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ABSTRACT

In a companion paper, we put forth a thermodynamic model for complex formation via a chemical reaction involving multiple macromolec-
ular species, which may subsequently undergo liquid-liquid phase separation and a further transition into a gel-like state. In the present work,
we formulate a thermodynamically consistent kinetic framework to study the interplay between phase separation, chemical reaction, and aging
in spatially inhomogeneous macromolecular mixtures. A numerical algorithm is also proposed to simulate domain growth from collisions of
liquid and gel domains via passive Brownian motion in both two and three spatial dimensions. Our results show that the coarsening behavior
is significantly influenced by the degree of gelation and Brownian motion. The presence of a gel phase inside condensates strongly limits the
diffusive transport processes, and Brownian motion coalescence controls the coarsening process in systems with high area/volume fractions
of gel-like condensates, leading to the formation of interconnected domains with atypical domain growth rates controlled by size-dependent

translational and rotational diffusivities.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0196794

. INTRODUCTION

While multi-component liquid-liquid phase separation (LLPS)
in various physical systems has been broadly studied both theoreti-
cally and experimentally,' * possible chemical reactions between
the components introduce another layer of complexity, changing
the underlying microscopic picture. The product of the chemi-
cal reactions between different macromolecular species is often
referred to as a complex, which in turn may form mesoscopic aggre-
gates or biomolecular condensates via LLPS. For instance, oppo-
sitely charged polymers react with one another to form “complex
coacervates,” exhibiting physical properties different from the indi-
vidual polymers.”” Similar phenomena have also been observed in
other systems, such as colloid-polymer blends, proteins, and nucleic
acids,”” necessitating the consideration of multi-component reac-
tions that may lead to LLPS. Theoretical models are able to address
many questions about reaction-induced LLPS and predict phase
behaviors in simple systems.'’ "

The condensates emerging via LLPS do not always behave
liquid-like, however, as physical cross-links can form between

individual macromolecules.””™"” This process, often interpreted as
aging, restricts the mobility of condensates, resulting in slower
kinetics.'”"” Gelation is a form of aging resulting from the formation
of physical cross-links, which play a crucial role in various systems.
Although gel phases may contribute to the biological functions dur-
ing protein assembly,”’ further transitions from the gel phase into
a more solid-like phase (e.g., fibrillar aggregates) are often asso-
ciated with various neurodegenerative diseases.”’ " Therefore, to
tackle the problem of complex formation and unravel its relation
to LLPS, a thermodynamic model for multi-component chemically
reactive macromolecular mixtures was formulated in a companion
paper.”” Ternary phase diagrams were constructed to predict the
phase behavior of quaternary mixtures that may undergo chemical
reactions together with LLPS as well as their propensity to further
transition into a gel-like state.

The interplay between complexation rate, phase separation,
and aging kinetics produces a plethora of possible scenarios for
kinetic pathways. In a system with infinitely fast complexation rates,
chemical equilibrium is instantly achieved, conforming to the classi-
cal view of well-studied multi-component mixtures.””’ Conversely,
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in a system with an infinitesimally slow complexation rate, chemical
equilibrium is never reached; the system relaxes only by the ther-
modynamic driving force and exhibits the same phase behaviors as
the multi-component mixture consisting of the initial species. The
intermediate regime, however, where complex formation, phase sep-
aration, and aging occur simultaneously, is less clear. These cases can
be further complicated by the phase behavior of each species, as the
reactants’ multiphasic properties may affect the complexation rate.””
Moreover, considering aging kinetics adds another layer of complex-
ity, as each macromolecular species may exhibit different degrees of
aging.

Importantly, chemical reactions and spatially inhomogeneous
compositions are often observed during the relaxation of an initially
out-of-equilibrium multi-component system toward equilibrium,
which cannot be addressed only by a thermodynamic model without
explicitly considering the kinetics. A case in point is the Brown-
ian motion of small particles or aggregates suspended in a fluid.”®
It has been shown that in an aqueous solution or a crowded cel-
lular environment, Brownian motion will lead to displacements of
micrometer-sized structures.”” >’ Colloidal systems, in which indi-
vidual particles exhibit Brownian motion, can form clusters and
gels.””” Tt has also been shown that diffusion-limited coarsen-
ing (DLC) and Brownian-motion-induced coalescence (BMC) con-
tribute significantly to the coarsening kinetics of condensates.””*"”
Berry et al. studied the coarsening of liquid-like biomolecular con-
densates (nucleoli) in three dimensions (3D) and found the dom-
inance of BMC at late times.”® Wilken et al. in turn performed
two-dimensional (2D) simulations to study condensates formed by
DNA nanostars and investigated their near-equilibrium Brownian
motion.”

To the best of our knowledge, however, the existing meso-
scopic models of multi-component LLPS or reaction-induced phase
separation do not capture the kinetic aspect of the aging of
coacervates/condensates and their Brownian motion. To bridge
this knowledge gap, herein we develop a thermodynamically
consistent approach to study the spatio-temporal evolution of
multi-component, chemically reactive macromolecular mixtures
and examine the interplay between LLPS, chemical reactions,
aging (gelation), and Brownian motion operating concurrently. As
detailed in a companion paper,”” our thermodynamic model pre-
dicts the phase behavior of a macromolecular mixture and its
propensity to undergo aging via gelation, which can be affected by
molecular sizes, stoichiometric coefficients, equilibrium constants,
and interaction parameters. In this paper, with an emphasis on the
kinetic aspect of such mixtures, our results imply that the coarsen-
ing behavior is significantly influenced by the degree of gelation and
Brownian motion. The presence of a gel phase inside condensates
strongly limits diffusive transport processes, and BMC controls the
coarsening process in systems with high area/volume fractions of gel
condensates, leading to the formation of interconnected gel domains
with atypical growth rates controlled by size-dependent translational
and rotational diffusivities.

