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Abstract: Usually applied simulation methods for turbulent flows as large eddy simulation (LES),

wall-modeled LES (WMLES), and detached eddy simulation (DES) face significant challenges: they

are characterized by improper resolution variations and essential practical simulation problems given

by huge computational cost, imbalanced resolution transitions, and resolution mismatch. Alternative

simulation methods are described here. By using an extremal entropy analysis, it is shown how

minimal error simulation methods can be designed. It is shown that these methods can overcome the

typical shortcomings of usually applied simulation methods. A crucial ingredient of this analysis is

the identification of a mathematically implied general hybridization mechanism, which is missing

in existing methods. Applications to several complex high Reynolds number flow simulations

reveal essential performance, functionality, and computational cost advantages of minimal error

simulation methods.

Keywords: computational fluid dynamics; large eddy simulation (LES); Reynolds-averaged Navier-

Stokes (RANS) methods; hybrid RANS-LES methods

1. Introduction

From a general viewpoint, the concept of large eddy simulation (LES) seems to be
without alternative [1–6]. Flow resolution provided via LES is a requirement to properly
deal with many flow simulations because of our inability to accurately model such flows.
Simultaneously, LES is often found to be computationally more efficient than direct numeri-
cal simulation (DNS). But despite the major contributions of LES to turbulent flow analyses
and predictions, LES still faces significant challenges. Compared to Reynolds-averaged
Navier–Stokes (RANS) methods which include transport equations for the typical scale of
turbulent motions, an essential characteristics of classical LES is to provide such required
scale information algebraically by using the filter width ∆ as model length scale. The latter
concept is known to fail outside of the inertial range (close to DNS or RANS regimes) [1,7,8].
From a practical viewpoint, there are also significant questions about LES. In regard to
complex high Reynolds number (Re) flow simulations, LES is usually extremely expensive
computationally [9–11], and these costs drastically increase with Re [12]. Arguably, one
of the biggest concerns about LES is the missing involvement of a reliable measure of its
resolution ability. As is well known, the assessment of the actual LES resolution represents
a rather difficult question [13,14].

The hybridization of LES with computationally much more efficient RANS methods is
seen to be the most promising way to overcome the problems described in the preceding
paragraph. A variety of ways was suggested to accomplish such a hybridization. The first
way is wall-modeled LES (WMLES) [2,5,6,15–27], where RANS components are involved
close to solid walls. Variations of this approach given by the development of Reynolds-
stress-constrained LES (RSC-LES) [28–39] are discussed elsewhere [40]. The second way
is given by detached eddy simulation (DES) [41–52], where the performance of RANS
models is improved by switching from the RANS turbulence length scale applied close to
the wall to a much smaller LES-type length scale away from the wall. Many alternative
methods have been suggested [40,53], including unified RANS-LES (UNI-LES) [54–60],
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partially averaged Navier–Stokes (PANS) [61–72], partially integrated transport modeling
(PITM) [73–83], and scale adaptive simulation (SAS) methods [52,84–89]. Although these
hybrid RANS-LES methods can reduce the computational cost of LES, their use also brings
up significant questions. Typical problems are given by the variety of available model and
simulation settings (possibly leading to a significant uncertainty of predictions), or the
discrepancy between prescribed and actual flow resolution (possibly leading to significant
performance shortcomings). Such issues apply to aerospace and wind energy problems
but also to a variety of other problems, for example, mesoscale and microscale modeling in
regard to atmospheric simulations and many technical applications [90–92]. Also, the use of
machine learning (ML) methods has become increasingly popular. Such developments are
clearly promising, but there is currently no indication that the use of ML methods in regard
to the problem considered relates to essential methodological improvements [93–114].

The intention of this paper is to use exact mathematical analysis to identify reasons for
the shortcomings of LES and hybrid RANS-LES and to present alternative methods, referred
to as continuous eddy simulation (CES), which are not affected by such issues. There are
several differences to previous related work [9–11,40,115–122]. First, a novel interpretation
of the analytical approach is presented as a variant of minimizing the uncertainty (measured
by the entropy), in line with the corresponding use of the entropy to design statistically
most likely probability density function (PDF) methods [123]. Second, previously obtained
results are generalized by the separate consideration of a turbulence scale equation, which
is very beneficial to identify the general hybridization mechanism mathematically obtained
in this way. Third, a relevant practical problem is addressed: the hybridization under
conditions where a transport equation for turbulence scale variables is unavailable [there
are several usually applied codes that do not involve dissipation transport equations,
as is currently the case with the widely used Weather Research and Forecasting Model
(WRF) dealing with atmospheric flow simulations]. Fourth, basic disadvantages of existing
usually applied computational methods and advantages of novel minimal error simulation
methods are identified. The paper is organized in the following way. Exact analysis
results are presented in Section 2. Implications for computational methods are presented
in Section 3. Evidence for the benefits of mathematically based minimal error simulation
methods is presented in Section 4, followed by the conclusions in Section 5.

2. Analysis Results: Minimal Error Simulation Methods

2.1. Theoretical Basis

The analysis presented next does not present a model but a model design methodology
that can be applied to many turbulence model structures. More specifically, analysis as
presented here cannot be applied to any equation structure, e.g., to determine source terms
in the momentum equation. This analysis applies to equation structures that establish
relationships between model variables (like the modeled kinetic energy k) and model
parameters (like ψ³, see Equation (2)). It is worth noting, however, that this approach
covers the usually applied basis for both LES and hybrid RANS-LES methods.

