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Non-trivial quantum geometry and the 
strength of electron–phonon coupling

Jiabin Yu1,2, Christopher J. Ciccarino    3,4, Raffaello Bianco    5,6,7,8, 
Ion Errea    5,9,10, Prineha Narang    4 & B. Andrei Bernevig    1,10,11 

Electron–phonon coupling is crucial for the existence of various phases of 
matter, in particular superconductivity and density waves. Here, we devise a 
theory that incorporates the quantum geometry of the electron bands into 
the electron–phonon coupling, demonstrating the crucial contributions of 
the Fubini–Study metric or its orbital selective version to the dimensionless 
electron–phonon coupling constant. We apply the theory to two materials, 
that is, graphene and MgB2, where the geometric contributions account 
for approximately 50% and 90% of the total electron–phonon coupling 
constant, respectively. The quantum geometric contributions in the two 
systems are further bounded from below by topological contributions. Our 
results suggest that the non-trivial electron band geometry or topology 
might favour superconductivity with a relatively high critical temperature.

Topology has been at the forefront of condensed matter physics for the 
past two decades, influencing our understanding of quantum materi-
als and phenomena. More recently, it has however become clear and 
appreciated that a more general concept, that of quantum geometry, 
manifests itself in a series of quantum phenomena involving flat elec-
tronic bands. Non-trivial quantum geometry—expressing the change 
in wavefunctions under infinitesimal change in the Hamiltonian param-
eters such as momentum (Fig. 1b)—appears naturally in multi-band 
systems1,2. If a band is topologically non-trivial, the quantum metric is 
bounded from below by the topological invariant of the band (Fig. 1e). 
However, even if the band is topologically trivial but has Wannier states 
that are not fully localized on the atoms (such as in the obstructed 
atomic limits3), the quantum geometry—usually described up to now by 
the Fubini–Study metric (FSM)—can be bounded from below (Fig. 1c,d). 
For flat electronic bands—whose flatness comes from quantum interfer-
ence effects4–6—it has been shown that the quantum geometry is directly 
related to various phenomena such as superfluid weight7,8. Besides 
flat band systems, the effect of quantum geometry in dispersive band 
systems has also been studied (see, for example, refs. 9–22).

All previous works on quantum geometry either do not include a 
realistic interaction or treat the interaction strength as a tuning param-
eter. Up to now, it is unknown how quantum geometry (characterized 
by, for example, the FSM) affects the strength of realistic interactions. 
One main and important interaction in solids is the electron–phonon 
coupling (EPC), which is crucial for superconductivity23–25 and other 
quantum phases. For phonon-mediated superconductors, a large λ 
typically leads to a high superconducting transition temperature Tc 
(refs. 26,27). Therefore, it is natural to ask how λ is directly related to 
the electron band geometry—most importantly to the Fermi surface 
quantum geometry (characterized by, for example, the FSM)—which 
is bounded by topology. Such a relation, if revealed, may help the 
search for new superconductors, given the large number of topologi-
cal materials28–30.

In this Article, we compute the contribution of the electron band 
geometry and topology to the bulk EPC constant λ. First, we introduce 
a simple (but in many cases remarkably accurate) model—dubbed the 
Gaussian approximation (GA)—for the EPC to show its deep link to the 
electronic band Hamiltonian. In this approximation, the quantum 
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mean-squared phonon frequency. For a multi-band electron system, 
we show that the average phonon line width ⟨Γ ⟩ (up to a factor of D2(μ)) 
is the average of

Γnm(k1,k2) =
ℏ
2 ∑τ,i

1
mτ

Tr [Pn(k1)Fτi(k1,k2)Pm(k2)F†τi(k1,k2)] (1)

over the Fermi surfaces. k1 and k2 are the Bloch momenta of electrons, 
τ is the sub-lattice vector, mτ is the mass of the ion at τ, i labels the 
spatial directions of the possible ion motions and crucially 
Pn(k) = Un(k)U†n(k) is the projection matrix to the nth electron band 
with Un(k) the eigenvector. Fτi(k1, k2) in equation (1) is the EPC matrix 
in the electron atomic basis and the ion motion basis, whose general 
expression can be found in equation (B41) in Supplementary Section 
B. As embedded in three-dimensional (3D) space, the ion can move 
in three dimensions (that is, i = x, y, z), regardless of the sample 
dimensionality.

