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Electron-phonon coupling s crucial for the existence of various phases of
matter, in particular superconductivity and density waves. Here, we devise a
theory thatincorporates the quantum geometry of the electron bands into
the electron-phonon coupling, demonstrating the crucial contributions of
the Fubini-Study metric or its orbital selective version to the dimensionless
electron—-phonon coupling constant. We apply the theory to two materials,
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thatis, graphene and MgB,, where the geometric contributions account
for approximately 50% and 90% of the total electron-phonon coupling
constant, respectively. The quantum geometric contributions in the two
systems are further bounded from below by topological contributions. Our
results suggest that the non-trivial electron band geometry or topology
might favour superconductivity with a relatively high critical temperature.

Topology hasbeen at the forefront of condensed matter physics for the
pasttwo decades, influencing our understanding of quantum materi-
alsand phenomena. More recently, it has however become clear and
appreciated that amore general concept, that of quantum geometry,
manifestsitselfin aseries of quantum phenomenainvolving flat elec-
tronic bands. Non-trivial quantum geometry—expressing the change
inwavefunctions under infinitesimal change in the Hamiltonian param-
eters such as momentum (Fig. 1b)—appears naturally in multi-band
systems'. Ifaband is topologically non-trivial, the quantum metricis
bounded from below by the topological invariant of the band (Fig. 1e).
However, evenifthebandistopologically trivial but has Wannier states
that are not fully localized on the atoms (such as in the obstructed
atomic limits®), the quantum geometry—usually described up to now by
the Fubini-Study metric (FSM)—can be bounded from below (Fig. 1c,d).
For flat electronic bands—whose flatness comes from quantum interfer-
enceeffects* °*—ithas been shown that the quantum geometry s directly
related to various phenomena such as superfluid weight”®. Besides
flat band systems, the effect of quantum geometry in dispersive band
systems has also been studied (see, for example, refs. 9-22).

All previous works on quantum geometry either do notinclude a
realisticinteraction or treat theinteraction strength asatuning param-
eter. Up to now, itis unknown how quantum geometry (characterized
by, forexample, the FSM) affects the strength of realistic interactions.
One main and importantinteractioninsolids is the electron-phonon
coupling (EPC), which is crucial for superconductivity” > and other
quantum phases. For phonon-mediated superconductors, a large A
typically leads to a high superconducting transition temperature T,
(refs. 26,27). Therefore, it is natural to ask how A is directly related to
the electron band geometry—most importantly to the Fermi surface
quantum geometry (characterized by, for example, the FSM)—which
is bounded by topology. Such a relation, if revealed, may help the
search for new superconductors, given the large number of topologi-
cal materials®~°.

Inthis Article, we compute the contribution of the electron band
geometry and topology to the bulk EPC constantA. First, weintroduce
asimple (butin many cases remarkably accurate) model—dubbed the
Gaussianapproximation (GA)—for the EPC to showits deep link to the
electronic band Hamiltonian. In this approximation, the quantum
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Fig.1|Quantumgeometry and EPC. a, When the ions (purple) move away from
the equilibrium positions (grey) owing to phonons, electrons (turquoise arrows)
would follow the motions of ions in the tight binding approximation owing to
EPC.b, The FSM g;(Kk) provides a measure of quantum geometry, thatis, how the
periodic part of the Bloch state, |uy ), varies in the first Brillouin zone (1BZ,

€ No geometry

represented by the torus). ¢, Quantum geometry can vanish (left) in the trivial
atomic limit (right). d, Quantum geometry must be strong (left) for the
obstructed atomic limit (right), even if the band topology is trivial. e, The
non-trivial band topology forces the quantum geometry to be strong (left) and
leads to power-law decayed Wannier functions (right).

geometric contribution to A emerges naturally and can be differenti-
ated fromthe energy dispersion contribution. In particular, we find that
either the FSM or the orbital selective FSM (OFSM) directly enters the
expression for the EPC. We show that, when the electron states on or
near the Fermi surfaces exhibit topology—such as winding numbers of
the wavefunctions—the geometric contribution (arising from the (O)
FSM) is bounded from below by the topological contribution (arising
from topological invariants). The topological contribution serving
as a lower bound of the geometric contribution is in the same spirit
as the band topology serving as alower bound of the band geometry.