We consider the incompressible continuity equation ∂Ũi/∂xi = 0 and momentum
equation

DŨi

Dt
= −

∂( p̃/ρ + 2k/3)

∂xi
+ 2

∂(ν + νt)S̃ik

∂xk
. (1)

Here, D/Dt = ∂/∂t + Ũk∂/∂xk denotes the filtered Lagrangian time derivative, and the
sum convention is used throughout this paper. Ũi refers to the ith component of the spatially
filtered velocity. We have here the filtered pressure p̃, ρ is the constant mass density, k is the
modeled energy, ν is the constant kinematic viscosity, and S̃ij = (∂Ũi/∂xj + ∂Ũj/∂xi)/2 is

the resolved rate-of-strain tensor. The modeled viscosity is given by νt = CµkÄ = Cµk2/ϵ.
Here, ϵ is the modeled dissipation rate of modeled energy k, Ä = k/ϵ is the dissipation time
scale, and Cµ has a standard value Cµ = 0.09. For k, we consider the transport equation
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Dk

Dt
= P − ψ³ϵ + Dk. (2)

The diffusion term reads Dk = ∂[νt ∂k/∂xj]/∂xj, and P = νtS
2 is the production of k, where

S = (2S̃mnS̃nm)1/2 is the characteristic shear rate. The variable ψ³ appears here in contrast
to usually applied RANS equations where ψ³ = 1 is applied.

Although different, the type of analysis presented here shows common features with
the derivation of an optimal PDF based on maximizing the related entropy, which is also
accomplished via variational analysis. In the following, hybridization errors ¼ given by
residuals of Equation (2),

¼ =
Dk

Dt
− P + ψ³ϵ − Dk, (3)

play the central role of the analysis applied. In particular, normalized hybridization errors
¼∗ are applied (as given by ϵ¼/k3 in Equation (5)). Although not applied below to simplify
the presentation, such normalized errors can be always made nondimensional by applying
appropriate total variables, which are unaffected by variations. The normalized errors
¼∗ are measures of uncertainty (of the hybridization uncertainty) in the same way as the
entropy E is introduced as measure of uncertainty. Formally, we may state, therefore,

E = ¼∗. (4)

The requirement for vanishing first order variations of these normalized errors then identi-
fies extremal relations. The methods obtained in this way represent minimal error simula-
tion methods.

A core component of the following discussions is the understanding of (the interaction
of) resolved and modeled motions [40]. Here, the term modeled motions relates to model
variables which are determined via the turbulence model applied, as given by Equation (2).
Using appropriate computational grids, such simulation methods can produce fluctuations
(of velocities, kinetic energy and other variables), which represent resolved motion (which
is not explicitly modeled but produced by the model). Such resolved motion can be
statistically processed and measured by averaging simulation results. The involvement
of resolved motion plays an essential role in simulations: it enables proper simulations
of separated turbulent flows, which appear in most practical applications. The basic goal
of the methods presented here is the proper involvement of both modeled and resolved
motion. In particular, the goal is to set up an appropriate interaction of both types of motion.
The latter is a requirement to correctly manage transitions between almost modeled (RANS-
type) and almost resolved (LES-type) flow regimes: the model contribution needs to
decrease (increase) if there is a lot of (little) resolved motion. Technically, the latter can
be accomplished via variations of ψ³. Different ways to deal with this question (different
hybridizations which are summarized in Table 1) are described in the following subsections
and in Appendix A, which presents a relevant modification.

Correspondingly, there are two types of variables: model variables and total vari-
ables, referred to by the subscript tot. Total variables involve both model and resolved
contributions [122]. The variables considered here are the modeled kinetic energy k, dis-
sipation rate ϵ, time scale Ä = k/ϵ, and length scale L = k3/2/ϵ = k1/2Ä. Fraction
L+ = L/Ltot specifies the amount of resolved motion in regard to the variable considered;
the same applies to k+ = k/ktot and ϵ+ = ϵ/ϵtot. The latter fractions are bounded by
zero and one, e.g., 0 f L+ f 1. Here, L+, k+, Ä+ values of zero refer to fully resolved
flow, and L+, k+, Ä+ values of unity refer to fully modeled flow. A relevant technical
detail is the calculation of L+ in simulations (k+ = k/ktot and Ä+ = Ä/Ätot are calculated
correspondingly). The modeled contribution is calculated by L = ïkð3/2/ïϵð, where the
brackets refer to averaging in time. The total length scale is calculated correspondingly

by Ltot = k3/2
tot /ϵtot. Corresponding to ktot = ïkð + kres, ϵtot is the sum of modeled and

resolved contributions, ϵtot = ïϵð+ ϵres. Here, the resolved contributions are calculated by
kres =

(〈
ŨiŨi

〉
−

〈
Ũi

〉〈
Ũi

〉)
/2, ϵres = ν

(〈
∂Ũi/∂xj∂Ũi/∂xj

〉
−

〈
∂Ũi/∂xj

〉〈
∂Ũi/∂xj

〉)
.
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To obtain methods that can function well in applications, the hybridization parameter
ψ³ as obtained via analysis of Equation (3) should be a local function of turbulence variables
themselves. Thus, ψ³ should not depend on Dk/Dt and the turbulent transport term Dk.
Technically, the influence of these terms can be excluded by applying variational analysis
to normalized errors (see below). Variations are denoted by δ. Dk/Dt is characterized by
δ(Dk/Dt) = [δk/k]Dk/Dt, and Dk is characterized by δDk = [3δk/k − δϵ/ϵ]Dk, which
means there is no normalization that enables the simultaneous disappearance of Dk/Dt
and Dk.

• One way to deal with this (which corresponds to PANS and PITM) is to neglect Dk in
regard to the ψ³ calculation, leading to the significant shortcoming that this hybridiza-
tion approach can only be applied to homogeneous flows. Thus, this approach is not
considered here. It is worth noting, however, that this approach results in the same
results as reported in Section 2.2 because the corresponding variations of Dk (and Dϵ

if an ϵ-equation is involved) disappear.
• Then, there are two possibilities: analysis including Dk/Dt in conjunction with a

redefinition of Dk, or the inclusion of Dk in conjunction with the neglect of Dk/Dt.
These two options (leading to O1 and O2 results presented in Table 1) are considered
in Sections 2.2 and 2.3.

• A third option (a specification of option O2 leading to O3 results presented in Table 1)
is considered in the Appendix A.

It is worth noting that the following analysis involves a relevant assumption made
throughout this paper: we assume that the energy partition (δk/k and δϵ/ϵ) does not change
in space and time. This assumption is not a restriction but a desired stability requirement.
It ensures that physically equivalent flow regions are equally resolved without significant
oscillations of δk/k and δϵ/ϵ [9,121,122].