For time reversal (TR)-invariant systems with negligible Coulomb 
interaction, we show in Supplementary Section E that the mean-field 
superconducting kBTc ≥ 1.13ϵce−

1
λ is bounded from below by λ regard-

less of the pairing function, as long as (1) the cutoff ϵc is much larger than 
the temperature and (2) the bands cut by the Fermi energy are dispersive 
with a large Fermi velocity. (We note that the bound relies on the Migdal– 
Eliashberg theory, which usually holds in the weak coupling regime. 
The Migdal–Elishberg theory is not necessarily reliable in the strong 
coupling regime35,36.) If the Coulomb interaction is considerable, the Tc 
of phonon-mediated superconductors still typically increases with 
increasing λ (refs. 26,27). In the expression for λ, ⟨ω2⟩ can be well approxi-
mated by certain phonon frequencies in many cases (for example, in 
graphene and MgB2) and D(μ) only involves electrons. Thus, the main 
information regarding the EPC is often in the average phonon line width 
⟨Γ ⟩. To study ⟨Γ ⟩, we adopt the two-centre approximation37 for the EPC: 
only the relative motions of two ions matter for the EPC between the 
electronic orbitals on those two ions. As a result, the EPC matrix Fτi(k1, k2) 
has the form (Supplementary Section C)

Fτi(k1,k2) = χτ fi(k2) − fi(k1)χτ, (2)

geometric contribution to λ emerges naturally and can be differenti-
ated from the energy dispersion contribution. In particular, we find that 
either the FSM or the orbital selective FSM (OFSM) directly enters the 
expression for the EPC. We show that, when the electron states on or 
near the Fermi surfaces exhibit topology—such as winding numbers of 
the wavefunctions—the geometric contribution (arising from the (O)
FSM) is bounded from below by the topological contribution (arising 
from topological invariants). The topological contribution serving 
as a lower bound of the geometric contribution is in the same spirit 
as the band topology serving as a lower bound of the band geometry.

To test our theory, we apply it to the EPC of two famous materials, 
that is, graphene and MgB2, where we find that our approximation 
becomes (almost) exact; we then identify the quantum geometric 
contributions to the bulk EPC constant λ, as well as the topological 
contributions that bound the geometric ones from below, in the two 
systems. We further perform ab initio calculations31, with two different 
methods for MgB2, from which we find that the quantum geometric 
(topological) contribution to λ accounts for roughly 50% (50%) and 
90% (43%) of the total value of the EPC constant in graphene and MgB2, 
respectively. Beyond the GA, we introduce an alternative but similar 
way of identifying the quantum geometric contributions to λ based on 
the symmetry representations (reps) and the short-ranged nature of the 
hopping, and reproduce our results. Since MgB2 is a phonon-mediated 
superconductor with Tc = 39 K (refs. 32–34), our work on MgB2 sug-
gests that strong geometric properties or a non-trivial topology of 
the electron Bloch states may favour a strong EPC constant λ and thus 
a high superconducting Tc, which would serve as guidance for future 
searches for superconductors.

Gaussian approximation: geometric contribution 
to λ
The bulk EPC constant26 λ = 2∫∞

0 dωα2F(ω)
ω

 is obtained from the  

Eliashberg function25 α2F. It can be written as λ = 2D(μ)
N

ℏ⟨Γ ⟩
ℏ2⟨ω2⟩

, where 

D(μ) is the single-particle electron density of states at the chemical 
potential μ, N is the number of lattice sites and ⟨ω2⟩ is the McMillan 

a

b

c No geometry

d With geometry, trivial topology

e Non-trivial topology

|uk� |uk+dk�

gij(k) = 1–2 Tr [∂ki
(|uk��uk|)∂kj

(|uk��uk|)]

Fig. 1 | Quantum geometry and EPC. a, When the ions (purple) move away from 
the equilibrium positions (grey) owing to phonons, electrons (turquoise arrows) 
would follow the motions of ions in the tight binding approximation owing to 
EPC. b, The FSM gij(k) provides a measure of quantum geometry, that is, how the 
periodic part of the Bloch state, |uk⟩, varies in the first Brillouin zone (1BZ, 

represented by the torus). c, Quantum geometry can vanish (left) in the trivial 
atomic limit (right). d, Quantum geometry must be strong (left) for the 
obstructed atomic limit (right), even if the band topology is trivial. e, The 
non-trivial band topology forces the quantum geometry to be strong (left) and 
leads to power-law decayed Wannier functions (right).
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where χτ is a diagonal projection matrix with elements being 1 only for 
the electron degrees of freedom (such as orbitals) at τ. fi(k) is a matrix 
for the case with more than one bands and is the quantity we want to 
determine (Supplementary Section C), whose deep physical origin is 
missing in the literature.