Il. KINETIC MODEL
A. Thermodynamic free energy

The thermodynamic model of a homogeneous macromolecular
mixture that can undergo LLPS and further transition into gel-like
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state was presented in our companion paper.”” Here, we adopt the
formulation of a binary reversible chemical reaction between two
molecular species X and Y in forming a complex Z inside a buffer
solution B, i.e.,

nX +mY < XpyYm = Z, (1)

where n and m are the stoichiometric coefficients. The liquid free
energy density is' >’

fiqua(X, Y, Z) = T\ X I X+ L1 Y+—(an+yz)
Vo

Ty
+B1In B+ y XY + xx: XZ + . YZ

+ XbeB + Xyb YB + XzbZB s (2)

where kp is the Boltzmann constant, T the absolute temperature,
vo the molecular volume of a monomer, r», r,, and r, denote degrees
of polymerization, X;$ are the interaction parameters between

species iand j, and u? = —In K denotes the standard chemical poten-
tial of the complex, where the parameter K corresponds to the
equilibrium constant for the reaction in an ideal solution (Xij =0)

with equal degrees of polymerization.” It should be mentioned that
if one considers only the change in the translational entropy asso-
ciated with the complexes, r, = nry + mry; however, to allow for
possible changes in chain conformations upon complex formation,
Tx, 'y, and r, can be treated as independent parameters.

Now, as far as gelation is concerned, a simple criterion based
purely on the local complex volume fraction was employed in our
previous work,”” which enabled the identification of the gelation
regions in phase diagrams by simply constructing iso-contour lines
of the complex volume fraction Z. In the present work, the gelation
criterion is re-formulated with the aid of a gelation order parameter
¢ €[0,1] for convenience. To this end, the liquid-to-gel transition
within the clusters of molecular complexes is captured using the
simple free energy density””

faa(Z4) = f[ 8(2) 2

3 ] ©)

where f; > 0 denotes a characteristic energy density scale, and the
term g(Z) couples gel concentration to the complex volume fraction
via

g(2) = p Z- , (4)

Z)(‘
where

exp (AF:/kgT)

1+ exp (AF:/kgT) ®)

The parameter p denotes the fraction of the monomers in the poly-
mer that are in the proper configuration to form cross-links, such
that pZ is the volume fraction of cross-links in the system. AF, in
turn denotes the change in free energy when forming a cross-link in
the chain, while Z* denotes the critical cross-linking volume frac-
tion necessary to form a gel. The form of Eq. (3) ensures that when
PZ>Z", fei has a local minimum at ¢ = g(Z) € (0,1), while for
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pZ < Z*, the local minimum of fy is at ¢ = 0. Together, the total
free energy of the system is thus written as

F- fv PH fiqua (5 Y, Z) + fua(Z,9)], ©)

where V' denotes the system volume. Equation (6) also describes the
bulk free energy of all molecular species, and minimizing it provides
one with the thermodynamic driving forces that govern the system’s
evolution.

B. Spatially inhomogeneous, chemically
reacting systems

The thermodynamic model only describes the properties of
a spatially uniform mixture at equilibrium. However, the need to
model the spatio-temporally varying compositions and their evolu-
tion kinetics for systems out of equilibrium necessitates the develop-
ment of a model that properly incorporates capillary (i.e., interfacial)
effects, mass transport kinetics, and chemical reactions. To account
for capillary effects, we introduce standard squared gradient terms
to the total free energy,

p= [ Sior + Sioxt+ Spov
= —+ + = + =
v ’ 2 ¢ 2 2
82 -2
+ EZ|VZ| +fliquid(Xa YsZ) +fgel(Z>¢)}> (7)

where &4, &, €, and & denote the gradient energy coefficients
setting the scale of the interfacial tensions for ¢, X, Y, and Z,
respectively.*

In describing the temporal evolution of X, Y, and Z, it is
important to recognize that an undriven reactive system at equi-
librium must not only satisfy phase equilibria (equality of chemical
potentials between coexisting phases), it must also satisfy chem-
ical equilibria.” To achieve this, we construct our kinetic equa-
tions based on a thermodynamically consistent theory of undriven
chemically reactive, inhomogeneous systems set forth by Bazant."
Furthermore, we adopt the form of chemical potentials derived
by Kirschbaum and Zwicker'* for species with different molecu-
lar volumes undergoing chemical reactions. Therefore, our kinetic
equations for molecular species X, Y, and Z are written as combina-
tions of Cahn-Hilliard equations (model B)** plus terms emanating
from chemical reactions,

0X OF
i (MxVxVﬁ) - nvR, ®)
oY OF
5 = V . (MyVyVW) - mVyR, (9)
oz OF
a =V- (Msz 6Z) + V2R, (10)

where M; and v; denote the mobility constant and molecular vol-
ume for species i, respectively. Volume conservation during chem-
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ical reactions is enforced by imposing v, = nv, + mv,, which is
consistent with the formulation in the thermodynamic model. Fur-
thermore, we adopt the following form of rate equation for chem-
ical reactions, which is consistent with both detailed balance and
non-equilibrium thermodynamics,”’

R=k [ex (nvx6j+mvy SF) ex ( < g)] (11)
RSP e ox T ke oY) T TP\ 02) )

where ko denotes a characteristic reaction rate. It is easy to verify that
as the system is driven toward phase and chemical equilibria given
by p, = 0F/8X; = const. and nvep, + MYy, = Vzli,, respectively, cor-
responding to R = 0 and 9X;/0t = 0 by construction.