Totest our theory, we applyit to the EPC of two famous materials,
that is, graphene and MgB,, where we find that our approximation
becomes (almost) exact; we then identify the quantum geometric
contributions to the bulk EPC constant A, as well as the topological
contributions that bound the geometric ones from below, in the two
systems. We further performab initio calculations®, with two different
methods for MgB,, from which we find that the quantum geometric
(topological) contribution to A accounts for roughly 50% (50%) and
90% (43%) of the total value of the EPC constantingraphene and MgB,,
respectively. Beyond the GA, we introduce an alternative but similar
way of identifying the quantum geometric contributions toAbased on
the symmetry representations (reps) and the short-ranged nature of the
hopping, and reproduce our results. Since MgB, is aphonon-mediated
superconductor with 7. =39 K (refs. 32-34), our work on MgB, sug-
gests that strong geometric properties or a non-trivial topology of
theelectron Bloch states may favour a strong EPC constantAand thus
a high superconducting T;, which would serve as guidance for future
searches for superconductors.

Gaussian approximation: geometric contribution

tol ,
The bulk EPC constant® 1 =2 /° do®2 s obtained from the
. D) WD)

Eliashberg function® a?F. It can be writtenas A =2=2
N nw?)

D(p) is the single-particle electron density of states at the chemical
potential 4, Nis the number of lattice sites and (w?) is the McMillan

where

mean-squared phonon frequency. For a multi-band electron system,
we show that the average phonon line width (I") (up to a factor of D*(u))
isthe average of

Tk ko) = 5% mi,“ [Palki)Fe(ky, ko) Prn(k)F (i k)| (D)

over the Fermi surfaces. k; and k, are the Bloch momenta of electrons,
Tisthe sub-lattice vector, m, is the mass of the ion at 1, i labels the
spatial directions of the possible ion motions and crucially
P,(k) = U,,(k)U};(k) isthe projection matrix to the nth electron band
with U,(k) the eigenvector. F(k;, k,) in equation (1) is the EPC matrix
inthe electronatomic basis and the ion motion basis, whose general
expression canbe foundin equation (B41) in Supplementary Section
B. As embedded in three-dimensional (3D) space, the ion can move
in three dimensions (that is, i = x, y, z), regardless of the sample
dimensionality.

For time reversal (TR)-invariant systems with negligible Coulomb
interaction, we show in Supplementary Section E that the mean-field
superconducting kg T, > 1.13¢.e” 1isbounded from below by Aregard-
less of the pairing function, aslong as (1) the cutoffe_is much larger than
the temperature and (2) the bands cut by the Fermi energy are dispersive
withalarge Fermivelocity. (We note that the bound relies on the Migdal-
Eliashberg theory, which usually holds in the weak coupling regime.
The Migdal-Elishberg theory is not necessarily reliable in the strong
coupling regime®?°.) Iftthe Coulomb interactionis considerable, the T,
of phonon-mediated superconductors still typically increases with
increasing/ (refs. 26,27). Inthe expression for A, (w?)can be well approxi-
mated by certain phonon frequencies in many cases (for example, in
graphene and MgB,) and D(u) only involves electrons. Thus, the main
informationregarding the EPCis oftenin the average phononline width
(I'). Tostudy (I"), we adopt the two-centre approximation® for the EPC:
only the relative motions of two ions matter for the EPC between the
electronic orbitals onthosetwoions. Asaresult, the EPC matrix F;(k;, k;)
has the form (Supplementary Section C)

Fri(ky, Kp) = X7 fi(kz) — fi(K )X, (2)
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where x.is a diagonal projection matrix with elements being 1only for
theelectron degrees of freedom (such as orbitals) at T.fi(k) is amatrix
for the case with more than one bands and is the quantity we want to
determine (Supplementary Section C), whose deep physical origin is
missingin the literature.

