
Nature  |  Vol 635  |  14 November 2024  |  301

Perspective

Charge-neutral electronic excitations in 
quantum insulators

Sanfeng Wu1 ✉, Leslie M. Schoop2, Inti Sodemann3, Roderich Moessner4, Robert J. Cava2 & 
N. P. Ong1 ✉

Experiments on quantum materials have uncovered many interesting quantum 
phases ranging from superconductivity to a variety of topological quantum matter 
including the recently observed fractional quantum anomalous Hall insulators. The 
findings have come in parallel with the development of approaches to probe the rich 
excitations inherent in such systems. In contrast to observing electrically charged 
excitations, the detection of charge-neutral electronic excitations in condensed 
matter remains difficult, although they are essential to understanding a large class of 
strongly correlated phases. Low-energy neutral excitations are especially important 
in characterizing unconventional phases featuring electron fractionalization, such as 
quantum spin liquids, spin ices and insulators with neutral Fermi surfaces. In this 
Perspective, we discuss searches for neutral fermionic, bosonic or anyonic excitations 
in unconventional insulators, highlighting theoretical and experimental progress in 
probing excitonic insulators, new quantum spin liquid candidates and emergent 
correlated insulators based on two-dimensional layered crystals and moiré materials. 
We outline the promises and challenges in probing and using quantum insulators, and 
discuss exciting new opportunities for future advancements offered by ideas rooted 
in next-generation quantum materials, devices and experimental schemes.

In crystalline solids, electrons are packed closely together and inter-
act strongly by means of the Coulomb force. In the standard Landau 
model, the electronic quasiparticle excitations are viewed as dressed 
weakly interacting fermions although they couple to external electric 
and magnetic fields by means of their electric charge. This powerful 
description—valid in familiar metals, semiconductors and insulators—
has worked well in condensed matter physics. It underlies virtually all 
modern electronics-based technologies from transistors, solar cells 
and light emitting diodes to superconducting devices.

However, materials that do not obey this conventional description 
do exist. An example is the situation of interacting electrons confined 
to a one-dimensional (1D) wire, in which the Luttinger liquid theory, 
rather than Landau’s Fermi liquid theory, serves as the standard descrip-
tion1. The low-energy excitations in a Luttinger liquid are fractionalized 
modes that separately carry spin and charge degrees of freedom. In 
two-dimensional (2D) and three-dimensional (3D) systems, non-Fermi 
liquid physics has increasingly occupied centre stage in research on 
strongly correlated materials, including cuprates2, heavy fermion 
materials3,4 and, more recently, moiré materials5–8. Beyond non-Fermi 
liquids, strongly correlated electrical insulators may also show striking 
properties that go beyond the conventional picture. This is the theme 
of our Perspective. We review how the conventional quantum theory 
of solids may break down in electrical insulators, discuss the current 
experimental status and outline promising future directions. We focus 
on insulators showing interesting charge-neutral electronic excita-
tions in the bulk that cannot be captured by conventional band theory.

 
Theoretical overview of neutral excitations
Up until the 1970s it was widely believed that excitations in many- 
electron systems would always carry an integer multiple of the elec-
tron charge, and that particles with an even (odd) multiple of elec-
tron charge would necessarily be bosons (fermions). Charge-neutral 
excitations such as excitons (bound electron-hole pairs) or magnons 
(spin excitations in a magnet) were expected to be bosons. The discov-
eries of fractionalization in 1D polymer chains9,10 and the fractional 
quantum Hall (FQH) effect in 2D electron gases11 disrupted this morel 
by demonstrating that materials can harbour quasiparticles with 
a fractional electron charge (Fig. 1a). Moreover, quasiparticles in 
fractionalized electronic systems can have anyonic exchange sta-
tistics12–14 and are therefore fundamentally different from bosons or  
fermions.

Separately, Anderson proposed his seminal ideas of the resonant 
valence bond (RVB) ‘spin liquid’ states15, which gained much promi-
nence as proposed parent states of high-temperature superconduc-
tors16. The RVB proposal led to strong debate. A model showing a bona 
fide RVB spin liquid phase was found a few decades later17. The RVB spin 
liquid and the FQH states are now understood to be examples of a large 
class of fractionalized states18. For example, the short-range RVB liquid 
in the absence of symmetry represents the same topological phase18 
as the toric code introduced by Kitaev19. These are often referred to 
as Z2 spin liquids on account of the local Ising (Z2) symmetry of the 
emergent gauge field.

https://doi.org/10.1038/s41586-024-08091-8

Received: 29 March 2021

Accepted: 20 September 2024

Published online: 13 November 2024

 Check for updates

1Department of Physics, Princeton University, Princeton, NJ, USA. 2Department of Chemistry, Princeton University, Princeton, NJ, USA. 3Institute for Theoretical Physics, University of Leipzig, 
Leipzig, Germany. 4Max-Planck Institute for the Physics of Complex Systems, Dresden, Germany. ✉e-mail: sanfengw@princeton.edu; npo@princeton.edu

https://doi.org/10.1038/s41586-024-08091-8
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-024-08091-8&domain=pdf
mailto:sanfengw@princeton.edu
mailto:npo@princeton.edu


