2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)

UDP: Utility-Driven Fetch Directed Instruction
Prefetching

Surim Oh Mingsheng Xu Tanvir Ahmed Khan

University of California, Santa Cruz University of California, Santa Cruz Columbia University
USA USA USA

soh31@ucsc.edu mxu61@ucsc.edu tk3070@columbia.edu

Baris Kasikci
University of Washington
USA
baris @cs.washington.edu

Abstract—Datacenter applications exhibit large instruction
footprints causing significant instruction cache misses and, as
a result, frontend stalls. To address this issue, instruction
prefetching mechanisms have been proposed, including state-of-
the-art techniques such as fetch-directed instruction prefetching.
However, our study shows that existing implementations still fall
far short of an ideal system with a perfect instruction cache. In
particular, up to 588.47% of potential IPC speedup of existing
processors hides due to frontend stalls, and these frontend stalls
are due to inaccurate and untimely instruction prefetches. We
quantify the impact of these individual effects, observing that
applications exhibit different characteristics that call for adaptive
application-specific optimizations. Based on these insights, we
propose two novel mechanisms, UDP and UFTQ, to improve
the accuracy of FDIP without negatively affecting timeliness
while leveraging prefetches on the wrong path. We evaluate
our technique on 10 data center workloads showing a maximal
IPC improvement of 16.1% and an average IPC improvement
of 3.6%. Our techniques only introduce moderate hardware
modifications and a storage cost of 8KB.

Index Terms—Instruction prefetching, frontend stalls, data
center.

I. INTRODUCTION

The instruction footprint of modern data center applications
significantly exceeds the size of any of today’s server’s in-
struction caches (icaches). To make matters worse, Google
and Facebook have reported that their code sizes increase
at a rate of up to 20% per year while processor caches
have experienced only moderate gains in size over the last
decade. These footprints cause frequent icache misses leading
to frontend stalls, as the CPU pipeline is waiting for the next
instructions to be fetched from memory. Google has reported
that processors in their fleet spend almost a quarter of their
cycles on these misses [16], resulting in inefficiencies worth
millions of dollars while causing significant carbon emissions.

To address this challenge, prior work has explored instruc-
tion prefetching mechanisms. Reinman has introduced Fetch
Directed Prefetching (FDIP) [47], a hardware prefetching tech-
nique that exploits existing resources such as branch predictors

979-8-3503-2658-1/24/$31.00 ©2024 IEEE
DOI 10.1109/ISCA59077.2024.00089

1188

Heiner Litz

University of California, Santa Cruz
USA
hlitz@ucsc.edu

*mn 7 7 7 0

S S (« < \S 38 ‘o‘ X x »\g;‘ g‘
X\ 0 C/ > | X0 A OV 05V N
ﬁ\‘] 905’(9 ot 9 6{0?16{\\3‘“005}0 ‘0‘“ ‘L(SO%@&\@‘N B
Benchmarks

Fig. 1. Ideal icache speedup over today’s FDIP baseline. The ideal speedup
is in the range of 2.69% to 588.47%.

as prefetching engines. FDIP decouples the branch prediction
from the instruction fetch. By predicting future instructions
faster, the branch prediction unit can run ahead of the fetch
engine while emitting prefetches to hide the memory access
latency of instruction fetches. FDIP is widely adopted by
the industry and implemented on commercial processors [44],
[50], [57] as it introduces only small hardware overheads while
providing high prefetching accuracy as long as the branch
predictor performs well.

Unfortunately, large code-footprint applications generally
also contain many branches exceeding the capacity of the
branch target buffer (BTB). BTB misses (and branch mispre-
dictions) limit the accuracy of FDIP, as after suffering from a
BTB miss, the frontend will be on the wrong path, prefetching
unuseful instruction cache lines while polluting the icache.
To quantify this problem, Figure 1 compares the performance
improvement of a perfect icache (every access is a hit)
against the state-of-the-art FDIP baseline. As can be seen,
for most of the data center applications, the perfect icache
provides a speedup of 2.69% to 39%, while for xgboost
and verilator, the IPC improvement is up to 7x and 4x.

Prior work, including Boomerang [38], Shotgun [37], and
Confluence [30] try to address this challenge by improving

the hit rate of the BTB. All three works introduce significant
hardware complexity and storage overheads and, hence, have
not been adopted in existing processor designs. They also do
not address the problem of branch mispredictions and hence do
not address the root cause of the problem: executing unuseful
prefetches on the wrong path. To the best of our knowledge,
Ishii [28] represents the state-of-the-art FDIP implementation
deployed by today’s processors. It features a large BTB, partly
solving the BTB capacity issue while introducing feasible to
implement techniques such as taken-only branch history and
post-fetch correction. Another line of work has proposed to
utilize software prefetching [16], [31], [32], however, these
techniques require profiling and re-compilation and cannot
adapt to dynamic workload changes.

We propose a different approach for addressing the existing
frontend bottleneck for data center applications. Towards this
goal, we investigate the state-of-the-art FDIP implementation
to understand why it falls short of the ideal performance
provided by a perfect icache. In particular, we analyze whether
FDIP mainly suffers from inaccurate wrong-path prefetches
(polluting icaches) or from untimely late-prefetches. These two
causes are intrinsically connected, as for prefetch timeliness,
the frontend needs to run ahead as far as possible, while
for ensuring prefetching accuracy, it is beneficial to limit
the number of prefetches emitted on the wrong-path. Our
analysis determines the usefulness of prefetches both on the
on-path and off-path and explores how the frequency of
branch mispredictions and their recovery affect the behavior
of FDIP. Our analysis reveals that existing techniques fail
to ensure timeliness while emitting many inaccurate wrong-
path prefetches. Wrong-path prefetches frequently pollute the
icache, jeopardizing the effect of FDIP whose aim is to reduce
icache misses.

To address this challenge, we propose two new mechanisms
for improving the efficacy of FDIP. First, we introduce UFTQ,
which adapts the runahead distance of FDIP dynamically and
in an application-specific way by configuring the depth of
the fetch target queue (FTQ). We show that tuning the FTQ
depth dynamically can improve the timeliness and usefulness
of prefetches providing an IPC improvement of up to 37.2%
and of 4.9% on average.

To further improve the efficiency of FDIP, we introduce
UDP, which increases performance further over UFTQ by
learning the utility of individual prefetch candidates. We
propose an efficient implementation to learn the utility of
prefetch candidates proposed by FDIP, including useful off-
path prefetches. In particular, our technique learns useful off-
path prefetches that correspond to code locations after the
merge point!, however, which are emitted before a branch mis-
prediction is resolved. As a result, UDP can almost perfectly
eliminate unuseful prefetches while leveraging a deep FTQ for
good timeliness. UDP provides an IPC uplift of up to 16.1%
and of 3.6% in average. In summary, we make the following

'Merge point: The instruction after which two control-flow paths merge,
for instance, the first instruction after an 1£{} else{} block

branch outcome target

cache probe
—

branch branch prefetch engine instruction
history dir. pred fetch
s FTQ d
return indirect preﬁted L1 i i
stack pred branc N |-cache o e
................. targel
branch target i) missfdemand d c
buffer (BTB) T et | oad | | ¢
..................] prefetch | LLC
branch predictor tail head -----| -

correct target

Fig. 2. Fetch Directed Instruction Prefetching. The decoupled frontend inserts
fetch-blocks at the tail while FDIP emits prefetches at the head. The backend
takes the instructions from the FTQ.

contributions:

o A detailed analysis of the state-of-the-art FDIP imple-
mentation revealing why its performance falls signifi-
cantly short of a perfect icache

o UFTQ, a mechanism that dynamically adapts the FTQ
size based on workload characteristics

« UDP, a technique that prefetches only useful instructions
both on the on-path and off-path

« A comprehensive evaluation of UDP for 10 large instruc-
tion footprint applications showing an IPC performance
improvement of 3.6%.

UDP is built on top of an open-source Scarab [9], [10] simu-
lator and incorporated into the open-source Scarab infrastruc-
ture [11]. Scarab+UDP is available at https://github.com/Litz-
Lab/scarab and the tool is available at https://github.com/Litz-
Lab/Scarab-infra.

II. BACKGROUND

Fetch Directed Instruction Prefetching (FDIP) [47] is a hard-
ware prefetching technique that leverages the branch predictor
to prefetch instructions. The technique is based on the insight
that the branch predictor can advance instructions faster than
the backend. In particular, a decoupled frontend can process
one (or more) fetch blocks per cycle while the backend can
only execute a fixed number of instructions per cycle. A fetch
block is defined as a fixed-sized, aligned number of instruction
bytes. Modern architectures support fetch blocks of a size of
32 Bytes [28] and can look up all instructions of a block in the
(banked) BTB simultaneously, to extract control flow changing
instructions. For each branch within the block, the predictor
is consulted to determine whether the branch is taken or not-
taken. A taken branch terminates the fetch block and finishes
processing of said block in the given cycle. The decoupled
front end then inserts the start and end address of the fetch
block into a data structure referred to as the fetch target queue
(FTQ).