Finally, the gelation process in turn can be interpreted as a non-
conserved phase transformation. The time evolution of the local
gel order parameter OP ¢(r,t) is governed by the Allen-Cahn
equation (model A),”

o . 0F,
o~ Mgy (12

where My denotes the mobility constant of the gel phase. In addi-
tion, we assume that the rate of chemical reactions and complex
mobility decrease drastically within the gel phase due to the exis-
tence of physical cross-links,””"" i.e., ko(¢) = ko exp (=¢/¢o) and
M, (¢) = Mo exp (—¢/¢o), where ko and M, denote the reaction
constant and the mobility of the complex Z in liquid state, and
¢, < 1 denotes a characteristic gel OP value above which the reac-
tion slows down significantly. That is, the formation and diffusion
of the complexes are limited by the presence of the gel phase, which
may force the system to remain in a non-equilibrium state over

macroscopic time scales (Fig. 1).
L
; : &
”‘\

X Y Liquid condensate

3
82

Complex

-=--=- Cross-link
~~-» Trajectory -
com Gel condensate

Coarsening

FIG. 1. Schematic of the Brownian motion-driven coarsening mechanism consid-
ered in this work. Two macromolecular species X and Y react to form a complex,
Z, which subsequently phase separates from the buffer to form condensates.
Liquid-like condensates coarsen via combination of diffusion-limited coarsening
(DLC) and Brownian-motion-induced coalescence (BMC) while preserving spher-
ical morphology. Gel condensates appear anisotropic due to the presence of
physical cross-links, while their Brownian motion leads to the formation of irregular,
possibly interconnected structures.
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I1Il. NUMERICAL METHODS
A. Phase field solver

To numerically study the time-dependent morphologies and
aggregate size distributions that emerge from the model, the fields
X, Y, and Z are initialized with small fluctuations around their
respective initial values (Xo, Yo, and Zo) within the spinodal region
according to the ternary phase diagrams constructed in paper 1>
For example, we set Xo = Yo = 0.118 + 0.025 and Z = 0.01 + 0.005
in the system depicted in Fig. 2. The gel OP ¢ is also initialized
with small and positive random values ¢, € (0,1 x 107*). We then
numerically integrate Eqs. (8)-(10) and (12) using a forward in time,
centered in space scheme on a uniform square/cubic grid with peri-
odic boundary conditions and edge length L. During each iteration,
the reaction rate R is evaluated using the solutions from the previous

(b)
(@)

0
Bo 01 02 03 04 05 06 07 08 09 1 Y

|

0.0 0.2 0.4 0.6 0.8 1.0
Complex volume fraction

——— Phase boundary —_— Spinodal line

- Gelation region

- Tie-line
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time step and then coupled to model B equations to yield the new
fields X, Y, and Z. The Laplacians in 2D (3D) are evaluated using
isotropic 9-point (27-point) stencils.*!

In the simulations, we employ the following non-dimensional
parameter values: simulation box size Ny =N, = N, =200, uni-
form spatial resolution Ax=Ay=Az=1, a uniform time step
At=1x10"", My=My=M,=1 k=1 ex=¢g=¢=8,
e =0.01, and ¢, =0.001. The reaction rate constant ko is
chosen to be on the same order as the mobility coefficients in
the simulations, such that we are in a regime where chemical
reaction, phase separation, and gelation are contributing to the
overall phase behaviors. n=m=1, vx=v, =1, X =4 K =100,
and Z* = 0.4 are used in all simulations. To be consistent, we set
p =1 for systems undergoing gelation and p = 0.2 for liquid-like
systems. These parameter values were chosen to produce physically

t = 10000

~mooooo
0 O W N

[ T T T T

= p
e p
Ap
3.5 ,} VP
¢ p
<p

0.0 0.2 0.4 0.6 0.8 1.0,

x10°
0.0 25 5.0 75 10.0

FIG. 2. Coarsening behavior in 3D systems without Brownian motion. (a) Phase diagram of a representative system. Parameters employed: n=m=1, vy = vy, =1,
re=ry=rz=1,x, =4 K=100, Z* =04, and p = 1. For p < 1, the gelation region shrinks and disappears altogether when p < Z*. Red star: initial condition at
(Xo = Yo =0.118). (b) Time sequence of liquid-like condensate configurations in a system without gelation (p = 0.2). Green: complex-rich phase with iso-volume for
Z > (Zmax — Zmin) /2; transparent: complex-poor phase. (c) Time sequence of condensate configurations with gelation with p = 1. Black: gel phase. (d) Average domain
size cubed (R)® vs time displaying the expected behavior (R)® = Q. Inset: Coarsening prefactors Q show strong dependence on the degree of gelation and decrease
significantly when gel phase is present in condensates. Error bars show a standard deviation of 20 repeated simulations.
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reasonable outputs, as our aim is to study the general behavior of
complex formation and phase transformations rather than simulate
a particular macromolecular mixture. To study a specific mixture,
additional information measured at a microscopic or macroscopic
scale is required to determine the phenomenological parameters.

B. Brownian motion algorithm

By assuming Stokes flow, Berry et al. proposed an algo-
rithm that couples the translational Brownian motion of con-
densates to hydrodynamic equations of motion corresponding to
3D Stokes flow.” When liquid droplets overlap, their cores are
merged instantly with conservation of volume and center of mass
(COM). While such an approach works well for simple liquid con-
densates, it encounters problems for gel-like domains, which behave
rather differently when merging. In fact, recent evidence shows
that the movements of gel-like condensates in a flow chamber may
lead to granular structures, which subsequently grow into an inter-
connected network over time.*” Furthermore, a full description
of Brownian motion includes not only translational displacements
but also rotational ones, which may become significant when the
merging aggregates are non-spherical, thus affecting the coarsen-
ing behavior and final morphology of the system. To investigate the
non-equilibrium processes of both liquid and gel-like condensates
under Brownian motion coalescence (BMC), we have developed
an algorithm to effectively couple Brownian motion to the existing
phase-field modeling framework, as will be detailed next.