302  |  Nature  |  Vol 635  |  14 November 2024

Perspective

Indeed, the presence of emergent deconfined gauge fields is often 
considered to be the defining feature of a spin liquid. The emergent 
gauge field in spin liquids comes with accompanying particles that 
are charged under it. The deconfinement is the property that these 
particles can be separated arbitrarily far away from each other with a 
finite energy cost. This endows them with a non-local aspect: they are 
sources or sinks of a corresponding emergent flux, just as an electron 
is a source of electric field on account of its electric charge. These par-
ticles, neutral with respect to Maxwell electromagnetism, can have 
different quantum statistics: fermionic, bosonic or anyonic. There 
certainly is no need for all neutral particles to be bosons. They can 
carry quantum numbers that are fractions of those of the microscopic 
degrees of freedom20–22. For example, in an RVB liquid, adding an elec-
tron can generate two independent particles: a spinon that carries the 
spin and a chargon that carries the electric charge (Fig. 1b).

Mathematically, the case of an emergent U(1) gauge field is very 
close to Maxwell electromagnetism, which is also a U(1) gauge theory. 
However, details can differ greatly: the emergent theory can harbour 
both electric and magnetic emergent charges, and show a much larger 
fine-structure constant23. One can even study the emergent analogue 
of Maxwell theory in two dimensions. However, this is believed to 
be stable only when the gauge field coexists with gapless fermionic 
degrees of freedom charged under this gauge field24,25. These fermions 
could be nodal (as in, for example, Dirac spin liquids) or have a Fermi 
surface (as in, for example, the ‘spinon Fermi surface state’). In three 
dimensions, the U(1) gauge structure can remain stable even in the 
absence of gapless fermionic degrees of freedom. A model system 
known as spin ice, a paradigmatic model showing an emergent U(1) 3D 
gauge structure (refs. 26,27), features emergent electric and magnetic 
charges28. Figure 1c summarizes properties and occurrences of selected 
charge-neutral quasiparticles in insulators.

The electromagnetic response of correlated insulators with frac-
tionalized excitations is rich and complex. Local probe fields can only 
create multiplets of fractionalized quasiparticles, as the net quantum 
numbers of the product of a scattering process cannot be fractional. 
Unlike the case of neutrons scattering off single magnons, it is therefore 
generally not possible to obtain a sharp response even from long-lived 
fractionalized quasiparticles. The coupling matrix elements can further 
differ hugely from those of conventional electromagnetism, not least 
on account of different symmetry properties of emergent fields; for 

instance, emergent magnetic fields can be even under time reversal. 
Nonetheless, U(1) spin liquids with gapless fermions can in principle 
show striking experimental consequences, including subgap power law 
optical conductivity29, quantum oscillations in response to magnetic 
fields30,31, cyclotron resonance in the absence of charged quasiparticles32 
and metallic-like magnetic noise33 and so on. All these provide new 
avenues for their experimental detection. See more discussions and 
their implications on measurable quantities in Box 1.

Experimental progress, challenges and opportunities
Experimentally, the detection of quantum properties of insulators 
and charge-neutral excitations is hampered by the lack of suitable 
low-temperature probes. Thermal transport is one of the few techniques 
available for investigating excitations in insulators at low T in strong 
magnetic fields. Whereas it is a powerful probe for 3D materials, it faces 
challenges in 2D materials, a growing platform for many interesting 
insulating phases. Other conventional approaches, such as electrical 
transport and tunnelling spectroscopy, are not directly sensitive to 
charge-neutral excitations, especially when the charge gap is large. This 
limitation may explain why experimental progress in 2D insulators has 
been slow except in insulators with a gap less than roughly 100 meV. 
Next, we discuss the status and perspective for the experimental detec-
tion of hidden quantum phenomena in insulators, focusing on selected 
topics in both 3D bulk materials and the rapidly evolving correlated 2D 
crystals and van der Waals (vdW) stacks.

Excitonic insulators
The first prominent case we highlight is the excitonic insulator. In the 
single-particle band picture, we have a band insulator if a fully occu-
pied valence band is separated from the conduction band by a finite 
energy gap Eg. This picture is modified when the gap is small because 
Coulomb interaction leads to bound states (excitons) of electrons in 
the conduction band and holes in the valence band34–36, as sketched in 
Fig. 2a. This effect occurs when the exciton binding energy Eex exceeds 
the band gap Eg. A similar situation is obtained in low carrier-density 
semimetals in the limit of weak screening of the Coulomb interaction. 
The formation of excitons converts the semimetal to an insulator, 
as pointed out by Mott37. Theories of excitonic anomalies near the 
semimetal-semiconductor transition are reviewed in detail in ref. 38.

