

Quantifying Long-Time Hydrogen–Deuterium Exchange of Bovine Serum Albumin with Hydrogen–Deuterium Exchange Small-Angle Neutron Scattering

Róisín B. Donnelly, Norman J. Wagner,* and Yun Liu*

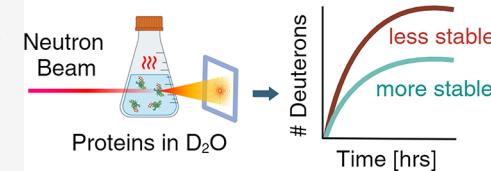
Cite This: <https://doi.org/10.1021/acs.jpcb.4c03967>

Read Online

ACCESS |

Metrics & More

Article Recommendations


Supporting Information

ABSTRACT: Hydrogen–deuterium exchange (HDX) measured by small-angle neutron scattering (HDX-SANS) is used to measure HDX in bovine serum albumin (BSA) under different temperatures and formulation conditions. HDX-SANS measurements are performed at 40, 50, and 60 °C in D₂O after storing proteins at 4 °C for 1 week to pre-exchange the readily accessible hydrogens. This enables us to probe the long-time HDX of protons at the core of the BSA proteins, which is more challenging for solvent molecules to access. The HDX kinetics are observed to follow an Arrhenius behavior with an apparent activation energy of 81.4 ± 1 kJ/mol, which is composed of the energy for protein conformational fluctuations and that for exchanging an amide hydrogen. Adding a tonicity agent of 150 mM NaCl has only a very slight effect on the HDX kinetics. Interestingly, we also observed that the formulation with faster HDX kinetics has a lower onset temperature of denaturation. This observation is qualitatively consistent with a previous study of HDX-SANS on a monoclonal antibody (mAb), despite the large difference of the secondary structure between BSA, dominated by alpha helices, and mAb, which is predominantly composed of β-sheets.

INTRODUCTION

The biopharmaceutical industry has experienced unprecedented success with protein-based drugs, particularly monoclonal antibodies (mAbs), resulting in multibillion-dollar sales.¹ Although mAb-based drugs hold promise for therapeutic applications, their advancement and widespread adoption still have many challenges, such as the limited understanding of their long-term stability and shelf life.^{2–4} Hydrogen–deuterium exchange (HDX) has been identified as a potential method for predicting the long-term stability of mAbs.^{5,6} By measuring the exchange kinetics of labile hydrogens in the protein's amide groups with deuterium from the deuterium oxide-based buffer, HDX provides insights into conformational fluctuations present in proteins. Labile protons on the protein surface can undergo HDX in as little as a few milliseconds. However, a much slower exchange of hydrogen occurs over many hours to days. This long-time HDX, which is potentially related to protein instability, is possible only when the more deeply buried labile hydrogens of the protein become solvent-accessible due to conformational fluctuations.^{7,8} These naturally occurring conformational fluctuations have been correlated with long-term physical and chemical instability, and therefore, quantifying the rate of such conformational fluctuations could be useful in predicting shelf life.⁶ Thus, HDX is a promising approach for enhancing our understanding of protein stability in formulations, which can help accelerate the production of therapeutic proteins.

Monitoring Hydrogen–Deuterium Exchange with SANS

Mass spectrometry (MS) is commonly used for measuring HDX, and this method offers insights into the conformational fluctuations of proteins through identification of the HDX position within the peptide sequence.^{9–14} In this method, samples are removed from the solution and processed for measurement at specific time points. Nuclear magnetic resonance (NMR) tracks HDX by leveraging the difference of chemical shifts between hydrogen and deuterium, offering amino acid-level resolution.^{15–17} IR and Raman spectroscopy are alternative approaches that monitor HDX by detecting vibrational changes associated with HDX.^{18,19} Recently, hydrogen–deuterium exchange small-angle neutron scattering (HDX-SANS) has been proposed as a sensitive, non-destructive, and complementary approach for assessing HDX directly in protein formulations.² With a simple experimental setup, HDX-SANS allows for real-time, noninvasive measurement of protein HDX in liquid formulations and offers insights into the spatial distribution of exchanged hydrogens from a higher-order structural perspective.² Furthermore, HDX-SANS can explore *in situ* HDX under various conditions such as pressure, shear, or chemical stimuli, taking advantage of

Received: June 17, 2024

Revised: November 10, 2024

Accepted: November 12, 2024

67 advanced SANS sample environments.²⁰ Despite its many
 68 advantages, HDX-SANS faces limitations, particularly the
 69 restricted access to suitable neutron sources, which makes it
 70 difficult to use as a routine analysis method. Additionally, the
 71 required counting time, such as 15 min for a single SANS
 72 pattern used in this study, limits the time resolution for HDX-
 73 SANS measurements. Nonetheless, HDX-SANS provides
 74 valuable quantitative information that enhances the validation
 75 and deepens the understanding of complementary techniques,
 76 such as HDX-NMR and HDX-MS.

77 Prior HDX-SANS work on mAbs has provided valuable
 78 insights into the influence of formulation conditions,
 79 particularly in the presence of sodium salts of varying degrees
 80 of interaction with the mAb, on the HDX kinetics of
 81 NISTmAb.² These investigations highlighted the strong
 82 correlation between the effect of strongly kosmotropic or
 83 strongly chaotropic salts on the HDX and the thermal stability
 84 of mAb formulations, thereby proving that the long-time HDX
 85 accessible by SANS is a measure of protein thermal stability in
 86 formulation.² However, because HDX is influenced by the
 87 secondary structure of proteins,^{21,22} it is relevant to expand the
 88 exploration of HDX-SANS to proteins with different secondary
 89 structures.

90 In this work, we build upon the previous HDX-SANS study
 91 of NIST monoclonal antibody,² to investigate the impact of
 92 multiple temperatures, in addition to buffer conditions, on the
 93 long-time HDX kinetics of bovine serum albumin (BSA). BSA
 94 has a secondary structure significantly different from mAbs.
 95 While mAbs are dominated by β -sheets, the secondary
 96 structure of BSA has no β -sheets and is dominated by α -
 97 helices, with about 67% α -helix, 10% turn, and 23% extended
 98 chain configurations.²³ Additionally, BSA, which is a globular
 99 protein, holds significant importance both physiologically and
 100 as a model system in the field of biophysical chemistry.²⁴⁻²⁹

101 In this study, we focus on examining the long-time HDX
 102 kinetics of bovine serum albumin (BSA) at temperatures of 40,
 103 50, and 60 °C, enabling the determination of an activation
 104 energy for HDX in BSA in D₂O. We anticipate that elevated
 105 temperatures will yield enhanced HDX.³⁰ By measuring the
 106 temperature-dependent HDX, we demonstrate here that HDX-
 107 SANS can be used to extract the activation energy.
 108 Furthermore, the present work explores the impact of sodium
 109 chloride on the HDX of BSA measured at 60 °C. Sodium
 110 chloride is composed of both weakly kosmotropic (Na⁺) and
 111 weakly chaotropic (Cl⁻) ions³¹ and is commonly used in
 112 protein drug formulation as a tonicity or viscosity modi-
 113 fier.³²⁻³⁴ Even though the addition of 150 mM sodium
 114 chloride is not expected to have a large impact on HDX, the
 115 HDX-SANS is sensitive to observing the difference of the
 116 HDX kinetics. This underscores the utility of HDX-SANS as a
 117 robust screening tool capable of detecting subtle differences in
 118 the HDX kinetics among protein formulation options. By
 119 performing HDX-SANS on BSA, we verified the technique as a
 120 sensitive, noninvasive method.