In our algorithm, once phase separation occurs, each complex-
rich condensate, regardless of its geometry, is identified as an
“island” using the Depth First Search (DFS) algorithm.*® The search
algorithm assigns each identified island a label number, and the
coordinates of every point within the island are stored for later
computation based on a local volume fraction threshold Z > (Zmax
= Zmin) /10 + Zmin. The COM of the island, ; COM ih a domain with
periodic boundary conditions, is subsequently determined. Assum-
ing uniform mass distribution within each island, the COM is given
by F,-COM = Zl}gl rij /Ni, where rij is the position of the jth voxel in
island i, while N;(t) is the total number of voxels in island i. [It is
noteworthy that this method will fail for islands spanning across the
periodic boundaries, an issue which can be circumvented by apply-
ing an algorithm from Bai and Breen in both 2D and 3D.""] Given
the total (dimensionless) volume N; of the ith island, we define an
effective radius of the island via R;(t) = (3N;/4r) 13 Upon the iden-
tification of all islands, a local velocity field v;, which is non-zero only
in regions spanned by the ith island and zero elsewhere, is assi%ned.
The effective advection velocity is then constructed via v = 3,1, v,
where N(t) denotes the total number of islands at a given time. The
advection of any field ¥, including X, Y, Z, and ¢, is then achieved
by evolving the continuity equation: ¥ (7, t) /0t + V - (¥¥) = 0. To
numerically solve this equation, we use an upwind scheme to achieve
numerical stability.>* This method ensures the conservation of
buffer solution to achieve relative errors smaller than 1 x 107° after
more than 1 x 107 time steps in all the simulations reported in this
work.

Now, the Brownian motion of the condensates has contri-
butions from both translational and rotational displacements. To
construct the velocity vectors ¥; in 3D, we first consider transla-
tional motion. The island i is displaced in a random direction every
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mth time step by a distance &r; = \/6D}mAt, where D? denotes
the translational diffusion coefficient”” and m denotes the num-
ber of time steps in the iterative scheme. This assumes that the
hydrodynamic drag forces and torques acting on each domain are
isotropic, which is an oversimplification under some circumstances
(e.g., slender objects experience smaller drag parallel to the long axis
as compared to motion perpendicular to the long axis).””' How-
ever, in a system where coarsening and merging of domains are
present, the domains become less anisotropic over time, render-
ing the assumption physically justified. Next, a random unit vector,
%, is generated for each island, representing the displacement direc-
tion of the entire island. The uniform translational velocity field
assigned to all points within the island is thus ¥} = Ot Assuming

mAt
rigid body rotation, the angular displacement of each island every m

time steps is 66; = \/4D;mAt, where D; denotes the rotational diffu-
sion coefficient.”” A unit vector through the COM of the island, ¥}, is
randomly generated as the axis of rotation. At each point within the

island, a unit tangential velocity vector is computed as vj; = ¥; x F;-i,
where 77 denotes the shortest vector from 7j; to the rotation axis.

The magnitude of the tangential velocity in turn is proportional
to the distance from the rotation axis, ie., ¥j = w,-|F?W,TJ», where

ri% ; denotes the angular velocity, yielding the local velocity field
¥ =¥ + ¥} For islands spanning the entire simulation domain,
we set ¥; = ¥/ to eliminate any unphysical effects associated with
rotational Brownian motion across the periodic boundaries.

For an isolated spherical droplet in 3D Stokes flow, the
translational and rotational diffusion coefficients are given by the

Stokes-Finstein relations’™” as D} = kT and Dj = kBT},
67nR; 87N R;

n denotes the viscosity. This results in the well-known relation
between the diffusion coefficients D} = 3D}/(4R?). However, the
physical properties of the condensate and its surrounding medium
are often non-ideal, leading to changes in size dependencies of
D"and D". The formulation above allows free modifications of diffu-
sivities, making it suitable for investigations of the scaling behavior
in various systems, which we will elaborate on using 2D simulations
in Sec. I'V.

wi =

where

IV. RESULTS
A. Coarsening behavior without Brownian motion

First, systems without Brownian motion are studied. In
Fig. 2(a), following the approach detailed in our companion article,”
the phase diagram of a representative system in which the gelation
region partially overlaps with the LLPS one is shown. For illustrative
purposes, the degrees of polymerization are set to ry =ry =1, =1
(i.e., the reactants and complexes are taken to be globular); mod-
ifying these values leads to shifts in the phase boundaries without
affecting the generic coarsening mechanisms in both liquid- and gel-
like systems. As discussed in the companion article,”” the partial
overlap between the LLPS and gelation regions imply that a sig-
nificant fraction of systems prepared within the coexistence region
will display gelation. In Fig. 2(b), we show the time evolution of
a 3D system initialized with the compositions at Xo = Yo = 0.118
and gelation parameters p = 0.2 and Z* = 0.4, which yield a pure
liquid-like system. At early stages, complexes first form via the fast
chemical reaction, subsequently phase separating from the buffer to
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form complex-rich condensates (green) via spinodal decomposition.
As time progresses, the small liquid condensates undergo diffusion-
limited coarsening (DLC or Ostwald ripening) to form larger con-
densates. In comparison, when increasing the fraction of cross-links
formed in the complex to p = 1 [Fig. 2(c)], gel phase (black) evolves
within the condensates as it meets the gelation criterion at t = 2500.
The presence of gel phase slows down the reaction-diffusion pro-
cess of the complex, leading to significantly lower coarsening rates
and less spherical morphologies for condensates at late times. The
coarsening rates of the system with various values of p are quantified
in Fig. 2(d). For all cases, the coarsening of condensates asymptoti-
cally follows (R)? = Qt, agreeing with the Lifshitz—Slyozov-Wagner
(LSW) theory,”*”” where (R) denotes the average domain or droplet
size. When plotting the effective coarsening prefactors Q in the inset,
the liquid-like condensates (pZ < Z*, i.e., p = 0,0.2,0.4) display the
highest coarsening rates. When higher fractions of cross-links form
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FIG. 3. Time-dependent size distributions in 2D systems without Brownian motion.
(a) Liquid-like system. (b) Gel-like condensates. Insets: Scaled size distributions
and comparison with analytic models from LSW,*"* Marqusee,>® and Ardell.>?
Liquid-like systems show good agreement with the Marqusee and Ardell mod-
els, while gel-like systems behave more like the LSW ones. The distributions
are obtained by averaging 20 random initial conditions for both liquid and gel-like
systems.
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inside the condensates (pZ > Z*, i.e., p = 0.6,0.8, 1), the coarsening
rates significantly decrease with increasing p.

