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Abstract—Movement control in autonomous robots requires 

low-power, real-time models, especially for bio-mimetic loco- 
motion in challenging terrains. Human intervention is often 
impractical in such environments, making specialized neural 
networks like central pattern geterators critical for offloading 
computational resources. This paper presents a controller for a 
bipedal robot using a modified spiking neuron model, adapted 
for efficient deployment on field-programmable gate arrays. 
Key modifications were made to ensure lightweight, real-time 
performance. Additionally, we leverage a unique open-source 
neuromorphic software platform for the network design and 
deployment, making the technology accessible to developers 
aiming to implement autonomous robot locomotion. 

 
Index Terms—Central Pattern Generators, Spiking Neural 

Networks, Field Programmable Gate Array, Neuromorphic Com- 
puting, Neuromorphic Hardware, Robotics 

 
I. INTRODUCTION 

In the swiftly advancing field of robotics, locomotion con- 
tinues to be a point of constant breakthroughs. In a com- 
petitive field, successful deployment often depends on their 
ability to traverse in diverse environmental conditions. This 
can improve through two factors – adaptability and power 
consumption. This is especially true for robots aiming to 
be highly autonomous or deployed in situations where it is 
unsafe for humans, such as space or collapsing buildings. Here, 
robots need to dynamically change their trajectory, speed, 
or even means of locomotion. Furthermore, these systems 
need to operate at low power, such that the robot does not 
deplete its battery in a location where it cannot communicate 
or return safely. Central pattern generators (CPGs) offer a 
control system that delivers both adaptability and efficient 
power consumption. 

The concept of CPGs first emerged in the early 1900s by 
physiologist Thomas Graham Brown as a network of self- 
governing neurons [1]. These neural networks – within the 
nervous system – could take input from external inputs and 
execute control signals for locomotion. CPGs could provide 
dynamically evolving movement patterns independent of the 
brain, allowing the organism to put more attention into higher 
need tasks. In terms of hardware systems, the decoupling of 
locomotion from the brain is important for biological systems 
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Fig. 1. Top Level Diagram showing the connections between the XEM7310, 
FEAGI interface, and Petoi Bittle X over SPI 

 
as it allows movement to occur as a subtask for the body rather 
than requiring full attention. This concept led CPGs to be an 
ideal motor controller for robotic locomotion. 

In the past decade, researchers have implemented and de- 
ployed CPGs with different methods, namely spiking CPGs. 
Furthermore, research has identified Field Programmable Gate 
Arrays (FPGAs) as an ideal platform for a controller as they 
are reconfigurable, high-speed, and low power [2]. This paper 
aims to build on those ideas in previous works to develop a 
more streamlined and accessible FPGA-based solution using 
the open-source neuromorphic platform FEAGI (Framework 
for Evolutionary Artificial General Intelligence) as a basis for 
the network. FEAGI is an open-source spiking neural network 
simulator designed for rapid prototyping of neural circuits to 
control embodied systems. Its no-code interface was used to 
design, visualize, and fine-tune the CPG network, simplifying 
the development process. The FEAGI platform enables the 
development of a CPG from a connectome for a unique model 
grounded in neuroscience principles. For this purpose, we have 
chosen the Petoi Bittle X for its open-source code and ESP-32 
microcontroller, enabling serial communication via physical 
and Bluetooth connection. Moreover, we have chosen the 
Opal Kelly XEM7310 for its high-abstraction communication 
methods over serial protocol. 
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In summary, we propose an approach to robotic locomotion 
found in biological control systems for spiking neurons. An 
overview of this design is show in Fig. 1. To our knowledge, 
this is the first design process of this nature with support from 
a large and ever-growing user base of open-source tools with 
FEAGI and Petoi. 

This paper is organized as follows. In Section II, we discuss 
the background on the neuron model and specific CPG net- 
work. Section III will provide details on the implementation 
using the FPGA development board and Petoi robot, as well 
as the overall design of the system. In Section IV, we discuss 
performance and benchmarking results. Finally, in section V, 
we reflect on our results. 

 
II. BACKGROUND 

A core motivation in the exploration of this work is to 
develop a bio-mimetic CPG system that can be easily scaled 
to high-volume applications. For this, we have taken care to 
design a system at multiple scales of abstraction. 

First, we discuss the decision to implement the Leaky 
Integrate and Fire (LIF) neuron over other more accurate 
models. Furthermore, we extend this to an 18-neuron CPG 
network for a bipedal robot with discussion on the manner of 
control and capacity for reconfiguration. 