We now show that fi(k) is intimately related to the electronic  
Hamiltonian. To show this general relation, we introduce the GA. As a 
concrete simple illustration, we consider a 3D system with only  
one kind of atom and one spinless s orbital per atom (for a generaliza-
tion, see Supplementary Sections F and H). We allow multiple  
atoms per unit cell so that more than one electron band can exist. Under 
the two-centre approximation, the non-interacting electron  
Hamiltonian and EPC Hamiltonian are directly given by the smooth 
hopping function t(r), which specifies the hopping between  
two s orbitals separated by r. Explicitly, the electron matrix  
Hamiltonian reads [h(k)]

ττ′
= ∑Rt(R + τ − τ′)e−ik⋅(R+τ−τ′)  with  

R labelling the lattice vectors, and the EPC fi(k) in equation (2) reads 
[ fi(k)]τ1τ2 = ∑Re−ik⋅(R+τ1−τ2) ∂ri t(r)||r=R+τ1−τ2 . The GA assumes the  

hopping function to have a Gaussian form: t(r) = t0 exp [γ
|r|2

2
] ,  

where γ < 0 is determined by the standard deviation. Usual overlaps 
between orbitals in lattices do have an exponentially decaying form, 
hence we expect the GA to be a qualitatively and quantitatively good 
description of the physics. Other powers of ∣r∣ in the exponential are 
possible and lead to generalized quantum geometric quantities, but 
we focus on the GA owing to its simplicity. We later show it is exact in 
the short-range hopping or k⋅p models of graphene and MgB2.

Crucially, the GA enables us to uncover a relation between the EPC 
fi(k) and the electron Hamiltonian h(k). As ∂ri t(r) = γrit(r), we Fourier 
transform to find a simple relation between the EPC and the electron 
Hamiltonian

fi(k) = iγ∂kih(k). (3)

With the spectral decomposition h(k) = ∑nEn(k)Pn(k), where En(k) is the 
nth electron band with projection operator Pn(k), we can split the EPC 
fi(k) into energetic and geometric parts fi(k) = f Ei (k) + f

geo
i (k), where

f Ei (k) = iγ∑
n
∂ki En(k)Pn(k),

f geoi (k) = iγ∑
n
En(k)∂kiPn(k).

(4)

f Ei (k) is the energetic part of the EPC since it vanishes if electron bands 
are exactly flat. f geoi (k) is the geometric part of the EPC since f geoi (k) 
relies on the momentum dependence of Pn(k); it vanishes for trivial 
bands with no k dependence in their eigenstates or for one-band sys-
tems. The separation in equation (4) allows us the split the bulk EPC λ 
into three parts as λ = λE + λgeo + λE−geo, where λE is linked to f Ei (k), λgeo to 
f geoi (k), and λE−geo to both f Ei (k) and f geoi (k). Similar to the names of 
f Ei (k) and f geoi (k), we call λE and λgeo the energetic and geometric con-

tributions to the bulk EPC constant λ, respectively. λE−geo is not our focus 
in this work since it vanishes in graphene and MgB2 under the approx-
imation that we adopt, though λE−geo also has geometric dependence 
in it (Supplementary Section A).

In particular, f geoi (k) is responsible for leading to the (O)FSM in 
λgeo = λgeo,1 + λgeo,2, where both parts depend on geometric quantities, 
as discussed in Supplementary Section A. In this work, we mainly focus 
on λgeo,1, since λgeo,2 is restricted to zero by symmetries for graphene and 
is either restricted to zero or can be converted to the same geometric 
expressions as λgeo,1 for MgB2, as discussed in the next section. Explicitly, 
in the two-band case, λgeo,1 reads

λgeo,1 =
2Ωγ2

(2π)3m ⟨ω2⟩
∑
n,i,τ

∫
FSn

dσk
ΔE2(k)
|∇kEn(k)|

aτ[gn,τ(k)]ii, (5)

where m is the mass of the ion, Ω is the volume of the unit cell, 
dσk is the measure on the Fermi surface, ΔE(k) is the difference 
between two energy bands, FSn is the Fermi surface given by 
En(k) = μ and aτ =

1
D(μ)

∑m∑
1BZ
k2 δ (μ − Em(k2)) [Pm(k2)]ττ (Supplemen-

tary Section A).

[gn,τ(k)]ij =
1
2Tr [∂kiPn(k)Pn(k)∂kjPn(k)χτ] + (i↔ j) (6)

is the OFSM. More general definitions of the OFSM can be found in 
Supplementary Section G, and similar OFSM generalizations were 
proposed in ref. 38. When symmetries require aτ to be the same for all 
τ (as in graphene), the OFSM would be summed over all τ and would 
reduce to the conventional FSM.

Although we only discuss the GA for a 3D system with only one kind 
of atom and one spinless s orbital per atom, the GA can be defined for 
more complicated cases. We also introduce an alternative way of iden-
tifying the geometric contribution to λ on the basis of the symmetry 
reps for systems with short-range hoppings (Supplementary Section 
D). Both methods can be applied to graphene and MgB2 and give identi-
cal results. Moreover, we also use the most general symmetry-allowed 
short-range hopping form to reproduce the results from GA in gra-
phene and MgB2.