We further investigate how gelation affects the size distribu-
tion of condensates. For a purely liquid system, LSW theory predicts
the functional form of the droplet size distribution in a three-
dimensional space in the limit of vanishing volume fraction of the
condensate phase.”* ”" Marqusee et al. and Ardell et al. proposed
models for two-dimensional size distribution with physically mean-
ingful area fractions that are finite.” " We performed 2D simula-
tions to assess the applicability of these condensate size-distribution
models. For a finite area fraction of 0.21, the simulation results of
a liquid system have better agreement with Marqusee and Ardell’s
models than LSW theory [Fig. 3(a)]. However, for a gel-like sys-
tem [Fig. 3(b)], the coarsening of condensates is hindered by the
physical cross-links, leading to a relatively stagnant change in the
size distribution throughout the simulations. This resulting scaled
size distribution (inset) is still in reasonable agreement with the
LSW model.

B. Coarsening behavior with Brownian motion in 2D

While the size dependencies of diffusion coefficients of spheri-
cal particles are well defined in 3D, there is no equivalent definition
of Stokes-Einstein relation for 2D disks due to the ill-defined drag
force and so-called Stokes’ paradox.””' For practical measurements
in finite quasi-2D systems, the standard Stokes-Einstein relation
is only valid under certain conditions, and more often it breaks
down.”” " To gain a better understanding of the effects of the
size dependencies of diffusion coefficients on coarsening, we first
conduct a systematic investigation of both liquid and gel-like con-
densates undergoing Brownian motion using 2D simulations. The

translational displacement in 2D is r; = \/4D§mAt, and the angle

of rotation becomes 86; = \/2D;mAt.*> The rotation axis is set to be
perpendicular to the xy-plane, such that the rotation of 2D struc-
tures is either clockwise or counter-clockwise for a given island. The
effective radius of each domain is now defined as R; = \/Ni/m.
Assuming that the effects of rotational displacements can be
neglected during the coalescence of liquid condensates due to their
spherical morphology, we first investigate how the size dependence
of translational Brownian motion affects the overall coarsening rate
within a simple picture of coalescence events driven by binary colli-
sions. As discussed by Siggia using a mean-field approximation,*® let
us consider N(t) spherical liquid droplets with radius R(¢) per unit
volume undergoing Brownian motion. The droplet volume frac-
tion is defined as fv = %N(t)?‘l’Ra(t). The rate of change of N(t)
due to binary droplet collision events can be expressed as dN(t)/dt
= —16nD'R(t)N*(t), or written in terms of R(t), R(t)dR(t)/dt
= 4fyD". If the translational diffusion follows D' ~ R™%, we read-
ily obtain R**2(t) ~ fvt. Similar analysis in 2D leads to a similar
scaling form R**2(t) ~ fat (apart from logarithmic corrections),
where f4 denotes the area fraction. While these arguments provide
guidelines for studying the coarsening rate of liquid condensates
undergoing translational diffusion, the effects of rotational dif-
fusion have been neglected based on the assumption of circular
(spherical) shapes of the 2D (3D) condensates. However, as we will
show, the gelation of the condensates leads to non-spherical mor-
phologies, making such assumptions invalid. As a result, rotational
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diffusion becomes significant. Next, we conduct parametric stud-
ies on 2D systems to quantify how size-dependent translational and
rotational diffusion coefficients affect the overall coarsening behav-
ior. The data presented below were averaged over 20 independent
simulations.

1. Stokes-Einstein relation D' ~ 1/R, D' ~ 1/R*

We first consider a 2D system in which the domains
execute Brownian motion with diffusivities following the 3D
Stokes-Einstein relation D' ~ 1/R and D" ~ 1/R>. As for a physical
example of such systems, it has been shown that cylinders embed-
ded within planar lipid bilayer membranes surrounded by a viscous

ARTICLE pubs.aip.org/aipl/jcp

bulk solvent exhibit such behavior when the length of the cylinder
exceeds a characteristic length scale ¢y set by the ratio of membrane
and fluid viscosities.

Now, in a dilute liquid system with an area fraction of 0.236
[ ], both Ostwald ripening and Brownian motion contribute
to the coalescence of the condensates. We observe from the simula-
tions that BMC is the dominant mechanism at the early stage, as the
small condensates experience larger displacements from Brownian
motion. The short-time dominance of liquid-like condensate coa-
lescence also holds true for systems that can undergo gelation, as the
gelation kinetics require a finite amount of time for physical cross-
links to form. At the late stage, the displacements of condensates
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FIG. 4. Coarsening behavior of 2D systems with domain diffusivities given by the 3D Stokes—Einstein expressions D' = 0.25/R and D = 0.1875/R®. Time sequences of
condensates: (a) Dilute (area fraction = 0.236) and liquid-like, (b) dilute and gel-like, (c) dense (area fraction = 0.386) and liquid-like, and (d) dense and gel-like. (e)-(h)
Scaled size distributions of (a)-(d), respectively. The morphology and the size distribution of a system undergoing Brownian motion are strongly affected by gelation and the

density.
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caused by Brownian motion are significantly smaller due to the size
dependencies; therefore, few collisions can be observed, and the
coarsening becomes more diffusion-limited. As a result, the late-
stage size distribution does not fit well with the analytic steady-state
size distribution for BMC while it shows better agreement with the
LSW theory, which is also left-skewed [Fig. 4(e)]. On the contrary, in
a system where diffusion and reaction become strongly restricted by
gelation, Brownian motion emerges as the main coarsening mecha-
nism for the gel-like condensates. Unlike the instantaneous merging
between liquid condensates, the collisions between gel-like conden-
sates partially preserve the original morphologies of the condensates
while the diffuse liquid-like interfaces merge. Many “dimers” and
“trimers” are formed by the merging of circular condensates at
t =1000 [Fig. 4(b)]. This morphology resembles the experimental
observations on phase separated bilayer membrane systems that can
form a “sponge” phase.”® After the initial stage, the coarsening of
the dimers and trimers leads to non-circular domains. The scaled
size distribution of the gel-like system in Fig. 4(f) deviates from
LSW theory but agrees well with the analytic distribution for a sys-
tem dominated by BMC, suggesting that the suppression of the
reaction-diffusion process by gel phase results in a change in the
dominant coarsening mechanism from DLC to BMC.

