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ABSTRACT

Histogram-reweighting grand canonical Monte Carlo simulations are used to obtain the critical properties of lattice chains composed of
solvophilic and solvophobic monomers. The model is a modification of one proposed by Larson et al. [J. Chem. Phys. 83, 2411 (1985)],
lowering the “contrast” between beads of different types to prevent aggregation into finite-size micelles that would mask true phase separation
between bulk high- and low-density phases. Oligomeric chains of lengths between 5 and 24 beads are studied. Mixed-field finite-size scaling
methods are used to obtain the critical properties with typical relative accuracies of better than 10™* for the critical temperature and 10~ for
the critical volume fraction. Diblock chains are found to have lower critical temperatures and volume fractions relative to the corresponding
homopolymers. The addition of solvophilic blocks of increasing length to a fixed-length solvophobic segment results in a decrease of both the
critical temperature and the critical volume fraction, with an eventual slow asymptotic approach to the long-chain limiting behavior. Moving
a single solvophobic or solvophilic bead along a chain leads to a minimum or maximum in the critical temperature, with no change in the
critical volume fraction. Chains of identical length and composition have a significant spread in their critical properties, depending on their
precise sequence. The present study has implications for understanding biomolecular phase separation and for developing design rules for
synthetic polymers with specific phase separation properties. It also provides data potentially useful for the further development of theoretical
models for polymer and surfactant phase behavior.
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. INTRODUCTION

The Monte Carlo method for computational determination of
condensed-matter properties was introduced in the seminal paper
by Metropolis et al.' 70 years ago for the determination of the equa-
tion of the state of hard disks. In the intervening period, the method
has formed the basis for many major developments in the statistical
mechanics of fluids and solids. The original method was designed
for sampling configurations in the canonical (NVT) ensemble. The
development of Monte Carlo algorithms for the constant-pressure”
(NPT) and grand canonical’ (uVT) ensembles took place in the
late 1960s and greatly facilitated the study of phase transitions.
Free-energy calculation methods for crystal phases became available
in the early 1980s’ and made possible the determination of solid
relative stabilities and their solubilities in liquids. The Gibbs ensem-
ble Monte Carlo method for direct determination of fluid-phase

equilibria’ and efficient histogram-reweighting algorithms® were
developed in the late 1980s.

Systems of interest for the present study are relatively short
chains composed of two different bead types, solvophilic and solvo-
phobic. It is well-established that monomer sequence has a signifi-
cant impact on chain phase and aggregation behavior. While early
work on such systems focused on modeling surfactant solutions,
recent interest in the effect of chain sequence on the phase behav-
ior has been sparked by the discovery of the important role that
liquid-liquid phase separation plays in cell biology.'”'" Intrinsi-
cally disordered proteins are often key determinants of biomolecular
phase separation, with the observed behavior being highly sensitive
to their overall composition and precise amino acid sequence.'”"”’
There is also significant interest in the properties of synthetic
polymers with well-defined blocks of solvophilic and solvophobic
segments. ' The use of simple, coarse-grained models with only
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a handful of independent control parameters helps provide a fun-
damental understanding of the underlying physical phenomena by
excluding complications arising from the presence of many different
monomers and interaction types found in real chemical or biological
systems.

Relevant prior work in the area of sequence-dependence of crit-
ical properties for coarse-grained chain models includes the study of
Statt et al.'° for a continuum-space two-letter heteropolymer using
direct coexistence (interfacial) molecular dynamics simulations.
A number of different 20-mer chains were studied, yielding a range
of possible dense-phase morphologies and a clear dependence of the
critical temperature on a “blockiness” parameter. A limitation of that
work was the use of interfacial simulations for the determination
of critical parameters, which resulted in only approximate values.
This limitation was overcome in a subsequent paper'’ that utilized
a two-letter lattice model and grand canonical Monte Carlo sim-
ulations. That study provided accurate critical parameters for the
model chains as well as a methodology for distinguishing between
true phase separation and aggregation into finite-size clusters. A
scaling relationship of chain critical temperature and volume frac-
tion with respect to a normalized metric for chain blockiness was
also obtained. In another recent study,'® the same two-letter lattice
chain model was used to shed light on the interplay between phase
separation into a macroscopic (bulk) fluid phase on the one hand
and formation of finite-size micelles on the other. It was found that
certain triblock sequences with solvophobic ends can undergo both
micellization and macroscopic phase separation.