 

A. Leaky Integrate-and-Fire Neuron Model 

In both neuroscience and neuromorphic engineering, the 
study of neuron models has been a thoroughly discussed 
topic. For neuroscientists, a model that provides an elegant yet 
exhaustive description of the underlying mechanisms within 
and around the neuron is key. In related work [3], we explore 
a bursting neuron model for a CPG controller with the Petoi 
robot. This model, while more bio-realistic, presents a burden 
on the computational resources of it’s platform. In this vein, 
engineers must work with the design constraints of their given 
domain. For this work, it is critical to balance bio-realism with 
simplicity. Considerations for selecting a model include digital 
footprint, complexity, and desired spiking behavior. We aim 
to capitalize on a small digital footprint with low complexity 
by using regular spiking behavior [4]. For this, we chose the 
Leaky Integrate and Fire (LIF) neuron model. The LIF neuron 
model capitalizes on the fact that the behavior of the action 
potential is roughly the same across any given neuron [5]. 
Therefore, information is transmitted through spike outputs, 
rather than the shape of the action potential. This simplifies 
the model to be described by (1). 

du 

 

 
(a) CPG Network Architecture 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) Rythmic Timing Diagram for Gait Pattern 

Fig. 2. (a) CPG Network Architecture and (b) Rythmic Timing Diagram. 
Here the naming convention is as follows: FLT is Front Left Top, FLB is 
Front Left Bottom, FRT is Front Right Top, FRB is Front Right Bottom, BLT 
is Back Left Top, BLB is Back Left Bottom, BRT is Back Right Top, BRB 
is Back Right Bottom. In (a), the suffixes B and F represent backward and 

τm = −[u(t) − urest] + RI(t) (1) 
dt 

forward respectively. Solid lines represent excitatory connections and dotted 
lines for inhibitory. In (b), blue events represent forward spikes and orange 
events backward. 

Where the membrane potential u(t) returns to urest when 
it reaches or exceeds the threshold voltage θ. In the scope of 
electrical engineering, this is a leaky RC-circuit evolves over 
time, governed by the time constant τm, where R and C are 
in parallel. 
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B. Bipedal Locomotion using CPGs 
Central pattern generators (CPGs) are self-contained net- 

works of neurons responsible for various unconscious tasks 
in organisms. Neuroscientists have observed their role in 
biological processes such as breathing, chewing, and, most 
relevant to this work, locomotion. In one exploration, scientists 
fabricated a silicon chip to control spinal cords in lampreys, 
proving the fundamental reasoning that CPGs can be modeled 
using electrical systems [6]. In another study, researchers 
explore complex bipedal locomotion through a hierarchical 
model, with a top-level controller for synchronization and 
modulation and a low-level for joint control [7]. This provided 
the modality for precise movement, while maintaining compo- 
sure in the whole system. For this work’s implementation of 
bipedal locomotion, we model the system using 16 neurons: 
each leg is represented by four neurons, corresponding to the 
top and bottom joints. Each joint has two neurons, one for 
forward motion and one for backward motion. Additionally, 
we incorporate two control neurons – start and stop – to 
activate and inhibit the network. 

As shown in Fig. 2(a), each leg consists of a cluster of 
four neurons. The spiking activity propagates in a specific 
sequence: top forward, bottom forward, top backward, and 
bottom backward. Moreover, the forward and backward mo- 
tions of the opposing legs are coupled so that the front left 
and back right legs move in sync, while the front right and 
back left legs move in sync but out of phase with the first 
pair. This configuration produces a trotting gait pattern with 
four distinct states. Additionally, the forward-bottom neurons 
in each leg excite the forward-top neurons in the same-side- 
leg cluster. So, the FLB neuron excites the BL-cluster and the 
BLB neuron excites the FL-cluster, and similarly for the FR 
and BR clusters. To initialize movement, the start neuron first 
excites the clusters controlling the front-right and back-left 
legs. To stop, the stop neuron inhibits the four forward-acting 
neurons. 

This behavior is further observed in Fig. 2(b) where the 
network begins with the FRT and BLT neurons exciting 
proceeding neurons which then in turn excite other clusters 
in the network. 

C. FEAGI Interface 
FEAGI [8], [9] (Framework for Evolutionary Artificial 

General Intelligence) is an open-source neuromorphic software 
platform that facilitates the rapid design and development of 
brain-inspired control systems. Built on the foundational prin- 
ciples of spiking neural networks, FEAGI employs event-based 
computation alongside a user-friendly, no-code interface. This 
combination enables intuitive design, development, and inte- 
gration of adaptable learning systems capable of controlling 
both physical and simulated embodiments. 