121 ■ MATERIALS AND METHODS

122 **Sample Preparation.** Lyophilized bovine serum albumin
 123 was obtained from Sigma-Aldrich (product number A7638)
 124 and dissolved in buffer composed of either deuterium oxide
 125 (D₂O) or D₂O with 150 mM sodium chloride, aided by 10 s of
 126 gentle vortex mixing and 30 min of mixing on a horizontal
 127 rolling mixer at a low speed. Samples were stored at 4 °C for
 128 5–7 days prior to SANS measurements. By allowing the

129 hydrogenated protein samples to sit in the D₂O-based buffer
 130 for 5–7 days prior to the experiment, all the readily exposed
 131 labile hydrogens are assumed to have undergone HDX.¹³¹
 132 Aliquots of both samples, with and without sodium chloride,¹³²
 133 were diluted and set aside and stored at 4 °C for differential
 134 scanning calorimetry experiments. The pH of the samples is
 135 neutral and not greatly impacted by the protein concentration
 136 or the presence of sodium chloride. The pH range of all
 137 samples was 6.6 ± 0.5, which agrees with the pH measure-¹³⁷
 138 ments of Zhang et al. (2012).³⁵

139 **Differential Scanning Calorimetry.** Differential scanning
 140 calorimetry was performed with a NanoDSC instrument (TA
 141 Instruments, Newcastle, DE). Prior to the experiment, this
 142 instrument was cleaned by first soaking the capillary with 5%
 143 Contrad for 1 h and then flushing with 2 L of Milli-Q water.¹⁴³
 144 Three buffer scans were performed, each of which consisted of
 145 both heating and cooling steps from 25 to 110 °C at a rate of 1
 146 °C/min. Following buffer measurements, BSA protein samples
 147 (1 or 2 mg/mL) were loaded, and the heat capacity was
 148 measured over the same temperature range and rate. All
 149 measurements were performed at a constant pressure of 3 atm.¹⁴⁹
 150 The resultant thermograms were corrected with the buffer scan
 151 and fit to a single Gaussian model in Nano Analyze software
 152 (TA Instruments). From the fit thermogram, the onset
 153 temperature of denaturation, melting temperature, and change
 154 in enthalpy (ΔH) were determined.

155 **Hydrogen–Deuterium Exchange SANS (HDX-SANS).** Hydrogen–deuterium exchange small-angle neutron scattering
 156 measurements were performed at the NGB 30m SANS
 157 beamline at the Center for Neutron Research of the National
 158 Institute of Standards and Technology beamline. After filtering
 159 with a 0.1 μ m pore size polyvinylidene difluoride membrane
 160 syringe filter, approximately 1 mL of sample was loaded into 2
 161 mm-thick quartz banjo cells. Each sample at 100 mg/mL BSA
 162 concentration was measured first at 10 °C and then elevated to
 163 its target temperature of either 40, 50, or 60 °C. Once the
 164 sample reached its target elevated temperature, it was
 165 measured by SANS continually for the duration of the kinetics
 166 experiment. Upon the completion of the kinetics experiment,
 167 the sample temperature was reduced again to 10 °C and a
 168 SANS pattern was measured again. The final 10 °C
 169 measurement can be utilized to estimate the amount of
 170 exchange that occurred during heating to the target elevated
 171 temperature, as described by Donnelly et al. (2023).² Each
 172 SANS pattern measurement took 15 min. For all samples, the
 173 detector was placed at 4 m to obtain a Q -range from 0.01 to
 174 0.045 \AA^{-1} . Additionally, at least one measurement was also
 175 used at the detector distance of 1 m to measure high Q values,
 176 which allow us to extract the incoherent background. A low
 177 concentration sample (10 mg/mL) was also measured at 10 °C
 178 to extract the initial scattering length density of BSA in D₂O.¹⁷⁹

179 **HDX-SANS Analysis.** SANS measures the scattering
 180 intensity as a function of the scattering vector, \vec{Q} . For
 181 solution samples, the scattering intensity is usually isotropic
 182 and is a function of the magnitude of \vec{Q} , which is defined as
 183

$$184 Q = \frac{4\pi}{\lambda} \sin\left(\frac{\theta}{2}\right) \quad (1)$$

185 where λ is the wavelength and θ is the scattering angle. Once
 186 corrected for the incoherent and Q -independent background
 187 (B), the coherent scattering intensity, $I(Q)$, for monodisperse
 188 particles can be expressed as

$$I(Q) = I_m(Q) - B = nV_p^2(\Delta\rho)^2\tilde{P}(Q)S(Q) \quad (2)$$

where $I_m(Q)$ is the scattering intensity from a sample and B represents the background that is mostly dominated by the incoherent scattering. The contrast term $\Delta\rho$ is the difference of the scattering length density (SLD) between the particle and solvent, n is the particle number density, and V_p is the volume of an individual particle. $\tilde{P}(Q)$ is the normalized form factor, which is solely determined by the particle structure, and $S(Q)$ is the interparticle structure factor. This expression assumes a monodisperse suspension of spherical particles in solution. If the scattering length density distribution of particles are not isotropic, $S(Q)$ should be considered as an effective structure factor.^{36,37}

HDX-SANS analysis was performed following the procedure outlined in Donnelly et al. (2023) to produce the SANS pattern ratios, $R(Q)$.² In this method, a ratio of temporal SANS patterns is used as the primary result for analysis, as

$$\begin{aligned} R(Q) &= \frac{I(Q)_t}{I(Q)_{t=0}} \\ &= \frac{nV_p^2(\Delta\rho_t)^2\tilde{P}(Q)_tS(Q)}{nV_p^2(\Delta\rho_{t=0})^2\tilde{P}(Q)_{t=0}S(Q)} \\ &= \frac{(\Delta\rho_t)^2\tilde{P}(Q)_t}{(\Delta\rho_{t=0})^2\tilde{P}(Q)_{t=0}} \end{aligned} \quad (3)$$

In the above eq 3, the subscript $t = 0$ refers to the first SANS measurement and t indicates the starting time of acquisition of the SANS pattern of interest at all later times. Here, we assume that structure factor $S(Q)$ is independent of HDX for the 100 mg/mL BSA samples.

Further analysis was performed on $R(Q)$ within the intermediate Q -range (0.03 to 0.08 Å⁻¹), which was optimized to prevent the influence of noise, background subtraction, and any potential aggregate formation on the analysis. More details regarding the rationale for this Q -range selection are provided in the Supporting Information.

If the change in scattering length density is not uniform throughout the protein, i.e., the HDX does not occur uniformly across a protein, it could lead to the change of the normalized form factor $\tilde{P}(Q)$ at different times. Thus, in principle, from the Q -dependent trend of $R(Q)$, the location of HDX could be inferred. However, given the relative percentage of exchangeable hydrogens in the fluctuating protein and the angular averaged nature of the SANS measurement, the form factor changes are anticipated to be small.