Table 1. Summary of hybridization options.

O1. Exact hybridization: Exact hybridization results for ψ³ are:

• no ϵ-eq.: ψ³ = P/ϵ − Ä+(Ptot/ϵtot − 1) → Dk/Dt = k+
(

Ptot − ϵtot
)
+ D∗

k
• ϵ-eq.: ψ³ = ³ − Ä+(³ − 1) → Dk/Dt = P − ³ϵ + k+(³ϵtot − ϵtot) + D∗

k
This needs to consider more complicated equations (νt is replaced by νt,tot in D∗

k and D∗
ϵ ).

O2. Reduced exact hybridization: Otherwise, the neglect of Dk/Dt in regard to calculating ψ³

was found to be fully justified by applications. By using this assumption, we found
• no ϵ-eq.: ψ³ = P/ϵ − L2

+(Ptot/ϵtot − 1) → Dk/Dt = L2
+ϵ+(Ptot − ϵtot) + Dk

• ϵ-eq.: ψ³ = ³ − L2
+(³ − 1) → Dk/Dt = P − ³ϵ + L2

+ϵ+(³ϵtot − ϵtot) + Dk

O3. Approximated hybridization: The neglect of Dk/Dt in regard to calculating ψ³ in
conjunction with the RANS setting ϵ = ϵtot in Equation (2) implies (see Appendix A)
• no ϵ-eq.: ψ³ = P/ϵtot − k3

+(Ptot/ϵtot − 1) → Dk/Dt = k3
+(Ptot − ϵtot) + Dk

The latter specifies the O2 result for ϵ = ϵtot considered (L+ reduces to k3/2
+ ).

2.2. Exact Hybridization

According to the choices described in the preceding paragraph, we consider a redefini-
tion of Dk in Equation (2) given by D∗

k = ∂[νt,tot ∂k/∂xj]/∂xj, i.e., the replacement of νt in
Dk by νt,tot. The corresponding analysis leads to the O1 formulas in Table 1.

First, we consider the case of making no assumption on ϵ. The appropriately normal-
ized error of this modified Equation (2) reads, then,

¼

k
=

1

k

[
Dk

Dt
− P + ϵψ³ − D∗

k

]
, (5)

where the variations related to Dk/Dt and Dk disappear:

δ

[
1

k

Dk

Dt

]
=

1

k

Dk

Dt

[
δ(Dk/Dt)

Dk/Dt
−

δk

k

]
= 0, δ

[
D∗

k

k

]
=

D∗
k

k

[
δD∗

k

D∗
k

−
δk

k

]
= 0. (6)
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By using ϵ = k/Ä, the requirement of a vanishing first-order variation of the normalized
error implies, then,

δ

[
ψ³

Ä

]
= δ

[
P

ϵÄ

]
. (7)

By involving Ä+ = k+/ϵ+, the integration of this equation from the RANS state (where
ψ³ = 1, the variables involved are total variables indicated by the subscript tot) to a state
with a certain level of resolved motion provides

ψ³

Ä
−

1

Ätot
=

P

ϵÄ
−

Ptot

ϵtotÄtot
, or ψ³ =

P

ϵ
− Ä+

(
Ptot

ϵtot
− 1

)
. (8)

The latter relation can be specified by involving an ϵ-equation, which can be used to
rewrite the production P,

Dϵ

Dt
= Cϵ1

ϵ2

k

(P

ϵ
− ³

)
+ D∗

ϵ , or
P

k
= ³

ϵ

k
+

1

Cϵ1
ϵ

[
Dϵ

Dt
− D∗

ϵ

]
. (9)

To be consistent with Dk, D∗
ϵ also involves the total viscosity, D∗

ϵ = ∂[(νt,tot/Ãϵ) ∂ϵ/∂xj]/∂xj.
The variation of the last term disappears for the case considered:

δ

[
Dϵ/Dt

Cϵ1
ϵ

]
=

Dϵ/Dt

Cϵ1
ϵ

[
δ(Dϵ/Dt)

Dϵ/Dt
−

δϵ

ϵ

]
= 0, δ

[
D∗

ϵ

Cϵ1
ϵ

]
=

D∗
ϵ

Cϵ1
ϵ

[
δD∗

ϵ

D∗
ϵ

−
δϵ

ϵ

]
= 0.

(10)
Instead of Equation (7), we obtain

δ

[
ψ³

Ä

]
= δ

[
³

Ä

]
. (11)

Similar to Equation (8), the integration of this equation leads to

ψ³

Ä
−

1

Ätot
=

³

Ä
−

³

Ätot
, or ψ³ = ³ − Ä+(³ − 1). (12)

The hybridization mechanism presented in this way can be seen very well by combin-
ing Dk/Dt = P − ψ³ϵ + D∗

k and ψ³ = P/ϵ − Ä+(Ptot/ϵtot − 1),

Dk

Dt
= Ä+

ϵ

ϵtot

(
Ptot − ϵtot

)
+ D∗

k , or,
Dk

Dt
= k+

(
Ptot − ϵtot

)
+ D∗

k , (13)

where Ä+ϵ+ = k+ is applied. This reveals the exact mathematically determined hybridiza-
tion mechanism: an increased amount of resolved motion decreases both production and
dissipation until k almost vanishes, leading to a vanishing modeled viscosity νt (corre-
sponding to the DNS limit). The inclusion of the ϵ Equation (9) leads to similar features.
The use of ψ³ = ³ − Ä+(³ − 1) in Dk/Dt = P − ψ³ϵ + D∗

k implies

Dk

Dt
= P − ³ϵ + Ä+ϵ+(³ − 1)ϵtot + D∗

k , or,
Dk

Dt
= P − ³ϵ + k+(³ϵtot − ϵtot) + D∗

k . (14)

The correspondence between Equations (13) and (14) can be seen by accounting for the
fact that P ∝ ³ϵ according to Equation (9) in regard to production and dissipation terms. It
is worth noting that Equation (14) is the exact consequence of involving Equation (9); no
approximations are applied.