At the core of FEAGI’s architecture is the concept of the 
artificial genome, a dense data structure that encodes the 
spiking neural network’s structure, mappings, parameters, and 
configurations through indirect encoding. This genome serves 
as a blueprint for the neural network, enabling intricate spatial 

mappings between layers of neurons, much like how biological 
neurons project axons to target neurons. These mappings 
allow for flexible and complex neural connectivity, which 
can be fine-tuned for different applications. The platform is 
designed in a modular fashion, where microcircuits – bundled 
as distinct brain regions – act as building blocks that can be 
assembled into larger, more sophisticated neural circuits. The 
comprehensive data structure that details individual neurons, 
synapses, and their run-time state parameters is referred to as 
the connectome. 

In this project, we used the web-based version of FEAGI, 
known as Neurorobotics Studio (NRS), to design, develop, 
and tune a CPG network. NRS provided an intuitive 3D brain 
visualizer, which we utilized to create independent motor 
neurons packaged as isolated nodes, referred to as cortical 
areas. Our chosen embodiment, the Petoi robot dog, features 
four legs, each controlled by two servomotors. To achieve 
effective motor control, we allocate two motor neurons to each 
servo: for moving the servo forward and backward. Once all 
motor neurons were defined, we use circuit builder in FEAGI 
to establish the synaptic mappings necessary to form the CPG 
network. As depicted in Fig. 3, excitatory connections, in 
green, were used to link motor neurons, forming the core of 
the CPG network. To enable the ability to stop the network, we 
added inhibitory connections, in red, to select motor neurons. 
These were activated by a neuron responsible for issuing the 
stop command, ensuring precise control over motor activity. 

III. IMPLEMENTATION 
A. Modified LIF Neuron Model 

As discussed, we have chosen the LIF neuron for our 
implementation of a CPG network. As it stands, we do not 
need to compute the decay using an exponential function, 
instead considering the next-state value of the potential as a 
factor of the previous state in addition to the input current. So, 
the solution for the next state value of the membrane potential 
u(t + 1) can be further simplified into the form of (2). 

 
u(t + 1) = I(t) + βu(t) (2) 

The membrane potential u(t) decays at a rate of β without 
input. With an input current I(t) being a weighted sum of each 
synaptic current with its weight. When the threshold voltage 
θ is reached, u(t) is reset to 0 and a spike event is assigned to 
the output. The following high-level circuit diagram outlines 
the behavior of this neuron. 

As seen in Fig. 4, the neuron can be reduced to a multi- 
plexer, comparator, and flip-flop. The MUX is controlled by 
the presence of a spike at the current time step. The comparator 
will output high when u(t) is greater than θ, otherwise it will 
remain low. 

B. CPG Architecture on FPGA 
For this work, we selected the Opal Kelly XEM7310 devel- 

opment board, which integrates the Artix-7 FPGA along with 
various peripherals and external hardware interfaces. The Opal 
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Fig. 3. CPG circuit representation in FEAGI environment showing the neuron inputs and outputs. 

 
 

 
 

Fig. 4. Modified Leaky Integrate and Fire Circuit Diagram. 
 
 

Kelly platform offers notable flexibility, particularly through 
its Python API and Verilog modules, which streamline serial 
communication, deployment, and testing of our CPG model. 
The network is uniquely fitted for an FPGA. As mentioned, the 
modified LIF neuron has been tailored to reduce computational 
resource demands. 

Moreover, our architecture leverages a modular design 
methodology that allows for minimal additional hardware to 
operate well. Essentially, the top-level model encapsulates all 
18 neurons with input, output, and internal connections. This 
intention allows the network to be rewired if a different gait 
pattern is desired. Finally, this design framework paves the 
way for the potential development of a script that automates 
the generation of key network topologies, thereby reducing 
the need for direct implementation in hardware description 
languages such as Verilog or VHDL. 

For deployment on an FPGA, our design includes a counter 
module that steps down the internal clock on the development 
board by a tunable scale. This counter is adjustable in real- 
time with a 32-bit threshold value that when reached releases 
a single clock pulse to the CPG. The XEM7310 board houses 
a 200MHz clock oscillator. So, with the counter, this network 
has an operating range from 5ns to roughly 21s. However, 

for a typical gait, the time-scale runs in the range of tens to 
hundreds of milliseconds. 