An element missing from these prior studies that I plan to
address in the present work is the quantitative dependence of the
critical parameters on overall chain length, as well as their depen-
dence on the size of the solvophilic and solvophobic chain segments.
In addition, as explained in the “Model” subsection, a modification
of the two-letter chain model was implemented to prevent aggre-
gation into finite-size micelles for any of the sequences studied and
to restore symmetry with respect to the phase behavior for chains
consisting of a single bead type. The overall aim of this study is to
provide accurate data that could be used for the development of
theoretical or machine-learning methods for describing the effects
of sequence and chain length on phase separation for synthetic or
biological polymers.

Il. MODEL AND METHODS
A. Model

The model used in this work is a modification of the lattice sur-
factant model first proposed by Larson et al.”” The model consists of
linear chains of r beads connected by bonds, each bead occupying a
single site on a simple cubic lattice. The range of chain lengths stud-
ied here was from r = 5 to r = 24. The use of shorter chain lengths
restricted the size of sequence space and ensured that there was suf-
ficient sensitivity of the critical parameters to sequence variations
involving even a single monomer moving along the chain.

Bonds between adjacent beads in the model chains can be
in the [001], [011], and [111] directions of the lattice, as well as
their allowable rotations and reflections, resulting in 26 total pos-
sible connectivity vectors. There are two bead types, solvophobic
and solvophilic, conventionally labeled as “I” and “H,” respectively,
for “tail” and “head” groups in the original surfactant-oriented
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incarnation of the model. Non-bonded beads interact along the 26
possible lattice connectivity directions. There are no interactions
with empty lattice sites, which are assumed to contain a monomeric
solvent. Therefore, the model has three independent energy para-
meters, specifically err, ent, and eqn. In the original version of the
model,”* the values of the parameters were taken to be ert = -2 and
eut = €un = 0. The unit of energy also sets the temperature scale.
Subsequent studies'”'* used the trivial change err = -1, enr = enn
= 0, which simply rescales the temperature by a factor of 2. With
this choice of model parameters, implying a strong contrast between
solvophobic and solvophilic interactions, many sequences were
found to form micellar finite-size aggregates instead of macro-
scopic bulk liquid phases'” at the range of temperatures over which
sampling of equilibrium states is feasible. This is an undesirable
feature for the present study because it prevents a direct compari-
son of critical parameters for many candidate sequences. In order
to overcome this limitation, a modified parameter set with reduced
contrast between solvophobic and solvophilic beads is utilized here,
as follows:

1
= =-_ 1
€HT = €HH 1 (1)

— 3 .
err = -5
The relative strength of attraction between solvophobic and
solvophilic beads is now 3 (rather than oo in the previous version
of the model), a numerical factor that will be used to normalize
critical temperatures with respect to composition variations. This
modification also restores the symmetry of behavior for chains at
the limit at which they consist of a single monomer type. Therefore,
solvophilic H, chains now have the same behavior as solvopho-
bic T, chains, modulo a factor of 3 rescaling of energies, chemical
potentials, and temperatures. In the previous version of the model,
purely solvophilic chains are repulsive and do not undergo a phase
transition into a condensed liquid at any finite temperature.

B. Computational methods

The computational methodologies used in the present work are
similar to those of Ref. 18 and will only be briefly summarized here
for completeness. Monte Carlo simulations in the grand canonical
(uVT) ensemble in cubic boxes of edge length L were used to obtain
all aspects of thermodynamic behavior for the model. The volume
fraction when N chains of length r are present in the simulation
box is defined as ¢ = Nr/L*. To facilitate insertion and removal of
chains, an athermal Rosenbluth algorithm'® was implemented, as
detailed in Ref. 20. Source codes, example input and output files, and
a list of the runs performed for each system are available online, as
explained in the Data Availability statement at the end of this article.
Statistical uncertainties were obtained from the standard deviation
of results from four independent runs at identical conditions, each
with a different random number seed.

Histogram reweighting with the Ferrenberg-Swendsen algo-
rithm® was used to rescale information from runs at one set of
thermodynamic conditions to another and to combine runs that
have a reasonable degree of overlap in the number of particles
N and energy E covered in each. The combined histograms were
then used to obtain distributions of particle numbers and energy,
P(N,E), as a continuous function of 4 and T. To determine criti-
cal points, the mixed-field finite-size scaling method of Bruce and
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Wilding”"** was used. The critical temperature T, critical chemi-
cal potential, u o and number-energy field mixing parameter, s, were
optimized simultaneously using histogram data near the expected
critical point by minimizing deviations between the observed order
parameter distribution and the three-dimensional Ising universal
curve obtained as an analytical expression by Tsypin and Bléte.”’
Phase coexistence curves (binodals) were determined from the con-
dition of area equality for the low-N and high-N regions of the P(N)
distributions.

