En4S: Enabling SLOs in Serverless Storage Systems

Minghao Xie Chen Qian Heiner Litz
UC Santa Cruz UC Santa Cruz UC Santa Cruz
USA USA USA
mhxie@ucsc.edu cqian12@ucsc.edu hlitz@ucsc.edu
ABSTRACT CCS CONCEPTS

Serverless computing promises scalability and cost-efficiency
by decomposing monolithic tasks into small, stateless, self-
contained functions. As functions only reserve hardware
resources during their lifetime, and serverless providers such
as Amazon Lambda define strict data size limits [50], data
required for the whole lifetime of a monolithic task needs to
be kept in an external ephemeral data store. This approach
increases costs and introduces performance variability, caus-
ing serverless applications to violate service level objectives
(SLOs). Traditional cloud storage solutions, such as AWS S3
and Redis, fail to provide low-cost and the enforcement of
SLOs, while prior works on disaggregated data stores do
not scale sufficiently due to: (1) increased scheduling costs
when supporting many SLOs; (2) performance degradation
in the presence of burst allowances and worsened interfer-
ence with lenient ones; and (3) failed service differentiation
with increased number of SLO. These challenges make SLO
enforcement in serverless environments difficult, leading to
unpredictable performance and costs that undermine the
benefits of serverless computing.

We introduce En4S, a high-performance, flash-based stor-
age system designed for data-intensive serverless applica-
tions. En4S employs a profile-based scheduling framework
with adaptive strategies to efficiently scale to many tenants
with different SLOs. Key features include dynamic tenant
handling, adaptive burst control, token reclaim control, and
various optimizations to minimize scheduling costs while
maintaining superior performance. By re-enabling SLO en-
forcement for disaggregated flash storage in cloud-native
environments, En4S is crucial for modern serverless applica-
tions. Our implementation on Amazon EC2 and Lambda
demonstrates substantial performance and cost improve-
ments while reliably ensuring SLO compliance, enhancing
the viability of serverless storage systems.

This work is licensed under a Creative Commons Attribution International
4.0 License.

SoCC °24, November 20-22, 2024, Redmond, WA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1286-9/24/11.
https://doi.org/10.1145/3698038.3698529

160

« Computer systems organization — Cloud computing;
« Information systems — Cloud based storage.

KEYWORDS
Serverless Computing, Flash Disaggregation, QoS Scheduling

ACM Reference Format:

Minghao Xie, Chen Qian, and Heiner Litz. 2024. En4S: Enabling
SLOs in Serverless Storage Systems. In ACM Symposium on Cloud
Computing (SoCC °24), November 20-22, 2024, Redmond, WA, USA.
ACM, New York, NY, USA, 18 pages. https://doi.org/10.1145/3698038.
3698529

1 INTRODUCTION

The advent of cloud-native applications has brought server-
less computing into the limelight for its scalability, fine-
grained billing, and ease of development [32]. As organi-
zations increasingly adopt serverless architectures, the de-
mand for efficient and reliable ephemeral storage systems
has surged. Ephemeral storage plays a pivotal role in server-
less environments, providing temporary data storage that
persists across function invocations without the overhead of
managing dedicated servers.

However, the fundamentally stateless nature of serverless
architectures introduces challenges for conventional applica-
tions that rely on data available across function invocations.
Traditional solutions such as AWS S3 [46] and ElastiCache
[45] aim to strike a balance between performance and cost
by offering high throughput and reduced latency; however,
they do not meet the requirements of serverless applica-
tions [24, 25], including high performance for various object
sizes, elasticity to scale to the bursty demands, and cost-
efficiency to maintain the serverless benefits.

Recent innovations in ephemeral storage such as Pocket
[25], Jiffy [21], Locus [41], SMASH [31], and SONIC [35]
address challenges such as providing storage systems for
serverless-level elasticity and performance demands with
low cost [23], but fail to provide performance predictabil-
ity. Nevertheless, they often struggle with performance pre-
dictability—a critical factor for applications where latency
and throughput consistency are paramount. Unpredictable

https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://doi.org/10.1145/3698038.3698529
https://doi.org/10.1145/3698038.3698529
https://doi.org/10.1145/3698038.3698529
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3698038.3698529&domain=pdf&date_stamp=2024-11-20

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

performance can lead to degraded user experiences and in-
creased operational costs, as applications may over-provision
resources to compensate for storage inefficiencies.

Enabling high, predictable performance for ephemeral
storage systems is important, as studies [24, 29, 61] indicate
that storage accesses can take up to 70% of the overall time,
most of which is on the application’s critical path and can-
not be hidden. This underscores the urgency of developing
ephemeral storage systems that not only deliver high perfor-
mance but also ensure predictability and scalability without
incurring prohibitive costs.

The main issue of existing ephemeral storage solutions is
that their scheduling mechanisms for storage instances are
incapable of supporting high performance, high predictabil-
ity, and high scalability at low cost. While a First-Come,
First-Served (FCFS) strategy may maximize goodput, it lacks
service differentiation. ReFlex [22], on the other hand, en-
forces SLOs for a limited number of tenants but fails to scale
to thousands of tenants as needed in serverless environments.
These limitations result in high CPU contention when man-
aging numerous tenants, inefficient handling of bursty traffic,
and suboptimal resource utilization in mixed workload sce-
narios involving latency-critical (LC) and best-effort (BE)
tenants.

To address these challenges, we propose En4S, a novel
scheduling framework capable of scaling effectively. Our ap-
proach introduces a flexible tenant management framework
that enables rapid request handling and minimizes schedul-
ing delays. Through activation-based tenant traversal, En4S
efficiently dequeues requests, and with adaptive burst sched-
uling, it dynamically adjusts request processing in response
to workload fluctuations. By optimizing the entire end-to-end
(E2E) stack—from serverless runtimes to ephemeral storage
endpoints—En4S ensures that SLOs are seamlessly managed,
maximizing storage node utilization without compromising
performance guarantees.

We implement En4S on Amazon AWS and compare it
against state-of-the-art serverless storage designs, including
ReFlex and Jiffy. Our evaluation demonstrates that En4S
outperforms these frameworks by a factor of 1.87x to 3x in
goodput and by up to 2 orders of magnitude in tail latency
for certain workloads. These advancements translate into
substantial cost savings and enhanced efficiency for cloud-
native and serverless applications.

In summary, En4S makes the following contributions:

(1) We study and analyze the challenges in guaranteeing
SLOs in ephemeral storage systems, especially with
high tenant and SLO counts.

(2) We design and implement a profile-based ephemeral
storage system that serves as a research platform for

161

Minghao Xie, Chen Qjan, and Heiner Litz

developing Quality of Service (QoS) schedulers tailored
to serverless and cloud-native applications.

(3) We design and deploy a novel scheduler addressing
the issues we observed in enforcing SLOs at scale.

(4) We conduct extensive evaluations showing that En4S
outperforms existing frameworks, delivering over 3x
the goodput and 2x the cost efficiency, while consis-
tently enforcing SLOs under challenging workloads
where other solutions fail.

The remainder of this paper is organized as follows: In
Section 2, we provide background information and discuss
related work in ephemeral storage for serverless computing.
Section 3 presents a detailed analysis of the challenges faced
by current systems. In Section 4, we describe the design
of En4S, highlighting its key components and innovations.
Section 5 details our implementation, and Section 6 evaluates
the system’s performance through rigorous experimentation.
Finally, Section 7 offers concluding remarks and outlines
directions for future research.

2 BACKGROUND
2.1 Serverless Storage Systems

Ephemeral storage has emerged as a vital service for enabling
data-intensive analytics applications in serverless computing
[24, 25]. Serverless applications like analytics [1, 2, 13, 64]
require efficient intermediate data exchange between server-
less functions to enable independent and parallel cooperative
processing of a task. Ephemeral storage provides a platform
for these stateless runtimes to temporarily store short-lived
data generated by serverless analytic applications [24, 25].
By facilitating rapid data sharing and state management,
ephemeral storage systems are critical for maintaining the
performance and scalability of serverless applications, which
often involve a large number of small, stateless function in-
vocations.

The state-of-the-art ephemeral storage system, Pocket
[25], facilitates data sharing with flexible storage capacity
across multiple storage tiers such as DRAM, Flash, and disk
to meet various performance and cost demands from a large
spectrum of serverless applications. Jiffy [21] enhances Pocket
by addressing inefficient capacity utilization in DRAM servers
through active management of object life cycles and reclaim-
ing unused capacity allocation. These systems have signif-
icantly advanced the field by providing elasticity and cost-
efficiency, allowing serverless applications to scale dynami-
cally without excessive costs.

While these works reduce the cost of ephemeral storage
systems, they provide only limited performance, scalability,
and predictability. Pocket offers extensive storage choices
for different types of applications but struggles to provide
consistent performance predictability due to its focus on cost

En4S: Enabling SLOs in Serverless Storage Systems

| &

{ =
5 @ v l; P |

posa s g

(a) SSD Performance Profile (b) Calibrated Cost Model
Figure 1: EC2 Instance Storage (of i3.xlarge) Perfor-
mance Analysis: (a) SSD tail latency across different
IOPS and read/write ratios; (b) Request cost model for
various read/write ratios.

optimization over performance guarantees. Its multi-tiered
storage approach introduces additional latency and complex-
ity when catering to applications with stringent performance
requirements. Jiffy focuses on a single storage medium and
effectively utilizes the limited DRAM capacity with its lease-
based allocation. However, its reliance on DRAM makes it
cost-prohibitive at scale and limits its ability to handle large
volumes of data efficiently. Jiffy does not adequately address
the need for performance predictability under high tenant
concurrency and bursty workloads, which are common in
serverless environments. However, it remains constrained
by the high cost of DRAM and does not scale effectively, as
demonstrated in our evaluation in Fig. 9. Moreover, neither
Pocket nor Jiffy provides robust mechanisms for enforcing
performance SLOs across a diverse set of tenants, leading to
unpredictable performance and potential SLO violations.

To address these limitations, there is a need for ephemeral
storage systems that offer elasticity, cost-efficiency, and pre-
dictable high performance and scalability. Such systems should
handle the unique challenges of serverless environments,
including high tenant concurrency, bursty workloads, and
strict performance SLOs.

2.2 Predictable Performance Metrics

Predictable performance in both throughput and latency is
crucial for most cloud applications [12, 18, 22, 66] to achieve
high capacity and enhance user experience. This is especially
important for serverless computing and ephemeral storage,
as serverless functions are often billed on fine time-scales,
such as milliseconds. Users require predictable performance
to efficiently to execute serverless functions efficiently with
data and state dependencies. Failure to meet latency and
throughput requirements in serverless computing can lead
to function timeouts and increased financial costs. In ad-
dition, unpredictable performance can degrade application
responsiveness and user satisfaction, especially for latency-
sensitive applications such as real-time data processing and
interactive services.

