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Turbulent flows have been used for millennia to mix solutes; a familiar example
is stirring cream into coffee. However, many energy, environmental, and industrial
processes rely on the mixing of solutes in porous media where confinement suppresses
inertial turbulence. As a result, mixing is drastically hindered, requiring fluid to
permeate long distances for appreciable mixing and introducing additional steps to
drive mixing that can be expensive and environmentally harmful. Here, we demonstrate
that this limitation can be overcome just by adding dilute amounts of flexible polymers
to the fluid. Flow-driven stretching of the polymers generates an elastic instability,
driving turbulent-like chaotic flow fluctuations, despite the pore-scale confinement
that prohibits typical inertial turbulence. Using in situ imaging, we show that these
fluctuations stretch and fold the fluid within the pores along thin layers (“lamellae”)
characterized by sharp solute concentration gradients, driving mixing by diffusion in
the pores. This process results in a 3× reduction in the required mixing length, a
6× increase in solute transverse dispersivity, and can be harnessed to increase the rate
at which chemical compounds react by 5×—enhancements that we rationalize using
turbulence-inspired modeling of the underlying transport processes. Our work thereby
establishes a simple, robust, versatile, and predictive way to mix solutes in porous
media, with potential applications ranging from large-scale chemical production to
environmental remediation.

fluid dynamics | porous media | viscoelastic | instability | mixing

Being able to efficiently mix solutes in disordered three-dimensional (3D) porous media
is critical to a broad range of key energy, environmental, and industrial processes.
For example, it controls the rate at which chemical compounds react in porous flow
reactors (1–10) used for energy storage (11) or the production of pharmaceuticals (6–8),
specialty and “green” chemicals (4, 9, 10, 12–15), biofuels (14), and functional
nanomaterials (16). In these cases, the reactive solutes are transported by a fluid of
density � and dynamic viscosity � at a mean velocity U around solid grains of diameter
dp, such that the Reynolds number quantifying the ratio of inertial to viscous stresses
Re ≡ �Udp/� � 1. Thus, the flow is expected to be laminar and steady over time,
and reaction rates are limited by the slow diffusion of reactants with coefficient D across
concentration gradients in the pores.

Moreover, the Péclet number quantifying the ratio of the reactant transport rates by
advection to diffusion Pe ≡ Udp/D is frequently�1. Under these conditions, “laminar
chaotic advection” (LCA) (17, 18) of reactants through the tortuous pore space gives rise
to appreciable mixing downstream only after traversing a large length lmix ∼ Cdp, where
the constant C ≳ 100 (19–24). Because this mixing length is primarily set by the fixed
geometry of the medium, and cannot be appreciably shortened by changes in the imposed
flow speed, it represents a fundamental limit in mixing performance. This limitation is
exacerbated for chemical reactions, which proceed over a microscopic kinetic time scale
�k after mixing, and thus require an additional reactor length ∼�kU . Consequently, the
minimum reactor length to complete the reaction increases with increasing flow speed,
creating a fundamental trade-off between increasing throughput and reducing reactor
length, which bears a considerable portion of capital costs (25, 26).

A similar challenge arises in many biogeochemical and environmental processes (1–3,
5, 27–37), which also rely on the mixing and dispersive spreading of reactive compounds
in the subsurface. In these cases, dispersive mixing limitations necessitate the drilling of
additional wells, which can be environmentally damaging and prohibitively expensive.

Here, we introduce a way to overcome these limitations by harnessing an elastic flow
instability (EI) generated by polymers added to the fluid. Studies in a range of simplified
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geometries have shown that the buildup of polymer elastic stresses
during transport can generate chaotic flow fields reminiscent of
those observed in inertial turbulence, despite the small Reynolds
number (38–53). However, the opacity of more complex 3D
porous media precludes visualization of the flow inside the
pore space, making similar studies inaccessible. Therefore, it still
remains unknown whether—and if so, how—EI can be harnessed
to enhance mixing and reaction kinetics in 3D porous media.
We overcome this challenge using experiments in model 3D
porous media made from sintered random packings of glass beads.
In particular, we formulate a dilute polymer solution whose
refractive index matches that of the glass, rendering the medium
transparent and enabling direct flow visualization in situ using
confocal microscopy (detailed inMaterials andMethods) (52, 54).