We now show that f(k) is intimately related to the electronic
Hamiltonian. To show this general relation, we introduce the GA. As a
concrete simple illustration, we consider a 3D system with only
onekind ofatomand one spinless sorbital per atom (for a generaliza-
tion, see Supplementary Sections F and H). We allow multiple
atoms per unit cell so that more than one electronband can exist. Under
the two-centre approximation, the non-interacting electron
Hamiltonian and EPC Hamiltonian are directly given by the smooth
hopping function ¢(r), which specifies the hopping between
two s orbitals separated by r. Explicitly, the electron matrix
Hamiltonian reads [A(K)] , = Tt(R+ T —T)e k®T=T) with
R labelling the lattice vectors, and the EPC f,(k) in equation (2) reads
[fi)]. . =Y gek®m—n)g )| _ A . The GA assumes the

Ty
hopping function to have a Gaussian form: ¢(r) = ¢, exp [y"l ]

where y <0 is determined by the standard deviation. Usual overlaps
between orbitals in lattices do have an exponentially decaying form,
hence we expect the GA to be a qualitatively and quantitatively good
description of the physics. Other powers of |r| in the exponential are
possible and lead to generalized quantum geometric quantities, but
we focus on the GA owing to its simplicity. We later show it is exact in
the short-range hopping or k-p models of graphene and MgB,.

Crucially, the GA enables us to uncover arelation between the EPC
Jf{k) and the electron Hamiltonian A(k). As 8, t(r) = yr;t(r), we Fourier
transform to find a simple relation between the EPC and the electron
Hamiltonian

Si(K) = iyd;, h(K). ©)

Withthespectral decomposition (k) =} .£,(k)P,(k), where E,(k) is the
nth electron band with projection operator P,(k), we can split the EPC
fi(K) into energetic and geometric parts f;(k) = fE(k) + £ (k), where

FEEK) = iy 2 0, En(K)Pa(K),
i @)
FEOK) = iy 3 £ (KD, Pa(K).
n
fE(k) istheenergetic partof the EPCsinceit vanishesif electronbands
are exactly flat. f#°°(k) is the geometric part of the EPC since f%*°(k)
relies on the momentum dependence of P,(k); it vanishes for trnvnal
bands with no k dependence in their eigenstates or for one-band sys-
tems. The separation in equation (4) allows us the split the bulk EPCA
intothree partsasA=A; + Ay, + ¢, Where A islinked to fE(k) Ageo 1O
fE°(K), and Ag_g, to both fE(k) and £5°°(k). Similar to the names of
fE(k) and £5°(k), we call A, and Ageo the energetic and geometric con-
trlbutlonsto thebulk EPC constantA, respectively. Ag_g, is not our focus
inthis work since it vanishes in graphene and MgB, under the approx-
imation that we adopt, though A;_,., also has geometric dependence
init (Supplementary Section A).
In particular, fl.ge"(k) is responsible for leading to the (O)FSM in
Ageo =Ageo1 + Ageo »» Where both parts depend on geometric quantities,
asdiscussedin Supplementary Section A. In this work, we mainly focus
0N A, ;, Sincely, , isrestricted to zero by symmetries for graphene and
iseither restricted to zero or can be converted to the same geometric
expressions as Ay, for MgB,, as discussed in the next section. Explicitly,

where m is the mass of the ion, Q is the volume of the unit cell,
doy is the measure on the Fermi surface, AE(K) is the difference
between two energy bands FS, is the Fermi surface given by
Ek)=panda, = —3 Zk 6(;1 En(ky)) [Pm(k2)] (Supplemen-
R D) 2

tary Section A).

g (0], =—Tr[ak,P (P00 P (KX | + (G =) (6)

is the OFSM. More general definitions of the OFSM can be found in
Supplementary Section G, and similar OFSM generalizations were
proposed inref.38. When symmetries require a, to be the same for all
T (asin graphene), the OFSM would be summed over all T and would
reduce to the conventional FSM.

Although we only discuss the GA for a3D system with only onekind
of atom and one spinless s orbital per atom, the GA can be defined for
more complicated cases. We alsointroduce an alternative way of iden-
tifying the geometric contribution to A on the basis of the symmetry
reps for systems with short-range hoppings (Supplementary Section
D).Bothmethods canbe applied to graphene and MgB, and give identi-
calresults. Moreover, we also use the most general symmetry-allowed
short-range hopping form to reproduce the results from GA in gra-
phene and MgB,.