162

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

Achieving predictable performance for ephemeral storage
is particularly challenging in multi-tenant storage systems,
where multiple applications share resources and compete
for them under high load conditions. Resource contention
among tenants can lead to performance variability, making
it difficult to meet the SLOs of all tenants simultaneously.
This is exacerbated in serverless environments, where the
number of tenants can scale rapidly, and workloads can be
highly dynamic and bursty.

Enforcing service-level objectives (SLOs) is a common
approach to achieving predictable performance [12, 18, 22,
66]. This work studies the following SLO requirements for
ephemeral storage:

Tail Latency SLO: The latency of a request to the storage
is defined as the completion time from issuing a request to
the target server fulfilling it. Tail latency is a statistical metric
that reports the operation access time at high percentiles,
such as the 95th percentile. A tail latency SLO is enforced if
the given percentile (95th in this paper) of latency remains
below a pre-specified value.

Optimizing tail latency is a common objective [8, 10, 27,
62] in many cloud computing systems for interactive ser-
vices, serverless compilers [13], and micro-services [32]. Tail
latency directly impacts user experience, as slow responses
from a small fraction of requests can significantly degrade
the perceived performance of an application. Therefore, en-
suring that tail latency remains within acceptable bounds is
critical for maintaining application responsiveness.

IOPS SLO: I/O operations per second (IOPS) is a metric re-
flecting the processing throughput of a storage stack, crucial
for providing predictable task completion times and satis-
fying data-intensive applications such as image and video
processing [1, 2], high-performance computing [54], and
numerical analysis [51]. In our study, the IOPS SLO is a pre-
defined value, enforced if the measured IOPS exceeds this
threshold. Otherwise, the IOPS SLO is violated. By default,
the sampling sensitivity is at the second level, and the en-
forcement is valid when 95% of sampled windows meet the
threshold condition. Ensuring IOPS SLOs allows applications
to process data at the required rates, preventing bottlenecks
and delays in data pipelines.

Goodput: In our system, goodput refers to the number
of requests completed within a specific given latency. It is a
critical metric for evaluating the performance of storage oper-
ations under various workloads and SLO conditions. Unlike
throughput, which measures the total number of operations
regardless of their completion time, goodput focuses on the
efficiency of meeting latency requirements. By optimizing
for goodput, we ensure that the system not only meets the
required SLOs but also maximizes the number of requests
successfully completed within the specified latency, leading

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

to better overall performance and user satisfaction. Good-
put is particularly important in multi-tenant environments,
where the goal is to maximize the effective work done while
adhering to each tenant’s performance requirements.

These performance metrics serve as essential benchmarks
for evaluating and designing ephemeral storage systems
capable of delivering predictable performance.

2.3 Enforcing SLOs in Disaggregated
Multi-tenant Flash Storage Systems

Enforcing E2E SLOs is essential for cloud services, and sev-
eral studies address this challenge. Detail [62] leverages cross-
stack optimization to reduce packet drops. Silo and SNC-
Meister [18, 65] apply network calculus to ensure bandwidth,
packet delay, and burst allowance for shared servers, particu-
larly for latency-sensitive tenants. WorkloadCompactor [66]
controls tenant rates and places resized jobs onto appropri-
ate servers based on workload traces, while Breakwater [7]
manages load levels with admission control and active queue
management for microsecond RPCs. However, enforcing
SLOs in disaggregated storage systems presents additional
challenges due to the extra storage layer involved and inter-
nal queuing mechanisms. The interaction between network
and storage resources adds complexity to SLO enforcement,
as bottlenecks can occur at multiple points in the system.

In disaggregated storage systems, high-performance NVMe
SSDs are accessed over low-latency, high-throughput net-
works, making them ideal for latency-sensitive applications.
ReFlex [22] bridges this gap by using a dataplane kernel that
tightly integrates networking and storage processing. ReFlex
achieves up to 850K IOPS per core over TCP/IP with minimal
latency overhead, only 21us higher than direct local Flash
access. It includes a QoS scheduler that enforces tail latency
and throughput SLOs for thousands of remote clients, using
offline-profiled SSD performance to guide scheduling for
tenants with varying IOPS and latency SLOs.

In Fig. 1, we profiled the instance storage (composed of a
950GB NVMe SSD) performance with the IOPS versus tail
latency curve on different read/write ratios. This profiling
shows how SSD performance varies by read/write ratio, crit-
ical for enforcing tail latency SLOs. Figure 1a reveals that
as IOPS rise, tail latency also increases, especially for work-
loads with higher write ratios due to write amplification
and garbage collection. We calibrated the profiling data with
the cost model described in Section 5.3, as shown in Fig. 1b.
This calibrated cost model allows us to estimate the resource
consumption of different IO operations accurately, providing
the foundation for our scheduler to make informed decisions
about request scheduling and rate limiting to enforce SLOs
effectively.

163

Minghao Xie, Chen Qjan, and Heiner Litz

Gimbal [38] introduces a software storage switch that
orchestrates IO traffic between Ethernet ports and NVMe
drives for co-located tenants. It employs techniques such
as delay-based SSD congestion control and dynamic esti-
mation of SSD write costs, achieving better utilization and
reduced tail latency compared to previous solutions. Gimbal
demonstrates the effectiveness of combining network and
storage scheduling to improve performance predictability
in multi-tenant environments. Gupta et al. [14] propose a
comprehensive approach to E2E QoS for modern storage
systems, introducing QoS-aware transport protocols that
provide stable differentiation for both throughput-sensitive
and latency-sensitive storage traffic.

Despite these advancements, current QoS scheduling al-
gorithms for flash storage struggle to guarantee IOPS and
tail latency SLOs at scale. As the number of tenants grows,
resource management becomes more complex, increasing
scheduling overhead and risking performance degradation.
The cost of scheduling rises with the number of SLOs, and
bursty or skewed loads make enforcement more difficult.
Additionally, existing schedulers struggle with sudden work-
load changes, leading to latency spikes and SLO violations.
These challenges make enforcing SLOs difficult in serverless
environments, resulting in unpredictable performance and
offsetting the benefits of serverless computing.

To tackle these issues, we need scalable scheduling frame-
works that can efficiently enforce SLOs for many tenants. Our
solution introduces such a framework using activation-based
tenant traversal and adaptive burst scheduling to provide
predictable performance at scale, fully realizing the benefits
of serverless computing.

3 ANALYSIS

In this section, we analyze the state of the art disaggregated
storage framework [22], and show why existing techniques
fail to guarantee SLOs in serverless environments. We run
a modified version on i3.xlarge EC2 instance as the storage
server and load-generating clients on AWS Lambda in the
same virtual private network (VPC) [47]. Details about our
setup can be found in Section 6.1.

3.1 Limited Scheduler Scalability

To optimize cost in ephemeral storage systems, storage servers
need to support thousands of short-lived tenants concur-
rently, each one with potentially different performance re-
quirements. To analyze whether the existing state-of-the-art
implementation ReFlex can support this use-case efficiently,
we investigate the E2E goodput performance as we increase
the number of tenants, each with unique SLO requirements.
We also evaluate a first-come-first-served (FCFS) mechanism

En4S: Enabling SLOs in Serverless Storage Systems

e~ FOFS @ Reflaw ---- idealsss fC15 60
Ew A - GER Jcheo
b i—— & ¢ LT
I'v_"-r‘_'___-- - < ’ i
K 3 i
| ik
e|¢

Lo 1]

10 100

- e o T
Tha Murmper of SLOS

(a) Goodput (b) CPU cycles
Figure 2: Scalability Evaluation: (a) Goodput perfor-
mance with 10, 100, and 1000 unique SLOs (with same
number of clients) under FCFS and ReFlex schedulers.
(b) CPU cycle breakdown for both schedulers running
on an i3.xlarge server with a single core.

that minimizes scheduling overheads and, hence, should pro-
vide the highest performance; however, it cannot enforce
SLOs. The results are depicted in Fig.2a, showing that the
ReFlex scheduler exhibits near-ideal performance when man-
aging a small number of 10 SLOs. However, as the number
of SLOs increases to 100 or 1,000, we observe a substantial
decline in goodput. Conversely, the FCFS scheduler, despite
utilizing an identical queuing system as ReFlex, demonstrates
a negligible decrease in goodput. This comes at a cost, as
the FCFS scheduler disregards SLO specifications entirely.
Note that the gap seen with 10 SLOs/clients is due to the
per-Lambda limits push SLO violations from the server to
the clients. To overcome this, we increased the number of
clients to 20 in Fig.9.

Further analysis, as shown in Fig.2b, reveals that the sig-
nificant drop in performance is attributable to the increased
scheduling overhead that accompanies a higher number of
SLOs to be considered. Unlike the relatively stable IO com-
putation percentage observed with FCFS schedulers, the in-
creasing scheduling compute pressure becomes the predomi-
nant factor as the number of SLOs exceeds around 100. This
factor drastically prevents IO operations from getting their
minimum required cycles, particularly within IX’s run-to-
completion model[4], on which ReFlex is based.

This investigation underscores the critical need for a scal-
able QoS scheduling solution capable of efficiently managing
an extensive array of SLO demands without compromising
system performance. The limitations of current schedulers,
as evidenced by our findings, necessitate the development
of novel scheduling strategies to address such issues.

3.2 Challenges in Managing Bursty Tenants

Cloud applications often exhibit bursty demand patterns,
and one of the primary motivations for using serverless com-
puting is cost savings during periods of low utilization. This
necessitates that ephemeral storage designed for serverless
computing should be capable of handling bursts effectively.

164

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

- el S =h= 1000 Bl P 1L Gl BE

_E. B 4 KNS 0 _-': I

Fofiman = ENNNN D

£ 81 - .- S PR -0 7 78 (e o e e |

A -__l‘ o 4 L L l. T |

% sl " 5 {

= 40 = 3

5 :_‘1 = a0 teyefly g ,'I’ LJ

;‘. a0 '.‘_. I

u? il # s + ;L 04

4 10 20 ¥ 40 S0 0 00 X% 150 175 240
Burst Alpraramod [0 Fomdy (4ec s |

(a) Goodput Performance (b) Goodput Timeline

Figure 3: Burst Control Analysis: (a) The aggregated
4KiB goodput performance (75%rd) with increasing
burst allowance ratio for LC tenants, running with 100,
500, and 1000 tenants. (b) Goodput performance with
25-ms windows over time, running with one malicious
LC tenant LC GO (50%rd), one benign LC tenant LC G1
(90%rd), and one BE tenant (100%rd).

Most QoS schedulers adopt work-conserving techniques
to maintain high utilization levels. For example, ReFlex sets a
fixed burst allowance limit for every tenant, which is defined
as the number of tokens a tenant can temporarily exceed
above its rate limit, in proportion to their IOPS requirements.
For 100, 500, and 1000 unique SLOs, we vary the burst al-
lowance settings from 5% to 50% in the improved version of
ReFlex.

