all neurons to compute
a step. For CPU utilization, we take the raw output of the
Python function psutil.cpu percent () and divideitby
the number of CPU cores using os.cpu_count (). Finally,
we get a mean over the entire runtime of the test. We do this
for each model size to get a sweep between 1 to 200 neurons.
In this exploration, we used a Surface Pro 9 with a /2th Gen
Intel(R) Core(TM) i7-1255U, with a 2600 Mhz clock, 10 cores,
and 12 logical processors.

To gather the metrics from the FPGA implementation, we
designed a scalable dummy SNN that generates a variable
amount of LIF neuron modules in Verilog. Then, we run
synthesis and implementation in Vivado without optimizations
so as to allow the hardware and software models to be
relatively equal in complexity. For increasing model size, we
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select a subset of neuron counts between 1 and 200. To
measure latency, we obverse the time in simulation to compute
a single step for the network — noting the number of cycles —
then, using the physical clock frequency, we have the latency
of one clock cycle, with the latency being the clock period
multiplied by the number of periods per time step. To measure
hardware utilization, we take the sum of utilized look-up tables
(LUTs) and flip-flops (FFs), often reported as registers, and
divide it by the sum of each total. For the XEM7310-A75
development board, there are 47200 LUTs and 94400 FFs
respectively.

The results of this can be visualized in Fig. 6. Here, the
solid black lines denote the software metrics with the red
X’s and dotted lines for hardware measurements and trend
lines, respectively. In both plots, the green x marker indicates

the final post-optimization CPG design of 18 neurons. In the
utilization plot, the blue dotted line shows the software trend.

As demonstrated in this test bench, we observe a clear trend
that is forming. Most evidently, in terms of run-time, the FPGA
implementation of the network starkly eclipses the software
model at all timescales. This is expected as we can deduce
from the logic for calculating the next-state values of each
neuron. Within each module, the computations are entirely

combinational, therefore occurring in a single clock cycle.
Moreover, all neuron computations occur in parallel, resulting
in the run-time of the model being O(1) — solely dependent
on the frequency of the physical clock on the FPGA.

In terms of resource utilization, we observe equally in-
teresting behavior. Initially, hardware utilization outperforms
software marginally. However, as the model increases in size,
the software implementation tends to slightly outpace that of
the hardware — roughly occurring at 125 neurons. This is crit-
ical to note that while both implementations’ utilization scale
linearly in terms of model size, they do not scale proportional
to each other. We must also consider that the CPU benchmark
is done on an exceptional personal computer, so these results
may vary slightly in terms of empirical data whether done on
a dedicated system or not; however, the linear trend would
remain the same across all CPU implementations. Moreover,
this does not account for the optimizations from synthesis
and implementation that are disabled in this benchmark. For
example, the final 18 neuron model slightly outperforms the
16 neuron model without optimizations, so one could surmise
that similar reductions would propagate as the model increased
in size.

B. Comparison of Works

We show a comparison among works in Table. I. Here, we
calculate utilization in terms of the total logical components
in the FPGA in this work. In [2], researchers implement a
generalized Integrate-and-Fire model(gIF) in a 12 neuron, 20
synapse CPG network for Hexapod robot and report a usage
of 796 look-up tables and 449 flip-flops. While this work’s
model is noticeably larger, at 18 neurons and 30 synapses, we
manage to perform equivalently in terms of resources. Other
works aim to implement more bio-accurate neuron models.

In [11], [12] researchers implement an Izhikevich (IZH) and
modified Komendantov—Kononenko (KK) model respectively.
Each provides more realistic biomechanical behavior — aiming
to implement bursting neuron models. However, they use
significantly more resources for the FPGA, limiting their
scalability to larger models and deployment to hardware.

In addition to computational resources, we examined the
timing restraints of the network when communicating over a
serial connection. To do this, we modified the CPG clock speed
in real time by modifying the count threshold. We swept from
a latency of 168ms (6Hz) down to 5.25ms (200Hz) without
noticing any delay in command execution. This benchmark
was not noted in any of the mentioned works, but it is
crucial as the obvious bottleneck of the network would be
the limitations of communication between the FPGA and
servomotors. A video demonstration of this test is available
at https://youtu.be/gx WJllkS5rwg.

V. CONCLUSION

In this work, we have presented a process to design,
implement, and deploy a Central Pattern Generator network for
bipedal locomotion using an accessible connectome model and
open-source tools. By leveraging the FEAGI interface and the
Petoi Bittle X platform—both widely available and accessible
to general consumers—we aim to lower the entry barrier for
software engineers interested in exploring the field of robotics
and neuromorphic systems.

Our model is designed to be easily scalable, accommo-
dating larger networks and allowing for adjustable gaits and
speeds, which provides a flexible foundation for more complex
locomotion tasks. Additionally, we utilize a modified Leaky
Integrate-and-Fire neuron model with a reduced digital foot-
print, optimized specifically for FPGA hardware deployment.
This approach achieves a higher level of performance and
adaptability than is typically feasible with a consumer-grade
microcontroller, positioning this system as an ideal platform
for developers looking to explore robotics at a low level.

Through rigorous technical benchmarking, we have proven
that this model consistently outperforms or keeps pace with
current solutions on both hardware and software. This is a
result of the unique characteristic of trading an increased
utilization for higher throughput via parallelization native to
FPGA architecture.

Beyond technical achievements, our work emphasizes the
potential of modular neuron-level control, empowering devel-
opers to experiment with custom connectome designs. The in-
tegration of open-source tools like FEAGI and the Petoi robot
offers unprecedented opportunities to open access to advanced
robotics concepts and to inspire innovation in neuromorphic
engineering, where networks can be configured and adapted
for varied applications in both research and industry.

Overall, this work not only showcases the feasibility of
deploying complex neural models on accessible hardware but
also highlights the potential for collaborative, open-source
approaches in the advancement of robotics and neuroscience.
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