We have not developed acompletely general version of the GA that
isapplicable to all systems. Ingeneral, itis unlikely to cover the full ab
initio results just by allowing other powers of the distance between
orbitalsin the exponential orin the prefactor of the exponential. Allow-
ing other powers of the distance can cover the radial part of the EPC,
thatis, the EPC matrix elements that correspond to the atomic motions
parallel to the hopping direction; however, it cannot always cover
the angular part of the EPC, that is, the EPC matrix elements from the
atomic motions perpendicular to the hopping direction, which might
be considerable when the orbitals have strong angular dependence,
such as p, d and forbitals. As discussed in the next section, graphene
is special since p, orbitals are effectively s orbitals in two dimensions,
and we only need to consider the in-plane motions to the leading order,
which therefore involve no angular dependence; MgB, is also special
since the angular part of the EPC has the same expression as the radial
part of the EPC to the leading order, which would allow us to use the
GA with additional powers in the prefactor to cover the whole EPC
to the leading order. Nevertheless, this is not always true in general.
Therefore, when studying the geometric contributionto EPCinother
systems, one might need certain modification of equation (3) beyond
what we will do for graphene and MgB, in the rest of this paper and
might also need to verify the results with different methods. Never-
theless, it is, in many case, possible to use certain polynomials of r to
re-express the spatial gradient of the hopping functions, which, when
the hopping is short-ranged enough, would give momentum deriva-
tives of the electron Hamiltonian after the Fourier transformation and
give geometric contribution.

Geometric contributiontoAingraphene and MgB,
We now apply the GA to the specific cases of graphene and MgB,. With
the nearest-neighbour (NN) hopping model of graphene®, we find that
the EPC form (equation (3)) derived from the GA is exact in graphene
for in-plane atom motions. Owing to the mirror symmetry that flips
the zdirection, the out-of-plane atomic motions do not couple to the
electrons, thus we find that the energetic and geometric parts of the
EPCforgrapheneinequation (4) are non-zeroonly forin-planei=x, y.
Then, we obtain (Supplementary Section F)

ny?

in the two-band case, A, reads A= ————| doy|VikE, (K,
(2m)"mc (w?) o
20y? AF2(K) 2 2
Ageon = — 22" / 0 DEW_ e @], ) _ oy / AEX(K)
o G ) e heeo = e o v Tt €O
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Fig.2|Plots for graphene. The chemical potential z ranges from-1eVtoOeV,
while setting the Dirac point energy to be zero. a, A plot of the EPC constants from
the abinitio calculations (A?°™™t°, black) and from equation (7) (4, red). b,c, Plots
0f Ageo/A (b) and A0/ (€).

where mis the mass of acarbonatom, £, (k)is the band that gives the
Fermi surface and AE(k) is the absolute difference of two energy bands.
Remarkably, we find that, as advertised, the FSM of the electron Bloch

states—[g,,(k)]ij = Tr[0, Pa(K)0y, Po(K)]/2 (equal to the expression in

Fig. 1b under the tight binding approximation)—directly appears in
Ageo- The appearance of the FSMin equation (7) comes from a, =1/2in
equation (5) and A, , = 0 for graphene, owing to the C,7 and C; sym-
metry, respectively, where C,is the n-fold rotational symmetry around
thezaxisand 7 isthe TR symmetry. The symmetries of graphene also
require thatA;_., = 0. Therefore, the bulk EPC constant A of graphene
only has the energetic and geometric contributions in equation (7),
thatis, A=A + A,, (Supplementary Section F). Analytically, we find
(Supplementary Section F) that A,/ limits to exactly 50% as u
approachesthe energy of the Dirac points (whichis zero). Remarkably,
half of the EPC strength is supported by the geometric (and as we will
show, topological) properties of the graphene Bloch states.

