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ABSTRACT: We report the direct and accurate spectroscopic quantification of the inverted singlet−triplet gap in 1,3,4,6,9b-
pentaazaphenalene. This measurement is achieved by directly probing the lowest singlet and triplet states via high-resolution
cryogenic anion photoelectron spectroscopy. The assignment of the first excited singlet state is confirmed by visible absorption
spectroscopy in an argon matrix at 20 K. Our measurements yield an inverted singlet−triplet gap with ΔEST= −0.047(7) eV. The
accurate quantification of the singlet−triplet gap presented here allows for direct evaluation of various computational electronic
structure methods and highlights the critical importance of the proper description of the double excitation character of these
electronic states. Overall, this study validates the idea that despite Hund’s multiplicity rule, useful organic chromophores can have
inherently inverted singlet−triplet gaps.

The need to increase fluorescence efficiency in organic
light-emitting diodes has led to recent development of

chromophores with very small energy difference between the
lowest-energy singlet (S1) and triplet (T1) excited states
(commonly termed the singlet−triplet gap, ΔEST).

1−3 In a
typical closed-shell organic molecule, T1 is lower in energy
than S1, as stated by Hund’s multiplicity rule.4 Reducing the
energy gap between them thus minimizes the loss of excitation
energy via the triplet channel by allowing for additional
thermally activated delayed fluorescence (TADF) via reverse
intersystem crossing, i.e., from T1 to S1. For a simplified two-
electron, two-orbital system, ΔEST is proportional to the
exchange integral between the two orbitals composing the
system.5 Hund’s multiplicity rule applies in this case because
the exchange integral can only be positive. A small ΔEST can be
achieved by minimizing the spatial overlap between the
HOMO and LUMO, which minimizes the exchange integral.6

For traditional TADF emitters, this condition is achieved by
having spatially separated electron donor and acceptor groups
resulting in excitation with significant charge transfer-
character.2,3 While the simplified picture is useful for the
design of emitters, a more accurate model of ΔEST, which can
account for efficient fluorescence and reverse intersystem
crossing, must also include contributions from states with local
excitation character.7

More recently, a different type of chromophore design is
being explored in which a minimal exchange integral is
achieved by localizing the HOMO and LUMO electron
densities on alternating atoms in the molecule.8−13 The
azaphenalenes, shown in Figure 1, are the most widely studied
prototypical molecules exhibiting this characteristic. Intrigu-
ingly, many recent computational studies8,14−22 on azaphena-
lenes predict a negative ΔEST, i.e., where S1 is slightly lower in
energy than T1. The potential for a molecule to break Hund’s
multiplicity rule has been known for a long time.5 Spin

polarization effects23,24 can overcome a small exchange integral
and cause inversion of the two states. In terms of modern
electronic structure theory, a negative ΔEST can result from the
contribution of doubly excited electronic configurations
preferentially stabilizing the S1 state over the T1 state.25
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Figure 1. Chemical structures of the azaphenalene family and 5AP.
HOMO and LUMO depictions of 5AP.

Communicationpubs.acs.org/JACS

© 2024 American Chemical Society
15688

https://doi.org/10.1021/jacs.4c05043
J. Am. Chem. Soc. 2024, 146, 15688−15692

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
W

IS
C

O
N

SI
N

-M
A

D
IS

O
N

 o
n 

Ju
ne

 1
2,

 2
02

4 
at

 2
0:

28
:1

0 
(U

TC
).

Se
e 

ht
tp

s:
//p

ub
s.a

cs
.o

rg
/s

ha
rin

gg
ui

de
lin

es
 fo

r o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kenneth+D.+Wilson"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="William+H.+Styers"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Samuel+A.+Wood"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="R.+Claude+Woods"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Robert+J.+McMahon"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zhe+Liu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zhe+Liu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yang+Yang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Etienne+Garand"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/jacs.4c05043&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c05043?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c05043?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c05043?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c05043?goto=supporting-info&ref=pdf
https://pubs.acs.org/toc/jacsat/146/23?ref=pdf
https://pubs.acs.org/toc/jacsat/146/23?ref=pdf
https://pubs.acs.org/toc/jacsat/146/23?ref=pdf
https://pubs.acs.org/toc/jacsat/146/23?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c05043?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c05043?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c05043?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c05043?fig=fig1&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/jacs.4c05043?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org/JACS?ref=pdf