In brief, in weakly interacting band insulators there is an energy gap 
to create excitons. However, as the electron repulsions increase this 
gap can decrease leading to quantum phase transitions into a new 
state in which excitons spontaneously ‘proliferate’, without a closing 
of the charge gap. When the exciton is an ordinary local boson (Fig. 1c) 
the resulting state would be an insulator with a spontaneously broken 
symmetry38. In this case, the excitonic insulator can represent a special 
subset of broken symmetry states in which the exciton condensation 
is also accompanied by some robust form of nearly gapless fluidity of 
neutral modes, which remains robust throughout the phase of mat-
ter itself and not just near a critical point. One mechanism for this is 
that the exciton carries a quantum number associated with a continu-
ous symmetry, then its condensation leads to the existence of broken 
symmetry (quasi-) Goldstone modes. Another mechanism is that the 
exciton carries a momentum that is incommensurate with the recip-
rocal Bravais vectors, and the broken symmetry state resulting from 
the exciton condensation will be an incommensurate charge density 
wave, spin density wave38 or spin spiral state39,40, whose sliding modes 
will remain partly soft and cannot be completely pinned by the atomic 
crystal. There can also be more exotic forms of exciton proliferation41,42, 
which are not necessarily local bosons and can lead to protected gapless 
fluid neutral modes, such as the composite exciton fermion42 (Fig. 1c).

Experimental confirmation of an excitonic insulator in crystals is 
challenging because the excitons are intrinsic to the ground state 
and are charge-neutral. Note that exciton physics in optically excited 

Non-local bosons
(with emergent gauge �eld)
magnetic monopoles in spin ice27,
spinless visons in RVB state21, 
for example

Non-local fermions
(with emergent gauge �eld)
spinons in certain U(1) or Z2 QSL20

fermionic excitons42, for example

Abelian/non-Abelian anyons
(with emergent gauge �eld)
�ux excitations in Kitaev model96

spinons in chiral spin liquid22, 
for example

Local bosons
(no emergent gauge �eld)
excitons, magnons, for example

c

Spinon

Chargon

For example, certain quantum spin liquids

b

Anyons

e/3

For example, FQH or FQAH states

Electron

a

e

S

e/3

e/3

Electron

–+

N
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semiconductors is well established and has been extensively studied 
in the past decades in 2D semiconducting transition metal dichalco-
genides43,44. One can straightforwardly observe signatures of optical 
excitons in photoluminescence measurements as these excitons can 
decay by emitting light. In excitonic insulators, excitons are the lowest 
energy state and their observation is not straightforward.

Experimental investigation of excitonic insulators fall into two 
categories: (1) artificial electron-hole bilayers, in which investiga-
tion of exciton condensates has been systematically conducted in 
quantum Hall bilayers consisting of two closely spaced 2D electron 
gases placed in high magnetic fields45–47. Striking consequences of the 

quantum Hall exciton condensate include Josephson-like quantum 
tunnelling, Coulomb drag and counterflow transport and so on, as 
observed in both semiconductor quantum wells and graphene45–47. 
Evidence for an excitonic insulator state in zero magnetic field has 
also been reported in InAs/GaSb bilayers48,49 and more recently in sev-
eral vdW bilayers or trilayers of transition metal dichalcogenides50–52 
(Fig. 2b). (2) Natural crystals. Whereas the excitonic insulator theory 
was originally developed for bulk crystals, its experimental detection 
has been more challenging. Candidate bulk crystals include 1T-TiSe2 
(refs. 53–55), Sb nanoflakes56, Ta2NiSe5 (refs. 57–61) and recently  
Ta2Pd3Te5 (refs. 62,63) (Fig. 2b). A common challenge in identifying 

Box 1

Fractionalization and emergent gauge fields in insulators
An exactly soluble model
Kitaev’s honeycomb model96 is exactly soluble and may also be 
relevant for experiments on candidate materials. Its Hamiltonian 
(HK), in the simplest incarnation, reads

H σ σ ,
ij α

i
α

j
α

K
,

∑=

where the sum is over all nearest neighbour pairs ij. It is ‘spin-orbit 
coupled’ in that the spins only interact by means of one component 
of their spin (given by Pauli matrix σα, α = x, y, z) depending on the 
bond direction, as depicted in Fig. 3d.

An elegant way to demonstrate fractionalization is to directly 
identify the degrees of freedom carrying the fractional quantum 
numbers. We write the spin-1/2 operators as a combination of four 
Majorana operators, three ‘bond Majoranas’ bi

α  and one ‘matter 
Majorana’ ci. Majorana operators have commutation relations  
{bi,bj} = 2δij and are often referred to as ‘real fermions’, as a pair of 
them can be combined to a standard complex fermion, f, as 

= −f c ic( )/2†
1 2 . The model has a set of non-dynamical (that is, 

conserved and immobile) flux operators, W σp i
γ= ∏ , one for each 

hexagon plaquette p of the honeycomb lattice. Here, the product 
defining Wp runs over the six sites of p, with γ the bond direction 
pointing out of the hexagon at site i. On writing =S b ci

α
i
α

i, one 
obtains that the Wp operators are entirely made from the ‘bond 
Majoranas’ bi

α . The values of all Wp can independently take ±1 (that is, 
they are Z2 degrees of freedom), and together they define a flux 
sector. The Kitaev honeycomb model can then be exactly solved, 
flux sector by flux sector, by considering a fermionic hopping 
problem for the matter fermions (f  and f †) subject to the background 
fluxes Wp.