We determine the numerical values of the model parameter y (in
addition to the electron NN hopping and (w*)) by matching our model
toour abinitio calculation (Supplementary SectionI). With the values
of the model parameters (Supplementary Section F), we find that A
from our model almost perfectly matches with that from the ab initio
calculationforalargerange of yupto-1eV,asshowninFig.2a. We note
that we do not tune the EPC parameter y to fit our analytical A to our
Ainito- instead, we determine the value of y by matching the EPC ana-
lytic or ab initio matrix elements at the corners of the 1BZ. The match
in Fig. 2ais hence not aresult of tuning the EPC parameter and shows
the great validity of the our GA. Moreover, our numerical calculation
also finds that the geometric contribution is roughly 50% of the total
A(Fig.2b), consistent with our analytical results. InFig. 2a, we directly
use the value of (w?) from the ab initio calculation. We find that (»?)

) ) ) . 2w§2g (Hw? : )
can be approximated by an analytical expression (w?) = W
(derived for u > 0) with only 9% error, where we,, (N and wAi(K) are
the frequencies of the Ey phonons at I and the A; phonons atK, respec-
tively (Supplementary Section F). This underscores the excellent agree-
ment of our analytic calculation with realistic ab initio.

Althoughthe direct application of GA is not straightforward for a
moiré system (which we leave for future work), we indeed find that the
mean-field critical temperature of twisted bilayer graphene derived
from the EPC can be estimated by a geometric expression similar to
equation (7) in the first chiral limit*>*' based on the topological heavy
fermion framework**** (see Supplementary Section F for details). Our
approximated expressionrelies on the FSM of the flat bands and gives
T.= 0.6 Karound the magic angles, which is close to the experimental
values™.

While graphene is a relatively ‘simple’ compound and one could
discount our excellent agreement and the findings that follow as acci-
dental, MgB, (Fig. 3a) is a far more complicated system* with multiple
Fermisurfaces. The EPC constantAonly involves electron states at the
Fermi energy, which originate from B atoms* (Fig. 3b). In addition,
the main phonon contribution to A is from the E; modes along I'-A
(enhanced to E,, exactly at I and A), which also only involve B atoms*®
(Fig.3a).Theirrelevance of Mg for Ais supported by ref. 34, which finds
anisotope effect of Mg atoms much smaller than that of the B atoms.
Therefore, we neglect Mg atoms when constructing the models for
electronsand EPC.

The bands near the Fermi level originate from the o bonding
amongBp,/p, orbitals and the tbonding among B p, orbitals® (Fig. 3b).
The Fermi surfaces of the two types of bonding are separated from
each otherbyalarge in-plane momentum difference (Supplementary
Section H), while the dominant phonon modes for A (mainly the E, pho-
nonsalong'-Athatare enhancedtoE,,atI'and A) have smallin-plane
phononmomenta*. Therefore, for evaluating A, we reasonably assume
that the o bonding states are decoupled from the Tt bonding states in
theelectronand EPC Hamiltonian, whichis also supported by the small
line widths of the phonons with large in-plane momenta observed in
ref. 48. As aresult, we have 1 =1, + A, where A, (A,) is the EPC constant
of the mbonding (o bonding) states.

The derivation for A, is similar to the case of graphene, since the
1 bonding states originate from the p, orbitals of B atoms arranged
as AA stacked graphite (Fig. 3a). The main difference is that the it
bonding states in MgB, have an extra NN hopping along the z direc-
tion in our model, which mainly affects the energetic contribution
Ae- Nevertheless, we can still use the GA in the x and y directions to
derive the energetic and geometric parts of the EPC, which turns
out to be the same as equation (4) except that the hopping decay y.,
along zis different from y,,, along x or y. We adopt the GA only in the
x-y plane because the dominant E, phonons arise from the in-plane
(x-y) motions of the B atoms*’; the EPC Hamiltonian derived from the
GA exactly matches the actual EPC Hamiltonian with NN terms for
thein-plane atomic motions. We then find that A, = A ; + A 4., Where
Are-geo IS Z€r0 again owing to symmetries. The geometric A, ., has the
same form as A, in equation (7) for graphene (relying on FSM), and
A.ejust acquires an extra derivative of dispersion with respective to
k,compared with A; in equation (7) for graphene, in addition to an
extra factor D (u)/D(u) in A g and A, ., with D, (1) the density of the t
bonding states (Supplementary Section H).