If Q is within the Guinier region, $R(Q)$ can be further simplified as

$$R(Q) \approx \left(\frac{(\Delta\rho_t)^2 e^{-1/3Q^2 r_t^2}}{(\Delta\rho_{t=0})^2 e^{-1/3Q^2 r_{t=0}^2}} \right) \quad (4)$$

which leads to

$$\ln R(Q) \approx 2\ln y - \frac{1}{3}(\Delta(r^2))Q^2 \quad (5)$$

where y represents the contrast term, $\left| \frac{\Delta\rho_t}{\Delta\rho_{t=0}} \right|$ and $\Delta(r^2) = r_t^2 - r_{t=0}^2$ (6)

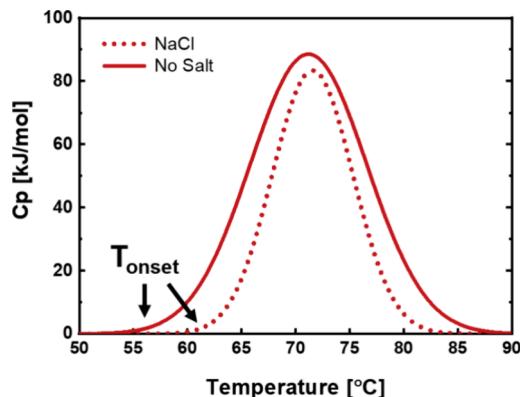
where $r_{t=0}$ is the radius of gyration of BSA at the beginning of the HDX kinetics measurement while r_t is the radius of gyration at the later time point in measurement, which may change slightly as HDX occurs. Note that HDX is not expected to change the physical radius of the protein, but a change in the radius detected by SANS can occur if HDX is not uniformly distributed throughout the protein. This enables a qualitative discussion of the relative location of HDX provided that a positive trend in $\Delta(r^2)$ values indicates that more exchanges occur in the core of the protein, while a negative trend of $\Delta(r^2)$, would indicate more HDX is occurring on the shell of the protein. If $\Delta(r^2)$ is neither positive nor negative, but hovering around 0, this indicates that HDX is likely uniform throughout the protein, which is the case for BSA in D₂O. Though HDX was mostly uniform throughout BSA, this analysis could be beneficial for the study of the relative distribution of HDX in other proteins in future works. Additionally, this linear fitting (eq 5) also enables determination of y , related to HDX kinetics. The values of y from $R(Q)$ were plotted as a function of time to yield the HDX kinetics, similar to our prior HDX-SANS work.² As in the previous study, the change in contrast can be modeled using the following result assuming a pseudo-first-order exchange kinetics relationship with a background related to unexchangeable hydrogens in a protein:

$$y = \bar{y}_\infty + (1 - \bar{y}_\infty)e^{-t/\tau} \quad (7)$$

The parameter τ is the characteristic exchange time of HDX, and \bar{y}_∞ is the asymptotic value of y at an infinite waiting time. From the exchange time parameter, τ , an overall activation energy for the HDX process can be calculated from the Arrhenius equation as follows:

$$\tau = Ae^{E_a/RT} \quad (8)$$

where E_a is the activation energy, R is the gas constant, A is the prefactor, and T is the absolute temperature in Kelvin.


As SANS is a quantitative measure of the total scattering, the number of deuterons incorporated into the BSA samples during the SANS measurement can be calculated following the procedure of Donnelly et al. (2023)² using the relationship

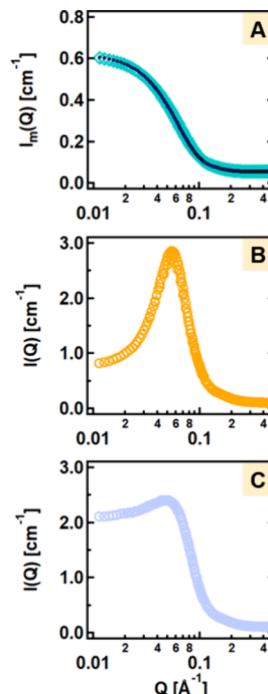
$$n_{\text{HDX}} = \frac{V_p(y - 1)(\rho_{\text{protein}_{t=0}} - \rho_{\text{solvent}})}{b_D - b_H} \quad (9)$$

where V_p represents the volume of one BSA protein, which has been reported as 81,200 Å³.³⁵ The value of $\rho_{\text{protein}_{t=0}}$ was determined to be $(3.3 \pm 0.5) \times 10^{-6}$ Å⁻² from an ellipsoid form factor fitting, and this represents SLD at the beginning of the HDX-SANS experiment. This value is similar to what has been reported in the literature.^{35,38} ρ_{solvent} is the scattering length densities for the solvent (i.e., D₂O or D₂O with 150 mM sodium chloride), and b_D and b_H are the bound coherent scattering lengths of deuterium (6.671 fm) and hydrogen (-3.7390 fm), respectively.

RESULTS AND DISCUSSION

DSC measurements of BSA with and without sodium chloride resulted in single-peak thermograms (Figure 1) consistent with similar studies of BSA at comparable pH levels.³⁹ The melting temperature for BSA in D₂O was approximately 71 °C and the onset temperature, marked by a noticeable uptick in the DSC signal, occurred at ≈56 °C (Table 1). Adding 150 mM sodium

Figure 1. DSC thermograms for BSA protein in D_2O (No Salt, solid line) and D_2O with 150 mM NaCl (NaCl, dotted line). Each DSC profile is measured in triplicate, and one representative thermogram is depicted herein.


Table 1. Onset Temperature of Denaturation, Melting Temperature, and Enthalpy of Denaturation for BSA Samples Obtained from the DSC Thermograms

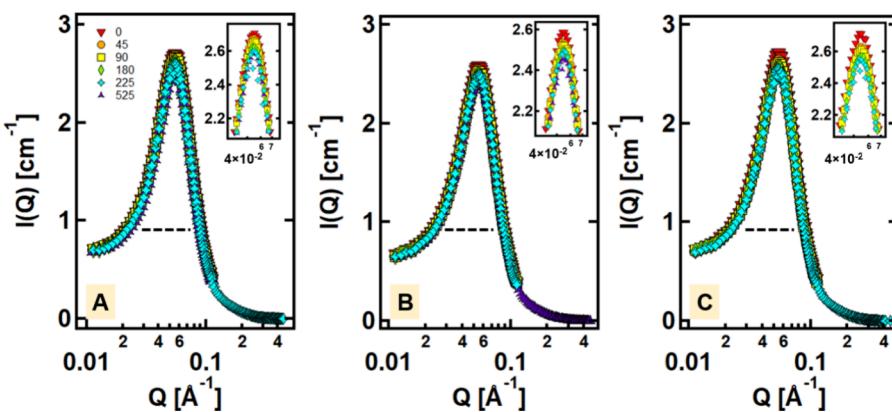
formulation conditions (1 mg/mL BSA)	onset temperature [°C]	melting temperature [°C]	enthalpy ΔH [kJ/mol]
D_2O	56 ± 1	71 ± 1	1195 ± 12
$\text{D}_2\text{O} + 150 \text{ mM NaCl}$	62 ± 1	72 ± 1	1080 ± 7

chloride slightly increases the onset temperature to 62 °C. The overall melting temperature seems to be also shifted slightly to 72 °C, but the difference is within measurement uncertainty (Table 1). This result agrees with a previous study on the thermal stability of BSA assessed by DSC.⁴⁰ This suggests that sodium chloride slightly enhances the thermal stability by slightly shifting the onset temperature. The melting enthalpy values for the BSA samples are around 1100 kJ/mol based on the Gaussian model fit of the thermograms (Table 1).

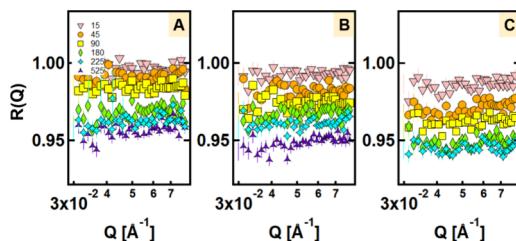
A low concentration sample (10 mg/mL BSA) without the addition of salt (Figure 2 A) was measured at a low temperature (10 °C) to estimate the SLD of BSA in D_2O . This value of SLD is needed to extract the number of exchanged hydrogens of BSA proteins during the HDX-SANS experiments. At the dilute condition, the scattering pattern is dominated by the form factor. The solid line in Figure 2A is the resultant form factor fitting curve using an ellipsoid model provided in the software, SasView. The size of the BSA protein, determined from the fitting, is consistent with a previous work by Zhang et al. (2012) and reported in Table 2.³⁵ The extracted SLD of BSA is $(3.3 \pm 0.5) \times 10^{-6} \text{ Å}^{-2}$ (Figure 2A), which is also consistent with a literature result.³⁵

Concentrated samples (100 mg/mL) of BSA are used here for the HDX-SANS experiments, as the stronger signals from concentrated proteins can help improve the time resolution of the HDX-SANS experimental measurements. All samples were measured at 10 °C prior to the thermal kinetics HDX-SANS measurements (Figure 2B,C). For the sample without salt, there is a prominent structure factor peak at around $Q \sim 0.05 \text{ Å}^{-1}$ due to the strong repulsion between proteins (Figure 2B). The addition of salt increases the ionic strength and screens the electrostatic repulsions between the proteins, leading to less repulsive interactions and a less prominent structure factor peak (Figure 2C).