C. Communication with the Petoi Bittle X 
The Petoi Bittle X is a quadruped robotic pet built on the 

open-source OpenCat software framework [10]. We selected 
this platform for its accessibility and its active user base. 
The Bittle X is powered by an ESP32 microcontroller, which 
supports SPI protocol, USB-C, and Bluetooth connectivity. 
Furthermore, the OpenCat documentation provides a compre- 
hensive list of serial commands and predefined functions for 
various gait patterns and actions. 

To facilitate communication between the FPGA and the 
Petoi robot, we use a PC as an intermediary. The PC runs a 
Python script that translates the spike outputs from the FPGA 
into commands for the ESP32. Our network topology defines 
six states—four for gait patterns and two for starting and 
stopping movement. The PC periodically polls the FPGA for 
changes in the bitstream; if a change is detected, it encodes 
the new state into angles for the robot’s eight servomotors 
(two per leg). These commands are then sent to the ESP32, 
which adjusts the servomotor angles accordingly. This setup 
is demonstrated in Fig. 5 where the FPGA and Bittle X are 
connected to the PC via USB-C SPI. Here, the FPGA is 
controlled over SPI by setting and resetting the reset pins, 
start and stop neurons. The output spikes are read using a 
Python script as a stream of 16 bit binary values and decoded 
into the spike-out values from each motor neuron. 

IV. RESULTS 
A. Comparison of Platforms 

To better understand the leverage FPGAs provide over 
traditional CPU based motor controllers, we must quantify this 
by implementing a similar SNN model implementing with a 
variable size. In doing so, we have designed a comparable 
model in software using Python with which we can compare 
the latency and utilization of SNNs on hardware and software. 
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Fig. 5. Event plot from FPGA data stream and deployment setup. The naming and coloring conventions remain the same as in Fig. 2(b). The start neuron 
excites the network, initializing motion in the robot. This continues for multiple iterations of the gait denoted by dark verticle lines every 400 time stepsuntil 
the stop neuron inhibits the forward acting neurons. The residual spikes propagate through the network and motion stops. 

 
TABLE I 

COMPARISON OF CPG IMPLEMENTATIONS ON FPGA 
 

Paper Neuron Model Neurons Synapses LUTs FFs Utilization Deployed 

Rostro-Gonzalez [2] gIF 12 20 796 449 0.88% ✓ 
Ambroise [11] IZH 8 14 1037 1093 1.50% X 
Chen [12] Modified KK 2 2 27,872 533 20.0% X 
This Work Modified LIF 18 30 813 989 1.30% ✓ 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 6. Latency and utilization metrics on CPU and FPGA implementations 

For valid readings, we employ the following test bench. 
We first sweep across a range of various model sizes. Then, 
we let the network run for 6000 time steps and measure the 
latency and CPU utilization for each step. To measure latency, 
we take the difference in time for all neurons to compute 
a step. For CPU utilization, we take the raw output of the 
Python function psutil.cpu_percent() and divide it by 
the number of CPU cores using os.cpu_count(). Finally, 
we get a mean over the entire runtime of the test. We do this 
for each model size to get a sweep between 1 to 200 neurons. 
In this exploration, we used a Surface Pro 9 with a 12th Gen 
Intel(R) Core(TM) i7-1255U, with a 2600 Mhz clock, 10 cores, 
and 12 logical processors. 

To gather the metrics from the FPGA implementation, we 
designed a scalable dummy SNN that generates a variable 
amount of LIF neuron modules in Verilog. Then, we run 
synthesis and implementation in Vivado without optimizations 
so as to allow the hardware and software models to be 
relatively equal in complexity. For increasing model size, we 
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select a subset of neuron counts between 1 and 200. To 
measure latency, we obverse the time in simulation to compute 
a single step for the network – noting the number of cycles – 
then, using the physical clock frequency, we have the latency 
of one clock cycle, with the latency being the clock period 
multiplied by the number of periods per time step. To measure 
hardware utilization, we take the sum of utilized look-up tables 
(LUTs) and flip-flops (FFs), often reported as registers, and 
divide it by the sum of each total. For the XEM7310-A75 
development board, there are 47200 LUTs and 94400 FFs 
respectively. 