The FTQ is utilized for two purposes. First, it informs the
instruction fetch engine and decoder about block boundaries
so that it can retrieve sequential instructions from the icache
until terminated by a taken branch. Second, the FTQ enables
FDIP to reduce icache misses.

FDIP scans the FTQ to look up fetch-blocks in the icache
before the icache will access them. FDIP can run ahead of

1189

the backend as it can look up one block in the icache per
cycle, whereas the backend can decode only, for instance,
six instructions per cycle (depending on the width of the
processor). The icache lookups generated by FDIP generate
prefetches, reducing the access time of later demand accesses
by the fetch/decode stage. FDIP is effective as it leverages
today’s highly accurate branch predictors, such as TAGE-SC-
L [52] for generating prefetch candidates. An overview of a
modern processor architecture featuring a decoupled frontend
and FDIP is given in Fig. 2.

One challenge of FDIP is that it relies on the BTB for
finding the next branch instructions. On a BTB miss, FDIP
will not be aware of the miss and just assume to be processing
a large basic block (BBL)?, issuing likely unuseful wrong-path
prefetches causing icache pollution. Branch mispredictions
will have similar effects and, as a result, FDIP moves the
frontend bottleneck of large footprint applications from the
icache to the branch predictor and BTB. Prior work has
addressed this challenge by reducing BTB misses through dif-
ferent techniques such as eliminating undetected BTB misses
(Boomerang [38]), increasing BTB utilization (Shotgun [37]),
prefetching BTB entries (Confluence [30], and increasing
storage efficiency (Pdede [55]). These works, however, provide
significantly less than ideal performance and, furthermore,
introduce complex hardware modifications and storage costs.

Ishii [28] addresses the issue of wrong-path prefetches after
a BTB miss through post-fetch correction. This technique
detects BTB misses as soon as an instruction is decoded and
then immediately flushes the FTQ instead of waiting until the
undetected branch is resolved in the execute stage. While this
reduces the time FDIP is on the wrong path, we still find
that a decoupled frontend that runs far ahead has plenty of
opportunities to issue unuseful prefetches.

In the next section, we provide a detailed performance anal-
ysis of the state-of-the-art FDIP implementation (Ishii [28])
to determine the root cause of why FDIP falls short of
ideal performance. We then introduce UFTQ and UDP, two
mechanisms to reduce frontend stalls while only introducing
moderate hardware modifications. Both techniques are orthog-
onal to the prior works in that they can be combined with
techniques that, for instance, improve BTB storage capacity
to deliver even higher performance gains.

ITI. ANALYSIS

In this section, we analyze the performance of FDIP for
10 data center applications with large code and branch foot-
prints. We study the optimal hardware parameters for FDIP
to optimize performance including the run-ahead distance for
FDIP, different throttling mechanisms, the distribution of on-
path and wrong-path prefetches, as well as the usefulness of
prefetches. Our analysis reveals why existing techniques fall
short of optimal performance and provides valuable insights
on how to address this problem.

2A BBL is a sequence of instructions started with the target of a control
flow changing instruction (branch, call, jump, return) and ending with a control
flow changing instruction.

1190

TABLE 1

STUDIED DATA CENTER APPLICATIONS. FB: FRONTEND-BOUNDNESS
Applications FB Workloads

MySQL [7] 60% sysbench OLTP-like database benchmarks [4]
PostgreSQL[8] 45% sysbench OLTP-like database benchmarks [4]
Clang [2] 35% Building SPEC CPU 2017 benchmarks [12]
GCC 29% Building SPEC CPU 2017 benchmarks [12]
drupal 39% A PHP content management system from

HHVM OSS-perf benchmark [58]

Verilator [13] 66% Verilog/SystemVerilog simulator

MongoDB [17] 62% mongo-perf benchmarks [3]

tomcat [1] 38% Apache’s implementation of the Java Servlet and
WebSocket

XGBoost [60] 87% Gradient Boosting Library decision tree predic-

tion

mediawiki [59] 32% An open-source Wiki engine

A. Experimental Methodology

Data center applications. Datacenter workloads exhibit code
footprints in the order of megabytes, substantially exceeding
the size of modern servers’ instruction caches. Google has
reported [16] that the servers in their fleet spend almost a
quarter of their cycles on frontend stalls while web-serving
and caching workloads deployed at Facebook are up to 36%
frontend-bound [56]. As these workloads are proprietary, we
evaluate FDIP for 10 open-source applications that show
representative characteristics in terms of frontend-boundness.
We briefly describe these workloads in Table I. We set up
sysbench for MySQL and postgres with 1M OLTP events
on 10 tables. Clang and GCC builds 538.imagick_r
SPEC2017 benchmark. mongo-perf sends complex insert
requests to MongoDB. Verilator is configured to simulate
a Boom RiSC-V core running Drysthone. For XGBoost,
we evaluate the inference phase. Therefore, we first train a
decision tree model with the HIGGS dataset [5], maximum
depth of a tree of 8, step size shrinkage 1, regression with
squared loss, and an evaluation metric of root mean square
error resulting in an MB-sized model with 10’s of thousands
of branches. We observe that almost most of the instructions
for XGBoost are executed only once.

Simulation Environment. We leverage the open-source,
cycle-accurate Scarab [9], [10] simulator to perform our
analysis. Scarab supports state-of-the-art branch predictors
such as TAGE-SC-L [52] and MTage [53] as well as recent
data prefetchers [6], [27], diversified functional units, and a
detailed cache and DRAM model leveraging Ramulator [35].
We have extended Scarab with a realistic implementation of
a decoupled frontend [46] that supports wrong-path execution
and icache prefetching via FDIP [47]. Scarab supports both
execution-driven and trace-based frontends. In the execution-
driven mode, Scarab leverages Intel’s PIN [40] to resteer
the binary onto the wrong path, generating accurate off-
path instructions. To simulate wrong-path execution for the
trace-based frontend, Scarab captures every executed PC and
associated instruction to replay instructions on the wrong path.
Only if a given wrong-path PC has never been seen before
does Scarab generate a NOP. We find that in 99% of the
cases, the correct actual instructions are being replayed after
warming up the simulator with 50M instructions. As a result,

TABLE I
SIMULATED SYSTEM

[Parameter [Value
CPU Sunny-Cove-like
All-core turbo frequency 3.0 GHz
Frontend width and retirement | 6-way
Functional Units 4 ALU, 2 Load, 2 Store
Branch Predictor TAGE-SC-L [52]
Branch Target Buffer (BTB) 8K entries
Indirect Branch Target Buffer 2K entries
ROB 352 entries
Reservation Station 125 entries (unified)
Data Prefetcher Stream
Instruction Prefetcher FDIP [47]
Load Buffer 64 entries
Store Buffer 64 entries
Uncore
L1 instruction cache 32 KiB, 8-way
L1 data cache 48 KiB, 12-way
L2 unified cache 512 KiB, 8-way
LLC unified cache Shared 2 MiB/core, 16-way
L1 D-cache latency 4 cycles
L1 I-cache latency 3 cycles
L2 latency 13 cycles
LLC latency 36 cycles
Memory DDR4-2400 (1 channel)
Decoupled Frontend
FTQ blocks per cycle 2
FTQ block size 32 B

all aspects, including data dependencies, icache pollution, and
multiple consecutive mispredictions, are correctly modeled in
trace mode, even on the wrong-path. The only inaccuracy
of this approach is that replayed load/store instructions will
reuse prior addresses, affecting wrong-path dcache pollution.
We analyzed this effect to be minimal (j1% IPC mismatch)
by comparing the same code leveraging the execution driven
respectively trace-based frontend. We leverage the execution-
driven frontend for all applications where possible and utilize
traces to simulate complex, multi-process, and Java-VM-based
applications that are not supported by Scarab otherwise. The
traces are collected with DynamoRIO [19] and Intel PT [24]
containing a precise continuous sequence of dynamically ex-
ecuted basic blocks and memory addresses. We analyze the
traces to extract representative steady-state regions.

We configure Scarab to match recent Intel/AMD processors
in terms of width and depth summarized by Table II. Note
that we will use the same set of applications and simulator
configuration in the evaluation presented in Section V.