Figure 2. SANS patterns acquired at 10 °C, prior to high temperature exposure, of (A) a low concentration sample (10 mg/mL) of BSA protein in D_2O (teal), with the form factor fitting line eq 2 overlaid (black line), (B) 100 mg/mL BSA in D_2O , and (C) 100 mg/mL BSA in D_2O with 150 mM sodium chloride.


Table 2. Fitting Parameters of the Form Factor for BSA in D_2O

SLD of solvent (Å^{-2})	6.335×10^{-6}
SLD of protein (Å^{-2})	$(3.3 \pm 0.5) \times 10^{-6}$
polar radius (\AA)	12.5 ± 0.2
equatorial radius (\AA)	41 ± 1.1


Kinetics HDX-SANS measurements were collected on three identical BSA samples (100 mg/mL) at three different temperatures, 40, 50, or 60 °C, without any added salts. The SANS patterns obtained at each of these elevated temperatures display a similar trend with a consistent downward shift in the SANS intensity with time without any significant change in the pattern shape. This trend is more evident in the inset of each panel in Figure 3. A small change in the scattering length density of the protein toward that of the solution (D_2O), induced by HDX, should not have a significant effect on the pattern itself. Instead, it should gradually reduce the contrast over time, resulting in a uniformly decreasing scattering intensity.

$R(Q)$ was calculated from the measurements in Figure 3 using eq 4 and is plotted in Figure 4. The selected Q -range for ratio analysis (0.03 to 0.08 \AA^{-1}) is delineated by dotted lines in Figure 3 and was optimized based on the relative intensity of SANS and any potential influence of aggregate formation on the results. (See the SI for the detailed discussion.)

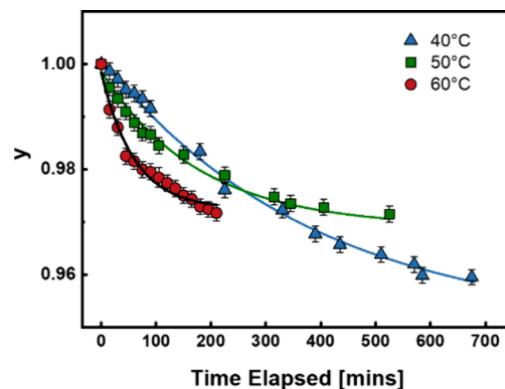
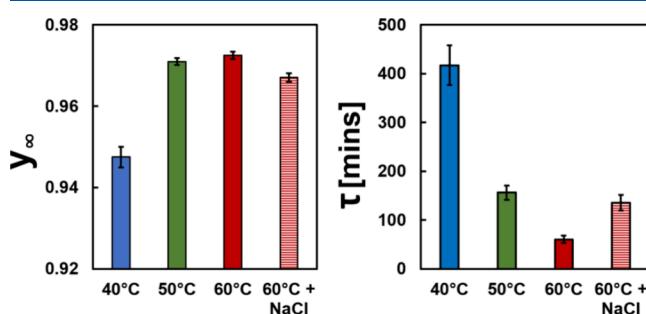

Over the observation time, the values of $R(Q)$ for all three samples decrease, consistent with anticipated trends observed in Figure 4. The time resolution is limited by the time needed to collect one SANS pattern with sufficient statistics, which is 15 min. Only a few selected data are shown in Figure 4 for clarity. As HDX proceeds, the average SLD of the protein

Figure 3. SANS patterns acquired over time elapsed from 0 to 225 min of 100 mg/mL BSA exposed to (A) 40 °C, (B) 50 °C, and (C) 60 °C. Measurement time for each SANS pattern is 15 minutes. Inset plots highlight the uniform drop of SANS pattern intensity across all samples. There is a drop in the SANS pattern with time as denoted by the color scheme from 0 to 45 min, ..., to 225 min (red, orange, ..., teal). The time legend is consistent across different sample types. The black dashed horizontal lines delineate the Q range selected for the ratio analysis (0.03 to 0.08 Å⁻¹).

Figure 4. Plots of $R(Q)$, the SANS pattern ratios produced by dividing SANS patterns at later times with $I(Q)_{t=0}$ which is the first SANS pattern acquired. This was performed for each 100 mg/mL BSA sample exposed to (A) 40 °C, (B) 50 °C, and (C) 60 °C. The color-coded legend represents the time elapsed for each sample from 15 min (peach downward triangle), 45 min (orange circle), 90 min (yellow square), etc. The legend is consistent across the three temperature plots. There is a drop in the value of $R(Q)$ with increased time in each sample condition from 15 min (peach downward triangle) to 225 min (teal diamond).

Figure 5. y , extracted by fitting of $R(Q)$, for BSA samples exposed to 40 °C (blue triangle), 50 °C (green square), and 60 °C (red circle), is plotted as a function of the time elapsed. Over time, the values of y decrease, indicating the loss of scattering contrast, which is caused by the HDX. The lines running through the data points represent model fitting with eq 7. The values of the data points plotted herein can be found in Table S1 in the Supporting Information.


349 increases. As a result, the contrast difference between the
350 proteins and D₂O, $(\Delta\rho)^2$, in eq 2 becomes smaller. Thus, the
351 SANS intensity decreases over time, resulting in $R(Q)$
352 decreasing. At 225 min, the $R(Q)$ for the sample at 60 °C is
353 the smallest among all three temperatures. Thus, a higher
354 temperature accelerates the HDX, as expected. Although this
355 qualitative analysis of the $R(Q)$ results supports our
356 hypothesis, a more quantitative analysis, (discussed below),
357 is necessary to fully understand differences in the HDX
358 dynamics with temperature.

359 By taking a ratio of SANS measurements, the effect of the
360 interparticle structure factor, $S(Q)$, is removed by assuming
361 that the HDX does not influence $S(Q)$. Any change in $R(Q)$ is
362 due to the contrast and the change in the hydrogen
363 distribution due to the HDX. Equation 5 is used to extract

364 the relative contrast change, $y = \left| \frac{\Delta\rho_t}{\Delta\rho_{t=0}} \right|$. The parameter y was
365 determined from fitting the data collected in the indicated time
366 interval, with an example of the fit provided for the ratios
367 corresponding to 15 min elapsed, shown in Figure S2 in the
368 Supporting Information. The ratios are quite flat in the studied
369 Q -range, indicating that the overall hydrogen distribution of
370 the proteins is still relatively uniform.

371 The values of y were calculated and plotted as a function of
372 elapsed time, as depicted in Figure 5, while the corresponding

373 fit parameters are presented in Figure 6 and in Table S1 in the
374 Supporting Information. The temperature has a measurable
375 impact on HDX with higher temperatures resulting in faster
376 HDX. The initial decay rate, reflecting the exchange rate, is

Figure 6. Summary of the fitting parameters obtained for the model fit of y . The values of y_∞ shown in the left are related to the percent of hydrogens present in each sample, if they were allowed infinite HDX time at their respective elevated temperatures, while τ , in the right, corresponds to the characteristic exchange time of HDX for each sample.