Indeed, many theoretical studies have shown that the inclusion
of doubly excited configurations is crucial in predicting a
negative ΔEST in azaphenalenes.8,18−20 However, the calcu-
lated ΔEST values are small and well within the typical
uncertainties26 expected for most excited-state computational
methods accessible for molecules of the size of azaphenalenes.
Accurate predictions of the magnitude and possible inversion
of ΔEST in azaphenalenes are still at the forefront of the
electronic structure theory. It remains uncertain whether
singlet−triplet inversion is generally possible in azaphenalenes
or if it is simply an artifact of the approximate electronic
structure theory used.27

One crucial, but still missing, piece of information is the
accurate spectroscopic quantification of ΔEST in these
chromophores, which is difficult to obtain because of the
spin-forbidden nature of the S0−T1 transition and the
difficulties arising from the near degeneracy of S1 and T1.
Instead, chromophores with a small ΔEST are usually
characterized via the temperature dependence of the delayed
fluorescence rate and quenching of the delayed fluorescence
signal by O2. Such experimental approaches have shown the
presence of an inverted singlet−triplet gap in a handful of
functionalized azaphenalenes.9,11,12,28,29

Here we use cryogenic high-resolution anion photoelectron
(PE) spectroscopy30,31 to provide a direct spectroscopic
quantification of the inverted singlet−triplet gap in
1,3,4,6,9b-pentaazaphenalene (5AP), whose structure is
shown in Figure 1. 5AP is easily accessible via a single-step
synthesis from commercially available reagents32 and has been
predicted to offer a good trade-off between having a negative
ΔEST and maximizing the fluorescence rate for potential light
emission applications.14 In anion PE spectroscopy, electrons
are photodetached from a molecular anion such as the 5AP−

radical anion, and their kinetic energies (eKE) are measured to
map the vibronic energy levels of the corresponding neutral
molecule. Starting from the radical anion ground-state (D0),
the photodetachment selection rules permit the spectroscopic
observation of both neutral singlet and triplet states and
therefore provide direct spectroscopic quantification of ΔEST.
Moreover, the chromophores are probed at low temperature
and without solvent perturbation, yielding experimental
excitation energies that can be directly compared with the
results of electronic structure computations. This experimental
approach has been successfully used to quantify ΔEST in a
variety of organic chromophores, such as the very small
singlet−triplet gap in azulene.33

The anion PE spectra shown in the bottom panel of Figure 2
were acquired using our high-resolution cryogenic anion
photoelectron spectrometer, described previously,34 and in
the Supporting Information. These spectra are plotted as a
function of electron binding energy (eBE), which is defined as
the difference between the photodetachment photon energy
and measured eKE.
The first group of peaks, located in the 1.20−1.45 eV eBE

range, is assigned to transitions to the neutral 5AP ground
electronic state (S0). Peak A is assigned to the 0−0 origin
transition, and its position yields an adiabatic electron affinity
of 1.235(2) eV for 5AP. This assignment is in good agreement
with the calculated value of 1.20 eV at the B3LYP-D3/ma-
def2-TZVPP level of theory. The weaker features in this group
are assigned to D0−S0 vibronic transitions, in agreement with
the Franck−Condon simulations shown in the Supporting
Information. The second group of peaks appears in the 3.15−