B. Optimal run-ahead distance (FTQ depth)

The runahead distance of FDIP determines both the timeli-
ness of prefetches as well as the likelihood of emitting wrong-
path prefetches. In particular, a frontend that executes many
BBLs ahead can emit timely instruction prefetches that reach
the icache before being consumed by the backend. On the other
hand, a large run-ahead distance increases the likelihood of
icache pollution as FDIP spends more time on the wrong path
after a branch misprediction. The optimal runahead distance of
an application depends on several application properties such
as its footprint and IPC performance. We analyze the optimal

1191

10

-------- mysql
postgres
clang

gce
drupal
verilator
mongodb
tomcat
xgboost
mediawiki

Speedup (%)

—101

=15 T v -
42 62 82

FTQ depth
Fig. 3. Optimal FTQ Size : the optimal FTQ size for each application varies
from 16 (xgboost) to 90 (verilator).

22

per-application runahead distance by sweeping the depth of
the FTQ.

Fig. 3 shows the IPC speedup over the state-of-the-art FDIP
baseline with an FTQ depth of 32 [28] for the evaluated
applications. As we can see, the optimal FTQ depth for each
application varies substantially, ranging from 16 to 90. Two
applications particularly stand out. verilator scales well
with large FTQs as it exhibits an extremely large instruction
footprint but low branch misprediction rates. As a result, it
can run far ahead and thus benefit from improved prefetching
timeliness. XGBoost implements large decision tree models.
The MB-sized generated source code essentially only consists
of conditional statements compiled into a sea of branches. The
code exhibits little reuse, high branch misprediction, and BTB
miss rates. As a result, XGBoost spends 90% on the off-path,
and hence aggressive prefetching leads to substantial cache
pollution.

Observation: Applications show variable optimal runa-
head distance configurations for FDIP.
Insight: Adapting the FTQ size in an application specific
way is beneficial, however, we need to understand the root
cause of such performance differences.

C. Timeliness of Prefetches

The main goal of increasing FTQ depth is to enable FDIP
to run ahead further, generating more timely prefetches. This
reduces frontend stalls as the fetch stage suffers fewer long
latency icache misses. To evaluate this effect, we measure the
ratio of demand loads hitting the icache respectively the fill-
buffer or miss status hold registers (MSHR). In the case of a
timely prefetch, demand loads will retrieve instructions from
the icache, whereas if the prefetch was untimely, the demand
load will be merged with the prefetch in the fill buffer. Figure 4
shows the icachepis /(icachepits + MSH Rp;t5) ratio for the
analyzed applications. It shows that except for xgboost and
verilator, the workloads can achieve prefetch timeliness
with a small FTQ. xgboost and verilator require sub-
stantially larger FTQs to achieve timeliness.

-------- gcc ----drupal ——uverilator ——-mongodb tomcat ——-xgboost ——mediawiki
1.0 1.0 1.0
0.8 ° 0.8
5]
~ 0.6 5 0.6
17 &
o
£ &
©04 =04
E g
= 2
5
0.2 0.2
0.0 0.0 .
2 22 42 62 82 2 22 62 82 2 22 42 62 82
FTQ depth FTQ depth FTQ depth
Fig. 4. Timeliness Ratio: Only xgboost and Fig. 5. Onpath Prefetch Ratio: The workloads Fig. 6. Utility Ratio: Ratio of useful prefetches.

verilator show improving timeliness with a
larger FTQ.

70% on the right path.

Observation: Applications require different FTQ depths
to achieve timeliness.

Insight: FTQ size should be configured in an application-
specific way.

D. On-path vs. Off-path Prefetching

As shown in Section III-B, IPC does not scale mono-
tonically with larger FTQ depths. One potential reason for
the slowdown of larger FTQ is the increased probability of
issuing unuseful prefetches on the wrong-path after a branch
misprediction or BTB-miss induced resteer. In Figure 5 we
plot the ratio of on-path/(on-path + of f-path) prefetches
emitted by FDIP. As can be seen, FDIP emits an increasing
number of off-path prefetches as the FTQ size increases,
potentially polluting the icache.

Observation: All applications show an increasing num-
ber of off-path prefetches with larger FTQ depths. There
does not exist a one-size-fits-all best FTQ configuration
for all applications

Insight: A new FDIP tuning mechanism is required to
enable both accurate and timely prefetches.

E. Usefulness of Off-path Prefetches

As shown in the previous section, the number of off-path
prefetches increases with the FTQ depth. However, off-path
prefetches can be useful if they bring in cache lines that are
also touched on the on-path. Off-path prefetches are emitted
before a mispredicted branch is resolved and hence can be
more timely than later on-path prefetches for the same line.
Useful off-path prefetches frequently occur before a merge-
point. To define merge point, we consider the code snippet
in Figure 7 and cond = false. If the branch in line 1
is mispredicted, FDIP will not prefetch the code for line 2,
however, it will prefetch the code for line 3 after the merge
point of the misprediction is recovered at a later point in time.

show a different range of on-path ratio. For exam-
ple, while xgboost and verilator mostly go
off path as FTQ size increases, postgres stays

Utility Ratio = Useful / (Useful + Unuseful). While
xgboost emits more unuseful prefetches with a
deeper FTQ, verilator emits 70% of useful
prefetches.

Such an off-path prefetch will be more timely than the on-path
prefetch emitted after the misprediction is resolved.

if (cond) a+t+;
> else a——;
b += a; //Merge Point

Fig. 7. Merge Point after a Branch

To provide insight into the usefulness of wrong-path
prefetches, we analyze the ratio of useful to unuseful
prefetches independently of whether a prefetch was emitted
on-path or off-path. A useful prefetch is defined as a prefetch
that is hit by an on-path demand load, either in the icache
or fill-buffer (MSHR). An unuseful prefetch is defined as a
line that is evicted from the icache without being accessed
by a demand load. Figure 6 shows the prefetch usefulness for
different FTQ depths. By comparing Figure 5 and Figure 6 we
can infer the following application characteristics and divide
workloads into three categories: off-path prefetches are either
1) very useful (verilator), 2) somewhat useful or harmful,
and 3) harmful (xgboost, mongodb). As an example of
1), when considering the larger FTQ and verilator, FDIP
emits approximately 90% of off-path prefetches as depicted
in Figure 5 while the utility ratio is 0.6 in Figure 6. This
means that 60% of on/off prefetches are still useful although
90% of the prefetches are emitted on off-path. xgboost is
an example of 3) and exhibits a utility ratio of 0.1, indicating
that the majority of the off-path prefetches are not useful and
discarded from the icache without being accessed by a demand
load. For some applications (e.g., mongodb), FDIP cannot
run ahead enough and emit more prefetches with a larger
FTQ because of the frequent resteers. Depending on resteer
frequency and instruction footprint size, off-path usefulness
varies where it can be more or less useful or detrimental. For
example, FDIP does not emit more prefetches with a larger
FTQ for mongodb as 40% of prefetches are on-path, and this

1192

©
(=}

80
........ mysql
> 704
% 70 —— postgres
2601 clang
3 gce
O 501 ---- drupal
[9 40 —— verilator
[
e ——- mongodb
@ 301 tomcat
3]
> on —— xgboost
<20 —— mediawiki
104
0+— . . - -
2 22 42 62 82
FTQ depth

Fig. 8. FTQ occupancy

leads 70% of useful prefetches.

Observation: Some applications benefit substantially
from off-path prefetching whereas other workloads suffer.
Insight: Limiting off-path prefetches through bandwidth
throttling and FTQ depth is insufficient. We need to learn
the usefulness of both on-path and off-path prefetches.

FE. FDIP Recovery Frequency

As shown in Figure 3, for some applications, the IPC
plateaus even for large FTQs as these workloads do not
seem to suffer from unuseful prefetches polluting the icache.
This can be explained by the following behavior. All branch
mispredictions and BTB-misses which steer FDIP onto the off-
path are eventually detected and resolved causing a flush of the
FTQ. If the recovery frequency is high enough, the FTQ will
rarely fill up as this requires N cycles, where N represents the
depth of the FTQ (This assumes that the decoupled frontend
can generate one block per cycle). Recoveries hence act as
a natural throttling condition for FDIP. To analyze this effect
Figure 8 plots the average FTQ occupancy for the evaluated
applications over different FTQ sizes. A line with slope 1
means that there is a low resteer frequency enabling the
decoupled frontend to run ahead and fill the FTQ. For instance,
this is the case for clang which can run far ahead and
hence emit a lot of prefetches without being throttled by early
resteers. The average occupancy of xgboost starts going
down with a deeper FTQ. This is because it emits too many
unuseful prefetches, leading more time to be spent on the off-
path due to icache pollution. verilator, on the other hand,
does not suffer from too many or harmful off-path prefetches
(see Figure 5) because it flushes the FTQ relatively frequently
or because the off-path prefetches are useful.