377 greatest in the sample exposed to 60 °C, followed by that at 50 °C, and slowest at 40 °C. This result supports the hypothesis 378 that faster exchange would occur at higher temperatures. The 379 empirical fit of data presented in Figure 5 also enables the 380 extraction of the characteristic time of exchange, τ , which is 381 inversely proportional to the rate of HDX taking place in a 382 sample. This characteristic time changes from about 400 min at 383 40 °C to about 60 min at 60 °C. Thus, the rate of HDX is 384 nearly seven times slower at 40 °C than that at 60 °C. Overall, 385 τ indicates that the rate of exchange increases with increasing 386 temperature, as was anticipated. Each fitting line (Figure 5), 387 which produced the values of τ and y_∞ , had an R^2 value 388 between 0.97 to 0.99, and the residuals of these fits can be 389 found in the Figure S3 in the Supporting Information.

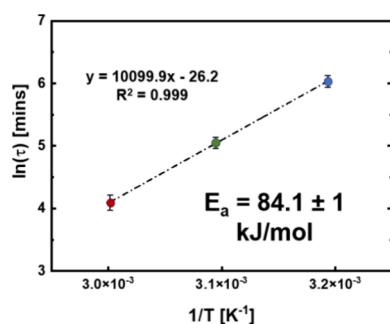
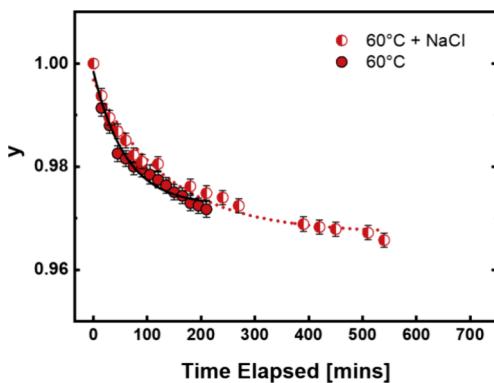
390 The empirical fit of the kinetics includes an asymptotic value 391 y_∞ , related to the plateau in exchange at a long time. In this 392 analysis, $1 - y_\infty$ is related to the fraction of exchange relative to 393 the number of hydrogens at the start of the SANS 394 measurement, and this is detailed in the Table S2 in the 395 Supporting Information. The y_∞ parameter is related to be the 396 fraction of hydrogens that are unexchanged in a protein 397 compared with the total number of exchangeable hydrogen at $t = 0$ min, where $t = 0$ refers to the first SANS measurement at 398 temperature.² Note that y_∞ is almost the same for samples at 399 both 50 and 60 °C, while it is smaller for the sample at 40 °C. 400 This is due to the normalization based on initial measurements 401 at high temperatures. Some HDX already takes place as the 402 samples are heated to the target temperatures (40, 50, or 60 403 °C). It is estimated at the later part of the paper that there is 404 less hydrogen exchange during the heating at 40 °C than at 50 405 and 60 °C, resulting in fewer hydrogens available for exchange 406 at 50 and 60 °C of the subsequent kinetics measurements. In 407 other words, each BSA sample starts the high-temperature 408 kinetics measurements with a different number of hydrogens 409 remaining for exchange, depending on the heating temper- 410 ature. Note that the hydrogen exchange during the heating 411 does not affect the result of τ obtained at 40, 50, or 60 °C.

412 The value of the apparent activation energy for HDX of 84.1 413 \pm 1 kJ/mol is determined from an Arrhenius plot of the time 414 constants, τ , (Figure 7). The data follow the expected 415 Arrhenius behavior. The interpretation of this activation 416 energy value can be guided by the HDX model, which was 417 originally proposed by Linderstrom-Lang and has since been 418 discussed extensively.^{30,41,42} Three exchange rate parameters 419 determine the observed kinetics of the HDX: the rate of a 420

421 protein opening its closed structure, k_{op} ; the rate of a protein 422 closing its opened structure, k_{cl} ; and the chemical exchange 423 rate of the accessible amide, k_{ch} .³⁰ If $k_{ch} \gg k_{cl}$, the HDX is 424 considered the EX₁ kinetics. If $k_{ch} \ll k_{cl}$, it is considered as the 425 EX₂ kinetics. For most protein systems, it is rare to have EX₁ 426 kinetics and more common to observe EX₂ kinetics,³⁰ and in 427 some cases, a combination of the two kinetics regimes is 428 possible.^{43,44} For EX₁ kinetics, the apparent energy extracted 429 from the temperature-dependent data is the activation energy 430 needed to open the protein secondary structure to expose its 431 internal hydrogen. Although the kinetics regimes of the BSA 432 samples in this experiment are unknown and further research is 433 needed to understand the relationship between temperature 434 and these kinetics regimes,⁴⁵ if all BSA samples were to follow 435 purely EX₁ kinetics, the extracted activation energy of 84.1 ± 1 436 kJ/mol would correspond to the energy needed to unfold its 437 secondary structure. For an EX₂ process, the apparent 438 activation energy is influenced by two terms: one is the free 439 energy of the local stability, and the additional contribution is 440 the energy needed to exchange hydrogen and deuterium at an 441 open amide site. The latter is reported to be around 14 kcal/ 442 mol (58.6 kJ/mol), 17 kcal/mol (71.1 kJ/mol), and 19 kcal/ 443 mol (79.5 kJ/mol) in acid, base, and neutral water,⁴⁴⁴ respectively.³⁰ For EX₂ kinetics, our experimental activation 445 energy (84.1 ± 1 kJ/mol) minus the energy needed to 446 exchange hydrogen and deuterium at an open amide site in 447 neutral water (79.5 kJ/mol) is around 5 kJ/mol. This is 448 consistent with the hydrogen bonding energy between amide– 449 amide in a protein, as is reported to range from about 1 to 7 450 kJ/mol.⁴⁶ Additionally, the activation energy for the rupture of 451 a hydrogen bond in an α -helix is reported to be approximately 452 8 kJ/mol in water, based on simulation.⁴⁷ It should be noted 453 that a recent paper studied the HDX of heme protein 454 myoglobin and found that the HDX follows the EX₂ behavior 455 even for proteins at temperatures up to about 80 °C that is 456 much higher than the temperature used in this study.⁴⁵ 457 Therefore, it is likely that the HDX of our protein may also 458 follow the EX₂ behavior. However, as the protein used here is 459 different, a future study is needed to determine this.

460 Numerous protein-based drug formulations include the 461 excipient sodium chloride for a range of purposes.³³ Due to its 462 widespread usage and likely subtle impact on protein stability 463 than other salts,^{2,32} there is interest in measuring any effects 464 that sodium chloride may have on the long-time HDX of BSA. 465 Hence, HDX-SANS was performed on one sample containing 466 150 mM sodium chloride at 60 °C. This sample was measured 467 first at 10 °C (Figure 2C) before increasing its temperature to 468 60 °C. The experimental procedure followed the same 469 protocol used in the previous samples without NaCl. As with 470 the previous samples, the kinetics SANS patterns of the sample 471 containing NaCl also yield a downward shift in SANS pattern 472 over time, as shown in the Supporting Information (S9).

473 Following the analysis approach outlined in the Materials 474 and Methods Section, $R(Q)$ is obtained for the sample with 475 NaCl. The results are shown in the Supporting Information 476 (S10). The extracted values of y as a function of time elapsed 477 are plotted along with the results for the sample without salt 478 for comparison in Figure 8. The values of y for the sample with 479 NaCl are consistently larger than those in D₂O without NaCl,⁴⁸⁰ measured at the same temperature. Thus, adding NaCl slightly 481 slows the HDX at 60 °C. The fit parameters for the sample 482 containing NaCl, also shown in Figure 6, agree with this 483 observation and suggest that NaCl slightly reduces the rate of 484

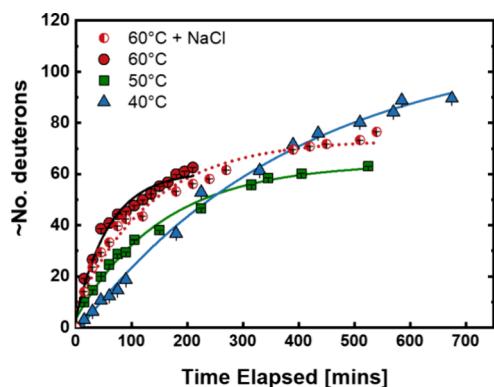

Figure 7. Plot of the natural log of τ for each sample, against the inverse of the sample temperature (40, 50, and 60 °C). The dotted line represents a linear fit of the data, with the fit equation displayed on the graph. From the slope of this fit, the activation energy, E_a , was calculated using the eq 8 and displayed on the graph.