For most chain architectures studied, the simulation box length
was set at L = 15 in lattice units. For systems of chains with r > 8,
larger boxes of L = 20 and L = 25 were used to ensure that the box
dimensions were kept much bigger than chain average dimensions.
These simulation box lengths resulted in average number occu-
pancies of between 100 and 300 chains at the critical temperature
and chemical potential. The choice of system size is a compromise
between using smaller systems (which enable significantly faster cal-
culations) and matching the universal order parameter distribution
closely (which only happens for sufficiently large systems). There are
systematic effects of system size on the critical parameters,”* but for
the systems studied here, these are generally smaller than the differ-
ences due to varying chain architectures that are of primary interest
for the present work. In addition, comparisons here are made for
similar system sizes across architectures and, therefore, would not
substantially change if the critical parameters were to be systemati-
cally extrapolated to an infinite simulation system size, at significant
additional computational cost.

I1l. RESULTS AND DISCUSSION
A. Chain-length dependence

The first task of interest was to establish the dependence of
the critical temperature and volume fraction on chain length for
homopolymer sequences between r =5 and r = 24, matching the
range of chain lengths of interest. Results for the critical temperature

T T
0.36 -
e
~
— 032+ -
0.28 -
I | | |
0.25 0.35 0.45 0.55
1 1
NG + 2r

FIG. 1. Inverse critical temperature, 1/Ts, as a function of the parameter # +

for homopolymers of type H,. For homopolymers of type T, the temperature
will be higher by a factor of exactly 3. Points (from right to left) correspond to
r=5,8,9,12,15,16, and 24. The line is a linear-least-squares fit to the data.
Statistical uncertainties are smaller than symbol size.
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are shown in Fig. 1. The figure is for “all solvophilic” H, sequences.
For “all solvophobic” T, sequences, the critical temperature would
be scaled up by a factor of 3, following the ratio of interaction
parameters err/enn from Eq. (1). These critical temperatures are
in excellent agreement with prior results for r = 8 and r = 16 using
the same model.”’ According to Flory—Huggins theory,” the inverse
critical temperature, 1/T., is expected to scale as

! ! 1.1 )
T(r) Te(oo) fr 2r

As can be seen in the figure, this scaling is followed quite closely,
as is also seen for a broader range of chain lengths in Ref. 20. The
extrapolated value is Tc(o0) = 20.4 + 0.1, a bit lower than the esti-
mate in Ref. 20, which is not surprising given the lower range of
r values examined here.

The dependence of the critical volume fraction on chain length
for homopolymers is shown in Fig. 2. The critical volume fraction for
homopolymers does not depend on the energy scale, so it is iden-
tical for H, and T, chains. In agreement with Flory theory,” it is
seen that the logarithm of the critical volume fraction depends lin-
early on the logarithm of chain length. The slope obtained from the
datais —0.29 + 0.01, which is again lower than the exponent obtained
in Ref. 20 by fitting the range of chain lengths 64 < r <1000. The
chain lengths studied here are too short to match the asymptotic
long-chain length behavior for the scaling of the critical parameters,
but the reason for obtaining these relationships is to obtain ana-
Iytical expressions for the critical temperature and critical volume
over the chain lengths of interest, which in turn are used in com-
parisons when chain composition is varied as well as the chain
length.

B. Block-length dependence for diblock chains

The next task was to examine the dependence of model critical
parameters on the length of the solvophilic segment, A, for chains
of fixed overall length of eight beads, as shown schematically in the
inset to Fig. 3. The overall architecture is H, T,_j, with r = 8. For the

0.36

0.32 -

£ 028

0.24 -

FIG. 2. Critical volume fraction ¢ as a function of the chain length r, on a
log-log scale, for homopolymers H; or T, of length between r = 5 and r = 24. The
line is a linear-least-squares fit to the data. Statistical uncertainties are comparable
to symbol size.
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FIG. 3. Normalized critical temperature, T./(3 —2h/r), as a function of the
solvophilic segment length h, for diblock chains H,T,_p, with overall length r = 8.
The horizontal line is the expected value based on the chain length. Statistical
uncertainties are smaller than symbol size.