Fig. 3a shows that a higher burst allowance is key to main-
taining goodput performance, especially with high concur-
rency and many SLOs. This is because a larger number of
connections with fewer IOPS tends to act more bursty than
a smaller number with larger IOPS.

However, a high burst allowance can cause interference,
as greedy tenants may exceed their assigned SLOs. The high
burst allowance enables them to avoid performance penal-
ties, potentially degrading the performance of other tenants,
as illustrated in Fig. 3b. In this experiment, there are two LC
tenant groups, LC Group 0 (G0) and LC Group 1 (G1), regis-
tering SLOs of 40K and 20K IOPS, respectively. Furthermore,
the BE group consists of 100 clients that send as much IOPS
as possible. When the burst allowance ratio is set to 50%, the
malicious LC GO periodically demands more IOPS than it
has registered, while LC G1 adheres to its requested demand.
Due to the high burst allowance, LC GO0 can exceed its re-
quested SLO without suffering performance penalties, as the
"allowance" enables it to periodically exceed its requested
SLO.

However, this behavior reduces the performance of LC G1,
which receives fewer IOPS than requested, violating its SLO.
The throughput of the BE clients is also negatively affected.

To conclude, the existing burst allowance policy of ReFlex
fails to enforce SLOs or is not work-conserving in the pres-
ence of bursty traffic. An improved mechanism is required
to achieve such goals.

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

& FOFS ErdS (hac — L aF

= 10 T X 20
4 &
- [
3w - E 07
g g '
T E
=3 & _ap .

15% S0 15% [1 F 3 L

UC Ratkas L e e Ledi

(a) Latency Performance (b) Submission Timeline

Figure 4: LC Ratio Impact: (a) GET tail latency (75%rd)
performance under increasing the LC ratio among 400
tenants with the same load breakdown for LC tenants
(50K) and BE tenants (150K). (b) The number of re-
quests scheduled for LC or BE tenants (count for BE
shown as negative value) in the sliding 512-schedule
windows over time at 75% LC ratio.

3.3 Service Differentiation Failures at Scale

We now analyze whether ReFlex can enforce service differ-
entiation at high tenant (and SLO) scalability.

In this experiment, we generate 50K LC traffic and 150K
BE traffic using a 75% read/write ratio to pressure the server
running both FCFS and an improved version of ReFlex (En4S
Basic) without token reclaim. We distribute the LC traffic
among many tenants, each with unique SLOs, to simulate
high tenant scalability. We analyze different ratios of LC
and BE tenants to verify if the service differentiation can
stand with the same load distribution. The LC ratio is the
percentage of LC tenants out of the total number of tenants
in the system. For an LC ratio of 25%, we use 100 clients with
unique IOPS SLOs, and the remaining 300 clients register
as BE tenants, submitting 150K IOPS aggregated. We then
convert additional BE tenants to LC tenants with every 25%
increase in the LC ratio.

According to our previous SSD profiling, the server should
be able to enforce a 2000 ys tail latency SLO when we keep
the 75% read IOPS below 72K and still have the opportunity
to complete BE traffic. However, as shown in Fig. 4a, we
find that although ReFlex performs well at lower LC ratios,
its tail latency increases significantly at higher LC ratios of
50% and 75%, violating the SLO guarantee by two orders of
magnitude. In contrast, FCFS shows a decrease in tail latency
as the LC ratio increases, but this is misleading because FCFS
does not enforce SLOs, and its goodput remains worse than
ReFlex’s.

This indicates that ReFlex’s ability to enforce service dif-
ferentiation diminishes at scale, highlighting the need for
more scalable scheduling strategies.

4 DESIGN

In the previous section, we analyzed the state-of-the-art sys-
tem ReFlex and showed the scalability, performance isolation

165

Minghao Xie, Chen Qjan, and Heiner Litz

and enforcement issues. We now introduce En4S, a system
that introduces novel QoS scheduling and burst control tech-
niques to address such issues.

4.1 Overview

En4S introduces novel techniques to enable scalable, disag-
gregated, and cost-effective ephemeral storage systems with
high, predictive performance. Our design addresses key chal-
lenges identified in the analysis section through three main
components:

(1) An improved QoS Scheduling Framework that effec-
tively manages both LC and BE tenants.

(2) A Dynamic Tenant Handling system that increases
scalability and reduces CPU overhead.

(3) An Adaptive Burst Control mechanism that balances
isolation and performance across various scenarios.

These components, along with a token reclaim control
mechanism, work in concert to create a storage system capa-
ble of handling numerous tenants with diverse performance
requirements. The following subsections will detail each
component and their contributions to the overall system
design. Note En4S does not manage failures directly. Fault
tolerance through coding or replication across nodes needs
to be implemented in the layer above En4S.

4.2 QoS Scheduling Framework

To address the challenges identified in our analysis (see Sec-
tion 3.1), we introduce a novel token-based scheduling mech-
anism that advances the state-of-the-art in cloud storage QoS.
Our approach draws inspiration from the Aliquem schedul-
ing algorithm [26], which demonstrated superior latency and
fairness at O(1) complexity compared to traditional Deficit
Round Robin (DRR) [52] implementations. Building upon
these insights, we have developed a sophisticated schedul-
ing framework specifically tailored to meet the diverse and
demanding requirements of modern cloud storage environ-
ments.

Figure 5 presents the design of the En4S scheduler: In the
dynamic tenant handling process, the scheduler efficiently
manages both active and inactive tenants. New requests
from tenants are either moved from the “inactive” state to
“active” or handled within the “active” queue, ensuring that
the requests are promptly added to the request pool. This
pool organizes tenant requests, and the scheduler uses an
efficient tenant traversal mechanism to dequeue and pro-
cess them according to their priority/arrival order. To handle
sudden bursts of requests, the adaptive burst control dy-
namically adjusts the number of requests sent to the SSD
submission queue (SQ) during each scheduling round. This
ensures smooth system performance, even under varying
loads. On the other hand, token reclaim control manages

En4S: Enabling SLOs in Serverless Storage Systems

Dynamic Tenant
Handling

|inE!:.'WEui|| now rmguest

il

hipwd I ava ¥ i)

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

Token Reclaim
Control
|‘r'.- g :'bl
Adaptive Burst
Confrol

FTT]
:5E132121
S B

64 7T} S@T]

LELLA

o T

Figure 5: En4S Scheduler Design

resource allocation by reclaiming unused tokens at appropri-
ate intervals. This process helps distinguish between LC and
BE tenants, allowing LC tenants to receive prioritized access
to the system resources while maintaining overall efficiency.

4.2.1 Storage Flow and Tenant Management. In the context
of the En4S scheduler, a storage flow is defined as a con-
nected I/O session with the same assigned storage nodes.
Each storage flow can register an individual SLO, which con-
sists of metrics such as IOPS, tail latency, and an optional
maximum write ratio hint. The storage server monitors the
registered SLO to ensure that the flow meets the job require-
ments. Flows that share the same IOPS and tail latency SLOs
are grouped together and identified as the same tenants.
The token increment for each time delta is derived from its
registered rate, number of flows, and expected cost for each
tenant. The rate of token accumulation, denoted as Weighted
Tokens per Second (wTPS), is calculated using the following
formula, C* is the cost function based on request types and
the global read/write ratio r, IOPS is the registered SLO.

wTPS = IOPS X (r x C*(RD,r) + (1 —r) x C*(WR, 1))

4.2.2 Scheduling Algorithm. The En4S scheduling algorithm
is sketched in Algorithm 1. The scheduling routine is invoked
for every IX [4] poll, the system call polling loop for stor-
age, networking, and scheduling events (e.g., TCP/IP poll
routine, NVMe request submission/completion routine). The
scheduling frequency is determined by the overall perfor-
mance of each poll. We divide the schedule routine into two
sub-routines for scheduling LC and BE tenants respectively,
naturally creating a priority for LC requests over BE requests.
Both subroutines utilize burst scheduling to submit as many
requests as possible when processing a specific tenant, de-
termined by the traversal order.

4.3 Dynamic Tenant Handling

4.3.1 Active Tenant Management. Unlike in ReFlex and other
QoS schedulers [22], En4S supports SLO registration for ev-
ery storage flow, and all tenants’ metadata are saved in a

166

shared memory pool similar to the request pool. We main-
tain a per-core tenant manager to manage active tenants
assigned to that core. The tenant manager keeps track of ac-
tive LC and BE tenants’ pointers in two separate cyclic arrays.
Initially, none of the tenants are activated; the tail pointer
moves a slot forward when a new tenant is activated, and
the head pointer moves when the first tenant is deactivated.

4.3.2 Tenant Traversal and Request Ordering. As analyzed in
Section 3.1, inefficient traversal in ReFlex contributes to high
CPU utilization and negatively impacts the necessary mini-
mum required CPU cycles for IO operations. The overhead
of comparing available tokens and request demand is signifi-
cantly reduced with active tenants. Because the number of
active tenants is much smaller than the total registered ten-
ants, especially for tenants with short flows, we traverse the
active tenant queue and apply exhaustive dequeuing for the
visited tenant. If the tenant does not accumulate sufficient
tokens nor have a deficit limit to admit the first request in
its queue, we move these tenants to the end of the activated
tenant queue for the next round. This way, requests are de-
queued in activation order across tenants and FCFS within
each tenant queue. The activation order is determined by the
time when the first request in that tenant queue arrives or
the time when it is blocked by insufficient tokens or a full
SSD queue. We simulate how this ordering helps improve
scheduling performance in Section 6.2.

4.3.3 Registration Burst Limit. Register and deregister sys-
tem calls can be costly if there are hundreds or thousands
of such requests arriving in a short period. In the poll loop,
we batch these requests and allow tenants to join as BE ten-
ants first (fast join or leave) before calculating the demanded
IOPS SLO along with its latency and read/write ratio SLO to
estimate how it would impact the performance of the whole
partition. When the 10 (storage or network) subroutines
finish and we find the poll frequency back to the desired
threshold (also can be profiled offline), we perform the slow
join or leave procedure for those tenants if they are latency

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

Algorithm 1 Scheduling Algorithm

1: function SCHEDULE

2 for tenant; in active_lc_tenants do

3 while tenant;.not_empty() do

4 if requestsssq > lc_threshold_max then
5: return

6 tenant;.credit +=

7 get_credit(tenant;.SLO, timey)

8 allowed_burst = acquire_burst(tenant;)
9 if tenant;.credit < —allowed_burst then

10: active_lc_tenants.requeue(tenant;)
11: break

12: submit(req_pool.pop_front(tenant;))
13: tenant;.credit —= cost(next_request)

14: active_lc_tenants.dequeue(tenant;)

15: if curr_time > reclaim_time then

16: reclaim_tokens(tenant;, LCd)

17: for tenant; in active_be_tenants do

18: tenant;.credit +=

19: get_credit(num_be_tenants, timey)
20: be_tokens = tenant;.credit

21: be_tokens += global_tokens_dec(demand;)
22: while tenant;.not_empty() do

23: if requestsssq > be_threshold_max then
24: return

25: if be_tokens > cost(next_request) then
26: submit(req_pool.pop_front(tenant;))
27: be_tokens —= cost(next_request)

28: else

29: active_be_tenants.requeue(tenant;)
30: break

31: active_be_tenants.dequeue(tenant;)

32: tenant;.credit =

33: save_credit(demand;, be_tokens)

34: be_tokens —= tenant;.credit

35: reclaim_tokens(tenant;, BE)

critical. This helps release processing pressure when the CPU
is busy while not blocking newly joined tenants for too long.