Figure 8. y for BSA sample exposed to $60\text{ }^{\circ}\text{C}$ without any added salt (red circle) and with 150 mM sodium chloride (red half-filled circle) is plotted as a function of the time elapsed. Lines through the data points represent the model fitting with eq 7. The fit lines for sample exposed to $60\text{ }^{\circ}\text{C}$ without any added salt and with 150 mM sodium chloride are the black solid line and red dotted line, respectively.

exchange and prevents some exchange during the heating stage, in comparison to the sample without added salt. This is consistent with the DSC result, as the addition of NaCl slightly increases the thermal stability of the sample. Therefore, our results indicate that even for BSA, which is dominated by α -helix secondary structures, there is agreement between the rate of HDX and thermal stability. This observation is in agreement with the previously reported results on NISTmAb, where the HDX rate for NISTmAb is correlated with the thermal stability in different salt formulations.² Therefore, combining the current result with the previous one, it is reasonable to believe that for most proteins, there is agreement between the exchange rate of long-time HDX and thermal stability.

The number of deuterons exchanged over time for each sample, with and without salt, is also extracted and is shown in Figure 9. The total number of exchangeable protons of one

Figure 9. Number of deuterons incorporated into BSA as a function of time elapsed over the high temperature exposure for $60\text{ }^{\circ}\text{C}$ (red circle); $60\text{ }^{\circ}\text{C} + 150\text{ mM}$ sodium chloride (red half-filled circle); $50\text{ }^{\circ}\text{C}$ (green square); and $40\text{ }^{\circ}\text{C}$ (blue triangle). These values were calculated based on experimental results using eq 9.

BSA protein is about $1,060$.⁴² However, our samples were stored for about a week in D_2O at $10\text{ }^{\circ}\text{C}$ before the HDX-SANS experiment to exchange the most labile hydrogens leaving the less accessible hydrogens to be probed by HDX-SANS. Based on a previous report, the core exchangeable protons, which are believed to be buried deep inside a protein,

are about 143 for BSA.⁴² The observed long-time HDX in our SANS experiments are likely related with these core exchangeable hydrogens, and the number exchanged during our experiment is a significant fraction of these buried but exchangeable hydrogens.

We can further estimate the number of exchanged hydrogens during the heating stage while the samples were heated from $10\text{ }^{\circ}\text{C}$ to their respective target temperatures. After completion of kinetics measurements at their target temperature, all samples were measured again at $10\text{ }^{\circ}\text{C}$. Using the same ratio analysis method with these $10\text{ }^{\circ}\text{C}$ data, the total number of exchanged protons for the sample exposed to $60\text{ }^{\circ}\text{C}$ with added NaCl is 143 ± 1 , which is in agreement with the previously reported estimated amount of core exchangeable hydrogens of BSA.⁴² For the other samples, the total number of exchanged hydrogens is on the order of 200 . Since the number of exchanged protons at $60\text{ }^{\circ}\text{C}$ is about 70 (Figure 9), we can therefore estimate that 73 protons, or about half of total exchange, underwent HDX during the sample heating and cooling stage. It is reasonable to believe that during the cooling, the HDX is negligible. Thus, all 73 protons are exchanged during the heating process. Similarly, we also estimated the number of exchangeable hydrogens during high temperature exposure, based on the value of $1 - y_{\infty}$, as detailed in Table 3. Based on $1 - y_{\infty}$, there are about 73 deuterons

Table 3. Approximate Number of Deuterons Exchanged during the Heating Step from $10\text{ }^{\circ}\text{C}$ to either 40 or $60\text{ }^{\circ}\text{C}$, Obtained from $R(Q)$ Measured at $10\text{ }^{\circ}\text{C}$

formulation conditions	measurement temperature [$^{\circ}\text{C}$]	number of exchangeable hydrogens (based on $1 - y_{\infty}$)
D_2O	40	116 ± 1
D_2O	50	64 ± 1
D_2O	60	61 ± 1
$\text{D}_2\text{O} + 150\text{ mM NaCl}$	60	73 ± 1

available for exchange at $60\text{ }^{\circ}\text{C}$, which indicates that about 70 deuterons would have exchanged during heating alone, which is in reasonable agreement with the experimental estimated values from the discussion above.

CONCLUSIONS

HDX is known as a valuable method for assessing the dynamics and stability of secondary structures due to its association with the hydrogen bonds found in α -helices and β -sheets.^{21,22} In this study, we apply the HDX-SANS to examine the HDX of BSA, a globular protein predominantly composed of α -helices, one of the most common secondary structural elements in proteins, while the previous HDX-SANS research focused on a β -sheet-rich protein (NISTmAb) with a Y-shaped quaternary structure in solution.²

Using HDX-SANS, we measured the HDX in the core of BSA proteins by allowing a few days of wait time for exposure of labile protons to solvent molecules prior to the HDX-SANS experiments. High-concentration BSA samples are studied over the range of 40 to $60\text{ }^{\circ}\text{C}$, and the kinetics of HDX are extracted as a function of the temperature. As expected, increasing the sample temperature significantly increased the HDX rate. Arrhenius behavior is observed for the temperature dependence of the exchange rate, from which the activation energy is extracted. Furthermore, the quantitative nature of SANS

enables the in situ determination of the number of hydrogens exchanged as a function of time at the target temperature in formulation. We anticipate that the activation energies derived from HDX-SANS may prove useful as a quantitative metric for assessing the long-term stability of protein drug formulations and thus warrant more studies in the future.

The addition of NaCl, a common tonicity agent in formulation, is shown to have a slight stabilizing effect, with a small increase in the onset temperature of denaturation and slower rate of HDX. The decreased HDX rate by adding salts is associated with the increase in the onset temperature of denaturation of BSA. This result is consistent with previous observations for NISTmAb, a β -sheet-dominated protein, suggesting that the long-time HDX and thermal stability are intrinsically related, which may be a general behavior for proteins.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acs.jpcb.4c03967>.

$R(Q)$ of 60 °C SANS measurements of BSA, with and without sodium chloride; sample of the data fitting performed to obtain values of y from $R(Q)$; residuals from the fitting of y over time; HDX-SANS patterns for the BSA sample with 150 mM sodium chloride; ratios for the sample containing sodium chloride; table of all values of y over time and table of all y_∞ ([PDF](#))

AUTHOR INFORMATION

Corresponding Authors

Norman J. Wagner — Department of Biomedical Engineering, College of Engineering and Center for Neutron Science, Department of Chemical and Biomolecular Engineering, College of Engineering, University of Delaware, Newark, Delaware 19711, United States; [orcid.org/0000-0001-9565-619X](#); Email: wagnernj@udel.edu

Yun Liu — Center for Neutron Science, Department of Chemical and Biomolecular Engineering, College of Engineering, University of Delaware, Newark, Delaware 19711, United States; Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States; [orcid.org/0000-0002-0944-3153](#); Email: yunliu@nist.gov

Author

Róisín B. Donnelly — Department of Biomedical Engineering, College of Engineering and Center for Neutron Science, Department of Chemical and Biomolecular Engineering, College of Engineering, University of Delaware, Newark, Delaware 19711, United States; [orcid.org/0000-0002-7519-946X](#)

Complete contact information is available at: <https://pubs.acs.org/doi/10.1021/acs.jpcb.4c03967>

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Funding for this research was provided by the National Science Foundation under award DMR-1935956. We would like to acknowledge IBBR for allowing us to use their equipment and

Dr. Robert G. Brinson for his expert opinion regarding differential scanning calorimetry. Additionally, we acknowledge Dr. Kyle Anderson for providing expert opinions in hydrogen— deuterium exchange. We would like to acknowledge SASView and reference this website: <http://www.sasview.org/>. We would like to acknowledge Dr. Peter Gilbert for his contributions in the early stage of analysis development. Certain commercial equipment, instruments, or materials (or suppliers, or software, ...) are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose. Y.L. acknowledges the support provided by the Center for High Resolution Neutron Scattering, a partnership between the National Institute of Standards and Technology and the National Science Foundation under Agreement No. DMR-2010792.