3.45 eV eBE range, where T1 and S1 are expected. Based on
computed Franck−Condon spectra, we expect the 0−0 origin
transition to be the most intense feature for both the S1 and T1
state. Therefore, we assign the predominant feature, peak C at
eBE = 3.239(3) eV, to be one of the origin transitions. The
weaker peak B, at eBE = 3.192(4) eV, is the only feature
located at lower eBE than peak C. In the absence of hot bands,
which is reasonably expected for anions thermalized to ∼10 K,
peak B can only be assigned as the origin transition of the
other electronic state. Subtracting the electron affinity
determined above thus yields adiabatic term energies of
1.957(4) and 2.003(3) eV for these two states relative to the S0
state. Unfortunately, the PE spectra themselves do not allow us
to unambiguously distinguish which transition corresponds to
S1 vs T1.
To achieve an unambiguous assignment, we turn to

electronic absorption spectroscopy where only the S0−S1
transition is spin-allowed. The absorption spectrum of 5AP
in dichloromethane (DCM) solution is shown in the top panel
of Figure 2 (purple trace). To facilitate a direct comparison
with the anion PE spectra, the absorption spectrum is plotted
in terms of photon energy (eV) with the origin of the energy
axis aligned with the S0 origin transition (peak A). The more
familiar wavelength (nm) units are shown on the top axis. The
S0−S1 transition is a broad feature centered at around 2.02 eV,
which is slightly blue-shifted with respect to both peaks B and
C. Solvents with higher polarity induce a larger solvatochromic

Figure 2. (top panel) Absorption spectra of 5AP in DCM and in
annealed 20 K argon matrix. (bottom panel) Anion photoelectron
spectra of 5AP− in the energy ranges corresponding to the neutral S0,
S1, and T1 states. The horizontal scales of both panels are aligned to
allow for a direct comparison of the position of the S1 state in the
absorption and photoelectron spectra.
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blue-shift in 5AP (see Figure S4). This result is consistent with
predictions from DFT computations with a polarizable
continuum model (Table S2). However, because the
magnitude of the solvatochromic blue-shift is difficult to
compute accurately, the solution phase absorption spectrum
alone is still insufficient. Hence, we acquired the absorption
spectrum of 5AP in an annealed 20 K argon matrix, as shown
also in Figure 2A (blue trace). Similar to other solvents, argon
is expected to produce a solvatochromic blue-shift, but with a
much smaller magnitude than DCM. The S0−S1 origin
transition in the Ar matrix appears as several peaks in the
1.95−2.00 eV range which we attribute to a distribution of
unique matrix sites based on comparison of annealed and
unannealed matrix spectra (see the Supporting Information).
Nonetheless, these features are all located above peak B and
below peak C. Therefore, we can now conclusively assign peak
B in the PE spectrum to the 0−0 origin transition of the S1
state, which leaves peak C as the 0−0 origin transition of the
T1 state. This combination of anion PE spectroscopy and
electronic absorption spectroscopy thus provides direct
evidence of an inverted singlet−triplet gap in 5AP. The eBE
difference between peaks B and C yields a value of −0.047(7)
eV for the singlet−triplet gap.
Our quantitative experimental measurement of ΔEST for an

unsubstituted azaphenalene provides an important benchmark
for various electronic structure methods. Table 1 shows a
summary of some of the most important computational results
for 5AP. We note that most computations in Table 1 use the
difference between the vertical excitation energies of S1 and T1
to calculate ΔEST. This approximation avoids performing
expensive computations by assuming that the molecular
geometry and vibrational frequencies of the S1 and T1 states
are very similar to each other. With this approach and using the
ADC(2), CC2, and CC3 wave function methods, Tuckova et
al.18 and Loos et al.21 reported ΔEST which are ∼0.07−0.09 eV
more negative than the experimental value. The closest values
are obtained with the EOM-CCSD method. In particular, the
use of EOM-CCSD with larger triple-ζ basis sets yields ΔEST
values in excellent agreement with the experimental value
(−0.047eV).
While most of these computational methods yield

reasonable ΔEST values, they notably exhibit sharper differ-
ences in the computed vertical transition energies (see Table