2.3. Reduced Exact Hybridization

The methods reported in the preceding subsection (in O1 in Table 1) are theoretically
fully convincing; the disadvantage is the involvement of total variables like the total
modeled viscosity νt,tot in turbulent transport terms D∗

k (and possibly D∗
ϵ ). The calculation
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of such terms is not trivial; these quantities may have a large range of variations. Therefore,
from a computational viewpoint, neglecting substantial derivatives (only in regard to the
calculation of hybridization parameters) is highly beneficial. The latter assumption (leading
to bounded variations of resolution measures like 0 f L2

+ f 1) was proven to be fully
justified in all applications considered so far.

Correspondingly, we consider the normalized hybridization error ¼ without involving
Dk/Dt in Equation (3), without making any assumptions on ϵ,

ϵ¼

k3
= −

ϵP

k3
+

ϵ2ψ³

k3
−

ϵDk

k3
. (15)

The normalization (ϵ/k3) is motivated by the fact that the variation of the last term vanishes,

δ

[
ϵDk

k3

]
=

ϵDk

k3

(
δϵ

ϵ
− 3

δk

k
+

δDk

Dk

)
= 0, (16)

because the variation of Dk implies a zero parenthesis term. We require a zero first-order
variation of ϵ¼/k3, which leads to

δ

[
ϵ2ψ³

k3

]
= δ

[
ϵP

k3

]
, or δ

[
ψ³

L2

]
= δ

[
P

ϵL2

]
. (17)

Here, Equation (16) is taken into account, and the last expression involves the characteristic
turbulence length scale L = k3/2/ϵ. The latter equation can be integrated from the RANS
state (where ψ³ = 1) to a state with a certain level of resolved motion,

ψ³

L2
−

1

L2
tot

=
P

ϵL2
−

Ptot

ϵtotL2
tot

, or ψ³ =
P

ϵ
− L2

+

(
Ptot

ϵtot
− 1

)
. (18)

It is worth noting that Ptot = νt,totS
2, where S refers to the resolved shear rate.

A modification of this calculation arises if the usual transport equation for ϵ is involved:

Dϵ

Dt
= Cϵ1

ϵ2

k

(P

ϵ
− ³

)
+ Dϵ, where (19a)

δ

[
Dϵ

Cϵ1
k2

]
=

Dϵ

Cϵ1
k2

(
δDϵ

Dk
− 2

δk

k

)
= 0. (19b)

The diffusion term is given by Dϵ = ∂[(νt/Ãϵ) ∂ϵ/∂xj]/∂xj: the relevant variation of
Dϵ arising from the structure of Dϵ is involved in Equation (19b). Here, Cϵ1

, Cϵ2 , ³ =
Cϵ2 /Cϵ1

and Ãϵ are model parameters: usually applied values are Ãϵ = 1.3, Cϵ1
= 1.44,

Cϵ2 = 1.92, resulting in ³ = 1.33. By neglecting the substantial derivative Dϵ/Dt in
correspondence with neglecting Dk/Dt above (only in regard to the calculation of the
hybridization parameter ψ³), this ϵ equation provides a relation for the production P
given by

ϵP

k3
= ³

ϵ2

k3
−

Dϵ

Cϵ1
k2

, or,
P

ϵL2
=

³

L2
−

Dϵ

Cϵ1
k2

. (20)

The variation of the last term vanishes; see Equation (19b). The replacement of P/[ϵL2]
according to Equation (20) in Equation (17) then implies

δ

[
ψ³

L2

]
= ³δ

[
1

L2

]
. (21)

As above, we integrate this equation from the RANS state (ψ³ = 1) to a state with a certain
level of resolved motion,
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ψ³

L2
−

1

L2
tot

=
³

L2
−

³

L2
tot

, or ψ³ = ³ − L2
+(³ − 1). (22)

Similar to Equations (13) and (14), we look at the implied hybridization mechanism
without/with involving the ϵ-equation, respectively. Equation Dk/Dt = P − ψ³ϵ + Dk

combined with ψ³ = P/ϵ − L2
+(Ptot/ϵtot − 1) leads to

Dk

Dt
= P − [P/ϵ − L2

+(Ptot/ϵtot − 1)]ϵ + Dk, or,
Dk

Dt
= L2

+ϵ+(Ptot − ϵtot) + Dk. (23)

Otherwise, equation Dk/Dt = P − ψ³ϵ + Dk combined with ψ³ = ³ − L2
+(³ − 1) leads to

Dk

Dt
= P − [³ − L2

+(³ − 1)]ϵ + Dk, or,
Dk

Dt
= P − ³ϵ + L2

+ϵ+(³ϵtot − ϵtot) + Dk. (24)

Compared to the corresponding O1 formulas, we observe the same hybridization mecha-
nism where Ä+ is replaced by L2

+, which is implied by exact analysis.

3. Implications for Computational Methods

3.1. Implications for LES

LES aims at resolving most of the turbulent flow using a relatively small turbulent
viscosity νt = Cµk1/2L in conjunction with a relatively fine grid. The relationship to the
minimal error methods presented here can be seen by a comparison of corresponding
dissipation rates. We use Dk/Dt = P − ψ³ϵ + Dk for that, which involves the same
diffusion coefficient. The dissipation rate applied in standard LES is ϵ = k3/2/∆, with ∆

being the filter width. The dissipation rate in Dk/Dt = P − ψ³ϵ + Dk is ψ³ϵ = ψ³k3/2/L,
where ψ³ = ³ − L2

+(³ − 1). The equality of both dissipation rates reveals the applicability
conditions for the LES expression: it requires

1

∆
=

1

L
[³ − L2

+(³ − 1)], or L+ = ∆+[³ − L2
+(³ − 1)]. (25)

The last expression results from multiplication with Ltot, and we introduce ∆+ = ∆/Ltot.
This equation represents a quadratic equation in L+ which is solved by