Next, we study a more dense system with an area fraction of
0.386. We observe that the liquid-like mixture displays more fre-
quent coalescence events caused by Brownian motion [Fig. 4(c)]
when compared to the dilute mixture throughout the simulations.
The scaled size distribution also reflects this observation by way of
fitting better to BMC than LSW theory [Fig. 4(g)]. For the gel-like
system [Fig. 4(d)], many collision events can be observed at early
stages, leading to the formation of connected domains with irregu-
lar morphologies. At late stage, however, the degree of anisotropy
decreases as the domains continue to coarsen. The temporal evo-
lution also shows direct evidence that branched gel-like domains
possess an enhanced ability to recruit surrounding domains by rota-
tion, reflected in a scaled size distribution predicted by the BMC
distribution [Fig. 4(h)].

The observations above indicate that the coarsening mecha-
nism and size distributions of condensates are affected not only by
the degree of gelation but also the area fraction. By plotting the
average condensate radius cubed R* vs time for various area frac-
tions extracted from extended simulations in Fig. 5, we find that
R o< t'2 holds at late stages of coarsening for all four systems. For
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the most dilute system [Fig. 5(a)], both liquid-like and gel-like mix-
tures have the same coarsening behavior at the earliest stages (inset),
as it takes some time for the gel phase to form inside the condensates.
Once the gel phase has formed, it hinders the reaction-diffusion pro-
cess, leading to a sudden drop in the coarsening rate, deviating from
the liquid-like curve. However, the coarsening rate of gel-like con-
densates keeps increasing, such that it becomes comparable to the
liquid-like system at late stages.

More interestingly, as the area fraction is increased to 0.343
[Fig. 5(b)], the coarsening rate of gel-like condensates keeps up with
the liquid-condensates at early stages but still falls behind at inter-
mediate and late stages. By further increasing the area fraction to
0.365 [Fig. 5(c)], we observe that gel-like condensates coarsen with
the same rate as liquid-like condensates up to t = 9000 and coarsen
faster thereafter. Finally, in the simulations performed at the largest
area fraction [0.386; cf. Fig. 5(d)], a cross-over behavior is observed
already at very early stages (inset). Therefore, once the gel phase
forms, BMC overtakes DLC as the main coarsening mechanism in
gel-like systems, leading to faster coarsening kinetics as compared to
the liquid-like system at the same area fraction, in striking contrast
with systems without Brownian motion [cf. Fig. 2(d)].

2. Saffman-Delbriick relation D* ~ In(£y/R), D" ~ 1/R?

Next, we consider the case of domains embedded within a pla-
nar lipid bilayer membrane with domain sizes small compared to
£,°” with £y set equal to the simulation box length L. For a cylindrical
domain of radius R << £;, Saffman and Delbriick derived the expres-
sions D' ~ In (49/R) (corresponding to an effective exponent & ~ 0)
and D' ~ 1/R* .°"*” The predicted scaling behavior for D' was later
verified by measuring the lateral diffusion of membrane proteins.”’
It was also utilized in a recent study that couples active flow fields to
phase separated lipid membranes.”!

To illustrate how gelation affects the coarsening behavior in
this system, we first note that while the liquid-like condensates
continue to display circular domains, the gel-like ones with an
area fraction of 0.386 rapidly form interconnected structures, as
shown in Fig. 6(a). The coarsening behavior of this system is also
affected by the condensate area fraction. Figure 6(b) shows that
for a dilute system, liquid-like condensates coarsen faster than gel-
like condensates and display behavior consistent with the predicted
scaling behavior (R)*** ~ (R)* oc t at late times. For the dense
gel-like system, however, the formation of interconnected domains
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FIG. 5. Average domain size cubed (R )® vs time for 2D systems with D = 0.25/R and D* = 0.1875/R* at various area fractions: (a) 0.236, (b) 0.343, () 0.365, and (d)
0.386. The coarsening rate of the gel condensates overtakes the liquid ones at sufficiently large area fractions.
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expressions D' = 0.025 In (L/R) and

D" = 0.025/R?. (a) Time sequences of gel-like condensates in a dense (area fraction of 0.386) system. (b) Average domain size (R )? vs t for the dilute (area fraction of
0.236) system. The liquid-like system displays behavior (R)? ~ tin agreement with the scaling analysis. (c) (R) vs t for the dense system. (d) Radius of the largest cluster
Rmax (t) for the two systems vs t. It is noteworthy that Rmax (t) for the dense gel-like system rapidly outgrows its liquid counterpart before saturating due to finite-size effects.

correlates with the rapidly increasing coarsening rate for (R) dis-
played in . More intriguingly, the radius of the largest cluster
Rmax(t) = max {R;(t)} for the dense gel-like system [cf. ]
outgrows its liquid counterpart already at the early stages of the
coarsening process. We note that Rmax(t) begins to plateau for
t > 600, beyond which (R) is affected by finite-size effects. To better
understand the respective roles of translational and rotational diffu-
sion on coarsening rates, we next consider a scenario in which only
rotational diffusion is active.