We have not developed a completely general version of the GA that 
is applicable to all systems. In general, it is unlikely to cover the full ab 
initio results just by allowing other powers of the distance between 
orbitals in the exponential or in the prefactor of the exponential. Allow-
ing other powers of the distance can cover the radial part of the EPC, 
that is, the EPC matrix elements that correspond to the atomic motions 
parallel to the hopping direction; however, it cannot always cover 
the angular part of the EPC, that is, the EPC matrix elements from the 
atomic motions perpendicular to the hopping direction, which might 
be considerable when the orbitals have strong angular dependence, 
such as p, d and f orbitals. As discussed in the next section, graphene 
is special since pz orbitals are effectively s orbitals in two dimensions, 
and we only need to consider the in-plane motions to the leading order, 
which therefore involve no angular dependence; MgB2 is also special 
since the angular part of the EPC has the same expression as the radial 
part of the EPC to the leading order, which would allow us to use the 
GA with additional powers in the prefactor to cover the whole EPC 
to the leading order. Nevertheless, this is not always true in general. 
Therefore, when studying the geometric contribution to EPC in other 
systems, one might need certain modification of equation (3) beyond 
what we will do for graphene and MgB2 in the rest of this paper and 
might also need to verify the results with different methods. Never-
theless, it is, in many case, possible to use certain polynomials of r to 
re-express the spatial gradient of the hopping functions, which, when 
the hopping is short-ranged enough, would give momentum deriva-
tives of the electron Hamiltonian after the Fourier transformation and 
give geometric contribution.

Geometric contribution to λ in graphene and MgB2
We now apply the GA to the specific cases of graphene and MgB2. With 
the nearest-neighbour (NN) hopping model of graphene39, we find that 
the EPC form (equation (3)) derived from the GA is exact in graphene 
for in-plane atom motions. Owing to the mirror symmetry that flips 
the z direction, the out-of-plane atomic motions do not couple to the 
electrons, thus we find that the energetic and geometric parts of the 
EPC for graphene in equation (4) are non-zero only for in-plane i = x, y. 
Then, we obtain (Supplementary Section F)

λE =
Ωγ2

(2π)2mC ⟨ω2⟩
∫

FS
dσk|∇kEnF (k)|,

λgeo = Ωγ2

(2π)2mC ⟨ω2⟩
∫

FS
dσk

ΔE2(k)
|∇kEnF (k)|

Tr [gnF (k)] ,
(7)
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where mC is the mass of a carbon atom, EnF (k) is the band that gives the 
Fermi surface and ΔE(k) is the absolute difference of two energy bands. 
Remarkably, we find that, as advertised, the FSM of the electron Bloch 
states—[gn(k)]ij = Tr[∂kiPn(k)∂kjPn(k)]/2  (equal to the expression in 

Fig. 1b under the tight binding approximation)—directly appears in 
λgeo. The appearance of the FSM in equation (7) comes from aτ = 1/2 in 
equation (5) and λgeo,2 = 0 for graphene, owing to the C2𝒯𝒯  and C3 sym-
metry, respectively, where Cn is the n-fold rotational symmetry around 
the z axis and 𝒯𝒯  is the TR symmetry. The symmetries of graphene also 
require that λE−geo = 0. Therefore, the bulk EPC constant λ of graphene 
only has the energetic and geometric contributions in equation (7), 
that is, λ = λE + λgeo (Supplementary Section F). Analytically, we find 
(Supplementary Section F) that λgeo/λ limits to exactly 50% as μ 
approaches the energy of the Dirac points (which is zero). Remarkably, 
half of the EPC strength is supported by the geometric (and as we will 
show, topological) properties of the graphene Bloch states.

We determine the numerical values of the model parameter γ (in 
addition to the electron NN hopping and 〈ω2〉) by matching our model 
to our ab initio calculation (Supplementary Section I). With the values 
of the model parameters (Supplementary Section F), we find that λ 
from our model almost perfectly matches with that from the ab initio 
calculation for a large range of μ up to −1 eV, as shown in Fig. 2a. We note 
that we do not tune the EPC parameter γ to fit our analytical λ to our 
λab initio; instead, we determine the value of γ by matching the EPC ana-
lytic or ab initio matrix elements at the corners of the 1BZ. The match 
in Fig. 2a is hence not a result of tuning the EPC parameter and shows 
the great validity of the our GA. Moreover, our numerical calculation 
also finds that the geometric contribution is roughly 50% of the total 
λ (Fig. 2b), consistent with our analytical results. In Fig. 2a, we directly 
use the value of ⟨ω2⟩ from the ab initio calculation. We find that ⟨ω2⟩ 

can be approximated by an analytical expression ⟨ω2⟩ =
2ω2

E2g
(Γ)ω2

A′1
(K)

ω2
E2g

(Γ)+ω2
A′1
(K)

 

(derived for μ → 0) with only 9% error, where ωE2g (Γ) and ωA′1
(K) are  

the frequencies of the E2g phonons at Γ and the A′
1 phonons at K, respec-

tively (Supplementary Section F). This underscores the excellent agree-
ment of our analytic calculation with realistic ab initio.