full-contrast parameter set studied in Ref. 26, chains with & between
4 and 7 were shown to micellize, but the reduced-contrast inter-
action set used here ensures that all chain lengths undergo normal
phase separation. This is confirmed by the match of the order para-
meter distribution to the three-dimensional Ising universality class,
following the procedure of Ref. 18. One complication that arises
in comparing the behavior of different architectures is that chains
of variable h have different compositions. This can be taken into
account by normalizing the temperature as T /(3 — 2h/r), where the
factor of 3 is the ratio of err/enn from Eq. (1). The expression lin-
early interpolates between the limits for the critical temperatures of
the homopolymers, Ts (h = 0) and Hg (h = ). As seen in Fig. 3, the
normalized critical temperature shows a minimum at & = 5, with the
corresponding value 26% lower than for the homopolymer, a rather
large effect. This is physically the result of the solvophilic H beads
“screening” interactions between solvophobic T beads, thus making
them effectively weaker. The asymmetry of the behavior (skewed
toward higher h values) results from the greater efficiency of this
screening by longer H segments.

The critical volume fraction also depends strongly on the length
of the solvophilic segment, k, as shown in Fig. 4. The minimum here
occurs at h = 3 and is ~12% lower than the critical volume fraction
for the homopolymer, once again a rather strong effect. As observed
in Ref. 16, lower volume fractions are associated with structured lig-
uids. For h = 7, the critical volume fraction recovers the value for the
homopolymers (h = 0 or 8). Note that independent simulations were
performed for the two homopolymers Hs and Ts, explaining the
small difference in critical volume fractions at the two ends. The fit-
ted line from Fig. 2 is also not a perfect match for the limiting values.
Here, there is competition between two opposing effects: high values
of h mean that the critical temperature is lower, as seen in Fig. 3. At
lower temperatures, the chains pack more closely, thus increasing
the critical volume fraction. On the other hand, at low values of A,
the effect of the critical temperature is less, and the behavior is dom-
inated by the less efficient packing of T segments together because of
the intervening H segments.

ARTICLE pubs.aip.org/aipl/jcp
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FIG. 4. Critical volume fraction, ¢,, as a function of the solvophilic segment length
h, for diblock chains H,T,_, with overall length r = 8. The horizontal line is the
expected value based on the chain length. Statistical uncertainties are comparable
to symbol size.

C. Overall length dependence with fixed
end segment

The next set of simulations was performed for chains of variable
solvophilic block length h but with a fixed solvophobic end-segment
length of five beads. The architecture is now H,Ts, and the overall
chain length is r = h + 5. Figure 5 shows the measured dependence
of the critical temperature as points. In order to normalize the criti-
cal temperature for the varying chain composition, we use again the
scaling T./(3 — 2h/r). However, in this case, the overall length of
the chain is not fixed, so the appropriate comparison for the critical
temperature is the length-dependent value obtained through Eq. (2),
which is shown as a blue curve in Fig. 5. At h = 0, the critical tem-
perature matches that for the homopolymer chain of length 5. The
addition of solvophilic beads to the chain results in a rapid decrease
in the critical temperature since the added H beads “protect” the
solvophobic T beads from coming into contact as readily and thus
lower the effective interactions. The critical temperature gets lower,

1 1 I
0 5 10 15 20
h

FIG. 5. Normalized critical temperature, T¢/(3 —2h/r) as a function of the
solvophilic segment length h, for diblock chains of type HTs. The line is the
expected dependence based on the overall chain length. Statistical uncertainties
are smaller than symbol size.
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even though the expectation based on the overall chain length would aal HT |
be for the critical temperature to increase. At the opposite limit of ' y /-)(\ —~8 »

large h, the presence of a relatively short solvophobic group at the )
end of the chain has a diminishing overall effect, so it is expected
that the data will approach asymptotically the homopolymer result.
Indeed, the data points and the line in Fig. 5 become parallel to each
other. Convergence between them would happen for much longer
chains than the ones studied here; for r = 24, there is still a sizable
gap between the actual critical temperature and that expected based
on the chain average composition and overall length. The total effect
on the normalized critical temperature results in a minimum around
h = 4, similar to that observed in Subsection 1] B for diblock chains

of fixed overall length.
Results for the critical volume fraction for systems with increas- 0 0.1 02 03 04 05 06 07
ing solvophilic block length and a fixed solvophobic end segment are 10)
shown in Fig. 6 as points, along with the curve obtained by fitting
the homopolymer critical volume fraction data of Fig. 2. The criti- FIG. 7. Temperature T vs coexisting volume fraction, ¢, for diblock chains of type
cal volume fraction rapidly decreases, at a rate much faster than that H7Ts, H1oTs, and H1gTs, respectively, from top to bottom. The lines are fitted to the

points, as explained in the text. Statistical uncertainties are smaller than symbol

expected on the basis of the overall chain length. The gap between size

the curve and the points is maximum for 7 < h < 10. The critical
volume fraction then plateaus and converges to the value expected
based on the length, as seen on the right side of the figure. Once
more, the physical explanation for this behavior is the less efficient
packing of chains when a solvophilic block is added.