Results

EI Greatly Enhances Solute Mixing in a Porous Medium. To
characterize solute mixing, we inject two parallel coflowing
streams of fluid into the porous medium at the same imposed
volumetric flow rate Q/2. The mean flow velocity is then
U ≡ Q/(�A), where� andA are the porosity and cross-sectional

area of the porous medium, respectively. As shown in Fig. 1A,
stream A contains a nonreactive dye, which acts as a passive
solute, at a concentration cA, while stream B is undyed. We use
a calibration curve to convert the dye fluorescence intensity to
concentration; therefore, visualizing the fluorescence intensity at
the interface between the coflowing streams provides a measure
of the dye concentration c, and therefore the extent of mixing
between the streams, as it varies with position x along the
length of the medium. To this end, we define a dimensionless
concentration c̃ (x, t) = (c (x, t)− c∞) /cA, where x is the (x, y)
position vector and c∞ ≡ cA/2 is the completely mixed dye
concentration, such that c̃ = 1 and c̃ = −1 correspond to the
fully dyed and undyed streams and c̃ = 0 represents complete
mixing. Quantifying the increase in the extent of mixing with x
then yields a direct measure of the mixing length lmix (41, 42, 55–
61). Moreover, because mixing is ultimately driven by solute
diffusion across short-ranged, subpore-scale concentration gra-
dients, we use the images to compute ∇̃ c̃ = d−1

p
(
∂x + ∂y

)
c̃.

Quantifying how the transverse width spanned by these concen-
tration gradients across the medium varies with x (SI Appendix,
Fig. S1) then yields a measure of the transverse dispersion
coefficient D∇

⊥
.

Fig. 1. In situ imaging reveals that an elastic instability greatly enhances mixing in a porous medium. (A) Schematic of the experiment, in which we inject two
parallel coflowing streams of fluid into a model disordered 3D porous medium composed of sintered glass beads of mean diameter dp. Stream A contains a
fluorescent nonreactive dye (yellow in B–E), which acts as a passive solute, while stream B is undyed (black in B–E). We directly visualize the mixing between the
streams in the 3D pore space using confocal microscopy, as shown by the optical x − y slices taken at a fixed z position at the inlet (x = 0), middle (x = 10 dp),
and outlet (x = 24 dp) of the medium in (B–E). (B and C) show the dye concentration, normalized such that c̃ = +1 and −1 correspond to completely dyed
and undyed fluid, respectively, and c̃ = 0 therefore corresponds to completely mixed fluid, for a mean injection flow speed U = 1.7 mm/s. (D and E) show the
corresponding normalized concentration gradient computed in the x−y plane, averaged over the imaging time t. In the case of polymer-free solvent, the flow is
laminar; as a result, mixing between the streams is minimal (B) and only occurs along a single lamellar surface, characterized by a sharp concentration gradient,
along the channel centerline (D). Addition of polymer generates an elastic instability whose chaotic flow fluctuations dramatically improve mixing in the pore
space (C), with lamellae of large solute concentration gradient being successively stretched and folded within the individual pores, in addition to across multiple
pores (E). As a result, the mixing length lmix decreases (F ) and the transverse dispersion coefficient D∇

⊥
increases (G) with increasing Péclet number Pe in the

case of a polymeric fluid; error bars on the points represent uncertainty in determining these values from the experiments. The curves show the predictions
of our theoretical model, as described further in Materials and Methods; the shaded region reflects the experimental uncertainty in the values of the model
parameters.

2 of 8 https://doi.org/10.1073/pnas.2320962121 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

PR
IN

C
ET

O
N

 U
N

IV
 L

IB
R

A
R

Y
; A

C
Q

U
IS

IT
IO

N
 S

ER
V

IC
E 

PE
R

IO
D

IC
A

LS
 o

n 
A

pr
il 

28
, 2

02
5 

fr
om

 IP
 a

dd
re

ss
 1

40
.1

80
.2

40
.1

2.

https://www.pnas.org/lookup/doi/10.1073/pnas.2320962121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2320962121#supplementary-materials


In the case of polymer-free solvent, the flow remains laminar at
all injection speeds tested (Re ≲ 10−2). The two streams of fluid
initially meet along a single lamellar surface along the channel
centerline, characterized by a sharp concentration gradient, that
is only minimally stretched and folded by LCA through the
disordered pore space (Fig. 1 B and D and Movies S1 and S2).
Mixing between the streams is therefore minimal. Indeed, we
find a large, flow speed-independent value of lmix ≈ 270 dp,
consistent with previous studies of LCA (19–24). We also find
a small, flow speed-independent value of D∇

⊥
≈ 0.09 Udp, in

reasonable agreement with the prediction for spherical grain
packings (19, 23). These measurements are shown by the blue
upward triangles in Fig. 1 F–G, respectively, which we report as
a function of Pe, as is typically done.