G. Analysis Summary

Our analysis provided the following insights. First, there
exist substantial opportunities to improve performance by
optimizing FDIP. Second, applications exhibit different perfor-
mance characteristics, and hence an efficient mechanism has
to be able to adapt to these properties. Third, it is insufficient
to just focus on on-path prefetches as off-path prefetches can

1193

TABLE III
UTILITY & TIMELINESS RATIO FOR OPTIMAL FTQ SIZE

Application

Optimal FTQ [Utility | Timeliness |

mysqgl 56 0.77 0.93
postgres 76 0.85 0.96
clang 54 0.79 0.95
gcc 60 0.72 0.93
drupal 28 0.64 0.85
verilator 84 0.64 0.46
mongodb 38 0.69 0.85
tomcat 24 0.69 0.82
xgboost 12 0.30 0.31
mediawiki 18 0.62 0.83
Average (Geomean) | 42 0.65 0.75
Correl. Coefficient - 0.63 0.21

provide more timely prefetches in certain scenarios. Based on
these insights, the next Section will introduce two techniques
to improve the performance of FDIP.

IV. DESIGN

This section introduces UFTQ and UDP, two novel tech-
niques to increase the performance of the state-of-the-art FDIP
mechanism. UFTQ leverages insights from Section III to adapt
the FTQ depth based on dynamically learned application prop-
erties. This technique aims to find the optimal FTQ depth for a
given workload considering both the timeliness and usefulness
of prefetches. The UDP technique further improves on UFTQ
by learning prefetch-specific utility values. In particular, it
learns whether a specific prefetch candidate should be emitted
or dropped, regardless of whether it resides on the on-path or
off-path.

A. UFTQ: Application-specific FTQ size

In Section III-B, we showed that applications exhibit differ-
ent optimal FTQ sizes. To leverage this insight, we propose a
technique that dynamically adjusts the FTQ size to optimize
IPC by maximizing timeliness while limiting icache pollution.
Unfortunately, every application exhibits a different IPC and
the “optimal” IPC is unknown for a given workload. To
address this problem, UFTQ instead monitors the timeliness
and utility of emitted prefetches and then adapts the FTQ size
accordingly. Table III shows for each application the optimal
FTQ size obtained using exhaustive exploration. As can be
seen, the optimal FTQ-len correlates with the utility ratio
(useful/unuseful prefetches) and timeliness (icache hittMSHR
hit). Our approach leverages this fact by measuring utility
and timeliness at runtime and then computing the FTQ length
based on these measurements. We propose three techniques.
UFTQ-AUR computes the FTQ length based on utility only,
UFTQ-ATR computes the FTQ length based on timeliness
only, and UFTQ-ATR-AUR computes the FTQ length consid-
ering both timeliness and utility. The techniques initialize the
FTQ size to 32 and then measure the utility (and/or timeliness)
ratio of the next 1000 prefetches. If the utility ratio is higher
than the AUR, our approach extends the size of the FTQ. If the
current utility ratio is smaller than the AUR, UFTQ reduces
the size of the FTQ.

branch outcome target cache probe
" branch i branch prefetch engine | instruction
¢ history :: dir. pred : fetch d
©retum i indirect predidied _ L1 ‘z ‘:
stack pred brancl tail fFrQ |-cache
..... target ‘ o e
branch target L1 miss.dekr;!aadnd d c
buffer (BTB) | [e
H UFTQ reg.
......) LLC
branch predictor
correct target

Fig. 9. UFTQ-ATR-AUR Microarchitecture

Similarly, UFTQ-ATR utilizes the timeliness of prefetches
to adapt the FTQ size. We consider prefetches as timely if they
hit the icache and untimely if they hit a prefetch in the fill
buffer. We again compute the average timeliness ratio (ATR)
to adapt FTQ size and then utilize the same approach as above
while replacing AUR with ATR.

The third alternative, UFTQ-ATR-AUR, combines the two
techniques. Therefore, we initialize the FTQ with a size of
32 and then perform utility measurements to find the queue
depth satisfying AUR. We refer to that queue depth value as
QDAUR. After finding QDAUR, we increase or decrease the
queue depth until we satisfy ATR. This queue depth is referred
to QDATR. We then determine the final FTQ size by comput-
ing FTQgize = —0.34%xQDAUR+0.64% QDAT R+ 0.008 *
QDAUR?+0.01*QDATR? —0.008* QDAUR+ QDATR
where the equation is obtained by polynomial regression
from trained randomly chosen 80% simpoints for memtraced
workloads and warm-up phases (50M) for PT workloads. The
technique is always-on to adapt to future application phase
changes that may alter the ATR or AUR. The maximum
queue size is bounded by the physical size of the FTQ, for
instance, 64. We assume that the icache holds a prefetch bit
for each cache line, which is set when a prefetched line is
inserted in the icache. The prefetch bit is cleared when the
line is accessed by a demand load. Similarly, entries in the fill
buffer contain information about whether they were installed
by a prefetch or demand load. We do not consider those bits
as a UFTQ-specific overhead as most architectures already
implement these features.

The UFTQ technique introduces small hardware overheads.
To compute the running AUR and ATR, four 10-bit counters
and two 32-bit fixed point registers storing the ratios are
required. A simple state machine is needed to adapt the FTQ
size based on AUR and ATR. In Section V we evaluate the
three techniques UFTQ-ATR, UFTQ-AUR, and UFTQ-ATR-
AUR and compare them against the state-of-the-art baseline
and an optimal upper-bound mechanism. The proposed UFTQ-
ATR-AUR design is shown in Figure 9.

B. UDP: Utility-driven Instruction Prefetch

The presented UFTQ technique is based on two assump-
tions. The first assumption is that ATR and AUR, respectively,
their combination, are accurate proxies for IPC performance.
The second assumption is that a single FTQ size is optimal for
a given phase to throttle or admit prefetches. While Section III

branch outcome target

cache probe

instruction
fetch

FDIP

hold candidates

1194

d
I elle
predicted . N — L1

branch |branch until consumed ¢ retired CL I-cache c ||
predictor |target Seniority-FTQ ‘ ofle
insert a useful 1 miss; demand : ¢

[candidate oa

Useful? UDP issue a prefetch LLC
cache L

i

correct target

Fig. 10. UDP Microarchitecture

shows that ATR and AUR are good proxies to adapt the
FTQ size, an even more effective technique must consider
individual prefetch candidates and learn their behavior. We
define a prefetch candidate as a prefetch of a cache line that
refers to one of the blocks in the FTQ and which is currently
not present in the icache. The UDP technique leverages the
following two insights. First, on-path prefetching candidates
are always useful as they are guaranteed to be utilized by
subsequent demand load. Second, off-path prefetching can-
didates can be useful if they are emitted before an on-
path candidate to the same line, in which case they improve
prefetch timeliness. UDP utilizes these insights as follows. For
each branch predicted by the decoupled frontend, we retrieve
the TAGE branch predictor’s prediction confidence (High,
Medium, Low). We then increment a confidence counter by
2 for a low, 1 for a medium, and O for a high confidence
prediction. Whenever the counter exceeds a threshold, UDP
assumes to be on the off-path, and no longer unconditionally
emits prefetches. In particular, on the (assumed) off-path it will
query UDP to determine whether a prefetch should be emitted.
The confidence counter is reset on each branch recovery and
BTB resteer. UDP also assumes to be on the off-path when the
branch predictor predicts a branch as taken whose PC misses
in the BTB.

When UDP assumes to be on the off-path, it only emits
prefetches that have been learned to be useful. Therefore, it
maintains a set of addresses that represent useful prefetch
candidates. The set is populated whenever an on-path de-
mand load hits an off-path prefetch (based on the confidence
counter). Note that it is critical to only consider prefetches
as useful that are hit by an on-path demand load as we
do not want to learn prefetches that are consumed on the
off-path only. To enable this, we add a Seniority-FTQ that
holds off-path prefetch candidate blocks that are no longer
in the FTQ, after having been consumed by frontend. The
candidate is useful whenever the backend retires an instruction
whose line address matches the prefetch candidate block. On
a pipeline flush, blocks are removed from the Seniority-FTQ
until the flush point. The Seniority-FTQ is much smaller than
the reorder buffer (ROB). First, it holds coarse-grained fetch
blocks instead of instructions, and second, it does not hold all
blocks but only blocks containing a prefetch candidate.