4.4 Adaptive Burst Control

While ReFlex introduced a fixed percentage burst budget
over registered rates, our system enhances this concept with
a more sophisticated adaptive burst control mechanism. This
improvement is necessary to address the limitations of the
original approach and to better meet the diverse demands of
modern cloud environments.

ReFlex’s fixed burst allowance presents a dilemma: a low
burst allowance may fail to enforce SLOs effectively, while a
high allowance can lead to performance isolation problems,

167

Minghao Xie, Chen Qjan, and Heiner Litz

as demonstrated in Section 3.2. Our adaptive burst control
aims to strike a balance between SLO enforcement at scale
and maintaining high isolation among tenants. To achieve
this, we introduce three key innovations:

(1) Dynamic smooth schedule: When scheduling fre-
quency is low due to high processing time in storage
and network parts, we process only a portion of each
queue even if it may have sufficient tokens or deficit
limit, but traverse tenants with multiple passes.

(2) Individual burst schedule: Each tenant’s burst sched-
ule, the maximum number of requests to be dequeued
if there are still available tokens, is determined by its
registered IOPS SLO and the number of concurrent
flows on that server.

(3) Consecutive burst limit: we track the deficit tokens
utilization for every tenant. When a tenant over-use
its credit for more than a given percentage of past con-
secutive scheduling rounds, our control routine will
multiplicative decrease (MD) its burst allowance until
it returns the tokens and back to below the threshold.
Then the control routine will additive increase (Al) the
allowance up to the original percentage.

This three-way burst control helps the scheduler balance
isolation and performance across different scenarios. With
the first method, we ensure fair request ordering under load
by preventing late-arriving requests from gaining advan-
tages over earlier head-of-line (HoL) requests. In the second
method, when the number of SLOs is relatively small and
the IOPS for each storage flow is relatively high, we use a
small burst allowance to correct tenant behavior. Lastly, in
the third method, if the IOPS SLOs are relatively small (based
on pre-profiled thresholds) and the number of connections
is high, we limit the burst allowance among LC tenants. Ma-
licious LC tenants will quickly lose their allowance and get
blocked if they exceed their registered IOPS SLOs, as the
AIMD mechanism takes effect.

4.5 Token Reclaim Control

In our analysis of SLO enforcement challenges (Section 3.3),
we identified a critical issue with the work-conserving mech-
anism across scheduling rounds. To address this problem, we
need to reevaluate how unused tokens are managed and dis-
tributed. Initially, the system was designed to share unused
portions of registered IOPS from LC tenants with BE tenants.
While this approach aimed to tolerate bursty workloads, it in-
advertently led to token leakage, causing performance issues
for LC tenants upon their reactivation.

The original idea was to share unused portions of regis-
tered IOPS for LC tenants with BE tenants. This technique
to tolerate bursty workloads inevitably leaks extra tokens to
BE tenants when some LC tenants are not active. When they

En4S: Enabling SLOs in Serverless Storage Systems

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

Client APIs Descriptions

__init__(controller, context)
allocate / free(handler, job_ctx)

Initiates or loads a context with EMD, returning a handler.

Explicitly allocates or frees a job with capacity, with job-level SLO hints.

allocates storage resources, must called for each new job.

__enter__(handler, flow_hints)

Handler optionally registers or updates a flow with latency/IOPS/(rw_ratio) SLO.

The controller will verify job limits and then return the connection to storage nodes.

__exit__(handler)

Handler closes connections to nodes and deregisters the flow for the connection in

that job. Flushes all the EMD for all shared mutable objects to the store in the controller.

put / get / update(handler, id, data)
invoke(handler, func_to_contexts)

Puts, gets, or updates an object to assigned nodes, returning an object future.
Invokes stateful functions with encoded contexts and EMD in the payload.

Table 1: Available APIs in En4S Client Library

become active again, the tokens have been consumed by BE
tenants or cleared, causing requests to queue and wait for
new tokens to accumulate, further stalling future requests.
The key issue is that BE tenants "borrow" these unused LC
tokens but never "return" them, unlike LC tenants "borrow-
ing" their burst allowance. This creates a bigger problem
when those tenants run out of their tokens and available
burst allowance, the queue occupancy keeps growing if their
demand rates do not decrease.

Therefore, we separate the work-conserving subroutine
from the schedule routine and operate it at a different fre-
quency than scheduling. Instead of immediately consum-
ing or withdrawing LC unused tokens for every scheduling
round (when the frequency is high), we keep those tokens
for a longer time at a lower but fixed frequency. With lower
frequency, short bursts for LC tenants can be handled and
averaged. The reclaimed tokens, with the visibility of more
rounds of request demands, will be safely consumed by BE
tenants without interfering with LC tenants’ performance.

5 IMPLEMENTATION

En4S, as an object-based ephemeral storage system designed
for cloud applications, consists of a data plane, which in-
cludes a client-side driver and multi-tenant flash storage
server software focused on delivering high and predictable
performance, and a control plane that supports functional-
ities such as job management, scheduling, storage scaling,
and metadata storage.

En4S consists of around 16K LoC (15K in C?, 1K in Python)
for the data plane, and 2K LoC for the control plane, including
infrastructure codes written in HCL. The system is open-
sourced at Github 2.

5.1 Control Plane and Metadata Store

We implemented a centralized control plane capable of elas-
tically scaling storage nodes based on the scheduling and

112K LoC from ReFlex and IX, comments and blanks are excluded
2https://github.com/mhxie/En4S

168

placement decisions for incoming jobs. To facilitate access by
other serverless functions, we integrated a low-latency meta-
data store. We utilized Ray [39] to distribute control plane
components (see Fig. 6), allowing flexible parallel execution
across different cores in the same server or distributed among
interconnected compute clusters. A job registry module man-
ages job registrations and de-registrations, updating each
job’s recent I/O demands to the job scheduler and storage
auto-scaler.

5.1.1 Major Workflow. Fig. 6, illustrates the overall system
and the interactions between its components. All serverless
functions have the En4S driver installed to register jobs with
their respective SLOs. The controller allocates and manages
storage resources to ensure that current jobs’ SLOs are not
violated. Once the requested storage space meets the SLO re-
quirements, the job, which may consist of one or more clients
(e.g., serverless functions), can begin accessing the assigned
storage instances. When a function enters the context man-
ager’s region, the client driver automatically registers a flow
with the server and can explicitly register task-level SLOs for
different application stages. The handle will automatically
deregister the flow when the code exits the context-managed
region. All functions with the same job handle and corre-
sponding authentication can directly initiate IO requests to
the storage servers and save their metadata when off-path
data accesses are initiated using our stateful invocation API,
invoke_stateful. With our storage system, a function can ex-
pect predictable tail latency performance for small objects
and predictable throughput performance for large flows. The
full client-side API reference is provided in Table 1.

5.1.2 Metadata Pool. To minimize memory fragmentation
and reduce the number of data copies, request payloads
are stored in an IX [4] memory pool using contiguous allo-
cated memory facilitated by Linux huge pages. The sched-
uler handles the queuing and manipulation of request meta-
data, including logical block addresses, physical buffer ad-
dresses, NVMe commands, and other critical fields for effi-
cient data localization and operations. Initially, this metadata

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

Data Plane
Jm-l.__,.‘.-.-..‘......‘....,.-.-..‘...

A e o e e e 2 e e e e e 0 e e S e T By

e N
1 Ems |
ol e regster s, SO
¥ vithdlale
Job Hegisty Jab Scheduler

AimoScalar |
Ephamedad Maladats (EMD) Sloes

Coniral Flane
Figure 6: En4S Architecture

was stored in linked lists on a per-tenant basis, which was
convenient for FCFS operations within a group. However,
this approach becomes inefficient when modifying or remov-
ing requests deeper in the queue due to corrupted or dropped
requests. To address this, we propose building a hash table
to store the metadata, using thread ID (pid), activation order
(aid), and request order (rid) as composite keys. This struc-
ture allows for O(1) complexity for lookup, insertion, and
removal operations, provided there are no collisions, thereby
enhanc ng performance across various scheduling strategies.

5.2 High-performance Data Plane

We developed a high-performance data plane based on Re-
Flex4ARM [59], an optimized version of ReFlex designed
for ARM platforms such as the ARM-based AWS Graviton
processor. Extensive modifications were made to enhance
performance and portability.

Server System: Our disaggregated solution is built on the
IX data plane [4], leveraging its run-to-completion model,
batched system calls, and kernel-bypassing network stack.
We utilize the Data Plane Development Kit (DPDK) [40] and
the lightweight user-level TCP/IP stack IwIP [11]. We made
extensive optimization over lwIP to make it fast and scalable.
Similar to ReFlex [22], we employ the Storage Performance
Development Kit (SPDK) [16] for accessing NVMe SSDs,
minimizing costly data copies between network and storage
layers. Additionally, we updated the IwIP subsystem to the
latest version and replaced its inefficient move-to-front [11]
TCP demultiplexing algorithm with a hashing-based lookup,
in order to match the performance with tens of thousand
connections.

Client Library: For rapid prototyping of serverless ap-
plications, we use Python as the primary client interface for

169

Minghao Xie, Chen Qjan, and Heiner Litz

communicating with En4S cluster. To enhance performance,
the I/O critical path is implemented in Cython. We lever-
age coroutines and asynchronous APIs (including optional
uvloop-based acceleration) for data plane IO tasks.

5.3 Scheduler Implementation

5.3.1 Scheduling Pipeline. Before the system enters the sched-
uling phase, all newly arrived requests are queued into a
large single memory pool. During the scheduling phase, re-
quests are dequeued based on two key factors: tenant order
and token availability. If a request meets these criteria, a
scheduling decision is made, and the metadata is dequeued
and submitted to the NVMe submission queue. After the
scheduling phase, the system continues batch processing
other system calls until the next scheduling phase begins.
The scheduling frequency is determined by system load and
batch sizes, with a batch size of 64 to ensure the minimum
scheduling frequency is not too low.

5.3.2 Request Lifecycle. For each remote I/O request (GET
or SET), the lifecycle consists of the following steps:

(1) The request is received in the NIC Receive (RX) ring.

(2) The request waits to be polled by the TCP/IP stack.

(3) Its header is passed to the application to be parsed for
preparing the NVMe operation.

(4) Before submission to the NVMe devices, the request is
queued depending on different schedulers.

(5) Once the scheduler decides to submit the request, it is
sent to the SSD’s hardware submission queue (5Q).