L+ =

√
³

³ − 1
+

1

4(³ − 1)2∆2
+

−
1

2(³ − 1)∆+
−−−−−→
∆+ << 1

L+ = ³∆+, (26)

where 0 f ∆+ f 1 is considered, which ensures 0 f L+ f 1. For small ∆+, Equation (26)
is reduced to L+ = ³∆+ (or L = ³∆), as may be seen by neglecting the L2

+ term in
Equation (25). Thus, compared to the minimal error concept, the LES concept is to replace
the scale calculation by setting L = ³∆, where ∆ is sufficiently small, which leads to a small
νt = Cµk1/2L. The classical LES concept to assume L = ³∆ is known to fail outside of the
inertial range (close to DNS or RANS regimes) [1,7,8]. Explicit evidence for that can be
found elsewhere [7,8]; see, in particular, the discussion in Ref. [7] related to Figure 11 there.
More specifically, we observe the following:

C1. Improper resolution variation: The classical LES concept to set L = ³∆ enables flow
resolution via grid refinements. However, a grid refinement (smaller ∆) has opposite
effects on production and dissipation in the k-equation because of P = Cµk1/2LS2 and

ϵ = k3/2/L: the smaller L = ³∆ decreases the production and increases the dissipation
of k, leading to a drastic reduction in k. This is in contradiction to Equation (23) and
the other equations reported in Section 2. The exact derivation of these equations
reveals the simultaneous damping of both production and dissipation if the amount
of resolved motion increases. The same mechanism creates the well-known failure of
LES on relatively coarse grids (as always given for very high Re flows): the relatively
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large ∆ implies an overestimation of production and underestimation of dissipation
in the k-equation.

C2. Huge cost: One consequence of the LES resolution concept is the huge cost of LES to
ensure appropriate flow resolution. Another consequence is that LES does not involve
an explicit measure of the flow resolution, which would provide guidance about the
actual flow resolution. This implies the difficult question of how to evaluate the LES
flow resolution [13,14].

C3. Alternative: These problems can be avoided by replacing the filter width by the
turbulence length scale L calculated by involving a scale equation in accordance with
minimal error equations. In particular, in contrast to the usual LES concept, L can
physically correctly represent the size of turbulence structures. The LES resolution is
explicitly specified via the known L+.

3.2. Implications for WMLES and DES Type Models

Hybrid RANS-LES methods, first of all DES and WMLES methods, were developed to
overcome the (near-wall resolution) issues of LES. The functioning of these methods is very
different from the methods described here; see O1. The predominant strategy is the design
of equations that involve both LES and RANS components. This takes place, for example,
by the inclusion of relatively small LES length scales (modeled viscosities) in RANS which
become active away from walls, or the switch from LES to RANS turbulent viscosities near
walls. Because of their design, such viscosity-switching methods are known to suffer from
functionality issues: results depend on the use of different (equilibrium or non-equilibrium)
wall models, definitions of regions where different models and grids are applied, different
mesh distributions, and set-up options to manage the information exchange between such
different flow regions. These equations do not involve resolution indicators. We observe
the following:

C4. Improper resolution variation: WMLES and DES methods are subject to the LES reso-
lution issues reported above because of their explicit inclusion of LES-type equations.
The basic goal is to extend the applicability of LES to coarse-grid simulations. But on
coarse grids, the LES scaling with ∆ represents an unphysical concept [1,7,8], and the
resolution mechanism functioning becomes increasingly incorrect (see C1).

C5. Imbalanced resolution transition: Even more importantly, such methods are known
to often inadequately handle transitions from modeled to resolved motion and
vice versa. The latter is also a consequence of their design: the switch of modeled
viscosities without accounting for the actual amount of flow resolution is an insuffi-
cient concept. The latter requires empirical matching methods to adjust to different
flows [10,11].

C6. Alternative: In contrast to the functionality issues of usually applied RANS-LES,
in particular DES and WMLES, the methods reported in O2 in Table 1 are not affected
by corresponding problems. The underlying RANS model is modified by the mathe-
matical hybridization approach. There are no further model set-up options in regard
to setting up the hybridization or in regard to dealing with performance issues related
to transitions between modeled and resolved motions.

3.3. Implications for PANS and PITM-Type Models

Another strategy to deal with the LES near-wall resolution problems is to partially
follow the O1, O2 results. There exist methods which show some technical similarities
to the methods reported here; see Refs. [7,8,124]. The basic idea is the damping of mod-
eled viscosity via νt = k+νt,tot. This assumption is not too far from the implications of
methods reported here: by taking reference to Equation (13), we have k+Ptot = k+νt,totS

2.
However, in comparison to the exact results reported here, this empirical approach misses
the corresponding damping of dissipation; see Equation (13). This may imply physically
incorrect variations of k and ϵ. Alternatives were presented in terms of PANS and PITM
methods. Instead of ψ³ = ³ − L2

+(³ − 1) (see O2 in Table 1), these methods are based on
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ψ³ = ³ − R(³ − 1), where R = k+ (see the last paragraph of Section 2.1, first bullet point).
More specifically, ϵ+ = 1 is assumed, and R = k+ is approximated: R is a prescribed

constant (PANS) or R = 1.06∆
2/3
+ (PITM). We observe the following:

C7. Improper resolution variation: The consideration of R = k+ has an essential disad-
vantage: this hybridization is only applicable to homogeneous flows (see Section 2.1).
This approach is in contradiction with the goal of hybrid RANS-LES to provide better
predictions of nonhomogeneous flows.

C8. Resolution mismatch: The significant difference to the minimal error methods re-
ported here is the functioning of methods. In PANS and PITM methods, there is a
certain desired amount of resolved motion imposed on the simulation by the model
set-up (the R applied). Because of the approximation of k+ applied, there is no feed-
back between resolved and modeled motion, and the imposed resolution is often not
realized computationally. Similar to corresponding problems of WMLES and DES,
this discrepancy between modeled and resolved motion may imply significant model
performance issues; see detailed analyses reported elsewhere [9–11].

C9. Alternative: In correspondence to C6 presented in regard to WMLES and DES meth-
ods, these problems are overcome by the methods presented here. In particular,
the minimal error concept ensures a correct hybridization mechanism. Because of the
active interaction of resolved and modeled motion, corresponding imbalances seen in
PANS and PITM methods are avoided.