Fractional excitations
This solubility illustrates explicitly several general features of 
fractionalization: the microscopic spin degrees of freedom have 
been replaced by more ‘natural’ emergent variables, the matter 
fermions and fluxes. These emergent variables capture the ‘breaking 
apart’ of the spin degrees of freedom. In principle, one obtains such 
a form of the Hamiltonian from more general parton constructions, 
whose use depends on how naturally the chosen construction 
reflects the actual low-energy degrees of freedom of the many-body 
problem under consideration. When the itinerant fermions (f and f †) 
have a gapped spectrum with Chern number ±1, the Kitaev model 
realizes a non-Abelian fractionalized state. There are two kinds of 
quasiparticles in the bulk of this non-abelian state: the complex 
itinerant fermions (f and f †) and the Ising flux-like particle (the vison) 
associated with the above plaquette operator. A vison is present 

(absent) in a plaquette when W W1 ( 1)p p= − = + . The vison particle,  
which is an analogue of an Abrikosov vortex in a superconductor, 
carries a Majorana zero mode in its core and shows non-Abelian 
exchange statistics. Figure 1c summarizes neutral excitations in 
selected models.

Responses
How does a physical electromagnetic field couple to the emergent 
degrees of freedom? The answer in general is clear: it depends. On 
the level of the microscopic Hamiltonian, a simple Zeeman field hα  
in the Kitaev model couples to both matter fermions and fluxes: 

=h S i h b cα
i
α α

i
α

i. Its action on the fractionalized system can hence be 
involved: for example, it can give dynamics to the flux degrees of 
freedom, while also changing the matter degrees of freedom. This 
illustrates why the coupling to electromagnetic fields is so diverse  
in fractionalized systems; simple-looking couplings turn out to be 
complex once the spins have broken apart.

Indeed, each fractionalized model in principle comes with its 
own coupling to external fields, which will depend on symmetry 
properties of the emergent degrees of freedom as well as underlying 
microscopic details. For example, in the case of U(1) quantum spin 
liquid (QSL) featuring a spinon Fermi surface, Landau quantization 
may develop as a response of the spinon-gauge field system to an 
external magnetic field30. In quantum spin ice, fractionalization 
leads to an emergent gauge field that has photons, electric charges 
(spinons) but also—unlike the world we inhabit—magnetic charges 
(Fig. 1c). How an externally applied electromagnetic field couples 
to these depends on microscopic features, such as: do the spins 
derive from ions with an even or an odd number of electrons? In the 
latter case, time-reversal symmetry, as expressed, for example, in 
Kramers theorem, forbids certain couplings of an electric field to the 
fractionalized excitations.

Generally, the Hamiltonian of the fractionalized particles involves 
not only the emergent gauge coupling, but also ‘remembers’ 
properties such as the crystal field scheme of the microscopic spins. 
Determining many features in detail is a challenge for each material 
individually. Nonetheless, simple behaviour can emerge from 
qualitative considerations. In the case of spin ice, the fractionalized 
quasiparticles are sources of both an emergent field as well as the 
usual (Maxwell) magnetic field—hence their appellation as magnetic 
monopoles. Such a combination has been termed a hybrid dyon178, 
and it can lead to effects, superficially familiar from metallic systems, 
appearing in new ways in insulators. An interesting prediction 
is a magnetic Nernst effect in insulators, in which applying an 
electric field perpendicular to a temperature gradient induces a 
magnetization perpendicular to both178.
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an excitonic insulator phase in bulk crystals is to distinguish it from a 
trivial band insulator especially because structural transformations 
in these systems generate ongoing debates (for example, ref. 61).  
In 2021, a 2D crystal, that is, monolayer WTe2, was identified as an exci-
tonic insulator 64,65. Figure 2c plots the resistance of monolayer WTe2 
as a function of the top and bottom gate voltages typically used for 2D 
devices, highlighting the appearance of the excitonic insulator state 
at charge neutrality. The gate tunability of a 2D crystal allows for new 
opportunities in characterizing an excitonic insulator. In particular, 
the gate-tuned tunnelling spectra64 of monolayer WTe2 show that the 
insulator phase originates from electron correlations and rule out 
the possibility of a band insulator. This key conclusion is further sup-
ported by gate-tuned measurements of the chemical potential65 and 
an anomaly in the gate-tuned Hall effect64. Such gate-tuned measure-
ments are infeasible in bulk crystals.

Therefore, 2D WTe2 serves as an exciting test bed for investigating 
characteristics of excitonic insulators39,40,64–66. The promise is further 
highlighted by the many other properties of this material, includ-
ing (1) the excitonic insulator is also a quantum spin Hall insulator  
(QSHI)67–70, (2) a superconducting phase emerge when a moderate 
density of electrons is introduced to the excitonic insulator71,72 (Fig. 2d),  
(3) a distinct intriguing phase64,65,68,70,73 on the hole-doped side (Fig. 2e) 
and (4) unexpected Landau quantization that appears in the insu-
lating regime73,74 (discussions in the section ‘Case III: the search for 
charge-neutral Fermi surfaces in insulators’ below). Moreover, the 
recent finding of an unconventional quantum critical point75 located in 
between the excitonic insulator phase and the superconducting phase 
highlights a deeper connection between the two to be discovered. The 
topological excitonic insulator state at charge neutrality, as the pris-
tine property of the monolayer, is core to unlock the many intriguing 
mysteries associated with the rich low-T phenomena in this material.