As depicted in Figure 10, prefetch candidate blocks deemed
useful by UDP are inserted into the useful-set. UDP queries the

601

AUR AUR+ATR
40 ATR OPT
_ 7 ,
S 204 7 7 N
= /] %
: NN \
2 o0 — —~ % 7/ VA L e — 7z,
g N m % = Z.
8. -201
» N %
—-40 %
_607 T T T T T T T T T T T
Ny S S 9 N % \Y \8 X A S
ey (@ ¥ cf) X0 N\ e 09 A S
o rom NG ¢ ¥ & @0@0 o &° o ¥
—‘(,\
Benchmarks

Fig. 11. IPC speedups of AUR, ATR, AUR+ATR, and the optimal: UFTQ-ATR-AUR achieves an average speedup of 4.9% (up to 37.2%) without significantly-

negatively affecting an application.

801 < BASELINE (FTQ=32) 7
AUR i
60 ATR
9 AUR+ATR
& 40/ OPT NN
= N ﬁ
201 N N
0 E;Qg N ‘D:§ N I 0 7R ! @ H mn s NZiw | g@?’ IS ANz
Ny S (s} v N %) \% X A8 1)
& 5© o c o° 28 o c® 0° 0 »
oY Qoro\g o) R qe{\\a 1{\0‘\% ‘0‘0 $($90 ﬁ\ed\’()

Benchmarks

Fig. 12. Instruction cache misses per KI of AUR, ATR, AUR+ATR, and the optimal: UFTQ-ATR-AUR reduces 1.2% of icache misses on average and up to
28% for verilator with a larger FTQ where it emits more useful off-path prefetches.

useful-set whenever evaluating an off-path prefetch candidate.
Only if the candidate is in the useful set and not in the icache,
a prefetch is emitted. The useful-set can be implemented
with an associative cache, however, as we only need to test
whether an element is part of the set, we deploy space-
efficient bloom filters [18]. While prefetch candidates refer
to individual cache lines, we observe that frequently multiple
consecutive lines are considered useful and thus inserted into
the filter. We exploit this fact to improve the space efficiency of
our technique further. Therefore, we introduce a small buffer
that stores the last eight recent prefetch candidates before
they get inserted into the filter. We then detect consecutive
lines with monotonically increasing addresses and combine
them into super-lines. We support combining two or four
consecutive lines into a 2-block, respectively 4-block. As a
result, a single block can represent either one, two, or four
prefetch candidates, reducing the total number of candidates
we need to store. We deploy three bloom filters holding one
of the three block sizes. FDIP looks up a given prefetch
candidate in all three filters, and if there is a hit, it will emit
either one, two, or four prefetches. This optimization allows
us to reduce the bloom filter size by 4x. In particular, we
deploy a 1-block filter of 16k bits, a 2-block filter of 1k bits,
and a 4-block filter of 1k bits. We also explored even longer
consecutive sequences of prefetch candidates, however, such
sequences are too infrequent to warrant another bloom filter.
We configure the filters to have a false positive rate of 1% and

utilize Open Bloom Filter [43] to generate optimal parameters
(resulting in 6 hash functions). Our hardware implementation
computes the six hash functions in parallel (1 cycle) and then
reads the hash indexes from the banked Bloom Filter SRAM
(1-6 cycles). The final step is to compare the six generated
output bits with O to determine whether the address is part
of the set. Efficient Bloom Filter hardware designs have been
proposed by Sateesan [51]. Once one bloom filter is full and
the unuseful ratio reaches 0.75 (we increment a counter of
unuseful prefetches), we clear the filter. The total storage
overhead of our design is 8KB.

V. EVALUATION

We first describe our evaluation methodology and then
present the performance results for the two proposed UFTQ
and UDP techniques.

A. Methodology

We utilize Scarab, a cycle-accurate microarchitectural sim-
ulator, to evaluate our proposed techniques. As described
in Section III, Scarab models a detailed superscalar out-of-
order processor with a decoupled frontend, modern branch
predictors, wrong-path simulation, and a detailed memory hi-
erarchy. The detailed configuration parameters of the modeled
system is provided in Table II. We evaluate 10 frontend-bound
datacenter applications, utilizing a simpoint methodology. For
each application, we simulate 10 (application-specific) 10M

1195

IncreasedIcache (40K) UDP + EIP %
= 291 =< FDIP + EIP (8K) UDP + D-JOLT 0
s FDIP + D-JOLT (8K) Infinite Storage l’/ g
2 104 UDP . Z
(% 0 WEQ ~A | A — “_‘Jr—m__w 2 NVAD I NA N7 A _,—,Cﬂ
&) %) 7 =
& E
—-10 2
\‘ s‘ g‘ o‘ N i‘ Y X B g‘
<O © 0 © o X0 O o 05 A !
oY Qogx%‘ ok 9 o® qegx\a ‘00090 o &° oW B
Benchmarks

Fig. 13. IPC speedups of Infinite Storage and UDP: UDP with 8K bloom filter shows up to 16.1% IPC speedup and 3.6% on average.

instruction simpoints [26] which are aggregated according
to their weight. Each simpoint is warmed up with 10M
instructions. We evaluate UFTQ-ATR-AUR on 20% randomly
chosen simpoints with the equation obtained by training 80%
randomly chosen simpoints for memtraces and train half
phases of PT traces and evaluate the other half instructions.
We compare UDP to the top two instruction prefetchers from
IPC-1 by porting the Champsim-based source codes to Scarab:
Entangled Instruction Prefetcher (EIP) [49] and D-JOLT [42].
EIP is more optimized by eliminating wrong-path training
on our simulation [48]. We compare UDP to a state-of-the-
art FDIP baseline with different FTQ sizes (16,32,48,64) and
different BTB sizes (4k,8k,16k).

B. UFTQ

Speedup. We now evaluate the IPC uplift provided by
the proposed UFTQ-AUR, UFTQ-ATR, and UFTQ-ATR-AUR
mechanisms optimizing the FTQ depth in an application-
specific way, as described in Section III-B. We compare our
three proposed techniques against the state-of-the-art baseline
utilizing an FTQ with a fixed size of 32 and against an
upper bound referred to as OPT. OPT represents an oracle
approach that utilizes the optimal FTQ depth as determined in
Section III. Figure 11 shows the achieved IPC speedup of three
different mechanisms. As seen UFTQ-ATR-AUR provides a
positive speedup of up to 37.2% for clang and gcc and
an average speedup of 4.9%. It provides a positive speedup or
negligible negative speedup for all applications and approaches
the performance of OPT. In contrast, the UFTQ-AUR and
UFTQ-ATR do not perform well. They either perform too
aggressive or too conservative FTQ sizing decisions, as they
cannot learn the three performance characteristics described in
Section III. While Table IIT shows high correlation coefficients
for the two techniques, they fail to efficiently adjust the FTQ
size for gcc, and verilator. Note that the evaluated phases
of the workload may have completely different performance
characteristics. We focus on the model trained on workloads
with completely different characteristics does not negatively
impact other workloads.

For example, the evaluated phase of gcc and mongodb
show negative speedups when it only follows UFTQ-AUR
or UFTQ-ATR respectively as it emits too many harmful
prefetches within 50% of off-path prefetches with the deter-

1196

mined utility ratio of 0.65. On the other hand, verilator
shows a negative speedup only on UFTQ-AUR because it
misses useful off-path prefetches by preventing it from running
ahead further due to the limited utility ratio. This incurs that
UFTQ-AUR stops increasing the FTQ size too early at a
smaller FTQ although verilator still has more than 60%
of useful prefetches with a large FTQ. The combination of
the two approaches, UFTQ-ATR-AUR, only prevents either
inaccurate or untimely prefetches. In data center environments
that operate millions of cores, even an IPC uplift of 4.9%
provides substantial benefits in terms of operating expenditures
and reducing carbon emissions.

Icache Miss Reduction and Improved Timeliness. The
IPC speedup comes from a reduction of icache misses thanks
to timely and accurate prefetches. We evaluate how well
UFTQ-ATR-AUR prevents icache misses from being increased
in Figure 12. At least for 20% of different application phases,
UFTQ-ATR-AUR only shows less or similar icache misses
to the baseline while UFTQ-ATR or UFTQ-AUR increases
icache misses. It shows almost the same MPKI as OPT across
all applications except for verilator. UFTQ-ATR-AUR
increases icache misses for verilator, but it does not
increase the misses when it only relies on UFTQ-AUR because
it benefits from more timely fill-buffer hits. The reason why
OPT still provides an additional IPC gain over UFTQ-ATR-
AUR is also more timely prefetches.