4. Simulation Results

Further evidence for the facts reported in Section 3 (the simulation performance
problems C2, C5, C8 of existing simulation methods and advantages of CES methods) is
provided next via results obtained by simulations of three complex high Re turbulent flows.
The flows considered, issues of existing simulation methods, and benefits of CES methods
are addressed in the next three subsections. Corresponding CES analyses involve the
consideration of different CES versions [9–11]. The following results are reported in regard
to the CES-KOS (or simply KOS) CES version. Here, KO refers to the use of a k − ω model,
and S refers to the hybridization in the scale equation. A discussion of the equivalence of
different CES hybridizations can be found elsewhere [9].

4.1. Flows Considered

One of the applications of CES methods is the simulation of periodic hill flows as
illustrated in Figure 1 [9]. This flow is a channel flow involving periodic restrictions. This
flow, which is used a lot for the evaluation of turbulence models [40], involves features
such as separation, recirculation, and natural reattachment [125,126]. The size of the
computational domain is Lx = 9h, Ly = 3.035h, and Lz = 4.5h in the streamwise x, wall
normal y, and spanwise z directions, respectively: h refers to the hill height. At the bottom
and top, the channel is constrained by solid walls. No-slip and impermeability boundary
conditions are used at these walls. Periodic boundary conditions are applied in streamwise
and spanwise directions. The flow simulations were performed for a wide range of Re
ranging from Re = 37 K up to Re = 500 K using grids involving between 120 K and 500 K
grid points (these grids are denoted by G120 and G500, respectively). A thorough evaluation
of the performance of CES methods in regard to simulating periodic hill flows at the highest
Re = 37 K for which experimental data for model evaluation are still available can be found
elsewhere [9].

Seifert and Pack developed the NASA wall-mounted hump model to investigate
unsteady flow separation, reattachment, and flow control at a high Reynolds number
Re = cρre f Ure f /µ ≈ 936 K based on the chord length c and freestream velocity Ure f . Here,
µ is the dynamic viscosity and abbreviation re f indicates the reference freestream conditions,
which are determined at the axial point x/c = −2.14. The model reflects the upper surface
of a 20-thick Glauert–Goldschmied airfoil that was originally designed for flow control
purposes in the early twentieth century. We see in Figure 2 a strongly convex region just
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before the trailing edge, which induces flow separation. As a benchmark for comparison,
we used the experiment conducted by Greenblatt et al. [127] without flow control [11]. This
case was extensively documented on the NASA Langley Research Center’s Turbulence
Modeling Resource webpage and has been widely used for evaluating different turbulence
modeling techniques, as discussed in the 2004 CFD Validation Workshop.

Figure 1. Velocity streamlines seen in periodic hill flows: results obtained by continuous eddy

simulation at Re = 37, 000. Reprinted with permission from Ref. [9]. Copyright 2020 AIP Publishing.

Figure 2. Wall-mounted hump geometry. (left) Experimental setup [128]; (right) 2D Computa-

tional layout.

Figure 3 shows a schematic diagram of the experimental configuration and the com-
putational domain for the axisymmetric transonic bump considered [129,130] along with
the applied boundary conditions. In particular, the Bachalo–Johnson [129] experiment
provided detailed data on mean velocity profiles, the Reynolds shear stress, and surface
pressure, but measurements of skin friction coefficients (C f ) were omitted. The latter were
provided by a recent experiment of Lynch et al. [130]. The case considered pertains to shock-
triggered boundary layer separation induced by an axially symmetric bump mounted on a
slim spherical cylinder, which extends 61 cm upstream. The case reflects the upper surface
of a transonic wing. It is characterized by a Mach number (M∞) of 0.875 and a Reynolds
number Re = 2.763 M relative to the airfoil’s chord length c. A thorough evaluation of CES
simulations versus a variety of other simulation methods can be found elsewhere [10].

Figure 3. Axisymmetric transonic bump geometry: experimental and computational configura-

tion [131–133].

4.2. Problems of Existing Methods

To illustrate the LES problem C2, we consider the computational cost of simulation
methods considered. In particular, regarding the computational cost of CES methods,
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there are essential differences to usually applied methods [9–11]. The simulation costs
are specified by C = NNt = TN/∆t. Here, N is the number of grid points applied, Nt is
number of time steps performed, T = Nt∆t refers to the constant total physical simulation
time, and ∆t is the prescribed simulation time-step. N and ∆t are known to vary with
Re according to N = ³1(Re/Re0)

´1 , ∆t = ³2(Re/Re0)
−´2 , where ³1, ³2, ´1, and ´2 are

constants [58,134]. Here, Re0 is used as normalization. Implications of simulations of the
NASA wall-mounted hump flow and the Bachalo and Johnson axisymmetric transonic
bump flow are presented in Figure 4. As it may be seen, the simulation costs of CES are
well below the cost of other methods; in particular, CES applications can be by orders of
magnitude cheaper than other methods.

10
6
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7
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8

10
9

10
10

10
15

10
20

10
25

Figure 4. Cost scalings of CES vs. other methods [10,11]: NASA wall-mounted hump flow (left) and

the Bachalo and Johnson axisymmetric transonic bump flow (right).

In order to illustrate the WMLES/DES problem C5, we consider the results of applying
DES methods to the NASA wall-mounted hump flow [135] as illustrated in Figure 5.
In particular, these simulations involved RANS simulations with the Spalart–Allmaras
(SA) turbulence model [136] and Menter’s shear stress transport (SST) model [137]. These
RANS models were compared with corresponding hybrid RANS-LES models based on
the delayed DES (DDES) model of Spalart et al. [47]. The unsatisfactory predictions of
hybrid RANS-LES models involved (their inability to properly deal with the RANS-to-LES
transition in the separated shear layer) can be clearly seen. More specifically, there are no
performance improvements at all compared to the RANS predictions for x/c f 1.