Although the direct application of GA is not straightforward for a 
moiré system (which we leave for future work), we indeed find that the 
mean-field critical temperature of twisted bilayer graphene derived 
from the EPC can be estimated by a geometric expression similar to 
equation (7) in the first chiral limit40,41 based on the topological heavy 
fermion framework42,43 (see Supplementary Section F for details). Our 
approximated expression relies on the FSM of the flat bands and gives 
Tc ≈ 0.6 K around the magic angles, which is close to the experimental 
values44.

While graphene is a relatively ‘simple’ compound and one could 
discount our excellent agreement and the findings that follow as acci-
dental, MgB2 (Fig. 3a) is a far more complicated system32 with multiple 
Fermi surfaces. The EPC constant λ only involves electron states at the 
Fermi energy, which originate from B atoms45 (Fig. 3b). In addition, 
the main phonon contribution to λ is from the E2 modes along Γ−A 
(enhanced to E2g exactly at Γ and A), which also only involve B atoms46 
(Fig. 3a). The irrelevance of Mg for λ is supported by ref. 34, which finds 
an isotope effect of Mg atoms much smaller than that of the B atoms. 
Therefore, we neglect Mg atoms when constructing the models for 
electrons and EPC.

The bands near the Fermi level originate from the σ bonding 
among B px/py orbitals and the π bonding among B pz orbitals45 (Fig. 3b). 
The Fermi surfaces of the two types of bonding are separated from 
each other by a large in-plane momentum difference (Supplementary 
Section H), while the dominant phonon modes for λ (mainly the E2 pho-
nons along Γ–A that are enhanced to E2g at Γ and A) have small in-plane 
phonon momenta47. Therefore, for evaluating λ, we reasonably assume 
that the σ bonding states are decoupled from the π bonding states in 
the electron and EPC Hamiltonian, which is also supported by the small 
line widths of the phonons with large in-plane momenta observed in 
ref. 48. As a result, we have λ = λπ + λσ, where λπ (λσ) is the EPC constant 
of the π bonding (σ bonding) states.

The derivation for λπ is similar to the case of graphene, since the 
π bonding states originate from the pz orbitals of B atoms arranged 
as AA stacked graphite (Fig. 3a). The main difference is that the π 
bonding states in MgB2 have an extra NN hopping along the z direc-
tion in our model, which mainly affects the energetic contribution 
λπ,E. Nevertheless, we can still use the GA in the x and y directions to 
derive the energetic and geometric parts of the EPC, which turns 
out to be the same as equation (4) except that the hopping decay γπ,z 
along z is different from γπ,∥ along x or y. We adopt the GA only in the 
x–y plane because the dominant E2 phonons arise from the in-plane 
(x–y) motions of the B atoms47; the EPC Hamiltonian derived from the 
GA exactly matches the actual EPC Hamiltonian with NN terms for 
the in-plane atomic motions. We then find that λπ = λπ,E + λπ,geo, where 
λπ,E−geo is zero again owing to symmetries. The geometric λπ,geo has the 
same form as λgeo in equation (7) for graphene (relying on FSM), and 
λπ,E just acquires an extra derivative of dispersion with respective to 
kz compared with λE in equation (7) for graphene, in addition to an 
extra factor Dπ(μ)/D(μ) in λπ,E and λπ,geo with Dπ(μ) the density of the π 
bonding states (Supplementary Section H).

We now discuss λσ for the σ bonding states. By adopting the GA 
in the x and y directions and the NN hopping approximation along 
z, we obtain the energetic and geometric parts of the EPC, which are 

µ (eV)

ba

c
µ (eV)

0–0.5−1.0

0–0.5–1.0
0

1

0

0.5

µ (eV)

0.07

0.03

0
−1.0 –0.5 0

λ

λab initio

λgeo

λtopo

λgeo

λ

Fig. 2 | Plots for graphene. The chemical potential μ ranges from −1 eV to 0 eV, 
while setting the Dirac point energy to be zero. a, A plot of the EPC constants from 
the ab initio calculations (λab initio, black) and from equation (7) (λ, red). b,c, Plots 
of λgeo/λ (b) and λtopo/λ (c).

a b cB Mg

E 
(e

V)