Calculations of the phase coexistence (binodal) curves were
performed for selected systems, specifically for the architectures
H7Ts, HioTs, and Hy9Ts, as shown in Fig. 7. The lines in this figure
were obtained by fitting coexistence data below the critical point to
the scaling relationship appropriate for the three-dimensional Ising
universality class,

where b is another fitted constant. Analytical expressions were
obtained for ¢, and ¢, as functions of T, using the known values of
Tc and ¢_ for each system and separate optimizations of parameters
aand b for ¢, and ¢,. One of the reasons for determining these coex-
istence curves was to ensure that there are no finite-size aggregates
(micelles) present in the low-density phase. Indeed, simulations up
to (and even slightly beyond) the coexistence chemical potential at

¢ — ¢g = a(T. - T)ﬁ 3) a range of temperatures below the critical point display monotonic
decay of the aggregate size distributions with no micellar aggregates
where ¢, and ¢, are the volume fractions of the two phases at coex- present. This behavior stands in contrast to that observed for com-

parable chain lengths and architectures in Ref. 18, because of the use
of a reduced-contrast interaction set in the present study that makes
finite-size aggregates less stable relative to the bulk condensed phase.

istence, a is a fitted constant, and f = 0.326 is the scaling exponent
for the coexistence width. This expression was combined with the
approximate “law of rectilinear diameters,”

1+ ¢g =b(Tc - T) + 2¢., (4) D. Single bead position dependence

Additional calculations were performed for chains of length
r = 8 that consisted of beads of the same character, except for a sin-
gle “different” bead placed at variable locations, from the end to the
middle of the chain. Therefore, the architectures were H,TH;_,, or
T,HT7_p, where p is the number of beads prior to the position of the
bead of a different character that can range from 0 to r — 1. Results
for the critical temperature of such systems are shown in Fig. 8. As
seen in the bottom part of the figure, moving a solvophobic bead
from the end of the chain to the middle, where it can less readily
interact with beads in other chains, results in a slight decrease in the
critical temperature of around —0.8%. Conversely, as seen in the top
part of the figure, moving a solvophilic bead from the end of a chain
to the middle, which is less disruptive to solvophobic bead attrac-
tions across chains, results in an increase in the critical temperature
of significantly higher magnitude, around 2.5% for this system. The
change in critical temperature when moving a solvophilic bead is not
FIG. 6. Critical volume fraction, ¢, as a function of the solvophilic segment length smooth, having a “step” between p = 1 and 2, which is likely a lat-

i el ol et e i e iz e s Lis eigesied) Gegenifiiss Liased o tice artifact due to the local conformations possible for the chains.
the overall chain length. Statistical uncertainties are comparable to symbol size. ) . . - .
For comparison, in Ref. 16, a 5% increase in critical temperature
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FIG. 8. Critical temperature, T, as a function of the distance from the end, p, of
a single “different” bead in chains with overall length r = 8. The general structures
are HpTH7_, (bottom) and T,HT7_,, (top). Data have been reflected with respect
to the midpoint of the chain due to symmetry. Statistical uncertainties are smaller
than symbol size.

was seen for chains of length r = 20 when a single solvophilic bead
was moved from the end to the middle of an otherwise solvophobic
chain. Therefore, the magnitude of the effect seems to be compa-
rable, even though different models were used in the two studies
(continuum vs lattice model).

The effects on the critical volume fraction of moving a single
bead of opposite character along a chain were quite small, within sta-
tistical uncertainties of the corresponding value in almost all cases.
These values are listed in the additional material provided online, as
explained in the Data Availability statement.

E. Overall architecture effects

The final set of comparisons was made using a variety of
chain architectures for chains with r = 8, all of the same composi-
tion, specifically 50% solvophobic. There are 38 distinct sequences
of 8-mers with four T beads and four H beads when one takes
into account front-to-back symmetry. Figure 9 displays the criti-
cal volume fraction plotted against the critical temperature for a
selected subset of the possible sequences for such chains. There is
a good amount of spread in both critical temperatures and criti-
cal volume fractions of the different architectures. Certain features
emerge clearly: for example, the lowest by far critical volume fraction
corresponds to the diblock sequence, HHHHTTTT. On the other
hand, this sequence has an unremarkable critical temperature in the
“middle of the pack.” The trend of more blocky sequences to be
associated with lower critical volume fractions was also observed in
Ref. 17, where it was determined that sufficient blocky sequences
form finite-size micelles rather than undergo phase separation,
because of the full-contrast interaction set used in the prior study.