(6) Upon completion, a signal is received in the SSD’s
completion queue (CQ).

(7) The response is sent over the network.

(8) Finally, the response exits the NIC Transmit (TX) ring.

All the above operations are fulfilled as asynchronous batched
system calls managed by IX. En4S’s key designs are imple-
mented at steps (4) and (5).

5.3.3 Request Cost Modeling. Based on recent studies on
flash storage performance [22, 38] and our benchmarks on
AWS i3-family instances (see Fig. 1), we model the request
cost using the following formula. The IO cost, which repre-
sents the number of token credits in our scheduling frame-
work, scales linearly with the request size. The constant C
is specific to the flash SSD, derived from curve fitting, and
varies with the I/O type (RD for GET, WR for SET) and the
read ratio (r) at the device. We profile the cost fitting with
network latency considered and use C* to represent it.

10 Size
4KiB

As shown in Fig. 1, we calibrate the model for the NVMe

SSD on AWS i3.xlarge storage nodes to calculate the token

IO Cost = { } X C*(1I0 Type, r)

En4S: Enabling SLOs in Serverless Storage Systems

Server EC2 Cap | 4K Thpt | Cost ($) /IO
Function | Instance | (TB) | (KIOPS) | at Full speed
En4S i3.1 0.475 100 4.33x 10710
Storage i3.x 0.95 200 4.33x 10710
Candidates | i3.2x] 1.90 236 7.34 x 10710
Controller® | m5.2x 0 200*16 | 1.67 x 1071
Jiffy m5.16x1 | .256 600 1.42 %1077

Table 2: Different AWS EC2 instances used for Jiffy and
End4S clusters in US-West region

weight for SET and GET operations. With r lower than 90%,
the value for C is 7 tokens for the SSDs. This means each
SET operation is approximately 7 times as expensive as a
GET operation. With r lower than 75%, the weight increases
to 8 tokens, and it further increases to 10 tokens if 7 is below
50%. The r can be calculated with the tenant-provided ratio
hint. We can also maintain a sliding window to use the past
read ratio to approximately estimate the cost of the future
requests.

54 Deployment and Scaling

Reproducible Infrastructure: We deployed a complete
En4S cluster using EC2 instances on AWS, automating the
process with Terraform [15] for consistency across cloud
settings. The initial setup provisions our control plane and a
VPC for the data plane. The infrastructure code integrates an
auto-scaler in the controller to dynamically manage storage
instances. Users can deploy applications by specifying the
VPC ID, and the setup can be adapted to other clouds by
adjusting provider settings.

Auto-Scaler: To minimize startup delays caused by AWS
VM initialization times [44], our auto-scaler maintains at
least one active storage node and reserves free nodes in ad-
vance. It scales up or down based on utilization thresholds
and employs strategies to avoid unnecessary node alloca-
tion during temporary traffic changes [21, 25], optimizing
performance for latency-sensitive applications.

6 EVALUATION

6.1 Methodology

We selected AWS as our cloud provider due to its industry-
leading performance, as evidenced by recent studies [57]. We
utilized AWS EC2 i3 instances for our scalable storage cluster
and AWS Lambda with the latest Python 3.10 runtime for our
serverless computing environment. The detailed selections
are shown in Table 2.

Since the storage stack can achieve millions of IOPS with
a single core [59], we chose the i3.xlarge instance to avoid

3Assuming each controller can manage 16 storage nodes, the cost is amor-
tized for each node

170

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

Y {8

Bjui .':-‘.l ..’w’::’ ;._.g; =k r ; ,.,!_.__,_._,_._ xl: . PS5 N .i- I'.. oF r
Figure 7: Single-Core Tail Latency Analysis on i3.xlarge
with 100% GET : (a) 4KiB requests (left), (b) 1KiB re-

quests (right).

L g] — Wk arm & BEalch & - Sl G
Wt Tma === EpdS u__ Baich 16

- *

&] * & F : - -
= =] & o B

10 * # : . o 0 L . 1

! s . * P -

& . *

2 I8 L & . 2 . -
5 10" 44 = L]

x 10 e = = = &
o b MY .

-
1000 10 141 a] 1000 10

Mumber af SL08
Figure 8: Scheduler Efficiency Analysis: total request
wait time by increasing number of unique SLOs vary-
ing LC ratio at 25%, 50%, and 75% and varying batch
size at 4, 16, and 64.

od 100 1000

network bandwidth limitations present in larger nodes like
the i3.2xlarge, while minimizing cost per IO at full speed (see
Table 2). This choice ensures flexibility in resource allocation
with the lowest proportional cost. We provisioned a VPC
in the same region to minimize network latency between
servers and clients.

6.1.1 Baseline Selections. We selected two state-of-the-art
ephemeral storage solutions as baselines: (1) ReFlex [22], an
NVMe-SSD-based ephemeral storage used in Pocket’s stor-
age tiers [25]; and (2) Jiffy [21], a DRAM-based ephemeral
storage service that surpasses Pocket’s DRAM layer in per-
formance. For a fair comparison in terms of compute and
cost, we deployed Jiffy on r5.16xlarge EC2 instances (256 GiB
memory) and used m5.xlarge instances to run controllers for
Jiffy and En4S clusters. This setup enabled a comprehensive
comparison of ephemeral storage technologies. We unified
storage clients under a single interface and used various
synthetic workloads for benchmarking. Additionally, we in-
cluded S3 [46], a widely adopted cloud object storage service,
as a baseline in our application benchmarks (Sec. 6.4). While
S3’s latency is higher than our target range and its IOPS per
shard/prefix [49] is limited to a few IOs per second per client
under high concurrent access, it provides a useful reference
for evaluating the performance differences across various
ephemeral storage solutions.

6.1.2 Serverless Applications. We developed three popular
data-intensive serverless applications for evaluation:

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

Raw

L) s

iffy o
w o B o2 (hmS T
<1 0rmG el Mg SLD e

g 0
T

Mm%

<] ms Mo S0

Minghao Xie, Chen Qjan, and Heiner Litz

BeFlax - End5s
< 5ms B < F Oms ainl =0.5me B <2 (hms
w1 DS Mo 500 o <1 .0ms s Na S0

it

0 E000

Q{0

Goodput (MD

=)

100
Humber of Tenants {w/ unigue SL0s]

S0 1000 10100

Figure 9: Goodput Performance Analysis Across Tenant Scales: This Figure illustrates the goodput performance
for configurations of 20, 100, and 1000 tenants, focusing on the achievable goodput under latency thresholds of
0.5ms, 1ms, and 2ms, alongside scenarios without SLO requirements. Comparative performance evaluation of
ReFlex and En4S schedulers on i3.xlarge instances and En4S is presented, with additional benchmark results for

Jiffy, utilizing its native stack and APIs.

ETL Pipeline: This classic serverless application involves
Extract, Transform, and Load (ETL) operations, where di-
verse computational tasks occur between IO accesses. To
standardize our evaluation, we omit computation between
IO operations due to the variability of such tasks (latency-
wise). In our experiments, each invocation is configured with
8 pipelines, each containing four stages, and we run 16 par-
allel invocations.

Serverless Sort[9]: Sorting large datasets (hundreds of
gigabytes or more) remains challenging on a single node.
The map-reduce paradigm is still one of the most effective
solutions for distributed sorting. We implemented a variant
of map-reduced sort in a serverless environment, enabling it
to sort smaller but continuously incoming data batches (16
MB per batch) with a specified mapper-to-reducer configu-
ration (16 mappers and 16 reducers in our evaluation).

ML Analytics: Machine Learning pipelines are typically
run on GPUs for training and inference, but evaluating their
performance in serverless settings can provide insights into
data patterns and orchestration opportunities for future
serverless GPU research. We chose the ROAD-Waymo Dataset,
an open-source dataset published in 2023 [20], which consists
of 200 real-world 1080p video clips. We used OpenCV and
YOLOV3 [43] for object detection and the ImagelO/FFmpeg
library for splitting, transcoding, and merging videos. The
functions are designed with minimal dependencies to re-
duce lambda load times and stay within execution limits.
To optimize performance, we separate cv library along with
the lightweight YOLO model, and the transcoding libraries
across different functions. While the analytics results are not
fully optimized, they are still impressive and sufficient for
our IO-oriented evaluation.

171

6.1.3 E2E Networking Performance. We began by disabling
the storage back-end, including the QoS scheduler, to mea-
sure network-only tail latency performance by sweeping
IOPS. The server supports up to 10Gbps maximum through-
put, equivalent to 305K IOPS with a request size of 4KiB.
However, as shown in Fig. 7, which plots tail latency (10th,
50th, and 95th percentiles) as a function of throughput (IOPS)
for 1KB GET-only requests, the tail latency reaches a crit-
ical point at around 236K IOPS for 4KiB workloads. This
occurs because the AWS Lambda instance disables jumbo
frames, adding extra processing pressure on the server’s net-
working stack due to segmentation, re-assembly, and data
copies. When using 1KiB request sizes, our server can sup-
port around 960K IOPS, comparable to or even better than the
performance of its predecessors [22, 59]. This also justifies
our choice of the smaller i3.xlarge instance, whose storage
performance for 4KiB GET tops at 205K IOPS, achieving the
highest cost efficiency.

6.2 Scheduler Framework Benefits

6.2.1 Scheduler Efficiency. To evaluate our scheduler’s per-
formance compared to the ReFlex scheduler, we conducted a
series of simulation tests with varying numbers of SLOs, LC
ratios, and batch sizes. The experimental results, shown in
Fig. 8, highlight the efficacy of our scheduling mechanism
across multiple dimensions. The total wait time is averaged
over tests involving 64 million requests, arriving at equal
rates and uniform intervals.

We varied the request batch size (4, 16, and 64) to reflect
the schedulers’ visibility of request costs caused by different
scheduling frequencies in realistic environments. Addition-
ally, we varied the LC tenant ratio at 25%, 50%, and 75%. The
request wait time is calculated based on the time difference
between the LC tenant’s ideal process time (based on FCFS)

En4S: Enabling SLOs in Serverless Storage Systems

P

¥ = v .

A Oroup [RCD NaS &l SLOH) e O NGa il
Figure 10: SLO Enforcement Benchmark for 1000 Ten-
ants: categorized into four groups based on their SLO
criticality and average read ratio, LC Tenant Group 1
(LC GO) at 100%, LC Tenant Group 1 (LC G1) at 80%,
BE Tenant Group 0 (BE GO0) at 95%, and BE Tenant (BE
G1) at 25%. The analysis juxtaposes the performance of
En4S, ReFlex, and FCFS schedulers in terms of achieved
throughput and goodput as a percentage of maximum
capacity. The left subplot illustrates individual sched-
uler performance, while the right subplot aggregates

throughput and goodput metrics across all schedulers.

and the actual process time (based on the schedulers’ deci-
sions). This penalty, the extra queuing delay, represents the
cost of enforcing per-tenant SLOs and differentiating service
to tenants.