5

0

0σ σ σππ

–5

–10

Γ M K Γ A L H A 0 k 1
–π

π

Fig. 3 | Plots for MgB2. a, The structure of MgB2. The grey arrows show one type 
of ion motion of the E2g phonon at Γ. b, The ab initio band structure. σ and π 
indicate states from σ (px/py orbitals) and π-bonding (pz orbital) among B atoms, 
respectively45. Green lines represent bands in the mz-even subspace on the kz = 0 
plane. The Fermi energy is at 0. c, the Wilson loop spectrum of the lowest three 
bands in the mz-even subspace on the kz = 0 plane in b. The black dots in the inset 
show the Wannier centre of the three bands in one plane of B atoms (pink).
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equal to equation (4) after replacing γ by γσ,z for the z direction and by 
γσ,∥ for the x and y directions (Supplementary Section H). The form 
of the EPC derived from the GA is exact if (1) we only include the NN  
hopping terms among px/py orbitals in the x and y plane and along z and 
(2) we only keep first order in k∥ in the electron Hamiltonian (allowed 
by the small k∥ on the Fermi surface of the σ bonding states shown in 
Fig. 3b). Because of the approximation to first order in k∥, the effective 
Hamiltonian has two doubly degenerate energy bands Eeff,n(k) with 
n = 1, 2—the lower Eeff,1(k) is cut by the Fermi energy. While the effective 
model does not capture the splitting between the two bands near the 
Fermi level away from Γ–A shown in Fig. 3b, it is a good approximation 
for the evaluation of the EPC, as discussed at the end of this section and 
in Supplementary Section H.

Owing to the approximation to first order in k∥ of the electron 
Hamiltonian, we find that λσ,E−geo = 0 and thus obtain λσ = λσ,E + λσ,geo, 
which read

λσ,E =
Dσ( μ)
D( μ)

γ2σ,zΩ

(2π)3mB ⟨ω2⟩
∫

FSeff,1
dσk

[∂kzEeff,1(k)]
2

||∇kEeff,1(k)||

λσ,geo = Dσ( μ)
D( μ)

γ2σ,∥Ω

(2π)3mB ⟨ω2⟩
∫

FSeff,1
dσk

× ∑
i=x,y

−
∑
α

ΔE2eff(0)[geff,1,α(0)]ii
||∇kEeff,1(k)||

(8)

where mB is the mass of the B atom, ΔEeff(k∥) is the absolute difference 
between two doubly degenerate bands of the effective model, Dσ(μ) is 
the density of the σ bonding states, and FSeff,1 is the Fermi surface given 
by Eeff,1(k) = μ. Also, geff,1,α(k∥) is an OFSM

[geff,1,α(k∥)]ij =
1
2
Tr [ξαξ†α∂kiPeff,1(k∥)Peff,1(k∥)∂kjPeff,1(k∥)]

+(i↔ j),
(9)

where ξα is a normalized vector that represents the electronic orbital lin-
ear combination picked by the relevant phonons for the EPC λ (Fig. 3a), 
and Peff,1(k∥) is the projection matrix for the band Eeff,1(k). In λσ,geo, we only 
sum α over the parity-odd combinations of px/py orbitals (as indicated 
by the bar over the summation), because only the E2 phonons matter 
under the approximation to first order in k∥ of the electron Hamilto-
nian, and they flip the parity of the parity-even Peff,1(0). We only have the 
OFSM in λσ,geo because λgeo,2 mentioned above equation (5) (which, in 
general, might lead to a geometric quantity different from the OFSM) 
turns out to have the same final expression as the OFSM under the 
approximation of the linear-momentum electron Hamiltonian, which 
allows us to use the OFSM to describe the geometric dependence in λgeo,2  
(Supplementary Section H). We only consider the OFSM and 
ΔEeff(k∥) with k∥ = 0 in equation (8) because the EPC matrix is given 
by the momentum derivative of the first order in k∥ electron matrix  
Hamiltonian and thus is only reliable to zeroth order in k∥. We expect 
λσ,E to be small, as it does not involve in-plane motions of B atoms mani-
fested by the absence of momentum derivative along x and y in the 
numerator (confirmed by our ab initio calculation).

We determine the hopping decay parameters γπ,∥, γπ,z, γσ,∥ and γσ,z 
by matching the EPC Γnm(k, k + q) (with k = Γ, K and q along Γ–A) to our 
two ab initio calculations for MgB2 (Supplementary Section H). Then, 
we obtain the values of various contributions to λ as shown in Table 1. 
Note that we do not tune γπ,∥, γπ,z, γσ,∥ and γσ,z to fit our λ (a single value) 
to the single value λab initio given by the ab initio calculation. Therefore, 
our value of λ = 0.78, which is remarkably close to the ab initio value 
λab initio = 0.67 (17% error), verifies the validity of our approximations. 
Moreover, λσ is much larger than λπ, which is consistent with the previ-
ous result47.