We now discuss A, for the o bonding states. By adopting the GA
in the x and y directions and the NN hopping approximation along
z, we obtain the energetic and geometric parts of the EPC, which are

a Os OMg b

20

o

Fig.3 | Plots for MgB,. a, The structure of MgB,. The grey arrows show one type
of ion motion of the E,, phonon atI'. b, The ab initio band structure.cand
indicate states from o (p,/p, orbitals) and t-bonding (p, orbital) among B atoms,
respectively®. Green lines represent bands in the m,-even subspace onthe k,= 0
plane. The Fermi energy is at 0. ¢, the Wilson loop spectrum of the lowest three
bandsin the m,-even subspace onthe k,= 0 planeinb. The black dots in the inset
show the Wannier centre of the three bands in one plane of B atoms (pink).
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equal to equation (4) after replacing y by y,, . for the zdirection and by
Yo, for the x and y directions (Supplementary Section H). The form
of the EPC derived from the GA is exact if (1) we only include the NN
hopping termsamongp,/p, orbitalsin thexandy planeand along zand
(2) we only keep first order ink, in the electron Hamiltonian (allowed
by the small k, on the Fermi surface of the o bonding states shown in
Fig.3b).Because of the approximationtofirst order ink|, the effective
Hamiltonian has two doubly degenerate energy bands £ ,(k) with
n=1,2—thelower E,(Kk) is cut by the Fermi energy. While the effective
model does not capture the splitting between the two bands near the
Fermilevel away fromI'-A showninFig. 3b, itis agood approximation
for the evaluation of the EPC, as discussed at the end of this section and
in Supplementary Section H.

Owing to the approximation to first order in k; of the electron
Hamiltonian, we find that A, ;_,., = 0 and thus obtain A, = A, + A, geor
which read

[ak,Eeff,l(k)]Z
Ve (K]

Do(p) Va2 /
D) 2’ mg (w2) ! Fses

2
Jogeo = 2000 You® f do ®
O D) (2myPmg (02) Y Fsun

|ViEetr,1(K)|

AG,E =

i=xy a

where m; is the mass of the B atom, AE (k) is the absolute difference
between two doubly degenerate bands of the effective model, D (1) is
the density of the o bonding states, and FS;, is the Fermi surface given
by Eegr,(K) = p1. AlSO, et o(K;) is an OFSM

[geff,l,a(ku)]ij = %Tr [faflakipeff,l(kn)Peff,l(ku)aijeff,l(kn)]

+( <)),

)

where §,isanormalized vector that represents the electronic orbital lin-
ear combination picked by the relevant phonons for the EPCA (Fig. 3a),
and P, (k) is the projection matrix for the band £, (K). In A, 4., we only
suma over the parity-odd combinations of p,/p, orbitals (asindicated
by the bar over the summation), because only the E, phonons matter
under the approximation to first order ink; of the electron Hamilto-
nian, and they flip the parity of the parity-even P, (0). We only have the
OFSMin A, ., because A,,, mentioned above equation (5) (which, in
general, might lead to ageometric quantity different from the OFSM)
turns out to have the same final expression as the OFSM under the
approximation of the linear-momentum electron Hamiltonian, which
allows usto use the OFSM to describe the geometricdependencein g, ,
(Supplementary Section H). We only consider the OFSM and
AE.(k,) with k= 0 in equation (8) because the EPC matrix is given
by the momentum derivative of the first order in k; electron matrix
Hamiltonian and thus is only reliable to zeroth order in k. We expect
A, tobesmall, asit does notinvolvein-plane motions of Batoms mani-
fested by the absence of momentum derivative along x and y in the
numerator (confirmed by our ab initio calculation).

We determine the hopping decay parameters y,, , Vi Vo, and y, .
by matchingthe EPCT,,(k, k + q) (withk =T, Kand qalong'-A) to our
two abinitio calculations for MgB, (Supplementary Section H). Then,
we obtain the values of various contributions toAas shownin Table 1.
Notethatwedonottuney, , V. Vo, andy, tofitourA(asingle value)
to the single value A?*™° gjven by the abinitio calculation. Therefore,
our value of A=0.78, which is remarkably close to the ab initio value
Ainito = g 67 (17% error), verifies the validity of our approximations.
Moreover, A,is muchlarger than A, whichis consistent with the previ-
ousresult”.