Figure 5. Two-dimensional NASA hump flow C f predictions based on several RANS and DES

methods; see details in Ref. [135] [taken from Probst et al. [135] with permission].

In order to illustrate the PANS/PITM problem C8, we consider corresponding results
of periodic hill flow simulations presented in Ref. [9], which include a detailed comparison
of CES versus PITM concepts (PANS concepts show features similar to PITM concepts).
In the PITM-type model, the mode control variable L2

+ was replaced by a PITM grid
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parameterization of k+. Figure 6 addresses the suitability of the PITM concept subject to

grid variations. Here, k+ is the actual energy ratio seen in simulations and R = C∆∆
2/3
+

is the prescribed energy ratio ∆+ = ∆/Ltot, ∆ is the filter width (∆ = (∆x∆y∆z)1/3 was

applied), and C∆ = 3CK/(2π2/3) = 1.06; CK is the Kolmogorov constant [51]. Observations
discussed in Ref. [9] are the following ones: (i) There is no indication that the prescribed
R controls k+, and there are significant discrepancies between prescribed and actual k+.
Relatively small variations of the prescribed R can imply significant k+ variations. (ii) An
unphysical behavior is found in upper and lower wall regions: a grid coarsening implies
smaller ∆+ and actual k+ cannot follow structural changes of imposed k+.
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Figure 6. PITM concept validation for Re = 37K, G120, G250, G500 at x/h = 4: full (left), upper wall

(middle), and lower wall (right) profiles. The dashed lines show R = C∆∆
2/3
+ and the solid lines

show k+. Reproduced from Heinz et al. [9], with the permission of AIP Publishing.

4.3. CES Features

Essential CES features in regard to C2 (cost) and C8 (resolution mismatch) problems
were already shown above: see Figure 4 and the discussion in Section 3, respectively.
In particular, CES computational cost can be by orders of magnitude below the cost of
existing methods, and the resolution mismatch problem simply does not exist in the frame
of CES methods. Thus, we focus in the following on computational evidence of CES’s
ability to properly deal with the C5 (resolution transition) problem.

In regard to the NASA wall-mounted hump flow, a representative example of CES
advantages is given in Figure 7. Pressure (Cp) and skin-friction (C f ) profiles are shown
as obtained by CES (the CES-KOS version), wall-resolved LES (WRLES), and WMLES
in comparison with experimental data [11]. All methods involved show a reasonable
agreement with the experimental pressure coefficient profiles. The predictions from WRLES
match the experimental profile downstream, and the model is capable of mimicking the
dominant features of the flow. However, within the reattachment region, the second
wall pressure peak is underpredicted by WRLES compared to CES-KOS and WMLES.
In regard to the skin-friction coefficients, in the separation zone, from 0 f x/c f 0.65,
WRLES underpredicts the skin friction coefficient, while WMLES overestimates the actual
peak. In regard to post-reattachment, however, the C f profiles of WRLES and CES-KOS
match relatively well, despite using different frameworks, mesh sizes, and grid resolutions.
Overall, the CES predictions are better than the predictions of other methods, demonstrating
its ability to properly transition from RANS to LES and vice versa (see the problems
reported in conjunction with Figure 5). Figure 8 shows variations of pressure and skin-
friction coefficients by involving PANS and PITM predictions. A detailed discussion of
differences in regard to Cp predictions can be found elsewhere [11]. The C f distributions
reveal significant performance deficiencies of both PANS and PITM models. In particular,
the comparison with Figure 5 shows that the performance of PANS and PITM methods is
worse than the performance of RANS models.
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Figure 7. NASA wall-mounted hump flow [11]: CES-KOS, WMLES [138], and WRLES [139,140]

simulation results on the G4 grid at Re = 936 K, pressure and skin-friction coefficients.
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Figure 8. NASA wall-mounted hump flow [11]: CES-KOS, PANS, and PITM simulation results on G3

at Re = 936 K: Pressure and skin-friction coefficient profiles.

Similar observations can be made in regard to the axisymmetric transonic bump flow.
Figure 9 shows pressure and skin-friction distributions obtained by CES [10], WMLES [131]
and WRLES [132] in comparison with experimental data [129,130]. The CES-KOS and
WRLES models accurately predict pressure coefficient profiles due to their sufficient flow
resolution ability. In contrast, WMLES predicts a linearly increasing pressure distribution
within x/c = (0.7, 1.1); it fails to accurately capture the separation zone. Both CES-KOS
and WRLES show reasonable predictions of the shock location and post-shock pressure
recovery. The WRLES results agree slightly better with the experimental data downstream
of the bump (between x/c = 1.1 and 1.3) compared to the CES-KOS model. In regard to the
skin-friction coefficient distributions, WMLES significantly underestimates the skin-friction
coefficient in the separation region and fails to accurately represent the post-separation
flow physics. The predictions of CES-KOS and WRLES are very similar, with the exception
that CES-KOS better agrees with the experimental data in the C f plateau region upstream
of separation. Overall, CES-KOS provides the most accurate predictions, demonstrating
again its ability to properly transition between RANS and LES.
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Figure 9. Axisymmetric transonic bump flow [10]: CES-KOS vs. WRLES [132] and WMLES [131]

models, profiles of pressure and skin-friction coefficients.
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5. Summary

The facts reported in Sections 3 and 4 in regard to usually applied computational
methods (LES, WMLES, DES, PANS, PITM) speak a clear language. There are substantial
conceptual issues given by the improper resolution variations applied (see C1, C4, and C7).
This implies essential practical simulation problems given by huge computational cost,
imbalanced resolution transitions, and resolution mismatch (see C2, C5, and C8).

These problems were contrasted with the characteristics of exact mathematical analysis
results, resulting in minimal error simulation methods. Several original research results
were presented in this regard: (i) a novel interpretation of the analytical approach as a vari-
ant of minimizing the uncertainty (measured by the entropy), (ii) a general hybridization
mechanism mathematically identified by separating the turbulent dissipation equation,
and (iii) hybridization under conditions where a transport equation for turbulence scale
variables is unavailable, which represents a relevant practical problem.

Relevant conclusions presented here can be summarized as follows.