The field of excitonic insulator has gained new impetus and more 
excitonic insulator materials are emerging. In general, interactions in 
the many-exciton state of an excitonic insulator are likely to generate 
a diverse variety of phases. The main challenge is that our experimen-
tal approaches for investigating a charge-neutral state are immature 
such that examinations of even the plain vanilla version of an excitonic 
insulator remain difficult.

QSLs
The QSL state was proposed by Anderson in 1973 (ref. 15) as a new kind of 
insulator that shows a liquid-like ground state of spins on a lattice with 
geometric frustration (Fig. 3a). Subsequent theoretical work has shown 
that the QSL may host exotic fractional excitations and the emergent 
gauge fields. One remarkable possibility is that there is a class of gapless 
QSL featuring a spinon Fermi surface accompanied with an emergent 
U(1) gauge field. Although it is true that the spinons do not carry charge 
under the physical magnetic field, the internal gauge field may couple 
to the external magnetic fields. For instance, the emergent U(1) gauge 
field structure may allow for the appearance of an emergent magnetic 
field whose average value itself can be induced by an external magnetic 
field in some situations30,31,76, producing spinon Landau quantization. 
Several recent reviews on QSLs summarize both the theoretical and 
experimental advances so far77–81. Despite much progress, however, the 
existence of a QSL state in a physical material remains an open question.

We first highlight the experimental challenges on this topic by tracing 
the studies of one specific QSL candidate 1T-TaS2, a vdW layered mate-
rial named in Anderson’s original paper15. This material was not widely 
recognized as a QSL candidate until 2017, when Law and Lee provided 
arguments82 empowered by modern views. A possible spinon Fermi 
surface state in 1T-TaS2 was later proposed83. At low T, the material devel-
ops an insulating charge density wave consisting of clusters of stars of 
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David, forming a triangular superlattice (Fig. 3b). Experimental studies 
on the nature of this state, in principle a Mott insulator, are challenging. 
Investigations of its bulk form involves the interlayer stacking order, 
which complicates the situation84–88. Studies on monolayer 1T-TaS2,  
a much stronger insulator compared to its bulk, can clear out the situ-
ation but little is known about the monolayer. Recently, scanning tun-
nelling microscope studies of monolayer 1T-TaSe2 (a sister material of 
1T-TaS2) grown on metallic graphene substrates (Fig. 3c), necessary for 
charge transport, have shown interesting results consistent with the 
Mottness and possible QSL state89–91. However, the low-T properties 
of the pristine monolayers of 1T-TaS2 or 1T-TaSe2, either isolated or on 
an insulating substrate, remains unknown due to the lack of proper 
experimental tools to diagnose such a strong 2D insulator. Similar stud-
ies and status can be found in the isostructural 1T-NbSe2 (refs. 92–95).

Another topical area of QSL research is the search for materials that 
are proximate to the Kitaev honeycomb model Hamiltonian96 HK that 
describes spin-1/2 Ising spins interacting with bond-specific exchange 
couplings (Box 1 and Fig. 3d)80,96,97. Following calculations97 pointing to 
the 4d and 5f chalcogenides as likely platforms, α-RuCl3 (Fig. 3e) was 
identified as the closest proximate98. The Ru ions, which carry a spin-1/2 
moment, occupy the sites of the honeycomb lattice. In zero magnetic 
field, α-RuCl3 orders at 7 K as an antiferromagnet (with zig-zag order 
stabilized by terms not included in HK). An in-plane field H, applied 
parallel to the zig-zag axis a, causes long-range order to vanish sharply 
at a critical field Bc2 = 7.3 T. As H increases above roughly 10 T, sharp mag-
non modes emerge in the spectrum. The interesting state in between 
(7.3 T < H < 10 T), characterized by a broad, featureless spectrum of 
excitations, has been widely discussed as a QSL state relatable to HK 
(refs. 98–106) (Fig. 3f). Both the spin liquid and zig-zag states have 

been investigated by neutron scattering98, electron spin resonance107, 
terahertz spectroscopy108, thermal transport109,110 and so on.

Interest spiked following a report that, within a narrow temperature 
window (3.7 and 4.9 K), the thermal Hall conductivity κxy in the QSL 
interval seemed to show111 a half-quantized value in accord with Kitaev’s 
calculation, both with H tilted out of plane111 and with H∥a (the zig-zag 
axis)112. In this scenario, the heat current is carried by Majorana excita-
tions that occupy chiral edge modes. However, subsequent experiments 
have not validated the finding of half-quantization. Measurements 
extended to a much broader interval in T (0.5 to 10 K, with H∥a) show109 
that κxy arises from excitations that obey the Bose–Einstein distribution. 
In the proposed picture, the spin excitations occupy a topological band, 
and are subject to a large Berry curvature that changes sign with H∥a 
(ref. 113). Fits to the Murakami expression for κxy yield a Chern num-
ber (of the lowest spin band) close to 1 above 9 T (Fig. 3g). Moreover, 
the inferred band energy is roughly 1 meV, in good agreement with 
previous microwave absorption and electron spin resonance experi-
ments. Subsequent experiments comparing crystals grown under 
different conditions again do not observe half-quantization. There 
is one report114 that argues that κxy may approach the half-quantized 
value for H larger than 10 T. In this regime, however, the uncertainties 
in κxy diverge uncontrollably because the thermal Hall resistivity λyx 
rapidly vanishes109.