The highest critical temperature is observed here for the sym-
metric triblock sequence, TTHHHHTT, in which the solvophobic
beads are at the chain ends, thus available to interact with solvopho-
bic beads of other chains at low densities. Conversely, the symmetric
triblock sequence, HHTTTTHH, has the lowest critical tempera-
ture of all architectures since it has “burried” solvophobic groups

ARTICLE pubs.aip.org/aipl/jcp
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FIG. 9. Critical volume fraction, ¢, as a function of the critical temperature, T,
for sequences with 50% H groups, r = 8. Statistical uncertainties for the criti-
cal volume fractions are shown when larger than the symbol size. The statistical
uncertainties for the critical temperatures are smaller than the symbol size.

away from the chain ends. This pattern is seen more generally—H
groups at the chain ends are associated with lower critical tempera-
tures, whereas T groups at the chain ends are associated with higher
critical temperatures. The same behavior was also seen in Ref. 28
for longer chains, where THT-type and HTH-type triblocks were
compared with respect to their critical temperatures as a function
of solvent selectivity. By contrast, the critical volume fraction is the
result of competition between attractions and packing effects, with
the two balancing out for the TTHHHHTT and TTHHHHTT cases
that turn out to have quite similar ¢_. Chains with alternating bead
types (e.g, HTHTHTHT) or similar (e.g., THTHHTHT) have the
highest critical volume fractions, suggesting more efficient packing
in the condensed state.

IV. CONCLUSIONS

This work focused on the accurate determination of critical
properties for short, oligomeric chains consisting of two types of
beads, solvophobic and solvophilic. A previously proposed lattice
model was used, with parameters modified to prevent the formation
of finite-size clusters that disrupt phase transitions into bulk macro-
scopic liquid phases. While conceptually simple, the model repro-
duces many features of the experimentally determined behavior of
polymer/solvent systems, specifically with respect to the scaling of
critical parameters with chain length.”” The critical temperature and
critical volume fraction pass through a minimum when a solvophilic
segment is added to a solvophobic block of a chain. The location of
this minimum with respect to the size of the solvophilic block is dif-
ferent for the two properties, reflecting differences in the physical
mechanisms responsible for the reduction in the critical tempera-
ture vs the critical volume fraction. The position of a single bead
of solvophilic or solvophobic character within a chain composed of
opposite-type monomers leads to a maximum or minimum, respec-
tively, in the critical temperature. There is no appreciable change in
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the critical volume fraction for this case. When examining a range
of architectures at a fixed overall chain length and composition,
there are significant variations in the critical temperature and vol-
ume fraction. Architectures with solvophobic beads near the chain
ends have higher critical temperatures, and diblock chains have the
lowest critical volume fraction.

One open question that is addressed in a separate study” is
the character of the transition from simple phase behavior (with
no aggregation) observed here using a reduced-contrast interac-
tion set, to the formation of finite-size aggregates seen in previous
studies of related models with a higher-contrast interaction set. For
specific architectures and interaction parameters, one can observe
both phase separation and aggregation in the same system, as
seen in a prior computational study'® and also experimentally.'”
The scaling of the location of this transition with respect to chain
length, composition, and strength of interactions is analyzed in
Ref. 28.

The present work has implications for the design of synthetic
polymers with desired phase separation properties and for under-
standing biomolecular phase separation. It could also be useful in
providing data for the development of refined theoretical models for
heteropolymer and intrinsically disordered protein phase behavior.
These models could be based on molecularly informed field theo-
retic”” or other variational methods.”” Another possibility would be
to utilize machine-learning methods (e.g., see Ref. 31) to correlate
chain architecture and phase behavior. This latter approach would
require much larger datasets for training the machine learning mod-
els than what was generated in the present work, but this should be
computationally feasible with the methods used here.

ACKNOWLEDGMENTS

Financial support for this work was provided by the Prince-
ton Center for Complex Materials (PCCM), a U.S. National Science
Foundation Materials Research Science and Engineering Center
(Award No. DMR-2011750).

AUTHOR DECLARATIONS
Conflict of Interest

The author has no conflicts to disclose.