We find that the quantum geometric contribution is about 92% of 
the total λ, with most originating from the σ bonding. On the other 
hand, we find the energetic contribution from the σ bonding (λσ,E) to 
be negligible, consistent with our analytical argument. Therefore, the 
quantum geometry of the σ bonding states supports the large EPC 
constant in MgB2. The values in Table 1 are calculated with the ab initio 
value of ⟨ω2⟩ (ℏ√⟨ω2⟩ = 68 meV), which can be approximated by the 
frequency of the E2g phonons at Γ (ℏωE2g (Γ) = 75.3  meV) with about  
10% error.

Topological contributions to λ in graphene and 
MgB2
The quantum geometric contributions in graphene and MgB2 can be 
bounded from below by the topological invariants of the states on or 
near the Fermi surfaces in these materials, showing a deep connection 
between EPC and topology. The graphene λgeo in equation (7) is bounded 
from below by the topological contribution λtopo, that is, λgeo ≥ λtopo, 
where λtopo reads

λtopo =
Ωγ2

4mC ⟨ω2⟩
(|WK| + |WK′ |)

2

∫FSdσk
|∇kEn(k)|
ΔE 2(k)

, (10)

where the chemical potential is moderate (for example, within 1 eV from 0).  

We derive equation (10) from the ∫FSdσk√Tr [gnF (k)] ≥ π(|WK| + |WK′ |) 
for moderate chemical potential. λtopo is topological because WK = 1 
and WK′ = −1 are the integer winding numbers39 (or chiralities) of the 
Dirac cones at K and K′, respectively. Other parameters in equation 
(10) are defined below equation (7). We analytically show that λtopo/λgeo 
limits to exactly 1 as μ → 0, which is consistent with the numerical cal-
culation in Fig. 2c (Supplementary Section F).

For the π bonding states in MgB2, the band structure has two 𝒫𝒫𝒯𝒯
-protected nodal lines (where 𝒫𝒫 and 𝒯𝒯  are the inversion and TR sym-
metries) along kz-directional hinges of the 1BZ, which carry winding 
numbers just like Dirac cones of graphene49. The winding numbers 
account for the topological contribution λπ,topo to λπ, which bounds the 
geometric λπ,geo from below in a similar way to equation (10) (Supple-
mentary Section H).

Besides the nodal lines, we find an obstructed atomic set of bands 
on the kz = 0 plane of MgB2, which contains the σ bonding states around 
the Fermi level. The Bloch Hamiltonian has the mirror symmetry mz 
(that flips the z direction) on the kz = 0 plane. In the mz-even subspace, 
we find that the isolated set of three bands cut by the Fermi energy is 
the elementary band representation A1g@3f, which is obstructed 
atomic since the atoms are not at 3f and which have nonzero 𝒫𝒫𝒯𝒯
-protected second Stiefel–Whitney class w2 = 1 (Fig. 3c). (Here we follow 
the conventions of the Bilbao Crystallographic Server3,50; a general 
discussion on w2 can be found in ref. 51.) w2 = 1 can be understood as 
having a band inversion at Γ, resulting in the effective Euler number 
Δ𝒩𝒩 = 1 of the σ bonding states around Γ near the Fermi level (see details 
in Supplementary Section H). Remarkably, the effective Euler number 

Table 1 | Numerical values of λ and its various contributions 
for MgB2

λ (λab initio) 0.78 (0.67) λπ 0.16 λσ 0.62

λE 0.07 λπ,E 0.07 λσ,E 0.00

λgeo 0.71 λπ,geo 0.09 λσ,geo 0.62

λtopo 0.32 λπ,topo 0.01 λσ,topo 0.31

λab initio = 0.67 in parentheses is the ab initio value for λ. All other values are calculated from our 
model with parameter values determined by matching the EPC Γnm(k, k + q) (with k = Γ, K and 
q along Γ–A) and fitting the electron band structure to the ab initio results. We do not fit the 
single value λ to λab initio.
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Δ𝒩𝒩 = 1 gives a topological λσ,topo that bounds the geometric contribu-
tion from below, where λσ,topo reads

λσ,topo = Dσ( μ)
D( μ)

4πγ2σ,∥Ω
mB ⟨ω2⟩ c2 [

Δ𝒩𝒩]2

× [∫FSeff,1dσk
||∇kEeff,1(k)||
|d(k∥)|2

]
−1

,

(11)

where d(k∥) = vk∥a (with v specified in Supplementary Section H) couples 
the states with different parities in the σ bonding effective model, and 
a and c are the lattice constant along x or y and z, respectively. Other 
parameters in equation (11) are defined below equation (8). We mention 
that ∑i=x,y∑