Another finding in α-RuCl3 is that, below 4 K, the thermal conductivity 
κxx shows large oscillations versus H (with H∥a)110 (Fig. 3h). Although 
α-RuCl3 is an excellent charge insulator, the κxx curves resemble Shub-
nikov–de Haas oscillations in a semimetal. The integers n indexing the 
extrema in κxx vary linearly with 1/H, except for a sharp break in slope 
near Bc2 = 7.3 T. The oscillation amplitudes are strongly enhanced within 
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the QSL field interval (7.3, 10) T although a tail of attenuated oscillations 
persists to 4 T, deep in the zig-zag state. In the four samples studied110, 
the oscillations are closely similar both in phase and period, but the 
amplitudes are sample dependent. An interesting interpretation is 
that, despite the complete absence of free electrons, long-lived neu-
tral fermionic excitations seem to define an effective Fermi surface. 
These fermions have been proposed to be pseudo-scalar spinons115 to 
reconcile the presence of oscillations of κxx concomitant with absence 
of κxy when the in-plane field is along b (the armchair axis). Note that 
Landau quantization is not expected for the original Kitaev model. 
Alternately, the oscillations are modulations of the dominant phonon 
conductance caused by periodic oscillations of the spin density of 
states that modulate the scattering amplitude between phonons and 
spin excitations.

Subsequently, oscillations in κxx versus H were observed by Bruin 
et al.116 in crystals of α-RuCl3 showing a large spread of TNs from 7 to 
13–14 K, which they attributed to a cascade of stacking faults. Originally, 
Kubota et al.117 had proposed that sweeping H at T < 4 K induces several 
transitions caused by stacking-fault creation. Kubota et al. linked several 
features in the field profile of the magnetic susceptibility at 4 K to the 
large spread of TN by angular extrapolation within the T-H plane. Later, 
Cao et al.118 showed that the spread in TNs (especially the 14 K transition 
in the magnetization) in a given crystal provides a reliable signature of 
high stacking-fault density (this test is now widely adopted to screen 
crystals with high stacking-fault density). Bruin et al.116 adopted Kubota’s 
cascading scenario to identify the oscillations with successive transi-
tions by field-creation of stacking faults at low T (also ref. 119). Zhang 
et al.120,121 have tested this association by monitoring the oscillations 
in a series of crystals in which the stacking-fault density is controlled. 
They found that the oscillation period is actually closely similar in all 
crystals irrespective of stacking-fault density, with amplitude largest 
in crystals with lowest stacking-fault density. They conclude that the 
oscillations are unrelated to the 14 K transition. We note that none of 
the crystals used in ref. 110 shows the 14 K transition or even a spread of 
TNs. Together, these studies strongly disfavour the cascading transition 
scenario. We further remark that the stochastic nature of field-induced 
stacking fault should lead to widely different oscillation periods (and 
hysteresis) in conflict with all reports to date. A recent experiment122 
on the dependence of the thermal conductivity versus the azimuthal 
angle of the in-plane H reveals an angular variation consistent with an 
intrinsic property of the QSL state. Future experiments examining other 
quantities beyond thermal conductivity may provide new insights into 
the nature of this intriguing state. More recently, Hong et al.123 reported 
κxx versus H measured in the Kitaev material Na2Co2TeO6, which shows 
two prominent dips at low T for both field orientations (H along arm-
chair or zig-zag axes). Hong et al.123 propose that these features, which 
roughly resemble the oscillations reported by Czajka et al. in α-RuCl3, 
arise from phonon scattering from magnetic structures or domains in 
the spin-disordered state in Na2Co2TeO6.

The search for charge-neutral Fermi surfaces in insulators
The quest to find insulators that show a neutral Fermi surface (for 
example, QSL with a spinon Fermi surface) has long been a challenge 
in condensed matter physics. Unlike in conventional insulators, the 
thermal conductivity here is predicted to show a metallic temperature 
profile at very low temperatures. This is one of the key tests77–79 so far 
adopted in many experiments, for example, on organic materials77 
and 3D quantum magnets124. At present, there is considerable debate 
on the results and their interpretations (for example, refs. 125–127). 
A central feature of the spinon Fermi surface is the emergent gauge 
field that couples to spinons in a way similar to the coupling of the 
electromagnetic fields to electrons. This leads to observable effects 
if the emergent gauge field further couples to electromagnetic fields.