Author Contributions

Athanassios Z. Panagiotopoulos: Conceptualization (equal); Data
curation (equal); Formal analysis (equal); Funding acquisition
(equal); Investigation (equal); Methodology (equal); Project admin-
istration (equal); Resources (equal); Software (equal).

DATA AVAILABILITY

Computer codes used in this work, example input and out-
put files, information on the runs performed, and numerical data
for the critical points and phase coexistence volume fractions are
freely available for download from the Princeton Data Commons
repository at https://dx.doi.org/10.34770/2xrn-jt41.

ARTICLE pubs.aip.org/aipl/jcp

REFERENCES

TN. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,
“Equation of state calculations by fast computing machines,” J. Chem. Phys. 21,
1087 (1953).

2W. W. Wood, “Monte Carlo calculations for hard disks in the isothermal-isobaric
ensemble,” |. Chem. Phys. 48, 415 (1968).

3G. E. Norman and V. S. Filinov, “Investigations of phase transitions by a Monte-
Carlo method,” High Temp. 7, 216 (1969).

“D. Frenkel and A. J. C. Ladd, “New Monte Carlo method to compute the free
energy of arbitrary solids. Application to the fcc and hep phases of hard spheres,”
J. Chem. Phys. 81, 3188 (1984).

5 A. Z. Panagiotopoulos, “Direct determination of phase coexistence properties of
fluids by Monte Carlo simulation in a new ensemble,” Mol. Phys. 61, 813 (1987).
6A. M. Ferrenberg and R. H. Swendsen, “Optimized Monte Carlo data analysis,”
Phys. Rev. Lett. 63, 1195 (1989).

7R. G. Larson, L. E. Scriven, and H. T. Davis, “Monte Carlo simulation of model
amphiphile-oil-water systems,” ]. Chem. Phys. 83, 2411 (1985).

8R. G. Larson, “Monte Carlo lattice simulation of amphiphilic systems in two and
three dimensions,” |. Chem. Phys. 89, 1642 (1988).

9M. A. Floriano, E. Caponetti, and A. Z. Panagiotopoulos, “Micellization in model
surfactant systems,” Langmuir 15, 3143 (1999).

1°C. P. Brangwynne, C. R. Eckmann, D. S. Courson, A. Rybarska, C. Hoege,
J. Gharakhani, F. Jilicher, and A. A. Hyman, “Germline P granules are liquid
droplets that localize by controlled dissolution/condensation,” Science 324, 1729
(2009).

'S, F. Banani, H. O. Lee, A. A. Hyman, and M. K. Rosen, “Biomolecular con-
densates: Organizers of cellular biochemistry,” Nat. Rev. Mol. Cell Biol. 18, 285
(2017).

25, Das, Y.-H. Lin, R. M. Vernon, J. D. Forman-Kay, and H. S. Chan,
“Comparative roles of charge, 7, and hydrophobic interactions in sequence-
dependent phase separation of intrinsically disordered proteins,” Proc. Natl. Acad.
Sci. U.S. AL 117, 28795 (2020).

3U. Rana, K. Xu, A. Narayanan, M. T. Walls, A. Z. Panagiotopoulos, J. L. Avalos,
and C. P. Brangwynne, “Asymmetric oligomerization state and sequence pattern-
ing can tune multiphase condensate miscibility,” Nat. Chem. (published online,
2024).

T4A. J. Destefano, S. D. Mengel, M. W. Bates, S. Jiao, M. S. Shell, S. Han, and R. A.
Segalman, “Control over conformational landscapes of polypeptoids by monomer
sequence patterning,” Macromolecules 57, 1469 (2024).

SL. W. Taylor, R. D. Priestley, and R. A. Register, “Control of solution phase
behavior through block-random copolymer sequence,” Macromolecules 57, 916
(2024).

e A. Statt, H. Casademunt, C. P. Brangwynne, and A. Z. Panagiotopoulos, “Model
for disordered proteins with strongly sequence-dependent liquid phase behavior,”
J. Chem. Phys. 152, 075101 (2020).

'7U. Rana, C. P. Brangwynne, and A. Z. Panagiotopoulos, “Phase separation vs
aggregation behavior for model disordered proteins,” ]. Chem. Phys. 155, 125101
(2021).

"8A. Z. Panagiotopoulos, “Phase separation and aggregation in multiblock
chains,” . Chem. Phys. 158, 154901 (2023).

"9M. N. Rosenbluth and A. W. Rosenbluth, “Monte Carlo calculation of the
average extension of molecular chains,” J. Chem. Phys. 23, 356 (1955).