1). Unfortunately, the accuracy of these values cannot be
directly verified because they do not correspond to any
spectroscopic observables in polyatomic molecules due to the
geometry relaxation being distributed over a large number of
normal modes. Fortunately, Tuckova et al.18 did report the
adiabatic and zero-point energy (ZPE) corrections to the
transition energies at the ADC(2) and CC2 level of theory.
These corrections result in ΔEST values that are slightly less
negative compared to those obtained with vertical transition
energies and in better agreement with the experimental values.
Very importantly, the computed S1 and T1 (0−0) transitions
are within ∼0.05 eV of the experimental measurements. This
indicates that the good ΔEST agreement for these methods is
not a fortuitous cancellation of errors involved in subtracting
the vertical S1 and T1 transition energies.
However, the application of adiabatic and ZPE corrections

to the EOM-CCSD vertical transitions leads to a slightly
positive ΔEST. For example, our computations using the
B3LYP geometries and frequencies with EOM-CCSD/cc-
pVTZ excitation energies yield a ΔEST of +0.024 eV, in
disagreement with the experimental observation of an inverted
singlet−triplet in 5AP. Moreover, the EOM-CCSD computed
0−0 transitions energies are ∼0.17−0.25 eV higher than the
experimental values. This is a very important result because
this method is generally considered to be very accurate and
often used as the benchmark for more approximate
approaches. The observed discrepancy probably originates
from the known issues of EOM-CCSD in accurately describing
states with significant double excitation character.35−38 To
verify this hypothesis, we performed equation of motion
coupled cluster with single, double, and active triples (EOM-
CCSDt/cc-pVTZ) calculations, in which the triply excited
clusters are computed in a small active space comprising 3
occupied and 3 virtual orbitals.39 This approach yields an
inverted singlet−triplet gap with an ΔEST of −0.022 eV, in
much better agreement with the experimental value. The
computed 0−0 transitions energies are also within ∼0.02−0.04
eV of the experimental values. This agreement highlights the
critical importance of properly describing the double excitation
character of these states to accurately predict singlet−triplet
gap inversion.
In conclusion, by mapping both S1 and T1 states via anion

PE spectroscopy and confirming the position of the S1 state by

Table 1. Summary of Computed Transitions Energies and ΔEST for 5AP

computational method E(S0−S1) (eV) E(S0−T1) (eV) ΔEST (eV) ref

vertical transition energies
ADC(2)/def2-TZVP 2.154 2.296 −0.142 18
ADC(2)/aug-cc-pVTZ 2.159 2.298 −0.139 21
CC2/def2-TZVP 2.231 2.365 −0.134 18
CC2/aug-cc-pVTZ 2.235 2.366 −0.131 21
CC3/aug-cc-pVDZ 2.164 2.284 −0.120 21
EOM-CCSD/cc-pVDZ 2.251 2.329 −0.078 14
EOM-CCSD/cc-pVTZ 2.343 2.372 −0.030 this work
EOM-CCSD/aug-cc-pVTZ 2.374 2.394 −0.020 21
EOM-CCSDt/cc-pVTZ 2.223 2.315 −0.092 this work
(0−0) transition energies
ADC(2)/def2-TZVP 1.901 1.995 −0.094 18
CC2/def2-TZVP 1.971 2.056 −0.085 18
EOM-CCSD/cc-pVTZ//B3LYP 2.192 2.168 +0.024 this work
EOM-CCSDt/cc-pVTZ//B3LYP 1.942 1.964 −0.022 this work
experimental 1.957(4) 2.003(3) −0.047(7) this work
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electronic absorption spectroscopy, we obtained a direct and
accurate spectroscopic measurement of the inverted singlet−
triplet gap in 5AP. Our results validate the idea that despite
Hund’s multiplicity rule, certain useful organic chromophores
can have an inherently inverted singlet−triplet gap. The
accurate experimental quantification of ΔEST in 5AP presented
here also allows for the validation of computational electronic
structure methods that may be useful in aiding the search and
design of such chromophores. In terms of useful applications in
the field of light-emitting diodes, the main disadvantage of the
azaphenalene cores lies in having a generally weak S0−S1
oscillator strength, which can limit the fluorescence yield.
However, Pollice et al.14 have shown that the oscillator
strength can be significantly improved by selecting proper ring
substituents. Such functionalization of the azaphenalene core is
expected to influence the chromophore’s HOMO and LUMO
via electron delocalization and electron donating/withdrawing
effects. Therefore, experimental quantification and validation
of the theoretical modeling of the substituent effects on ΔEST
are certainly warranted.
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