A useful concept governing the electromagnetic response of a frac-
tionalized system is the Ioffe–Larkin rule128,129. For example, electronic 

transport in a spin-charge separated material involves both spinon 
transport and chargon transport. However, the source and drain metal 
electrodes can only inject/accept electrons, which fractionalize into 
spinons and chargons within the material. By the Ioffe–Larkin rule, 
the measured resistivity (not conductivity) is the sum of the spinon 
resistivity and chargon resistivity. An intriguing case is the Landau 
quantization of the spinon Fermi surface in magnetic fields30, which 
can in principle lead to quantum oscillations of observables in insula-
tors30,31,130. Experimentally, the quantum oscillations look similar to 
the Shubnikov–de Haas and de Haas–van Alphen effects in metals.

Although quantum oscillations in insulators have been reported in 
several systems including Kondo insulators SmB6 (refs. 131,132) and 
YbB12 (ref. 133), quantum wells134,135, topological excitonic insulator 
WTe2 (ref. 73), the QSL candidate α-RuCl3 (ref. 110) and more recently 
on YCu3-Br (ref. 136), the discussion of their interpretations remains 
widely open116,119,122,137–149. In the previous section, we summarized 
the status of oscillations observed in α-RuCl3. A conclusive demon-
stration of a neutral Fermi surface inside a charge gap remains an 
outstanding goal. It is essential to establish a concrete case in which 
intrinsic Landau quantization in insulators can be firmly established 
experimentally. This requires a combination of techniques for detect-
ing quantum oscillations that simultaneously excludes competing 
explanations.

We highlight the promise of achieving such a goal in monolayer WTe2 
and subsequently strongly correlated 2D materials systems. Quan-
tum oscillations in monolayer WTe2 insulators were first reported in 
the resistance measurements73. The most striking observation lies 
in the apparent conflict between the measured low conductivity (σ) 
of the resistive state (greater than 100 MΩ) and the high carrier den-
sity (n > 1012 cm−2) with high mobility (μ > 1,000 cm2 V−1 s−1) extracted 
from the quantum oscillation data73. In other words, σ ≪ neμ. A natural 
interpretation to resolve this conflict is to assign the highly mobile 
carriers responsible for the quantum oscillations to be charge neutral. 
This is the neutral fermion picture. In alternative explanations, these 
highly mobile particles are ordinary charge carriers, either thermally 
activated or residing in the metal component used in the device. In one 
scenario (1), they are charge carriers thermally activated across the 
gap, and the quantum oscillations of the insulator are interpreted as 
the consequence of the B-induced oscillations of the insulator gap66,144. 
In a second scenario (2), the highly mobile carriers reside in the nearby 
graphite gate, whereas carriers in monolayer WTe2 merely serve to 
detect Landau levels in graphite145.

To distinguish these scenarios, one needs to go beyond electrical 
transport measurements. In particular, measurements of quantum 
oscillations in the thermoelectric response of monolayer WTe2 have 
considerably clarified the situation74,150. Distinct from the conductiv-
ity, the Seebeck effect is sensitive to the derivative of the density of 
states with respect to energy and hence to the energy structure near 
the chemical potential. For instance, in a Landau quantized 2D electron 
gas, the Seebeck signal will develop a sign-change oscillation each time 
when the Fermi level is crossed by a Landau level (for example, observa-
tions in graphene151,152), signifying that the carrier type has altered its 
character effectively from ‘hole-like’ to ‘electron-like’ (Fig. 4a,b). Such 
sign-change thermoelectric quantum oscillations have been observed 
recently in the WTe2 monolayer insulator in the hole-doped regime74 
(Fig. 4c–f), indicating that the highly mobile carriers responsible for 
the quantum oscillations belong to WTe2 insulator itself and that a 
Landau level-like energy structure is developed in magnetic fields near 
the chemical potential. The alternative scenarios (1) and (2) are not 
supported by the thermoelectric data. In the neutral Fermi surface 
scenario, the Ioffe–Larkin sum rule relates the physical thermopower to 
the behaviours of all fractionalized components. The thermopower of 
neutral fermions, defined in relation to the emergent electric field, may 
be sensitive to the Landau quantization of the fermions128,129. An exact 
formulation for such a spin-charge separated insulator with Landau 
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quantization remains to be developed. The results identify 2D WTe2 
as an intriguing platform for investigating unconventional insulators.

More experimental probes are desirable to extend investigation 
of the quantum oscillations in 2D and 3D quantum insulators. The 
efforts towards confirming the true nature of insulating WTe2 and its 
puzzling Landan quantization problem will lead to the development 
of a new set of tools for diagnosing 2D insulators. It is exciting that 
we now have several concrete 2D material platforms, including WTe2, 
1T-TaS2/1T-TaSe2 and α-RuCl3, to explore the possibilities of neutral 
fermions, charge-neutral Fermi surface and other neutral phases in 
insulators. More candidate materials will surely emerge in the future.

Quest for new materials, experiments and theories
What is necessary to advance the research includes the developments 
of new quantum insulators, new detection schemes, innovative device 
structures and a new theoretical understanding of next-generation 
quantum effects in insulators. Such endeavours require synergetic 
efforts between chemists, experimentalists and theorists.