C. UDP

Speedup. While UFTQ provides a substantial improvement
at a low hardware cost, it cannot effectively utilize useful off-
path prefetches. In particular, by restricting unuseful off-path
prefetches through FTQ sizing, it also emits more potential
of useful off-path prefetches timely. We now evaluate UDP,
which can leverage useful off-path prefetches. Figure 13 shows
the IPC uplift over the fixed 32-size FTQ baseline for UDP
utilizing an 8K Bloom Filter. We also evaluate an upper-
bound implementation. Infinite Storage leverages a useful set
of infinite size which learns all useful off-path prefetches. All
the UDP techniques utilize an FTQ of size 32. Within the same
FTQ depth, it allows them to runahead further and prefetch
more timely by only emitting prefetches if they are in the
learned useful-set. As can be seen, UDP provides substantial
performance gains of up to 16.1% for xgboost and 3.6% on

Baseline (FTQ=32)
EXJ IncreasedIcache (40K)
FDIP + EIP (8K)

FDIP + D-JOLT (8K)
77} UDP '
Infinite Storage

175
150

70
601
50 I I I I |

MPKI

e NI I
A% | —\ | |

o (e % o > x0% g s) «‘\\é\ S
> 1)) 9 &o® G S o & @e&\a
Benchmarks

Fig. 14. Instruction cache misses per kilo instructions for Infinite Storage and UDP

FDIP + D-JOLT (8K)
774 UDP |
Infinite Storage

75000 R
Baseline (FTQ=32)
50000~ <3 IncreasedIcache (40K)

75001 FDIP + EIP (8K)

5000 v v i i T

of Insts lost due to misses Per KI

R S

/R R

Benchmarks

Fig. 15. Proportional to cycles spent due to icache misses per kilo instructions for Infinite Storage and UDP

average. The infinite storage technique provides even higher
performance. For an ISO-storage comparison, we evaluate
an increased icache (40K) and the Entangled Instruction
Prefetcher (EIP - 8KB) which is one of top IPC-1 instruction
prefetchers. Increasing the icache size rarely provides IPC
gain, and EIP provides substantially lower IPC uplift for the
same storage budget. The reason why EIP falls short compared
to UDP is two-fold. First, EIP requires substantial meta-data.
If provided with 100KB+ storage it performs well, however,
8KB are insufficient. Second, EIP is unaware of wrong-path
execution and trains on all icache accesses utilizing additional
storage to train for unuseful off-path prefetches.

Icache Miss reduction. Figure 14 shows the icache MPKI
for the baseline and the five evaluated techniques. The MPKI
does not substantially differ between the techniques, and for
xgboost and verilator, the MPKI of UDP exceeds the
baseline because it misses off-path useful prefetches. Even
with almost the unchanged icache misses, the substantial
IPC uplift is because of more timely prefetches. Figure 15
shows the number of instructions lost due to icache misses,
proportional to the number of lost cycles due to misses. The
usefulness technique reduces the number because it increases
the timely and useful prefetches. UDP is a throttling tech-
nique that reduces the emitted prefetches. It works well to
eliminate harmful unuseful prefetches, and eventually allows
more useful prefetches to be loaded into icache in time. While
it rarely reduces the number of icache misses, the performance
benefit of UDP is obtained by substantially improving the
timeliness of fill-buffer hits. As a result, UDP also improves
power efficiency by reducing the number of emitted prefetches
and off-chip memory traffic.

=] UDP + BTB8K
¥zZ1 UDP + BTB16K

/
2

| -
1 HEEES ' S

\‘ 5‘ g‘ c‘ \‘ (‘ ‘9‘ &‘ &‘ \9 g‘
e® | (0% 19 o 2 O (0 P 0%
i @ Mt &% e

UDP + BTB4K %

[~}
(=}

IPC Speedup (%)
i
S

Benchmarks

Fig. 16. UDP provides IPC uplifts on different BTB sizes.

301 [ZZA UDP + FTQ16 [ZZA UDP + FTQ48
= =] UDP + FTQ32 UDP + FTQ64 7
IS E
2,20 %
5 é;
] 1
5} A
(7] f U
5101 =~ 4
e % %ﬁ
a L g 1 A
ol VAR e ey A oo N e AV
]

\‘ 5‘ g‘ o‘ \‘ (‘ ‘o‘ ’s‘ x‘ \@ g‘
SO 507 (o C > X o (e 0% N
RS Q(’g& o 9 &\Q\;ef‘\%@oﬁ‘g o &920 e
Benchmarks

Fig. 17. UDP on top of different FTQ sizes (16, 32, 48, 64)

BTB/FTQ Sensitivity Analysis. Figure 16 shows UDP
always provides IPC uplifts on different BTB sizes. UDP
shows more speedups when the size of BTB is limited.
Figure 17 shows that UDP also works on top of different
FTQ sizes except for verilator. With a larger FTQ, the
workload can further run ahead, leading to more aggressive
prefetching where UDP fills and flushes the bloom filter fre-

1197

quently. A conservative flushing policy with a higher threshold
of unuseful ratio potentially works better for verilator-like
workloads with plenty of useful off-path prefetches.

VI. RELATED WORK

Google [16] and Facebook [56] have reported that large
code footprint applications cause significant frontend stalls that
intrude significant energy costs and carbon footprint emissions.
Existing processor caches provide insufficient capacities to ad-
dress this problem [15]. Reinman has introduced the decoupled
frontend [46] and FDIP [47]. Together with Ishii‘s FDIP [28]
these works represent the foundation and baseline for UDP.

Several prior works including Boomerang [38], Shot-
gun [37], Confluence [30], and Divide and Conquer Frontend
Bottleneck [14] have introduced techniques to reduce BTB
misses of large frontend applications to improve the effi-
cacy of FDIP. While these techniques improve performance,
they significantly increase the storage overheads of the BTB
(Boomerang, Confluence) and the complexity of the frontend
(Shotgun, D&C). In contrast to UDP, these techniques also
do not address wrong-path prefetches induced by branch
predictions, nor do they leverage potentially beneficial wrong-
path prefetches. The entangled instruction prefetcher has been
extended to reduce training of wrong-path instructions [48],
we compare our work with the state-of-the-art instruction
prefetchers. Finally, these techniques are orthogonal to UDP
in that they can be combined to improve performance further.

A prior work [20] has also studied FTQ depth and aggres-
sive decoupled-frontend. We show how our work complements
this prior work by also considering the impact of wrong-
path execution in the context of fetch-directed instruction
prefetching. PDIP [25] associates a branch PC with a few high
front-end critical (FEC) lines by leveraging techniques similar
to EMISSARY [41] for identifying FEC lines. By selectively
prefetching the lines with a high priority, PDIP effectively
reduces FEC stalls with 43.5KB storage costs. In contrast,
UDP further improves the prefetch timeliness of FEC lines by
considering useful prefetches on the off-path while requiring
a much lower storage cost of only 8KB.

Another line of work has focused on optimizing the storage
efficiency of the BTB for reducing frontend resteers and
wrong-path prefetches. Fagin [21] introduced partial tags
in the BTB to improve storage efficiency. Kobayashi [36]
introduces a 2-level BTB design. Perleberg [45], Lee [39],
and PDede [55] reorganize the BTB for higher efficiency and
introduce compression.

In addition to enhancing FDIP, prior works have
also proposed stand-alone instruction prefetchers, including
PIF [22], temporal instruction prefetching [23], D-Jolt [42],
SHIFT [29], FNL+MMA [54], and the Entangling Instruc-
tion Prefetcher [49]. Ishii showed [28] that these stand-
alone prefetchers provide no substantial benefit over FDIP.
FDIP relies on highly accurate branch predictors to produce
prefetching candidates, whereas stand-alone prefetchers have
to predict these candidates utilizing a separate mechanism, that
(1) introduces additional storage cost and hardware complexity

1198

and (2) does not increase the coverage of accurate prefetches
substantially. UDP in contrast, leverages FDIP to produce
prefetch candidates utilizing the efficacy of modern branch
predictors.

Another line of work has proposed profile-guided software-
hardware techniques to address frontend stalls. I-Spy [32]
proposes software prefetch instructions to reduce instruction
icache misses while Ripple [34] optimizes the replacement
policy of the icache. Twig [31] introduces profile-guided BTB-
prefetching to improve the performance of FDIP, while Whis-
per [33] improves branch predictor accuracy using software
hints. All these techniques show significant benefits but also
suffer from shortcomings. First, they require ISA changes
which are difficult to justify for performance improvements.
UDP, on the other hand, is a pure hardware technique that
is ISA agnostic and transparent. Secondly, these prior works
require profiling and re-compilation of all binaries. A sophis-
ticated software environment needs to be maintained that only
a few data center operators can justify at this point.