−
α geff,1,α(0)  itself is not bounded from below since the σ 

bonding states at Γ are gapped. Instead, we look at the product of the 
gap squared and the OFSM, which is in dependent of the gap. In par-
ticular, by using the Hölder inequality, we find that the integration of 
∑i=x,y∑

−
α ΔE2eff(0)[geff,1,α(0)]ii/|d(k∥)|

2 on the Fermi surface is bounded 
from below by the winding number of d(k∥). Since the winding number 
of d(k∥) determines the change of the topological invariant caused by 
the band inversion at Γ, it is further bounded from below by the effec-
tive Euler number (see details in Supplementary Section H). As shown 
in Table 1, the total topological contribution λtopo = λπ,topo + λσ,topo is about 
44% of the quantum geometric contribution λgeo.

We note that the topological contribution just tells us that 
the geometric contribution may be stronger in the topologically 
non-trivial system. In principle, there can be trivial bands in real materi-
als that have strong geometric properties and have a large geometric 
contribution.

Discussion
Our work shows that quantum geometric properties, now at the  
forefront of flat band research, are also fundamental—and can in fact be 
dominant—in a deep understanding of the different contributions to the 
EPC in systems with dispersive bands. One future direction is the devel-
opment of a general framework that specifies the geometric and topo-
logical contributions to the bulk EPC constant λ for all two-dimensional 
(2D) and 3D systems with any types of topological invariants of states 
on or near Fermi surface. Our current results imply that, given two 
systems with similar band dispersion, the system with stronger  
geometric properties would tend to have a stronger EPC, which serves 
as guidance for future material search (for example, one could look for 
Weyl semi-metals that have Fermi surfaces enclosing Weyl points with 
large net chiralities). The study of the geometric and topological con-
tributions to the bulk EPC constant λ in more phonon-mediated super-
conducting materials is essential for checking the relation between 
the electron band topology or geometry and the superconducting Tc. 
Further work will focus on an ab initio high-throughput calculation of 
the quantum geometry effects in the EPC of many other multi-band 
superconductors.

We find that the energetic contribution λE in graphene can be 
directly measured from the zero-temperature phonon line width of 
the E2g phonons at Γ, together with the frequencies of the E2g phonons 
at Γ and the A′

1 phonon at K (Supplementary Section J). Experimentally, 
the frequency and line width of the E2g phonons at Γ can be measured 
by Raman spectroscopy52, while the frequency of the A′

1 phonon at K 
can be approximated by inelastic x-ray scattering measurements in 
graphite53. Existing experimental data suggest that the experimental 
value of λE for μ ≈ −0.1 eV is 0.0018–0.0034, whereas the value from 
our model is 0.0032, which is within the current experimental range. 
More precise measurements can be done in the future. Combined with 
the fact that the total λ of graphene may be measured from the Helium 
scattering54, the geometric contribution λgeo may be measured from 
λ − λE. Furthermore, the FSM in graphene may be measured from the 
current noise spectrum10 or more generally the first-order optical 

response55, owing to the two-band nature of graphene. Therefore, 
λgeo
λE

= |μ|
π
∫FSdσk

Tr[gnF (k)]
|∇kEnF (k)|

= hc
2π2e2

A(ω = 2|μ|/ℏ) may be experimentally 

testable, where A(ω) is the optical absorption coefficient for photons 
with frequency ω in the unit system where 1/(4πϵ0) = 1, h is the Planck 
constant, c is the speed of light, e is the elementary charge, μ is the 
chemical potential and ε0 is the vacuum permittivity. (ref. 55). If tested, 
this expression would relate the 

λgeo
λE

 in scattering experiments to the 
response coefficient in the optical response. Besides graphene, on the 
surface of the topological insulator Bi2Se3 with a hexagonal distortion56, 
we can track the momentum dependence of the geometric quantities 
(such as the FSM and OFSM) and the EPC coupling measured in time- 
and angle-resolved photoemission spectroscopy measurements57, as 
a test of the relation between quantum geometry and the EPC strength. 
For 3D materials such as MgB2, the EPC constant λ can be measured in 
various ways, for example, by tracking the temperature behaviour of 
the specific heat58 or inelastic x-ray scattering experiments48. It is pos-
sible to test our theory in a system with tunable band geometry or 
topology by measuring the EPC constant while changing the band 
geometry or topology, for example, through gating in two dimensions 
or strain in three dimensions.

Note that, during the review process of this manuscript, ref. 59 
(authored by one of the authors of the current work), which applied 
the GA proposed in this work to kagome ScV6Sn6 and explained the 
phonon softening in the system, was posted online.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41567-024-02486-0.
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