New materials
New synthesis of quantum materials in both the bulk and 2D forms is 
crucial. Recent examples of new Kitaev materials include Ru-based153 
(for example, RuI3) and Co-based154–156 honeycomb lattice materials (for 
example, BaCo2(AsO4)2). 2D forms of quantum insulators are still rarely 
explored and hold great promise, yet we already have several target 
materials including but not limited to the several cases that we high-
lighted in this article. The unique advantages of gate turnabilities and 
interface effects, especially by means of moiré quantum engineering, 
in 2D vdW crystals may provide entirely new possibilities in addressing 
some key issues. For instance, beyond monolayers, twisted bilayers of 
QSL may allow for quantum engineering of spinon bands.

New detection schemes
The detection of neutral excitations in condensed matter requires 
innovative techniques beyond conventional means. For instance, 
although we have no issues with fabricating high-quality devices of 

monolayer and twisted bilayer 1T-TaS2, we do not have an approach to 
uncover its electronic properties at low T. Recently, far-infrared optical 
spectroscopy of quantum materials at millikelvin temperatures and in 
magnetic fields has been developed157, which might be helpful moving 
forward. Optical means can in principle access neutral excitations that 
are not visible in charge transport. For example, optical resonances of 
ground state excitons may provide an unambiguous demonstration 
of excitonic insulators and distinguish their species. Fingerprints of 
a charge-neutral Fermi surface may be found in subgap optical reso-
nances29,32,76,158. Similarly, probing techniques in the THz to GHz regime 
will probably be powerful, yet their applications in correlated quan-
tum insulators, especially at ultralow T and in strong B, remain largely 
unexplored. A promising avenue is to extract information of hidden 
excitations by 2D coherent spectroscopy159–161. Another exciting direc-
tion to explore is to use recent advances in quantum sensing for probing 
quantum matter. A proposal is to use nitrogen vacancy-centre spin 
qubits for detecting quantum noises of spinon Fermi surfaces33,162–164.

Charge-neutral quantum devices
The investigations of neutral quantum phases in insulator will probably 
benefit the development of future quantum devices. The exploration 
of such devices will in turn further promote the study of quantum insu-
lators. For instance, neutral excitonic or spinon phases may allow for 
low-power consumption transistors without suffering Joule heating 
(as it does not involve charge transport). Simultaneously, chip-scale 
generation, non-local transport165 and detection of neutral excitations 
could provide unique ways of proving the existence of hidden neutral 
modes. Such explorations will be essential in establishing the unique 
non-local properties of many neutral excitations of interest. A highly 
relevant topic is that the realization of electron fractionalization and 
anyons in insulators can in principle enable robust quantum computa-
tion schemes with topological protection14.

New theoretical understanding
Despite the significant progress in theoretical understanding of a large 
class of non-trivial quantum insulators we still face serious challenges  
in bridging the divide between ideal theories, models, and materials. 
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One strategy for closing this divide is to search for new general prin-
ciples that could enrich our search for the emergence of fractionali
zation in models and materials. For example, non-trivial band topology 
prevents the existence of a trivial localized flat-band Hubbard limit, 
because of the obstruction to constructing Wannier orbitals. This offers 
an enhancement of the quantum fluctuations induced by interactions 
that could favour non-trivial quantum orders in partially filled topologi-
cal bands. In fact, this feature is intimately linked to why fractionalized 
phases are abundant in the limit of Landau levels, which are essentially 
ideal flat Chern bands. Although the link of non-trivial band topology 
to enhanced quantum fluctuations has been recently emphasized and 
investigated in moiré materials, understanding its broader implica-
tions and incarnations, for example in 3D materials, remains largely 
open. With the increasing numbers of 2D and 3D insulators with non- 
trivial topological band structures, the need to better understand the 
interplay of band topology and strong interactions is pressing.

Another important challenge is to develop the theory of new exper-
imental probes that help identify and characterize the presence of 
non-trivial states in materials. For example, nitrogen vacancy-centre 
noise spectroscopy is a promising tool that could help overcome some 
of the difficulties of nuclear magnetic resonance in 2D settings, and 
could help identify different non-trivial states33,162–164. More generally 
there is a need to develop our understanding of probes that could guide 
better the detection and characterization of non-trivial states in cor-
related materials.

Summary and outlook
In this Perspective, we have provided our views on a class of intriguing 
problems of quantum insulators and reviewed their status in theory 
and experiment. The topics discussed are selected to emphasize what 
we believe are the major challenges and promises in the field. Space 
restrictions prevent inclusion of many other recent findings. An exam-
ple is the fractional quantum anomalous Hall effect166–171 in fractional 
Chern insulators172–176 recently observed in moiré materials. The rapid 
pace of discovery suggests that research in charge-neutral phases, 
excitations and phase transitions in fractionalized moiré materials 
will be an exciting area in the next few years.

The challenges in detecting hidden phenomena in insulators seem 
to recall how electromagnetic waves were first detected. We have made 
analogies between neutral fermions coupled to the emergent gauge 
field and electrons coupled to electromagnetic fields. The Hertz experi-
ments177, performed two decades after publication of Maxwell’s equa-
tions, transformed the communication industry. Success in detecting 
neutral excitations and emergent gauge fields in quantum insulators 
may have a similar impact.
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