VII. CONCLUSION

This paper analyses the efficacy of fetch-directed instruc-
tion prefetching (FDIP), which is utilized in virtually all
modern architectures with a decoupled frontend, including
most processors by AMD, Intel, and ARM. We determined
that state-of-the-art implementations of FDIP fall significantly
short of optimal performance and then determine the root
causes for said inefficiency. In particular, we quantify the effect
of untimely prefetches and inaccurate off-path prefetches,
observing that applications exhibit fundamentally different
characteristics rendering one-size-fits-all solutions inefficient.
Furthermore, we measure the usefulness of off-path prefetches
after branch mispredictions and leverage these results to design
mechanisms improving the performance of FDIP. In particular,
we introduce UFTQ, a technique to dynamically adapt the
prefetch aggressiveness of FDIP by tuning the size of the
fetch target queue. We then further improve performance by
introducing UDP, a technique that learns the usefulness of
prefetch candidates to enable even more aggressive prefetching
(improving timeliness) while eliminating virtually all harmful
inaccurate prefetches. Our hardware mechanisms introduce
moderate hardware overheads and implementation complexity
while improving IPC performance by up to 16.1% and by
3.6% on average.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful
comments and helpful feedback. This work was generously
supported by Intel’s Center for Transformative Server Archi-
tectures (TSA), the PRISM Research Center, a JUMP Center
cosponsored by SRC and DARPA, and NSF grant #2111688.
Any opinions, findings, conclusions, or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the funding agencies.

APPENDIX
A. Abstract

This artifact contains all the source code for the UDP in
Scarab simulator on the x86 sunnycove-like architecture and
its tools to run datacenter applications with Scarab. These tools
allow users to launch Scarab simulations and reproduce the
main results. We open-source the extended Scarab and the
tool that creates a docker container where all the benchmarks
are ready to be simulated and plots the results. Users can
reproduce the results in Figures 13, 14, 15, 16, and 17.

B. Artifact check-list (meta-information)

Program: Scarab simulator and Docker tool

Data set: All the traces are available in the docker container.
Run-time environment: Ubuntu 20.04.5

Hardware: Intel x86_64 processor.

Execution: Automated by tooling.

Output: Graphs of IPC speedups, Icache MPKI, # of instruction
lost due to Icache misses of UDP (Fig 13-17).

Experiments: Automated by tooling.

How much disk space required (approximately)?: S0GB
How much time is needed to prepare workflow (approx-
imately)?: 30 minutes to install Docker and build a docker
image

How much time is needed to complete experiments (approx-
imately)?: 24 hours

Publicly available?: Yes

Code licenses (if publicly available)?: MIT license

Data licenses (if publicly available)?: MIT license
Workflow framework used?: Yes

Archived (provide DOI)?: https://doi.org/10.5281/zenodo.
11068829

C. Description

1) How to access: All source code is open-source and
available on GitHub. The workflow requires cloning https:
//github.com/Litz-Lab/Scarab-infra.git which is a tool to au-
tomate the workflow of installing Scarab, all the dependent
libraries, benchmark traces and plotting the figures in the
paper.

2) Hardware dependencies:

« Intel x86_64 processor. Scarab leverages Intel’s PIN, a
dynamic binary instrumentation framework for the IA-32,
x86-64, and MIC instruction-set architectures.
> 20 multi-core processor preferred. Scarab simula-
tions are launched in parallel for all the simpoints for a
given single configuration. The number of simpoints of
the workloads for this artifact is from 2 to 36, depending
on the workload. In theory, at most, 36 processes can be
executed in parallel.
> 50GB storage space. The size of the docker image
(23G), including all the benchmark traces, and the space
for simulation results will reach 50G.
> 50GB RAM. Parallel simulation at some point loads
50GB traces.

3) Software dependencies: Docker, Python3, Python li-

brary versions in https:/github.com/Litz-Lab/Scarab-infra/
blob/ISCA2024-UDP/isca2024_udp/plot/requirements.txt

1199

4) Data sets: All the traces and simpoints are available
inside the docker container at /simpoint_traces.

D. Installation

1) Install the Docker engine if not installed on your local
machine by reviewing https://docs.docker.com/engine/
install/.

2) Clone https://github.com/Litz-Lab/Scarab-infra.git and
checkout ISCA2024-UDP branch:
git clone -b ISCA2024-UDP https://github.com/Litz-Lab/Scarab-infra.git

3) Step-by-step procedures have been explained

in the https://github.com/Litz-Lab/Scarab-
infra/blob/ISCA2024-UDP/README.ISCA.md on
ISCA2024-UDP branch. Step 1 is the installation part.

E. Experiment workflow

Step 2 in README.ISCA.md. We provide an automated
workflow to validate the main results in the paper from
scratch. The user launches Scarab simulations for all the con-
figurations and workloads described in ./isca2024_udp/
isca.Jjson and ./isca2024_udp/isca.pt.json.

F. Evaluation and expected results

Step 3 in README . ISCA.md. Running plot_figure.
sh generates the UDP plots (Fig13-17). The figures are gener-
ated at the same path as plot_figures. sh (Figurel3.pdf,
Figure14.pdf, Figurel5.pdf, Figurel6.pdf, and Figurel7.pdf).

G. Experiment customization

The workflow can be even more parallelized if more HW
resources (e.g. # of cores, RAM) are available. The divided
experiment file descriptors isca_custl. json and isca_
cust?2. json are available in the same path of isca. json.
The way to manually parallelize Step 2 is the following.

/home/$USER/isca2024_home
/home/$USER/isca2024_home
/home/$USER/isca2024_home

./run.sh -o -s 4 -e isca_custl
./run.sh -o

./run.sh

-s 4 -e isca_cust2
-s 5 -e isca.pt

H. Notes

For more information about Scarab v2.0 release, please visit
the GitHub page: https://github.com/Litz-Lab/scarab

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

REFERENCES

] “Apache tomcat,” https://tomcat.apache.org/.

“Clang c language family frontend for llvm,” [Online; accessed
19-Nov-2021]. [Online]. Available: https://clang.llvm.org/

“Github - performance tools for mongodb,” [Online; accessed 23-Feb-
2024]. [Online]. Available: https://github.com/mongodb/mongo-perf
“Github - scriptable database and system performance benchmark,”
[Online; accessed 21-Nov-2023]. [Online]. Available: https://github.

com/akopytov/sysbench

“Higgs dataset at mlpysics portal,”
https://public.dhe.ibm.com/software/mktsupport/techdocs/power4.pdf.
“Ibm power4 system microarchitecture,”

https://public.dhe.ibm.com/software/mktsupport/techdocs/power4.pdf.
“Mysql,” [Online; accessed 19-Nov-2021]. [Online]. Available: https:
/Iwww.mysql.com

“Postgresql: The world’s most advanced open source database,” [Online;
accessed 19-Nov-2021]. [Online]. Available: https://www.postgresql.org/
“Scarab,” https://github.com/hpsresearchgroup/scarab.

“Scarab,” https://github.com/Litz-Lab/scarab.

“Scarab-infra,” https://github.com/Litz-Lab/Scarab-infra.

“Spec cpu 2017 standard performance evaluation corporation,” [Online;
accessed 21-Nov-2023]. [Online]. Available: https://www.spec.org/
cpu2017/

“Verilator,” https://www.veripool.org/wiki/verilator.

A. Ansari, P. Lotfi-Kamran, and H. Sarbazi-Azad, “Divide and conquer
frontend bottleneck,” in Proceedings of the 47th Annual International
Symposium on Computer Architecture (ISCA), 2020.

G. Ayers, J. H. Ahn, C. Kozyrakis, and P. Ranganathan, “Memory
hierarchy for web search,” in 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA). 1EEE, 2018, pp.
643-656.

G. Ayers, N. P. Nagendra, D. I. August, H. K. Cho, S. Kaneyv,
C. Kozyrakis, T. Krishnamurthy, H. Litz, T. Moseley, and P. Ran-
ganathan, “Asmdb: understanding and mitigating front-end stalls in
warehouse-scale computers,” in Proceedings of the 46th ISCA, 2019.
K. Banker, D. Garrett, P. Bakkum, and S. Verch, MongoDB in action:
covers MongoDB version 3.0. Simon and Schuster, 2016.

F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese,
“An improved construction for counting bloom filters,” in European
Symposium on Algorithms. Springer, 2006, pp. 684—695.

D. Bruening, T. Garnett, and S. Amarasinghe, “An infrastructure for
adaptive dynamic optimization,” in International Symposium on Code
Generation and Optimization, 2003.

G. Chacon, N. Gober, K. Nathella, P. V. Gratz, and D. A. Jiménez,
“A characterization of the effects of software instruction prefetching
on an aggressive front-end,” in 2023 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2023, pp. 61—
70.