The results of this can be visualized in Fig. 6. Here, the 
solid black lines denote the software metrics with the red 

X’s and dotted lines for hardware measurements and trend 
lines, respectively. In both plots, the green x marker indicates 
the final post-optimization CPG design of 18 neurons. In the 

utilization plot, the blue dotted line shows the software trend. 
As demonstrated in this test bench, we observe a clear trend 

that is forming. Most evidently, in terms of run-time, the FPGA 
implementation of the network starkly eclipses the software 
model at all timescales. This is expected as we can deduce 
from the logic for calculating the next-state values of each 
neuron. Within each module, the computations are entirely 
combinational, therefore occurring in a single clock cycle. 
Moreover, all neuron computations occur in parallel, resulting 
in the run-time of the model being O(1) – solely dependent 

on the frequency of the physical clock on the FPGA. 
In terms of resource utilization, we observe equally in- 

teresting behavior. Initially, hardware utilization outperforms 
software marginally. However, as the model increases in size, 
the software implementation tends to slightly outpace that of 
the hardware – roughly occurring at 125 neurons. This is crit- 
ical to note that while both implementations’ utilization scale 
linearly in terms of model size, they do not scale proportional 
to each other. We must also consider that the CPU benchmark 
is done on an exceptional personal computer, so these results 
may vary slightly in terms of empirical data whether done on 
a dedicated system or not; however, the linear trend would 
remain the same across all CPU implementations. Moreover, 
this does not account for the optimizations from synthesis 
and implementation that are disabled in this benchmark. For 
example, the final 18 neuron model slightly outperforms the 
16 neuron model without optimizations, so one could surmise 
that similar reductions would propagate as the model increased 
in size. 

B. Comparison of Works 
We show a comparison among works in Table. I. Here, we 

calculate utilization in terms of the total logical components 
in the FPGA in this work. In [2], researchers implement a 
generalized Integrate-and-Fire model(gIF) in a 12 neuron, 20 
synapse CPG network for Hexapod robot and report a usage 
of 796 look-up tables and 449 flip-flops. While this work’s 
model is noticeably larger, at 18 neurons and 30 synapses, we 
manage to perform equivalently in terms of resources. Other 
works aim to implement more bio-accurate neuron models. 

In [11], [12] researchers implement an Izhikevich (IZH) and 
modified Komendantov–Kononenko (KK) model respectively. 
Each provides more realistic biomechanical behavior – aiming 
to implement bursting neuron models. However, they use 
significantly more resources for the FPGA, limiting their 
scalability to larger models and deployment to hardware. 

In addition to computational resources, we examined the 
timing restraints of the network when communicating over a 
serial connection. To do this, we modified the CPG clock speed 
in real time by modifying the count threshold. We swept from 
a latency of 168ms (6Hz) down to 5.25ms (200Hz) without 
noticing any delay in command execution. This benchmark 
was not noted in any of the mentioned works, but it is 
crucial as the obvious bottleneck of the network would be 
the limitations of communication between the FPGA and 
servomotors. A video demonstration of this test is available 
at https://youtu.be/gxWJllk5rwg. 

 
V. CONCLUSION 

In this work, we have presented a process to design, 
implement, and deploy a Central Pattern Generator network for 
bipedal locomotion using an accessible connectome model and 
open-source tools. By leveraging the FEAGI interface and the 
Petoi Bittle X platform—both widely available and accessible 
to general consumers—we aim to lower the entry barrier for 
software engineers interested in exploring the field of robotics 
and neuromorphic systems. 

Our model is designed to be easily scalable, accommo- 
dating larger networks and allowing for adjustable gaits and 
speeds, which provides a flexible foundation for more complex 
locomotion tasks. Additionally, we utilize a modified Leaky 
Integrate-and-Fire neuron model with a reduced digital foot- 
print, optimized specifically for FPGA hardware deployment. 
This approach achieves a higher level of performance and 
adaptability than is typically feasible with a consumer-grade 
microcontroller, positioning this system as an ideal platform 
for developers looking to explore robotics at a low level. 

Through rigorous technical benchmarking, we have proven 
that this model consistently outperforms or keeps pace with 
current solutions on both hardware and software. This is a 
result of the unique characteristic of trading an increased 
utilization for higher throughput via parallelization native to 
FPGA architecture. 

Beyond technical achievements, our work emphasizes the 
potential of modular neuron-level control, empowering devel- 
opers to experiment with custom connectome designs. The in- 
tegration of open-source tools like FEAGI and the Petoi robot 
offers unprecedented opportunities to open access to advanced 
robotics concepts and to inspire innovation in neuromorphic 
engineering, where networks can be configured and adapted 
for varied applications in both research and industry. 

Overall, this work not only showcases the feasibility of 
deploying complex neural models on accessible hardware but 
also highlights the potential for collaborative, open-source 
approaches in the advancement of robotics and neuroscience. 
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