As shown in Fig. 8, our system consistently outperformed
the ReFlex scheduler by up to 3.2 orders of magnitude (1638x)
in terms of average wait time when scheduling 1000 tenants
at an LC ratio of 25% with a batch size of 64. Several key
observations can be made from these results:

Impact of Batch Size. Smaller batch sizes yield better
results as they make request adjustments less likely, ap-
proaching FCFS behavior when the batch size is 1. This is
because smaller batches reduce the granularity of scheduling
decisions, thereby minimizing the potential for scheduling-
induced delays.

Number of SLOs. Our scheduler performs better with
an increasing number of SLOs. This improvement is due to
our scheduler’s ability to efficiently manage and prioritize
multiple SLOs simultaneously, creating a larger performance
gap compared to the ReFlex scheduler.

LC Ratio Impact. Anincreased number of latency-critical
tenants degrades all schedulers’ performance. Higher LC ra-
tios increase wait times due to request displacement and
longer queues. For instance, in a worst-case scenario with
an LC ratio of 25%, an LC request arriving at time 0 can be
delayed by up to 3 slots. Increasing the LC ratio to 50% can
result in wait times of up to 4 slots, as LC requests arrive
more frequently and compete for scheduling slots.

172

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

(a) Aggressive Control (3%.) (b) Conservative Control (3%)
Figure 11: En4S with burst control Enabled, goodput
performance with 25-ms windows over time, running
with one malicious LC tenant LC GO (75%rd), one be-
nign LC tenant LC G1 (90%rd), and one BE tenant group
(100%rd). (a) and (b) showcases IOPS and goodput per-
formance with different burst control sensitivity

These observations indicate that our scheduler not only
handles a higher volume of requests more efficiently but also
adapts better to varying conditions such as different batch
sizes and LC ratios. The results demonstrate the robustness
and flexibility of our scheduling mechanism in diverse oper-
ational scenarios.

6.2.2 Framework Advantages. Figure 9 compares the good-
put performance of ReFlex, En4S, their underlying raw server,
and Jiffy. We tested these systems using a 200K 4KiB GET
workload, varying the number of tenants from 20 to 1000.
This approach was necessary due to AWS Lambda’s rate lim-
iting, which significantly impacts performance when IOPS
are evenly distributed among tenants. We observed that the
performance limit without significant degradation was 10K
IOPS per tenant with our implementation.

Despite this limitation, Jiffy outperforms our flash-based
raw server (i3.xlarge) in goodput, achieving 5.7 Gbps with
the strictest SLO (<0.5ms). However, as the number of clients
(and consequently, SLOs) increases, our server demonstrates
superior scalability. It reaches saturated SSD performance
with a 1ms SLO, while Jiffy’s performance declines, nearly
halving its throughput due to its lack of optimization for
numerous connections.

ReFlex also experiences performance degradation due to
the scheduling overheads discussed in Section 3. In contrast,
En4S maintains goodput levels comparable to the raw server
while supporting differentiated SLO enforcement across a
thousand tenants. This demonstrates En4S’s ability to effi-
ciently manage resources and maintain performance at scale.

6.3 SLO Enforcement at Scale

6.3.1 SLO Enforcement with a Thousand Tenants. To eval-
uate our scheduler’s performance in real production cloud
environments, we created 1000 tenants with unique SLOs,
divided into four groups: LC GO0, LC G1, BE G0, and BE G1.
The LC groups have IOPS SLO demands of 60K and 30K,

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

Minghao Xie, Chen Qjan, and Heiner Litz

ad

- FCFS Aed lea nd5
({RLY,
i :}_f : &.c L0 |
= : - 1 i ' m S g0]
04 p'l o - B L/ - s 1 B s E
ol IEEEEl] i ZZ}Z‘-:}?@I i
101 i1 l,-i.!.-ii : [EE RN

T
i
i
i

- T, S,

i

T
= ? - =

— o S

e

*““ :

E
.
I
4
-
|
"al
-
€
0
-]
[g
x 0

_.. L =

- MmO

*i

=

t'i 2 h“"ﬁ.“q x

Ill'll.l' i Ratio = 40%

P O

ke

e

=

| "

B e P

i““HI o -

RO,

LSS 3 I IS

Ll L
LT Ratin

-
i

]
= ,.r|.-\. H""

Figure 12: IOPS and Tall Latency Enforcement Results with different LC Ratios, LC tenants and BE tenants are
requesting 50K and 150K 75% Random 4KiB IOPS combined respectively. Each group is consist of 50 unique tenants

while the BE groups generate 30K and 15K IOPS respectively.
Read ratios vary across groups: 100% for LC G0, 80% for LC
G1, 95% for BE GO, and 25% for BE G1.

Ani3.xlarge EC2 instance can support approximately 200K
4KiB GET IOPS when enforcing a 2000 ps tail latency SLO,
equivalent to 200K tokens/second in our cost model. LC
GO requires 60K tokens/s, and LC G1 needs 72K tokens/s
(calculated as 0.8 x 30K + 0.2 X 30K X 8 tokens per 1/O),
leaving 68K tokens/second for the 500 BE tenants. Given the
read ratios of BE GO and BE G1, the fairly distributed 34K
tokens translate to around 25K and 5.5K IOPS respectively.

Figure 10 shows that BE G1 achieves lower IOPS due to the
higher token requirement per tenant with lower read ratios.
For the LC groups, our system achieves 2ms overall good-
put very close to the actual throughput, at 88.0% and 84.2%
of their IOPS SLO respectively. While their 95th percentile
overall (including WR) tail latency SLO exceeds 2ms, both
read tail latency SLO and IOPS SLO were simultaneously
satisfied.

The right subplot of Figure 11 illustrates the aggregated
throughput and goodput performance with En4S. FCFS fails
to enforce group SLOs or achieve high aggregated goodput,
as it allows too many best-effort requests to complete with-
out considering request cost, leading to system overload.
ReFlex demonstrates better rate control than FCES but fails
to enforce latency SLOs due to the scaling issues discussed
in the analysis section.

6.3.2 SLO Enforcement with Bursty and Malicious Tenants.
To evaluate the effectiveness of adaptive burst scheduling,
we conducted a test similar to that in Section 3. We simulated
malicious or greedy clients registered in LC tenant group 0,
which periodically burst beyond their registered latency SLO
before falling back below it to avoid performance penalties.

173

We varied the detection settings between 3%. and 3%, de-
pending on the administrator’s tolerance for such behavior.
These percentages vary with different servers, and offline
profiling is necessary to determine the optimal threshold.

Figure 11 illustrates that with aggressive burst control,
LC GO almost never achieves throughput higher than its
registered SLO. Overloaded requests are queued in the sched-
uler, resulting in near-zero goodput after 10s. With conser-
vative burst control, the scheduler monitors and gradually
decreases the burst allowance for the misbehaved tenant,
eventually preventing it from exceeding its registered IOPS
SLO. In both scenarios, LC G1’s performance remains pro-
tected and does not degrade due to other tenants’ queuing.
Notably, even concurrently running BE tenants receive a
fair share of the server’s bandwidth after accounting for all
registered IOPS SLOs.

6.3.3 SLO Enforcement with Increasing LC Ratios. We bench-
marked the performance of FCFS, ReFlex, and En4S with
increasing percentages of LC tenants. As shown in Figure 12,
FCEFS achieved good overall throughput but failed to enforce
any tenant’s SLOs. ReFlex maintained IOPS and tail latency
SLO enforcement when LC ratios were between 20% and 40%.
However, its latency SLO began to violate at higher ratios,
with both SLOs being violated at LC ratios of 60% and 80%.

In contrast, En4S ensured consistent performance pre-
dictability across all four scenarios, with approximately sat-
urated performance at our profiled maximum IOPS of 72K
for 75% read operations. This is attributed to En4S’s reclaim
control, which successfully protects temporarily unused LC
tokens from leaking to BE requests. At an LC ratio of 80%, LC
tenants G2 and G3, which have smaller flow sizes, are sacri-
ficed due to token leaks as they are less frequently activated
because of their lower IOPS.

En4S: Enabling SLOs in Serverless Storage Systems

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

&F B A

— Pt R 1

£ '_-'.:" Sae B 5 E B 53 T iamiaa

g 250 | ;L";=F % ity g 104 ’ B ity [Metwork

2 | % = 34 — T il B EndS Gl Slorags

T 200 4 ‘ 3 28 = 81 ‘-;5‘ - .

.:': | B ‘F |] ’i '-'. :{r'.

5 150 REEE - . o 5 6 S':

) E‘.'f::'h“ 5“ ‘ ‘: ‘;:5

g 100 ‘ﬂ'ﬁf » :. o e e | ¥ 4 é h

5 (B e 3 b

3 s é% ‘ il o T -y !

7 501 RN 1S i‘*‘,’d * e 8

3 b i o o L J |
ETL Seerspriena Sort] Tl Sarveileve ol ETL Srwiied SOt Lt

Pipslines Siream) hrabeticsg Fipsiness Lhream| Anaierice Pipes L Skream|) Anabsdicy

(a) Performance (b) Predictability (c) Worst-case Cost

Figure 13: IO Performance, Predictability, and Cost Analysis for Serverless Applications Across S3, Jiffy, and En4S.

6.4 Application Analysis

We evaluated the performance, predictability, and cost of
three real-world applications, as described in Sec. 6.1, run-
ning on S3, Jiffy, and our proposed system, En4S. This com-
parison provides a comprehensive understanding of how
En4S performs relative to existing storage solutions across
various application scenarios.

Figure 13a presents the latency measured across different
stages of these applications. En4S consistently demonstrated
lower cumulative latency than Jiffy and S3, highlighting its
improved efficiency. However, when examining the end-to-
end (E2E) latency, En4S still lags behind Jiffy, with delays
ranging from 1.02x to 1.8x. This gap can be largely attributed
to inefficiencies in metadata management and the overhead
caused by frequent synchronization during IO region transi-
tions, which are significant factors impacting performance.

In terms of predictability, Figure 13b illustrates the Max-
to-Min ratio of E2E completion times, calculated based on
the minimum observed completion time. The removal of data
processing from the ETL pipelines—where execution times
vary depending on operations and input data—exacerbates
the latency impact, especially under workloads with high
write ratios (over 50%) and frequent IO operations. As a result,
the advantages of lower read latency are less pronounced.
Nevertheless, in stream serverless sorting, En4S achieves
better predictability compared to Jiffy and approaches S3’s
performance due to more stable IO patterns. Although the
E2E latency for stream batches remains higher than Jiffy
due to metadata constraints, further optimization in meta-
data handling and more efficient data flow orchestration
between mappers and reducers could improve performance.
For compute-intensive ML analytics workloads, performance
remains mostly unaffected by IO differences.