B. Fagin, “Partial resolution in branch target buffers,” IEEE Transactions
on Computers, vol. 46, no. 10, pp. 1142-1145, 1997.

M. Ferdman, C. Kaynak, and B. Falsafi, “Proactive instruction fetch,”
in International Symposium on Microarchitecture, 2011.

M. Ferdman, T. E. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Temporal instruction fetch streaming,” in International Symposium on
Microarchitecture, 2008.

X. Ge, W. Cui, and T. Jaeger, “Griffin: Guarding control flows using
intel processor trace,” ACM SIGPLAN Notices, 2017.

B. R. Godala, S. P. Ramesh, G. A. Pokam, J. Stark, A. Seznec,
D. Tullsen, and D. I. August, “Pdip: Priority directed instruction
prefetching,” in Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 2, ser. ASPLOS ’24. New York, NY, USA:
Association for Computing Machinery, 2024, p. 846-861. [Online].
Available: https://doi.org/10.1145/3620665.3640394

G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster
and more flexible program phase analysis,” Journal of Instruction Level
Farallelism, vol. 7, no. 4, pp. 1-28, 2005.

S. Tacobovici, L. Spracklen, S. Kadambi, Y. Chou, and
S. G. Abraham, “Effective stream-based and execution-based data
prefetching,” in Proceedings of the 18th Annual International
Conference on Supercomputing. New York, NY, USA: Association
for Computing Machinery, 2004, p. 1-11. [Online]. Available:
https://doi.org/10.1145/1006209.1006211

1200

[28

[32]

(33]

[41]

[46]

[47]

(48]

Y. Ishii, J. Lee, K. Nathella, and D. Sunwoo, “Re-establishing fetch-
directed instruction prefetching: An industry perspective,” IEEE Inter-
national Symposium on Performance Analysis of Systems and Software,
2021.

C. Kaynak, B. Grot, and B. Falsafi, “Shift: Shared history instruction
fetch for lean-core server processors,” 2013.

——, “Confluence: unified instruction supply for scale-out servers,” in
Proceedings of the 48th International Symposium on Microarchitecture,
2015, pp. 166-177.

T. A. Khan, N. Brown, A. Sriraman, N. K. Soundararajan, R. Kumar,
J. Devietti, S. Subramoney, G. A. Pokam, H. Litz, and B. Kasikci,
“Twig: Profile-guided btb prefetching for data center applications,”
in MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, 2021, pp. 816-829.

T. A. Khan, A. Sriraman, J. Devietti, G. Pokam, H. Litz, and B. Kasikci,
“I-spy: Context-driven conditional instruction prefetching with coalesc-
ing,” in 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 1EEE, 2020, pp. 146—159.

T. A. Khan, M. Ugur, K. Nathella, D. Sunwoo, H. Litz, D. A. Jiménez,
and B. Kasikci, “Whisper: Profile-guided branch misprediction elimina-
tion for data center applications,” in 2022 55th IEEE/ACM International
Symposium on Microarchitecture (MICRO). 1EEE, 2022, pp. 19-34.
T. A. Khan, D. Zhang, A. Sriraman, J. Devietti, G. Pokam, H. Litz,
and B. Kasikci, “Ripple: Profile-guided instruction cache replacement
for data center applications,” in Proceedings (to appear) of the 48th
International Symposium on Computer Architecture (ISCA), ser. ISCA
2021, Jun. 2021.

Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible
dram simulator,” IEEE Computer Architecture Letters, vol. 15, no. 1,
pp. 45-49, 2016.

R. Kobayashi, Y. Yamada, H. Ando, and T. Shimada, “A cost-effective
branch target buffer with a two-level table organization,” in Proceedings
of the 2nd International Symposium of Low-Power and High-Speed
Chips (COOL Chips II), 1999.

R. Kumar, B. Grot, and V. Nagarajan, “Blasting through the front-end
bottleneck with shotgun,” ACM SIGPLAN Notices, vol. 53, no. 2, pp.
30-42, 2018.

R. Kumar, C.-C. Huang, B. Grot, and V. Nagarajan, “Boomerang: A
metadata-free architecture for control flow delivery,” in 2017 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2017, pp. 493-504.

Lee and Smith, “Branch prediction strategies and branch target buffer
design,” Computer, vol. 17, no. 1, pp. 6-22, 1984.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” Acm sigplan
notices, vol. 40, no. 6, pp. 190-200, 2005.

N. P. Nagendra, B. R. Godala, 1. Chaturvedi, A. Patel, S. Kaneyv,
T. Moseley, J. Stark, G. A. Pokam, S. Campanoni, and D. I
August, “Emissary: Enhanced miss awareness replacement policy for 12
instruction caching,” in Proceedings of the 50th Annual International
Symposium on Computer Architecture, ser. ISCA *23. New York, NY,
USA: Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3579371.3589097

T. Nakamura, T. Koizumi, Y. Degawa, H. Irie, S. Sakai, and R. Shioya,
“D-jolt: Distant jolt prefetcher,” in The 1Ist Instruction Prefetching
Championship (IPCI), 2020.

A. Partow, “Open bloom filter,” “http://www.partow.net/programming/
hashfunctions/index.html.

A. Pellegrini, N. Stephens, M. Bruce, Y. Ishii, J. Pusdesris, A. Raja,
C. Abernathy, J. Koppanalil, T. Ringe, A. Tummala et al., “The arm
neoverse nl platform: Building blocks for the next-gen cloud-to-edge
infrastructure soc,” IEEE Micro, vol. 40, no. 2, pp. 53-62, 2020.

C. H. Perleberg and A. J. Smith, “Branch target buffer design and
optimization,” IEEE transactions on computers, vol. 42, no. 4, pp. 396—
412, 1993.

G. Reinman, T. Austin, and B. Calder, “A scalable front-end architecture
for fast instruction delivery,” ACM SIGARCH Computer Architecture
News, vol. 27, no. 2, pp. 234-245, 1999.

G. Reinman, B. Calder, and T. Austin, “Fetch directed instruction
prefetching,” in MICRO-32. Proceedings of the 32nd Annual ACM/IEEE
International Symposium on Microarchitecture. 1EEE, 1999, pp. 16-27.
A. Ros and A. Jimborean, “Wrong-path-aware entangling instruction
prefetcher,” IEEE Transactions on Computers, vol. 73, no. 02, pp. 548—
559, feb 2024.

[55]

, “The entangling instruction prefetcher,” IEEE Computer Architec-
ture Letters, vol. 19, no. 2, pp. 84-87, 2020.

J. Rupley, “Samsung exynos m3 processor,” IEEE Hot Chips, vol. 30,
2018.

A. Sateesan, J. Vliegen, J. Daemen, and N. Mentens, “Hardware-
oriented optimization of bloom filter algorithms and architectures for
ultra-high-speed lookups in network applications,” Microprocessors and
Microsystems, vol. 93, p. 104619, 2022.

A. Seznec, “Tage-sc-1 branch predictors,” in JILP-Championship Branch
Prediction, 2014.

, “Exploring branch predictability limits with the mtage+ sc pre-
dictor,” in 5th JILP Workshop on Computer Architecture Competitions
(JWAC-5): Championship Branch Prediction (CBP-5), 2016, p. 4.
——, “The fnl+mma instruction cache prefetcher,” in IPC-1 - First
Instruction Prefetching Championship, 2020.

N. K. Soundararajan, P. Braun, T. A. Khan, B. Kasikci, H. Litz, and
S. Subramoney, “Pdede: Partitioned, deduplicated, delta branch target

1201

[56]

[571

(58]

[59]

[60]

buffer,” in MICRO-54: 54th Annual IEEE/ACM International Symposium
on Microarchitecture, 2021, pp. 779-791.

A. Sriraman, A. Dhanotia, and T. F. Wenisch, “Softsku: Optimizing
server architectures for microservice diversity@ scale,” in Proceedings
of the 46th International Symposium on Computer Architecture, 2019,
pp. 513-526.

D. Suggs, M. Subramony, and D. Bouvier, “The amd “zen 2” processor,”
IEEE Micro, vol. 40, no. 2, pp. bo45-52, 2020.

Wikipedia contributors, “Drupal — Wikipedia, the free encyclopedia,”
https://en.wikipedia.org/w/index.php?title=Drupal&oldid=989582664,
2020, [Online; accessed 23-November-2020].

, “Mediawiki — Wikipedia, the free encyclopedia,” https://en.
wikipedia.org/w/index.php?title=MediaWiki&oldid=989993176, 2020,
[Online; accessed 23-November-2020].

——, “Xgboost — Wikipedia, the free encyclopedia,” https://en.
wikipedia.org/wiki/XGBoost, 2023, [Online; accessed 26-April-2023].