204, 7. Panagiotopoulos, V. Wong, and M. A. Floriano, “Phase equilibria
of lattice polymers from histogram reweighting Monte Carlo simulations,”
Macromolecules 31,912 (1998).

21 A. D. Bruce and N. B. Wilding, “Scaling fields and universality of the liquid-gas
critical point,” Phys. Rev. Lett. 68,193 (1992).

22N. B. Wilding and A. D. Bruce, “Density fluctuations and field mixing in the
critical fluid,” J. Phys.: Condens. Matter 4, 3087 (1992).

Z*M. M. Tsypin and H. W. J. Bléte, “Probability distribution of the order para-
meter for the three-dimensional Ising-model universality class: A high-precision
Monte Carlo study,” Phys. Rev. E 62, 73 (2000).

24G. Orkoulas and A. Z. Panagiotopoulos, “Phase behavior of the restricted prim-
itive model and square-well fluids from Monte Carlo simulations in the grand
canonical ensemble,” ]. Chem. Phys. 110, 1581 (1999).

J. Chem. Phys. 160, 234902 (2024); doi: 10.1063/5.0215700
Published under an exclusive license by AIP Publishing

160, 234902-7

61:80:61 G20z Asenuer g1


https://pubs.aip.org/aip/jcp
https://dx.doi.org/10.34770/2xrn-jt41
https://doi.org/10.2172/4390578
https://doi.org/10.1063/1.1667938
https://doi.org/10.1063/1.448024
https://doi.org/10.1080/00268978700101491
https://doi.org/10.1103/physrevlett.63.1195
https://doi.org/10.1063/1.449286
https://doi.org/10.1063/1.455110
https://doi.org/10.1021/la9810206
https://doi.org/10.1126/science.1172046
https://doi.org/10.1038/nrm.2017.7
https://doi.org/10.1073/pnas.2008122117
https://doi.org/10.1073/pnas.2008122117
https://doi.org/10.1038/s41557-024-01456-6
https://doi.org/10.1021/acs.macromol.3c02338
https://doi.org/10.1021/acs.macromol.3c02111
https://doi.org/10.1063/1.5141095
https://doi.org/10.1063/5.0060046
https://doi.org/10.1063/5.0146673
https://doi.org/10.1063/1.1741967
https://doi.org/10.1021/ma971108a
https://doi.org/10.1103/physrevlett.68.193
https://doi.org/10.1088/0953-8984/4/12/008
https://doi.org/10.1103/physreve.62.73
https://doi.org/10.1063/1.477798

The Journal

of Chemical Physics

25p. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca,
1953).

26 A. Z. Panagiotopoulos, M. A. Floriano, and S. K. Kumar, “Micellization and
phase separation of diblock and triblock model surfactants,” Langmuir 18, 2940
(2002).

27T, Dobashi, M. Nakata, and M. Kaneko, “Coexistence curve of polystyrene in
methylcyclohexane. II. Comparison of coexistence curves observed and calculated
from classical free energy,” |. Chem. Phys. 72, 6692 (1980).

28 A, Z. Panagiotopoulos, “Solvent selectivity controls micro- versus macro-phase
separation in multiblock chains,” arXiv:2405.12054 [cond-mat.soft] (2024).

ARTICLE pubs.aip.org/aipl/jcp

29M. V. T. Nguyen, K. Dolph, K. T. Delaney, K. Shen, N. Sherck, S. Koh-
ler, R. Gupta, M. B. Francis, M. S. Shell, and G. H. Fredrickson, “Molecularly
informed field theory for estimating critical micelle concentrations of intrinsically
disordered protein surfactants,” J. Chem. Phys. 159, 244904 (2023).

301, Sawle and K. Ghosh, “A theoretical method to compute sequence dependent
configurational properties in charged polymers and proteins,” |. Chem. Phys. 143,
085101 (2015).

5']. Taneja and K. Lasker, “Machine-learning-based methods to gener-
ate conformational ensembles of disordered proteins,” Biophys. J. 123, 101
(2024).

J. Chem. Phys. 160, 234902 (2024); doi: 10.1063/5.0215700
Published under an exclusive license by AIP Publishing

160, 234902-8

61:80:61 G20z Asenuer g1


https://pubs.aip.org/aip/jcp
https://doi.org/10.1021/la0156513
https://doi.org/10.1063/1.439128
https://doi.org/10.1063/5.0178910
https://doi.org/10.1063/1.4929391
https://doi.org/10.1016/j.bpj.2023.12.001