Beyond performance, we also assessed the cost efficiency
of these systems. We measured the average cost of the appli-
cations, focusing on three major components: Lambda costs
for IO wait times (in GB*second [48]), Storage costs includ-
ing storage and controller servers that support the systems,

174

and Network cost which is unique to AWS S3. All the cost
from different applications are normalized to the cost run-
ning on our En4S. The cost per request and per GB stored are
critical to understanding the economic impact of each solu-
tion. In our worst-case scenario analysis—where throughput
or capacity limits are reached—we calculated proportional
infrastructure costs, including those for storage and con-
troller nodes (amortized). While Jiffy [21] is assumed to be
five times more efficient than En4S in capacity management,
as shown in Fig. 13c, En4S remains the most cost-effective
(at least 2X) across all scenarios, even with this assumption.
Notably, for ETL pipelines and serverless sorting, lambda
charges for lingering objects dominate the costs, whereas
infrastructure costs are higher for ML analytics due to longer
object retention. S3 incurs minimal object retention costs but
is penalized by high per-request charges and longer lambda
runtimes, especially for the workloads with many small IOs
(e.g. ETF pipelines, Serverless Compilers). These costs are
largely amortized in the other baselines due to AWS billing
strategies to the VPC.

In summary, while En4S offers clear improvements in 10
predictability, significant challenges remain in reducing E2E
latency due to the distributed nature of these applications
and variability of the serverless infrastructures. Nonethe-
less, En4S shows considerable potential for enhancing pre-
dictability, particularly in IO-intensive and real-time work-
loads. Moreover, En4S consistently delivers the best cost
efficiency among the three evaluated solutions, making it a
compelling choice for a wide range of application scenarios.

7 RELATED WORK

Stateful serverless computing: Several systems have been
proposed to address the challenges of state management
in serverless computing. Pocket [25] and Locus [41] offer
specialized storage systems that optimize between different
storage media. Infinistore [63] integrates serverless function
memory with persistent cloud storage, while Cloudburst [55]
extends Anna KVS [58] to support low-latency, autoscaling

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

stateful functions. DRAM-based solutions like Jiffy [21] use
elastic far-memory to handle variable intermediate data sizes,
and Crucial [3] advances the state-of-the-art by providing a
distributed shared memory layer with fine-grained mutable
state and synchronization primitives.

Other works aim to eliminate remote intermediate storage
by either sharing local storage between serverless functions
or enabling direct data transfers. SONIC [35] dynamically
selects the best data-passing method, while Shredder [64]
embeds computation into storage. Pheromone [60] explores
data-centric application orchestration for better performance,
and XDT [56] focuses on efficient data transfers between
inter-trusted function memory. Additionally, specialized so-
lutions like Locus [41] and MinFlow [29] modify serverless
clusters using Directed Acyclic Graphs (DAGs) hints for op-
timized MapReduce workflows.

En4S distinguishes itself by ensuring predictable perfor-
mance through a novel scheduling framework and an op-
timized storage stack, offering high performance without
added costs.

Fair scheduling: Many works focus on ensuring fairness
among tenants in multi-tenant environments. Ether [37]
enhances fairness by prioritizing critical flows during con-
gestion, while Retro [33] separates resource management
policies from mechanisms, enabling performance guaran-
tees. 2DFQ [34] improves latency by spreading requests
across threads, reducing the impact of unpredictable work-
loads. Pisces [53] achieves fairness and performance isolation
through weighted fair queuing and partition placement.

While fairness is important, it often comes at the cost of
performance, particularly with bursty serverless workloads.
For short-lived IO flows, the approximate fairness provided
by our scheduler is sufficient to balance fairness and perfor-
mance.

Predictability in serverless computing: Predictable
performance is critical for serverless applications, especially
those structured as DAGs, where stragglers can cause delays.
Golgi [28] minimizes resource costs while meeting latency
requirements through performance-aware scheduling, and
ORION [36] optimizes E2E latency in serverless DAGs via
bundling, right-sizing, and pre-warming. Several works [5,
6, 17, 19, 30, 42] have focused on improving performance
predictability for flash devices. These works can be combined
with En4S and are orthogonal to our work.

8 CONCLUSION

Serverless applications introduce a plethora of new work-
loads and challenges to existing infrastructure, particularly
in enforcing E2E SLOs for remote storage I/O. The inherent
statelessness and ephemeral nature of serverless functions
complicate the management of storage resources, making it

175

Minghao Xie, Chen Qjan, and Heiner Litz

difficult to maintain consistent performance and meet strin-
gent SLOs. Traditional solutions often fall short in addressing
these unique demands, as they are not designed to handle the
dynamic and bursty nature of serverless workloads. In this
paper, we delve into the specific issues that arise with large
number of SLOs, highlighting the gaps in current solutions.
Our proposed system, En4S, addresses these challenges by
providing a predictable, scalable ephemeral storage solution
tailored for SLO-sensitive applications. By leveraging cost-
effective storage disaggregation, advanced QoS scheduling
and adaptive burst and token control, En4S ensures SLO-
enforced IOPS and tail latency, effectively bridging the gap
left by existing approaches.

9 ACKNOWLEDGMENT

We are grateful to the anonymous reviewers for their valu-
able feedback and constructive suggestions. This research
was supported by the IAB members of the Center for Re-
search in Systems and Storage (CRSS), and the National
Science Foundation (NSF) under grants CNS-1841545, CCF-
1942754, CNS-2322919, CNS-2420632, CNS-2426031, and CNS-
2426940. The views expressed are those of the authors and
do not necessarily reflect those of the funding agencies.

REFERENCES

[1] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus
Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. {SAND}:
Towards High-Performance Serverless Computing. In 2018 { Usenix}
Annual Technical Conference ({USENIX} { ATC} 18). 923-935.
Lixiang Ao, Liz Izhikevich, Geoffrey M Voelker, and George Porter.
2018. Sprocket: A serverless video processing framework. In Proceed-
ings of the ACM Symposium on Cloud Computing. 263-274.
Daniel Barcelona-Pons, Pierre Sutra, Marc Sanchez-Artigas, Gerard
Paris, and Pedro Garcia-Lopez. 2022. Stateful serverless computing
with crucial. ACM Transactions on Software Engineering and Methodol-
ogy (TOSEM) 31, 3 (2022), 1-38.
Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos
Kozyrakis, and Edouard Bugnion. 2014. {IX}: a protected dataplane
operating system for high throughput and low latency. In 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
14). 49-65.
Chandranil Chakraborttii and Heiner Litz. 2020. Learning i/o access
patterns to improve prefetching in ssds. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases. Springer,
427-443.
Chandranil Chakraborttii and Heiner Litz. 2021. Reducing write am-
plification in flash by death-time prediction of logical block addresses.
In Proceedings of the 14th ACM International Conference on Systems
and Storage. 1-12.
Inho Cho, Ahmed Saeed, Joshua Fried, Seo Jin Park, Mohammad Al-
izadeh, and Adam Belay. 2020. Overload Control for us-scale RPCs
with Breakwater. In 14th { USENIX} Symposium on Operating Systems
Design and Implementation ({ OSDI} 20). 299-314.
[8] Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun.
ACM 56, 2 (2013), 74-80.
[9] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data
processing on large clusters. Commun. ACM 51, 1 (2008), 107-113.

[2

—

E

—

[4

—

[5

—

—_
(=
—

[7

—

En4S: Enabling SLOs in Serverless Storage Systems

[10] Christina Delimitrou and Christos Kozyrakis. 2018. Amdahl’s law for
tail latency. Commun. ACM 61, 8 (2018), 65-72.

[11] Adam Dunkels. 2001. Design and Implementation of the lwIP TCP/IP
Stack. Swedish Institute of Computer Science 2, 77 (2001).

[12] Aaron J Elmore, Sudipto Das, Alexander Pucher, Divyakant Agrawal,

Amr El Abbadi, and Xifeng Yan. 2013. Characterizing tenant behavior

for placement and crisis mitigation in multitenant DBMSs. In Proceed-

ings of the 2013 ACM SIGMOD International Conference on Management

of Data. 517-528.

Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee,

Christos Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From

laptop to lambda: Outsourcing everyday jobs to thousands of transient

functional containers. In 2019 { USENIX} Annual Technical Conference

({USENIX} { ATC} 19). 475-488.

[14] Jit Gupta, Krishna Kant, Amitangshu Pal, and Joyanta Biswas. 2024.

Configuring and Coordinating End-to-end QoS for Emerging Stor-

age Infrastructure. ACM Transactions on Modeling and Performance

Evaluation of Computing Systems 9, 1 (2024), 1-32.

HashiCorp. 2022. Terraform. https://github.com/hashicorp/terraform.

Intel. 2022. Storage Performance Development Kit. https://spdk.io/.

Lokesh N Jaliminche, Chandranil Nil Chakraborttii, Changho Choi,

and Heiner Litz. 2023. Enabling Multi-tenancy on SSDs with Accurate

10 Interference Modeling. In Proceedings of the 2023 ACM Symposium

on Cloud Computing. 216-232.

Keon Jang, Justine Sherry, Hitesh Ballani, and Toby Moncaster. 2015.

Silo: Predictable message latency in the cloud. In Proceedings of the

2015 ACM Conference on Special Interest Group on Data Communication.

435-448.

Saeed Kargar, Heiner Litz, and Faisal Nawab. 2021. Predict and write:

Using k-means clustering to extend the lifetime of nvm storage. In

2021 IEEE 37th International Conference on Data Engineering (ICDE).

IEEE, 768-779.

Salman Khan. 2024. Road Waymo Dataset. https://github.com/

salmank255/Road-waymo-dataset. Accessed: 2024-10-15.

Anurag Khandelwal, Yupeng Tang, Rachit Agarwal, Aditya Akella,

and Ion Stoica. 2022. Jiffy: elastic far-memory for stateful serverless

analytics. In Proceedings of the Seventeenth European Conference on

Computer Systems. 697-713.

[22] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2017. ReFlex:
Remote flash = local flash. ACM SIGARCH Computer Architecture News
45,1 (2017), 345-359.

[23] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2018. Selecta:
Heterogeneous cloud storage configuration for data analytics. In 2018
USENIX Annual Technical Conference (USENIX ATC 18). 759-773.

[24] Ana Klimovic, Yawen Wang, Christos Kozyrakis, Patrick Stuedi, Jonas
Pfefferle, and Animesh Trivedi. 2018. Understanding ephemeral stor-
age for serverless analytics. In 2018 { USENIX} Annual Technical Con-
ference ({USENIX} { ATC} 18). 789-794.

[25] Ana Klimovic, Yawen Wang, Patrick Stue di, Animesh Trivedi, Jonas

Pfefferle, and Christos Kozyrakis. 2018. Pocket: Elastic ephemeral stor-

age for serverless analytics. In 13th { USENIX} Symposium on Operating

Systems Design and Implementation ({ OSDI} 18). 427-444.

Luciano Lenzini, Enzo Mingozzi, and Giovanni Stea. 2002. Aliquem: a

novel DRR implementation to achieve better latency and fairness at

O (1) complexity. In IEEE 2002 Tenth IEEE International Workshop on

Quality of Service (Cat. No. 02EX564). IEEE, 77-86.