3. No translation: Dt = 0

To this end, we consider a dense gel system with fy = 0.386
and set translational Brownian motion to zero at t = 250 after the
emergence of numerous condensates, while rotational Brownian
motion remains active and non-zero through the simulations. The
coarsening process is subsequently governed by the rotation of the
domains and the merging of domains upon colliding. By setting
D" =0.0025/R, the system evolves to two large interconnected
domains at ¢ = 5000 [ ]. The plot of (R) vs ¢t [ ;
blue line] in turn shows a rapid increase at intermediate times; as
comparisons, we plot two other cases where D' > 0 at all times.
Interestingly, while the system exhibiting only rotational Brownian
motion coarsens more slowly initially than a system experiencing
both translational and rotational Brownian motion [ ; red
line], it overtakes the latter one eventually. This can be understood
as follows. At early times, the largest clusters in the two systems with
rotational Brownian motion, as quantified by the radius of the largest
cluster Rmax(t) shown in , are comparable in size, while the

number of clusters N(¢) [ ] decreases more rapidly in the
case with both translational and rotational Brownian motion; this
results in a larger average cluster size for the latter system. At late
times, however, Rmax(t) in the system with only rotational Brow-
nian motion surpasses that of the other case, while the “surplus”
in N(t) swiftly decreases, leading to the observed rapid increase
in (R) at large t. We again note that Rmax(t) begins to plateau for
t > 4500, beyond which (R) is dominated by finite-size effects. To
better understand the emergence of elongated domains with grow-
ing aspect ratios in the simulations with D' = 0 and the resulting
large domain coarsening rates, we next perform a scaling analysis
of a simplified system.

C. Coarsening behavior with Brownian motion in 3D

The algorithm can be readily extended to 3D systems. To com-
pare how gelation and Brownian motion affect the morphology,
we employ the same initial condition to study three cases, namely
liquid-like and gel-like condensates with translational and rota-
tional Brownian motion given by the Stokes-Einstein expressions
D'=20/Rand D" = 15/R°, and gel-like condensates without Brow-
nian motion. First, in the liquid-like system [ ], small
condensates undergo collisions to form larger condensates, which
subsequently coarsen over time via BMC. The gel-like system, in
contrast, forms irregular granular structures when small conden-
sates are brought into contact by Brownian motion [ l.
The elongated condensates keep evolving until they form a single
interconnected domain (t > 1000). Experiments on gel-like sys-
tems report similar interconnected domains preserving the shape of
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FIG. 7. (a) Snapshots from representative 2D simulations with Brownian motion, assuming D' = 0 and D" = 0.0025/R. [Note that D' is set to zero at t = 250 once the
condensates have formed.] (b) Plot of (R) vs time for three different combinations of size-dependent translational and rotational diffusivities. The coarsening rate for the
case (D' = 0, D" = 0.0025/R) corresponding to rotational diffusion only (blue triangles) shows a rapidly increasing behavior consistent with the scaling analysis in the main
text, which predicts a finite-time singularity. (c) Radius of the largest cluster Rmax (t) vs time. (d) Number of domains N(t) vs time.

individual spherical condensates after they collide, resembling the
morphology we observed at the early stages of gel-like condensates
undergoing BMC." Finally, when the same gel-like system evolves
without Brownian motion [ ], instead of forming a gel net-
work, the condensates become arrested in their original positions
and coarsen extremely slowly via Ostwald ripening.

More quantitatively, next we compare the coarsening rates of
the three systems by plotting (R) vs time in , averaged over five
independent simulations each. It can be seen that gel-like conden-
sates with Brownian motion coarsen the fastest. Perhaps more strik-
ingly, as demonstrated in the inset, the largest cluster in the gel-like
system with Brownian motion displays growth kinetics that greatly
exceed those of the liquid-like system with Brownian motion; in
fact, the largest cluster spanning the simulation box appears around
t ~ 125, beyond which (R) is dominated by finite-size effects. It
should be stressed that we have chosen not to perform further quan-
titative analysis using 3D simulations due to the computational cost
to achieve better statistical significance. The simulations reported
herein are conducted using graphic processing units (GPUs), which
are highly efficient in performing grid-based calculations. However,
the Brownian motion algorithm, specifically the identification of the
condensates using DFS, cannot be truly parallelized on GPUs. The
serial tasks of DFS and velocity field calculations are thus being
assigned to central processing units (CPUs) for every Brownian
motion calculation. This in turn causes significant slowdown due to
the time-consuming memory copying steps in large 3D systems. It is
a part of our future studies to efficiently simulate systems with more
than four components and one chemical reaction in 3D.

D. Scaling analysis of coarsening driven by purely
rotational Brownian motion

To develop additional insights into the role of rotational
Brownian motion on the rapid coarsening behavior of the gel-like
domains, we adopt a simple scaling approach. To this end, let
us first consider a 2D system of N(t) needle-shaped gel conden-
sates of length L(¢) and constant width b [as observed, e.g., in

], accounting for the largest clusters in the system, in a
square domain of total area A. The condensates occupying an
area fraction fy = N(t)L(t)b/A are free to rotate but not trans-
late. Now, the average separation between two nearest neighbor
condensates L is given by L(t) ~/A/N(t) or L(t) ~\/L(t)b/fa.
The typical time 7 it takes for two such condensates to rotate and
collide can be estimated from (A8)* ~ (L/L)* ~ D'z, which leads
to T~ L?/(L*D") ~ b/(faLD"). [Note that collisions will occur
in this model only when L(t) 2 L] Upon merging of the two
condensates, the change in the area is then dAcona/dt = bdL/dt
~ AAcond /T % L(£)b/T ~ fsL*(£)D", or bdL(t)/dt ~ faL*(t)D". Since
Rinax (1) ~ \/L(t)b, we have b*dRmax(t)/dt ~ fAanax(t)Dr. Hence,
with D" = DoR.E,, we readily obtain an_ai(t)dl_?max/dt ~ Do fa /b
We first note that when 8 = 3 (corresponding to the Stokes-Einstein
model), Riax(t) ~ Do fat/b?, suggesting that rotational Brownian
motion may indeed accelerate coarsening of gel-like domains
relative to liquid-like ones at large area fractions, in qualitative
agreement with our observations in . Next, when =2
(corresponding to the 2D Saffman-Delbriick model), Rpmax(t)
~exp (Dofat/b*) indicative of rapid coarsening, consistent
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FIG. 8. Snapshots of representative 3D simulations. (a) Liquid-like condensates with translational and rotational Brownian motion given by the Stokes-Einstein expressions
D' =20/R and D" = 15/R?® form spherical domains. (b) Gel-like condensates with D' = 20/R and D" = 15/R® rapidly form a single connected domain. (c) Gel-like
condensates without Brownian motion show very little coarsening over the entire time sequence.