1. It is worth noting that the conclusions obtained do not only apply to k − ϵ equation
structures. Corresponding conclusions can be obtained for all usually considered
turbulence models and different equation structures as given by Reynolds stress
models or PDF models [117–119,121,122]. Again, from a methodological viewpoint,
the O3 conclusions presented in Table 1 overcome relevant practical problems under
conditions where the computational methodology does not include a dissipation
equation. This concerns, for example, the majority of atmospheric flow simulations (we
note that stratification effects can be easily included in minimal error methods [120])
and the majority of scalar transport simulations.

2. On the one hand, the separate consideration of excluding (including) an ϵ-equation as
presented here is the key for the identification of the general hybridization mechanism
given by the simultaneous damping of production and dissipation in the k-equation;
see, e.g., Dk/Dt = k+

(

Ptot − ϵtot

)

+ D∗
k . On the other hand, the inclusion of the

ϵ-equation implies significant methodological simplifications due to P ∝ ³ϵ. This
proportionality opens the way for designing correctly functioning hybrid methods
which apply usually considered turbulence models modified by bounded resolution
indicators: see the difference of O2 options which exclude (include) an ϵ-equation.

3. A very relevant question in regard to the following discussion is the reliability of the
analysis presented. The O1 results presented in Table 1 are exact. However, this option
is computationally not ideal: there are several total variables involved which are
unbounded in contrast, e.g., to L+. By including an ϵ-equation, neglecting Dk/Dt and
Dϵ/Dt only in regard to the calculation of the hybridization parameter ψ³ overcomes
this problem. Usually considered turbulence equations can be taken into account,
where only bounded resolution indicators arise (as 0 f L+ f 1). Neglecting Dk/Dt
and Dϵ/Dt is a usually considered, weak assumption. All applications considered
so far confirm the validity of this assumptio via excellent simulation results [9–11].
A strong argument for the validity of this assumption is that the basic hybridization
mechanism is only slightly changed in this way: k+ is replaced by L2

+ϵ+; see Table 1.
4. Arguably, the most relevant result of the analysis presented here is the identification of

the mathematically implied hybridization mechanism and simultaneous identification
of significant conceptual issues of usually applied computational methods in this
regard (see C1, C4, and C7). The way to overcome these conceptual problems is
the use of minimal error methods as presented here. The use of these methods also
allows to overcome corresponding practical simulation problems (see C2, C5, and C8)
given by huge computational cost, imbalanced resolution transitions, and resolution
mismatch. Applications of minimal error simulation methods to several complex
high-Re flows reported in Section 4 provide evidence for this view [9–11]. The latter
includes detailed analyses of remarkable computational cost advantages of minimal
error simulation methods.
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5. Major shifts of the use of computational simulation methods are driven by simple prac-
tical requirements and relative simplicity of alternatives. For example, the motivation
of LES was the need to resolve flow; DES and WMLES developments (PANS and PITM
methods are not very often applied) were driven by unaffordable LES computational
cost requirements for high Re wall-bounded turbulent flows. So what may be the role
of minimal error methods in the future? Apart from disappointment in looking for
appropriate simulation settings of DES and WMLES methods, the strongest motivation
for using minimal error methods can be the need for reliable predictions of very high
Re turbulent flows, i.e., conditions where other computational methods are known
to fail.
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Appendix A. Approximated Hybridization

The involvement of a scale equation (for ϵ) significantly contributes to simplifying
the structure of hybrid equations (via the replacement of the production term in the
hybridization parameter). However, there are several usually applied codes that do not
involve dissipation transport equations. In this case, algebraic (RANS-type) models for
length scales are used to determine ϵ. The only consistent way to deal with this situation
is to assume that ϵ = ϵtot. Fortunately, this approximation is usually a good assumption
except close to walls. Correspondingly, a modification of the approach considered (leading
to the O3 formulas in Table 1) is the replacement of ϵ in Equation (2) by the RANS-type ϵtot

(including the corresponding replacement of ϵ in Dk) with the understanding that ϵtot can
be provided:

Dk

Dt
= P − ψ³ϵtot + Dk, where (A1a)

δ

[

Dk

k3ϵtot

]

=
Dk

k3ϵtot

(

δDk

Dk
− 3

δk

k

)

= 0. (A1b)

The relevant variation of Dk arising from the structure of Dk is involved in Equation (A1b).
The normalized hybridization error ¼ reads, then (again, without involvement of Dk/Dt),

¼

k3ϵtot
=

P

k3ϵtot
−

ψ³

k3
+

Dk

k3ϵtot
. (A2)

The motivation for the normalization applied is the vanishing variation of the last term; see
Equation (A1b). The requirement of a zero variation of the normalized error implies, then,

δ

[

ψ³

k3

]

= δ

[

P

k3ϵtot

]

. (A3)

We integrate this expression as before to obtain

ψ³

k3
−

1

k3
tot

=
P

k3ϵtot
−

Ptot

k3
totϵtot

, or, ψ³ =
P

ϵtot
− k3

+

(

Ptot

ϵtot
− 1

)

, (A4)

where k+ = k/ktot. It may be seen that this case agrees with Equation (18) for the case

ϵ = ϵtot considered because L+ reduces to k3/2
+ .
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The corresponding consequences for the hybridization mechanism can be seen by
combining Dk/Dt = P − ψ³ϵtot + Dk with ψ³ = P/ϵtot − k3

+(Ptot/ϵtot − 1). We obtain

Dk

Dt
= P −

[

P

ϵtot
− k3

+

(Ptot

ϵtot
− 1

)

]

ϵtot + Dk, or
Dk

Dt
= k3

+(Ptot − ϵtot) + Dk. (A5)

It may be seen that this equation reflects the same hybridization mechanism as given in

Equations (13) and (14). In regard to the required setting of ϵtot = k3/2
tot /Ltot, it is assumed

that Ltot is algebraically specified, and ktot can be obtained as described above. Required
knowledge of Ptot = νt,totS

2 can be obtained correspondingly based on the definition of
νt,tot = Cµk2

tot/ϵtot.
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