[27] Jialin Li, Naveen Kr Sharma, Dan RK Ports, and Steven D Gribble. 2014.

Tales of the tail: Hardware, os, and application-level sources of tail

latency. In Proceedings of the ACM Symposium on Cloud Computing.

1-14.

Suyi Li, Wei Wang, Jun Yang, Guangzhen Chen, and Daohe Lu. 2023.

Golgi: Performance-aware, resource-efficient function scheduling for

[13

=

— ——
—_ e
~N N G
—

(18

[t

[19

—

[20

[t

[21

—

26

=

[28

[t

176

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

serverless computing. In Proceedings of the 2023 ACM Symposium on
Cloud Computing. 32-47.

Tao Li, Yongkun Li, Wenzhe Zhu, Yinlong Xu, and John CS Lui. 2024.
{MinFlow}: High-performance and Cost-efficient Data Passing for
{I/O-intensive} Stateful Serverless Analytics. In 22nd USENIX Confer-
ence on File and Storage Technologies (FAST 24). 311-327.

Heiner Litz, Javier Gonzalez, Ana Klimovic, and Christos Kozyrakis.
2022. Rail: Predictable, low tail latency for nvme flash. ACM Transac-
tions on Storage (TOS) 18, 1 (2022), 1-21.

Yi Liu, Shougian Shi, Minghao Xie, Heiner Litz, and Chen Qian. 2023.
Smash: Flexible, fast, and resource-efficient placement and lookup
of distributed storage. Proceedings of the ACM on Measurement and
Analysis of Computing Systems 7, 2 (2023), 1-22.

Wes Lloyd, Shruti Ramesh, Swetha Chinthalapati, Lan Ly, and Shrideep
Pallickara. 2018. Serverless computing: An investigation of factors
influencing microservice performance. In 2018 IEEE International Con-
ference on Cloud Engineering (IC2E). IEEE, 159-169.

Jonathan Mace, Peter Bodik, Rodrigo Fonseca, and Madanlal Musu-
vathi. 2015. Retro: Targeted resource management in multi-tenant
distributed systems. In 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15). 589-603.

Jonathan Mace, Peter Bodik, Madanlal Musuvathi, Rodrigo Fonseca,
and Krishnan Varadarajan. 2016. 2dfq: Two-dimensional fair queu-
ing for multi-tenant cloud services. In Proceedings of the 2016 ACM
SIGCOMM Conference. 144-159.

Ashraf Mahgoub, Li Wang, Karthick Shankar, Yiming Zhang, Huang-
shi Tian, Subrata Mitra, Yuxing Peng, Hongqi Wang, Ana Klimovic,
Haoran Yang, et al. 2021. {SONIC}: Application-aware Data Passing
for Chained Serverless Applications. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21). 285-301.

Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Sameh El-
nikety, Somali Chaterji, and Saurabh Bagchi. 2022. {ORION} and the
three rights: Sizing, bundling, and prewarming for serverless {DAGs}.
In 16th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 22). 303-320.

Mojtaba Malekpourshahraki, Brent Stephens, and Balajee Vamanan.
2019. Ether: providing both interactive service and fairness in multi-
tenant datacenters. In Proceedings of the 3rd Asia-Pacific workshop on
networking. 50-56.

Jaehong Min, Ming Liu, Tapan Chugh, Chenxingyu Zhao, Andrew
Wei, In Hwan Doh, and Arvind Krishnamurthy. 2021. Gimbal: en-
abling multi-tenant storage disaggregation on SmartNIC JBOFs. In
Proceedings of the 2021 ACM SIGCOMM 2021 Conference. 106—-122.
Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,
Michael I Jordan, et al. 2018. Ray: A distributed framework for emerg-
ing { A} applications. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). 561-577.

The Linux Foundation Projects. 2022. Data Plane Development Kit.
https://www.dpdk.org/.

Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling,
fast and slow: Scalable analytics on serverless infrastructure. In 16th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 19). 193-206.

Devashish Purandare, Pete Wilcox, Heiner Litz, and Shel Finkelstein.
2022. Append is near: Log-based data management on ZNS SSDs. In
12th Annual Conference on Innovative Data Systems Research (CIDR’22).
Joseph Redmon and Ali Farhadi. 2018. YOLOv3: An Incremental Im-
provement. arXiv preprint arXiv:1804.02767 (2018). https://arxiv.org/
abs/1804.02767

Amazon Web Services. 2024. Amazon EC2 get started. https://aws.
amazon.com/ec2/ec2-get-started,/.

https://github.com/hashicorp/terraform
https://spdk.io/
https://github.com/salmank255/Road-waymo-dataset
https://github.com/salmank255/Road-waymo-dataset
https://www.dpdk.org/
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
https://aws.amazon.com/ec2/ec2-get-started/
https://aws.amazon.com/ec2/ec2-get-started/

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

(45]
[46]
(47]
(48]

(49]

(50]

[51

—

[52

—

(53]

[54]

[55]

(56

=

(57]

(58]

[59

-

(60]

[61

—

(62]

Amazon Web Services. 2024. Amazon elasticache. https://aws.amazon.
com/elasticache/.

Amazon Web Services. 2024. Amazon simple storage service. https:
//aws.amazon.com/s3/.

Amazon Web Services. 2024. Amazon Virtual Private Cloud. https:
//aws.amazon.com/vpc/.

Amazon Web Services. 2024. AWS Lambda Pricing. https://aws.amazon.
com/lambda/pricing/.

Amazon Web Services. 2024. Best practices design patterns: optimizing
Amazon S3 performance. https://docs.aws.amazon.com/AmazonS3/
latest/userguide/optimizing-performance.html.

Amazon Web Services. 2024. Lambda quotas. https://docs.aws.amazon.
com/lambda/latest/dg/gettingstarted-limits.html.

Vaishaal Shankar, Karl Krauth, Qifan Pu, Eric Jonas, Shivaram
Venkataraman, Ion Stoica, Benjamin Recht, and Jonathan Ragan-
Kelley. 2018. Numpywren: Serverless linear algebra. arXiv preprint
arXiv:1810.09679 (2018).

Madhavapeddi Shreedhar and George Varghese. 1995. Efficient fair
queueing using deficit round robin. In Proceedings of the conference
on Applications, technologies, architectures, and protocols for computer
communication. 231-242.

David Shue, Michael J Freedman, and Anees Shaikh. 2012. Performance
isolation and fairness for {Multi-Tenant} cloud storage. In 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
12). 349-362.

Josef Spillner, Cristian Mateos, and David A Monge. 2017. Faaster, bet-
ter, cheaper: The prospect of serverless scientific computing and hpc.
In Latin American High Performance Computing Conference. Springer,
154-168.

Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann
Schleier-Smith, Jose M Faleiro, Joseph E Gonzalez, Joseph M Heller-
stein, and Alexey Tumanov. 2020. Cloudburst: Stateful functions-as-a-
service. arXiv preprint arXiv:2001.04592 (2020).

Dmitrii Ustiugov, Shyam Jesalpura, Mert Bora Alper, Michal Baczun,
Rustem Feyzkhanov, Edouard Bugnion, Boris Grot, and Marios Kogias.
2023. Expedited Data Transfers for Serverless Clouds. arXiv preprint
arXiv:2309.14821 (2023).

Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart,
and Michael Swift. 2018. Peeking behind the curtains of server-
less platforms. In 2018 {USENIX} Annual Technical Conference
({ USENIX} {ATC} 18). 133-146.

Chenggang Wu, Jose M Faleiro, Yihan Lin, and Joseph M Hellerstein.
2019. Anna: A kvs for any scale. IEEE Transactions on Knowledge and
Data Engineering 33, 2 (2019), 344-358.

Minghao Xie, Chen Qian, and Heiner Litz. 2020. ReFlex4ARM: Sup-
porting 100GbE Flash Storage Disaggregation on ARM SoC. Poster in
OCP Future Technologies Symposium 2020.

Minchen Yu, Tingjia Cao, Wei Wang, and Ruichuan Chen. 2023. Fol-
lowing the data, not the function: Rethinking function orchestration
in serverless computing. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23). 1489-1504.

Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu,
Pingchao Yang, Chenggang Qin, and Haibo Chen. 2020. Characterizing
serverless platforms with serverlessbench. In Proceedings of the 11th
ACM Symposium on Cloud Computing. 30-44.

David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, and
Randy Katz. 2012. DeTail: Reducing the flow completion time tail
in datacenter networks. In Proceedings of the ACM SIGCOMM 2012
conference on Applications, technologies, architectures, and protocols for
computer communication. 139-150.

177

[63]

[64]

[65]

[66]

Minghao Xie, Chen Qjan, and Heiner Litz

Jingyuan Zhang, Ao Wang, Xiaolong Ma, Benjamin Carver,
Nicholas John Newman, Ali Anwar, Lukas Rupprecht, Dimitrios Skour-
tis, Vasily Tarasov, Feng Yan, et al. 2022. Infinistore: Elastic serverless
cloud storage. arXiv preprint arXiv:2209.01496 (2022).

Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman. 2019. Narrowing
the gap between serverless and its state with storage functions. In
Proceedings of the ACM Symposium on Cloud Computing. 1-12.
Timothy Zhu, Daniel S Berger, and Mor Harchol-Balter. 2016. SNC-
Meister: Admitting more tenants with tail latency SLOs. In Proceedings
of the Seventh ACM Symposium on Cloud Computing. 374-387.
Timothy Zhu, Michael A Kozuch, and Mor Harchol-Balter. 2017. Work-
loadcompactor: Reducing datacenter cost while providing tail latency
slo guarantees. In Proceedings of the 2017 Symposium on Cloud Com-
puting. 598-610.

https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/vpc/
https://aws.amazon.com/vpc/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/lambda/pricing/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/optimizing-performance.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/optimizing-performance.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html

	Abstract
	1 Introduction
	2 Background
	2.1 Serverless Storage Systems
	2.2 Predictable Performance Metrics
	2.3 Enforcing SLOs in Disaggregated Multi-tenant Flash Storage Systems

	3 Analysis
	3.1 Limited Scheduler Scalability
	3.2 Challenges in Managing Bursty Tenants
	3.3 Service Differentiation Failures at Scale

	4 Design
	4.1 Overview
	4.2 QoS Scheduling Framework
	4.3 Dynamic Tenant Handling
	4.4 Adaptive Burst Control
	4.5 Token Reclaim Control

	5 Implementation
	5.1 Control Plane and Metadata Store
	5.2 High-performance Data Plane
	5.3 Scheduler Implementation
	5.4 Deployment and Scaling

	6 Evaluation
	6.1 Methodology
	6.2 Scheduler Framework Benefits
	6.3 SLO Enforcement at Scale
	6.4 Application Analysis

	7 Related Work
	8 Conclusion
	9 Acknowledgment
	References