with the data for the dense gel system shown in Fig. 6(d).
We also note that for the case f=1, the scaling analysis
suggests that there is a finite-time singularity Rmax(t) ~ Rmax(0)/
(1= DoRmax (0) fat/b?), with Rmax(t) diverging as t —t* =b*/
(DoRumax(0) f4). Furthermore, when t<<t*, Rmax(t) ~ Rmax(0)
+ DoR%,. (0) fat/b*, consistent with the linear trend seen in
Fig. 7(c) at intermediate times. A similar scaling analysis of a 3D
gel system with cylindrical condensates of length L(#) and cross-
sectional area b’ yields RbadRmay/dt ~ Do f%,/3/b4. Intriguingly,
for the 3D Stokes-Einstein model with =3, the simple
model again predicts a finite-time singularity with Rmax(t)
~ Rnax(0)/(1 = DoRuax (0)/1/6*).

Finally, it is instructive to redo the above-mentioned anal-
ysis for the case of elongated domains with a fixed aspect ratio
q=L(t)/b(t) such that Rumux(t) ~L(t)/\/q. In this case, L(t)
~ L(t)/\/qfs, and the condition that rotational collisions occur
L(t) 2 L becomes gf , 2 1. Now, assuming that gf , 2 1, repeating
the steps above leads to the result Rﬂax(t) ~ gfat, while in 3D the
corresponding expression becomes anax(t) ~ (¢ fv)z/ ’t with

— Liquid with BM
oq] = Gel with BM
il Gel without BM
2%

0 25 50 75 100 125

FIG. 9. Average domain size (R) vs time for the 3D simulations shown in Fig. 8.
Gel-like condensates with Brownian motion coarsen the fastest. Inset: Radius of
the largest cluster Rnax Vs time. For gel-like condensates with Brownian motion,
the largest cluster spanning the simulation box appears around ¢ ~ 125, beyond
which (R) is dominated by finite-size effects.
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¢*fv 2 1. Tt is interesting to note that since 8 = 2 (B = 3) for the 2D
Saffman-Delbriick (3D Stokes-Einstein) model, the corresponding
coarsening exponent of 1/2 (1/3) emanating from the rotational
diffusion of the fixed aspect ratio domains coincides with that
obtained for purely translational diffusion.

V. CONCLUSIONS

In this work, we have formulated a thermodynamically consis-
tent phase-field modeling framework that combines the previously
derived thermodynamic model with kinetic equations to study the
spatio-temporal evolution of macromolecular mixtures that can
undergo chemical reactions, LLPS, and gelation concurrently. We
have observed significant morphological differences between the
liquid and gel-like systems and characterized the coarsening behav-
iors by studying their size distributions and coarsening rates over
time. When the system is liquid-like, the late-stage size distribu-
tions are consistent with the predictions from classic coarsening
models™”*" as expected. On the other hand, the gelation pro-
cess within the condensates strongly hinders the chemical reac-
tion and diffusion processes, thus significantly lowering the overall
coarsening rate.

Furthermore, we have implemented a Brownian motion algo-
rithm under the same computational framework to investigate how
Brownian motion influences this kinetic process. By adding the
translational and rotational displacements to each condensate, we
have provided a means to effectively simulate a system in which
coarsening is affected by both DLC and BMC. Using 2D simulations,
we have demonstrated that different size dependencies of the Brow-
nian motion of the domains—in particular rotational—may strongly
affect the steady-state size distributions, coarsening rates, and mor-
phologies of the mixture. In addition, gelation of the condensates
plays a key role not only in forming irregular and interconnected
domains but also in accelerating the coarsening process in systems
with high area fractions.

Through simulations and a simple scaling analysis, we demon-
strated that the accelerated coarsening rates associated with gel-like
condensates can be traced to the higher efficiency of elongated, high
aspect ratio domains to experience further growth via collisions with
nearby domains facilitated by rotational diffusion. In particular, the
scaling analysis predicts that in some cases the domains may reach
a macroscopic size in a finite time. This can be understood through
percolation theory, which posits that the percolation threshold of a
system of domains (both 2D and 3D) at a fixed area/volume frac-
tion is a strong function of the domain aspect ratio.”””” For example,
while disks (spheres) percolate at a critical area (volume) fraction
fa~067 (fi ~0.29) in 2D (3D), spherocylinders (i.e., capsules)
with aspect ratio g = 10 percolate already at area fraction f} ~ 0.4
(fv ~ 0.14).”" Therefore, if the coarsening process leads to domains
with increasing aspect ratios, percolation will occur above a char-
acteristic aspect ratio in both 2D and 3D, which will be reflected in
the divergence of the average domain size. The resulting percolat-
ing gel structures resemble the bicontinuous interfacially jammed
emulsion gels, or Bijels, which are formed by the jamming of col-
loidal particles at the interface between two partially miscible fluids
undergoing spinodal decomposition.”” Our simulations suggest an
alternative pathway for stabilizing such non-equilibrium structures
without using colloidal particles.
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Finally, as we explored the passive Brownian motion in a system
with undriven chemical reactions here, it would also be intrigu-
ing to consider active Brownian motion in a system with driven
chemical reactions. It has been shown that liquid droplets contain-
ing bromine undergo self-propelling motion in a surfactant-rich oil
phase.”® The bromination of the surfactant can induce Marangoni
stresses, which then drive droplet motion. More recently, Testa et al.
show that chemically active liquid protein condensates can gener-
ate an activity-induced flow, driving the condensates to move and
coalesce in a solution with a pH gradient.”” One may also cou-
ple the current formulation with the hydrodynamic equations or
model H* to capture more detailed hydrodynamic effects. Finally,
another important implication is that condensation may regulate
reaction rates, providing opportunities to program micro-reactions
in cellular environments.”” Our work sets up a firm theoretical
and computational framework for studies into these problems and
further, which we intend to do in the near future.
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