Table 1| Numerical values of A and its various contributions
for MgB,

A (Aebinit) 078 (0.67) Ay 016 A 062
Ae 0.07 Ao 007 Ay 0.00
Ageo 071 Argeo 009  Aggeo 062
Aopo 032 Asopo 0.01 Aosopo 0.31

A%Pinito=(0 67 in parentheses is the ab initio value for A. All other values are calculated from our
model with parameter values determined by matching the EPC I",,,(k, k+q) (with k=T, K and

q along '-A) and fitting the electron band structure to the ab initio results. We do not fit the
single value A to A%,

We find that the quantum geometric contributionis about 92% of
the total A, with most originating from the o bonding. On the other
hand, we find the energetic contribution from the o bonding (4, ¢) to
be negligible, consistent with our analytical argument. Therefore, the
quantum geometry of the o bonding states supports the large EPC
constantin MgB,. The valuesin Table 1are calculated with the ab initio
value of (w?) (1/(w?) = 68 meV), which can be approximated by the
frequency of the E,, phonons atT (ha)Ezg(l') = 75.3 meV) with about
10% error.

Topological contributions toAingraphene and
MgB,

The quantum geometric contributions in graphene and MgB, can be
bounded from below by the topological invariants of the states on or
near the Fermi surfacesin these materials, showing adeep connection
between EPCand topology. The graphene A, inequation (7) isbounded
from below by the topological contribution A, that is, Ay, = Agpos
where A, reads

_ W (W WD)’ (10)
P Ame @) g V(0L
FSEUkTAE2(K)

wherethe chemical potentialismoderate (forexample, within1eVfrom0).

We deriveequation (10) fromthe [ sdoy+/ Tr [gn (K)] > T(|Wi| + Wi )
for moderate chemical potential. A, is topological because W, =1
and Wy, = —1are the integer winding numbers® (or chiralities) of the
Dirac cones at K and K/, respectively. Other parameters in equation
(10) are defined below equation (7). We analytically show that A,,0/Ageo
limits to exactly 1as g - 0, which is consistent with the numerical cal-
culationinFig. 2c (Supplementary Section F).

For the T bonding states in MgB,, the band structure has two 27
-protected nodal lines (where ? and 7~ are the inversion and TR sym-
metries) along k,-directional hinges of the 1BZ, which carry winding
numbers just like Dirac cones of graphene*. The winding numbers
account for the topological contribution Ay, ., to A, which bounds the
geometric A, .., from below in a similar way to equation (10) (Supple-
mentary Section H).

Besides the nodal lines, we find an obstructed atomic set of bands
onthek, = 0 plane of MgB,, which contains the  bonding states around
the Fermi level. The Bloch Hamiltonian has the mirror symmetry m,
(that flips the zdirection) onthe k, = 0 plane. Inthe m,-even subspace,
we find that the isolated set of three bands cut by the Fermi energy is
the elementary band representation A,,@3f, which is obstructed
atomic since the atoms are not at 3fand which have nonzero 27
-protected second Stiefel-Whitney class w, =1(Fig. 3c). (Here we follow
the conventions of the Bilbao Crystallographic Server>*°; a general
discussion on w, can be found in ref. 51.) w, =1 can be understood as
having a band inversion at I, resulting in the effective Euler number
ANV = lofthe obonding states around I' near the Fermilevel (see details
inSupplementary Section H). Remarkably, the effective Euler number
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AN = 1givesatopological A, ,,, that bounds the geometric contribu-
tion from below, where A, ;,,,, reads

Do) 4o 2
D(p) mg (w?)c2

2

Ao,topo - [AN]
| o o 1)
ViEer1(K)

X frsefmdak dkr |
whered(k,) = vk,a (withvspecified in Supplementary Section H) couples
the states with different parities in the o bonding effective model, and
a and c are the lattice constant along x or y and z, respectively. Other
parametersinequation (11) are defined below equation (8). We mention
that Zi:w Y &efi1,a(0) itselfis not bounded from below since the o
bonding states atI' are gapped. Instead, we look at the product of the
gap squared and the OFSM, which is in dependent of the gap. In par-
ticular, by using the Holder inequality, we find that the integration of
Dicxy Y Afgff(O)[geffyLa(O)]ii/|d(k”)|20n the Fermisurface isbounded
frombelow by the winding number of d(k,). Since the winding number
of d(k,) determines the change of the topological invariant caused by
thebandinversionat T, itis further bounded from below by the effec-
tive Euler number (see details in Supplementary Section H). As shown
inTablel, the total topological contribution Ay, = Ar topo + A opo iS aboUt
44% of the quantum geometric contribution A,,.