ABBREVIATIONS

HDX, hydrogen—deuterium exchange; SANS, small-angle neutron scattering; MS, mass spectrometry; BSA, bovine serum albumin; DSC, differential scanning calorimetry

REFERENCES

- (1) Urquhart, L. Top drugs and companies by sales in 2017. *Nat. Rev. Drug Discovery* **2018**, *17* (4), 232–232.
- (2) Donnelly, R. B.; Pingali, S. V.; Heroux, L.; Brinson, R. G.; Wagner, N. J.; Liu, Y. Hydrogen—Deuterium Exchange Dynamics of NISTmAb Measured by Small Angle Neutron Scattering. *Mol. Pharmaceutics* **2023**, *20* (12), 6358–6367.
- (3) Wang, W.; Singh, S.; Zeng, D. L.; King, K.; Nema, S. Antibody structure, instability, and formulation. *J. Pharm. Sci.* **2007**, *96* (1), 1–26.
- (4) Le Basle, Y.; Chennell, P.; Tokhadze, N.; Astier, A.; Sautou, V. Physicochemical Stability of Monoclonal Antibodies: A Review. *J. Pharm. Sci.* **2020**, *109* (1), 169–190.
- (5) Cho, E.; Mayhugh, B. M.; Srinivasan, J. M.; Sacha, G. A.; Nail, S. L.; Topp, E. M. Stability of antibody drug conjugate formulations evaluated using solid-state hydrogen-deuterium exchange mass spectrometry. *J. Pharm. Sci.* **2021**, *110* (6), 2379–2385.
- (6) Moorthy, B. S.; Zarraga, I. E.; Kumar, L.; Walters, B. T.; Goldbach, P.; Topp, E. M.; Allmendinger, A. Solid-State Hydrogen— Deuterium Exchange Mass Spectrometry: Correlation of Deuterium Uptake and Long-Term Stability of Lyophilized Monoclonal Antibody Formulations. *Mol. Pharmaceutics* **2018**, *15* (1), 1–11.
- (7) Gamage, C. L. D.; Hageman, T. S.; Weis, D. D. Rapid Prediction of Deamidation Rates of Proteins to Assess Their Long-Term Stability Using Hydrogen Exchange-Mass Spectrometry. *J. Pharm. Sci.* **2019**, *108* (6), 1964–1972.
- (8) Masson, G. R.; Burke, J. E.; Ahn, N. G.; Anand, G. S.; Borchers, C.; Brier, S.; Bou-Assaf, G. M.; Engen, J. R.; Englander, S. W.; Faber, J.; et al. Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. *Nat. Methods* **2019**, *16* (7), 595–602.
- (9) Trabjerg, E.; Nazari, Z. E.; Rand, K. D. Conformational analysis of complex protein states by hydrogen/deuterium exchange mass spectrometry (HDX-MS): Challenges and emerging solutions. *TrAC Trends in Analytical Chemistry* **2018**, *106*, 125–138.
- (10) Narang, D.; Lento, C.; Wilson, D. HDX-MS: An Analytical Tool to Capture Protein Motion in Action. *Biomedicines* **2020**, *8* (7), 224.
- (11) Englander, J. J.; Del Mar, C.; Li, W.; Englander, S. W.; Kim, J. S.; Stranz, D. D.; Hamuro, Y.; Woods, V. L. Protein structure change studied by hydrogen-deuterium exchange, functional labeling, and

676 mass spectrometry. *Proc. Natl. Acad. Sci. U. S. A.* **2003**, *100* (12),
677 7057–7062.

678 (12) Majumdar, R.; Manikwar, P.; Hickey, J. M.; Samra, H. S.;
679 Sathish, H. A.; Bishop, S. M.; Middaugh, C. R.; Volkin, D. B.; Weis, D.
680 D. Effects of Salts from the Hofmeister Series on the Conformational
681 Stability, Aggregation Propensity, and Local Flexibility of an
682 IgG1Monoclonal Antibody. *Biochemistry* **2013**, *52* (19), 3376–3389.

683 (13) Wu, S.; Nguyen, T.; Moroz, O. V.; Turkenburg, J. P.; Nielsen, J.
684 E.; Wilson, K. S.; Rand, K. D.; Teilum, K. Conformational
685 heterogeneity of Savinase from NMR. *HDX-MS and X-ray diffraction*
686 analysis. *PeerJ* **2020**, *8*, No. e9408.

687 (14) Jia, R.; Martens, C.; Shekhar, M.; Pant, S.; Pellowe, G. A.; Lau,
688 A. M.; Findlay, H. E.; Harris, N. J.; Tajkhorshid, E.; Booth, P. J.;
689 Politis, A. Hydrogen-deuterium exchange mass spectrometry captures
690 distinct dynamics upon substrate and inhibitor binding to a
691 transporter. *Nat. Commun.* **2020**, *11* (1), 6162.

692 (15) Chu, I. T.; Pielak, G. J. Using NMR-detected hydrogen-
693 deuterium exchange to quantify protein stability in cosolutes, under
694 crowded conditions in vitro and in cells. *Magnetic Resonance Letters*
695 **2023**, *3* (4), 319–326.

696 (16) Di Muzio, M.; Wildner, S.; Huber, S.; Hauser, M.; Vejvar, E.;
697 Auzinger, W.; Regl, C.; Laimer, J.; Zennaro, D.; Wopfer, N.; Huber,
698 C. G.; van Ree, R.; Mari, A.; Lackner, P.; Ferreira, F.; Schubert, M.;
699 Gadermaier, G. Hydrogen/deuterium exchange memory NMR reveals
700 structural epitopes involved in IgE cross-reactivity of allergenic lipid
701 transfer proteins. *J. Biol. Chem.* **2020**, *295* (51), 17398–17410.

702 (17) Peacock, R. B.; Komives, E. A. Hydrogen/Deuterium Exchange
703 and Nuclear Magnetic Resonance Spectroscopy Reveal Dynamic
704 Allostery on Multiple Time Scales in the Serine Protease Thrombin.
705 *Biochemistry* **2021**, *60* (46), 3441–3448.

706 (18) Dunkelberger, E. B.; Woys, A. M.; Zanni, M. T. 2D IR cross
707 peaks reveal hydrogen-deuterium exchange with single residue
708 specificity. *J. Phys. Chem. B* **2013**, *117* (49), 15297–305.

709 (19) Wang, R.; Mangion, I.; Makarov, A. A.; Kurouski, D. Use of
710 Raman spectroscopy and size-exclusion chromatography coupled with
711 HDX-MS spectroscopy for studying conformational changes of small
712 proteins in solution. *J. Pharm. Biomed. Anal.* **2020**, *189*, No. 113399.

713 (20) Teixeira, S. C. M.; Leão, J. B.; Gagnon, C.; McHugh, M. A.
714 High pressure cell for Bio-SANS studies under sub-zero temperatures
715 or heat denaturing conditions. *J. Neutron Res.* **2018**, *13*–23.

716 (21) Pan, J.; Han, J.; Borchers, C. H.; Konermann, L. Hydrogen/
717 Deuterium Exchange Mass Spectrometry with Top-Down Electron
718 Capture Dissociation for Characterizing Structural Transitions of a 17
719 kDa Protein. *J. Am. Chem. Soc.* **2009**, *131* (35), 12801–12808.

720 (22) Konermann, L.; Pan, J.; Liu, Y.-H. Hydrogen exchange mass
721 spectrometry for studying protein structure and dynamics. *Chem. Soc.*
722 *Rev.* **2011**, *40* (3), 1224–1234.

723 (23) Lu, R.; Li, W.-W.; Katzir, A.; Raichlin, Y.; Yu, H.-Q.; Mizaikoff,
724 B. Probing the secondary structure of bovine serum albumin during
725 heat-induced denaturation using mid-infrared fiberoptic sensors.
726 *Analyst* **2015**, *140* (3), 765–770.

727 (24) Molodenskiy, D.; Shirshin, E.; Tikhonova, T.; Gruzinov, A.;
728 Peters, G.; Spinozzi, F. Thermally induced conformational changes
729 and protein–protein interactions of bovine serum albumin in aqueous
730 solution under different pH and ionic strengths as revealed by SAXS
731 measurements. *Phys. Chem. Chem. Phys.* **2017**, *19* (26), 17143–
732 17155.

733 (25) Murayama, K.; Tomida, M. Heat-Induced Secondary Structure
734 and Conformation Change of Bovine Serum Albumin Investigated by
735 Fourier Transform Infrared Spectroscopy. *Biochemistry* **2004**, *43* (36),
736 11526–11532.

737 (26) Bulone, D.; Martorana, V.; San Biagio, P. L. Effects of
738 intermediates on aggregation of native bovine serum albumin. *Biophys.*
739 *Chem.* **2001**, *91* (1), 61–69.

740 (27) Su, R.; Qi, W.; He, Z.; Zhang, Y.; Jin, F. Multilevel structural
741 nature and interactions of bovine serum albumin during heat-induced
742 aggregation process. *Food Hydrocolloids* **2008**, *22* (6), 995–1005.

743 (28) Yadav, P.; Yadav, A. B. Preparation and characterization of BSA
744 as a model protein loaded chitosan nanoparticles for the development
of protein-/peptide-based drug delivery system. *Future J. Pharm. Sci.* **2021**, *7* (1), 200.

(29) Al-Husseini, J. K.; Stanton, N. J.; Selassie, C. R. D.; Johal, M. S. The Binding of Drug Molecules to Serum Albumin: The Effect of Drug Hydrophobicity on Binding Strength and Protein Desolvation. *Langmuir* **2019**, *35* (52), 17054–17060.

(30) James, E. I.; Murphree, T. A.; Vorauer, C.; Engen, J. R.; Guttmann, M. Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems. *Chem. Rev.* **2022**, *122* (8), 7562–7623.

(31) Parmar, A. S.; Muschol, M. Hydration and Hydrodynamic Interactions of Lysozyme: Effects of Chaotropic versus Kosmotropic Ions. *Biophys. J.* **2009**, *97* (2), 590–598.

(32) Gregory, K. P.; Elliott, G. R.; Robertson, H.; Kumar, A.; Wanless, E. J.; Webber, G. B.; Craig, V. S. J.; Andersson, G. G.; Page, A. J. Understanding specific ion effects and the Hofmeister series. *Phys. Chem. Chem. Phys.* **2022**, *24* (21), 12682–12718.

(33) Ghosh, I.; Gutka, H.; Krause, M. E.; Clemens, R.; Kashi, R. S. A systematic review of commercial high concentration antibody drug products approved in the US: formulation composition, dosage form design and primary packaging considerations. *MAbs* **2023**, *15* (1), 2205540.

(34) Wang, S. S.; Yan, Y. S.; Ho, K. US FDA-approved therapeutic antibodies with high-concentration formulation: summaries and perspectives. *Antib. Ther.* **2021**, *4* (4), 262–272.

(35) Zhang, F.; Roosen-Runge, F.; Skoda, M.; Jacobs, R.; Wolf, M.; Callow, P.; Frielinghaus, H.; Pipich, V.; Prévost, S.; Schreiber, F. Hydration and interactions in protein solutions containing concentrated electrolytes studied by small-angle scattering. *Physical chemistry chemical physics: PCCP* **2012**, *14*, 2483–93.

(36) Yearley, E. J.; Zarraga, I. E.; Shire, S. J.; Scherer, T. M.; Gokarn, Y.; Wagner, N. J.; Liu, Y. Small-angle neutron scattering characterization of monoclonal antibody conformations and interactions at high concentrations. *Biophys. J.* **2013**, *105* (3), 720–31.

(37) Kotlarchyk, M.; Chen, S. H. Analysis of Small-Angle Neutron Scattering Spectra from Polydisperse Interacting Colloids. *J. Chem. Phys.* **1983**, *79* (5), 2461–2469.

(38) Bendedouch, D.; Chen, S. H. Structure and interparticle interactions of bovine serum albumin in solution studied by small-angle neutron scattering. *J. Phys. Chem.* **1983**, *87* (9), 1473–1477.

(39) Giancola, C.; De Sena, C.; Fessas, D.; Graziano, G.; Barone, G. DSC studies on bovine serum albumin denaturation. Effects of ionic strength and SDS concentration. *Int. J. Biol. Macromol.* **1997**, *20* (3), 193–204.

(40) Gumpen, S.; Hegg, P. O.; Martens, H. Thermal stability of fatty acid-serum albumin complexes studied by differential scanning calorimetry. *Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism* **1979**, *574* (2), 189–196.

(41) Oganesyan, I.; Lento, C.; Wilson, D. J. Contemporary hydrogen/deuterium exchange mass spectrometry. *Methods* **2018**, *144*, 27–42.

(42) Rosenberg, A.; Chakravarti, K. Studies of Hydrogen Exchange in Proteins: I. The Exchange Kinetics of Bovine Carbonic Anhydrase. *J. Biol. Chem.* **1968**, *243* (19), 5193–5201.

(43) Hodge, E. A.; Benhaim, M. A.; Lee, K. K. Bridging protein structure, dynamics, and function using hydrogen/deuterium exchange mass spectrometry. *Protein Sci.* **2020**, *29* (4), 843–855.

(44) Hodgkinson, J. P.; Jahn, T. R.; Radford, S. E.; Ashcroft, A. E. HDX-ESI-MS Reveals Enhanced Conformational Dynamics of the Amyloidogenic Protein β 2-Microglobulin upon Release from the MHC-1. *J. Am. Soc. Mass Spectrom.* **2009**, *20* (2), 278–286.

(45) Tajuddin, N. N.; Konermann, L. Analysis of Temperature-Dependent H/D Exchange Mass Spectrometry Experiments. *Anal. Chem.* **2020**, *92* (14), 10058–10067.

(46) Williams, D. H.; Searle, M. S.; Mackay, J. P.; Gerhard, U.; Maplestone, R. A. Toward an estimation of binding constants in aqueous solution: studies of associations of vancomycin group antibiotics. *Proc. Natl. Acad. Sci. U. S. A.* **1993**, *90* (4), 1172–1178.

812 (47) Sheu, S.-Y.; Yang, D.-Y.; Selzle, H. L.; Schlag, E. W. Energetics
813 of hydrogen bonds in peptides. *Proc. Natl. Acad. Sci. U. S. A.* **2003**,
814 *100* (22), 12683–12687.