We note that the topological contribution just tells us that
the geometric contribution may be stronger in the topologically
non-trivial system.In principle, there can be trivial bands in real materi-
als that have strong geometric properties and have alarge geometric
contribution.

Discussion

Our work shows that quantum geometric properties, now at the
forefront of flatband research, are also fundamental—and canin factbe
dominant—inadeep understanding of the different contributions to the
EPCinsystemswith dispersive bands. One future directionis the devel-
opmentofageneral framework that specifies the geometricand topo-
logical contributions to the bulk EPC constant A for all two-dimensional
(2D) and 3D systems with any types of topological invariants of states
on or near Fermi surface. Our current results imply that, given two
systems with similar band dispersion, the system with stronger
geometric properties would tend to have astronger EPC, which serves
asguidance for future material search (for example, one could look for
Weyl semi-metals that have Fermi surfaces enclosing Weyl points with
large net chiralities). The study of the geometric and topological con-
tributions to the bulk EPC constantAin more phonon-mediated super-
conducting materials is essential for checking the relation between
the electronband topology or geometry and the superconducting T..
Further work will focus on anabinitio high-throughput calculation of
the quantum geometry effects in the EPC of many other multi-band
superconductors.

We find that the energetic contribution A; in graphene can be
directly measured from the zero-temperature phonon line width of
the E,, phononsatT, together with the frequencies of the E,, phonons
atl'and the A] phononatK (Supplementary Section ). Experimentally,
the frequency and line width of the E,, phonons at I’ can be measured
by Raman spectroscopy®, while the frequency of the A] phonon atK
can be approximated by inelastic x-ray scattering measurements in
graphite®. Existing experimental data suggest that the experimental
value of A; for 1 =-0.1eV is 0.0018-0.0034, whereas the value from
our modelis 0.0032, which is within the current experimental range.
More precise measurements can be doneinthe future. Combined with
thefact that the total 1 of graphene may be measured from the Helium
scattering™, the geometric contribution A, may be measured from
A= Ag. Furthermore, the FSM in graphene may be measured from the
current noise spectrum'® or more generally the first-order optical

response®, owing to the two-band nature of graphene. Therefore,

@ - M'/- do Tr[gn}:(k)] — hc
A n /B KgE, G0l T e

testable, where A(w) is the optical absorption coefficient for photons
with frequency w in the unit system where 1/(4me,) =1, his the Planck
constant, cis the speed of light, e is the elementary charge, i is the
chemical potential and g, is the vacuum permittivity. (ref. 55). If tested,
this expression would relate the Jaeo iy scattering experiments to the
response coefficientin the optical rEesponse. Besidesgraphene, onthe
surface of the topologicalinsulator Bi,Se, with ahexagonal distortion®®,
we cantrack the momentum dependence of the geometric quantities
(such as the FSM and OFSM) and the EPC coupling measured in time-
and angle-resolved photoemission spectroscopy measurements”, as
atest of therelation between quantum geometry and the EPC strength.
For 3D materials such as MgB,, the EPC constant A can be measured in
various ways, for example, by tracking the temperature behaviour of
the specific heat™ orinelastic x-ray scattering experiments*®, It is pos-
sible to test our theory in a system with tunable band geometry or
topology by measuring the EPC constant while changing the band
geometry or topology, forexample, through gating in two dimensions
orstraininthree dimensions.

Note that, during the review process of this manuscript, ref. 59
(authored by one of the authors of the current work), which applied
the GA proposed in this work to kagome ScVSn, and explained the
phonon softening in the system, was posted online.

A(w = 2|u|/h) may be experimentally
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