Adding dilute polymer to the fluid dramatically changes
this behavior. In this case, the flow in some pores becomes
unstable, with chaotic spatiotemporal fluctuations, at a critical
value of U = Uc,min = 170 μm/s (SI Appendix, Fig. S2)—
reflecting the onset of EI (52). Following previous work (43–
46, 50–52), we characterize this transition to unstable flow
using the Weissenberg number Wi = N1(
̇)/ (2�(
̇)), where
the characteristic interstitial shear rate 
̇ ≡ U/

√
k/� and k is

the permeability of the medium; this dimensionless parameter
compares the relative strength of flow-induced elastic stresses
arising from polymer stretching, quantified by the first normal
stress difference N1, to viscous stresses, quantified by the shear
stress �. The transition to unstable flow then begins in the
porous medium at Wi = Wic,min = 2.6. As Wi increases above
this value, more and more pores become unstable, until all the
pores imaged are unstable at Wi = Wic,max = 4.4, as we found
previously (52).

In this case, the EI-generated flow fluctuations greatly enhance
solute mixing, as shown in Fig. 1 C and E and Movies S3 and
S4. Indeed, as Wi increases above Wic,min, the mixing length
lmix decreases below its laminar value, eventually saturating at
lmix ≈ 80 dp for Wi > Wic,max, as shown by the red downward
triangles in Fig. 1F. The transverse dispersion coefficient D∇

⊥

concomitantly increases to D∇
⊥
≈ 0.5 Udp, as shown by the red

downward triangles in Fig. 1G. Thus, EI gives rise to a threefold
reduction in the length required to appreciably mix solutes in
a porous medium, with a corresponding sixfold increase in the
transverse dispersivity.

Enhanced Mixing Results from the Combination of Laminar
ChaoticAdvectionacrossManyPores andEI-GeneratedChaotic
Mixing in Individual Pores. Having established that EI can greatly
enhance solute mixing in a porous medium, we next ask:
What exact features of the unstable flow field generated by
EI give rise to this enhanced mixing? And how can this link
between fluid flow and solute mixing in a porous medium be
described quantitatively? Close inspection of Fig. 1 C and E and
Movies S3 and S4 provides a clue: EI-generated flow fluctuations
appear to successively stretch and fold lamellae of large solute
concentration gradient within the pores, increasing the contact
area between solute and fluid, thereby promoting mixing via
molecular diffusion at small scales. This process is reminiscent of
the chaotic mixing generated by inertial turbulence (45, 62, 63).

To more quantitatively characterize this phenomenon, we
simultaneously image the fluid velocity and solute concentration
fields, u (x, t) and c̃ (x, t), respectively, and thereby determine
the root mean square fluctuations in the magnitudes of these
quantities (indicated by ′rms), in individual pores. A representative
example is shown in Fig. 2 A–D. As expected for EI, the

flow is laminar and stable at small Wi; by contrast, at larger
Wi > Wic ≈ 2.9, we observe intermittent bursts of unstable flow
(Fig. 2A and Movie S5) that increasingly persist with increasing
Wi (teal points in Fig. 2B). These velocity fluctuations do not
have any characteristic spatial or temporal scales. Instead, their
power spectra decay as power laws, characteristic of chaotic flows
(SI Appendix, Fig. S2) (52).

These velocity fluctuations drive fluctuations in solute concen-
tration, which are therefore also chaotic (SI Appendix, Fig. S2),
with their onset shifted to a larger value of Wi = Wic,S ≈ 4.2
(purple points in Fig. 2B)—reflecting the fact that the solute
stream must first enter a pore for it to become mixed by
the unstable flow therein as detailed further in the Materials
and Methods. In this case, “blobs” of solute (outlined in
green in Fig. 2C ) are progressively stretched and folded by
the chaotic flow in the pore (velocity vectors shown by the
arrows in Fig. 2C ), exponentially increasing their area over
time (SI Appendix, Fig. S3). Following previous work (64, 65),
we estimate the characteristic rate of stretching by directly
computing the maximal finite-time Lyapunov exponent, ΓEI,
from the measured fluid velocity field (66, 67). As shown in
Fig. 2E, this characteristic stretching rate increases abruptly at
the onset of EI, saturating at ΓEI ≈ 0.2 s−1

≈ 0.1�−1
rel , where

�rel is the characteristic polymer relaxation time—concomitant
with the rapid decrease in lmix and increase in D∇

⊥
shown in

Fig. 1. Thus, EI-generated flow fluctuations promote solute
mixing within individual pores in a manner analogous to inertial
turbulence, consistent with the findings of previous studies in
simpler geometries (41–43, 45, 46, 61). The data indicate that
ΓEI may decrease slightly as Wi increases above Wic , perhaps due
to nonlinear shear-thinning, although this is not clear given the
uncertainty in the measurements; investigating this point further
will be a useful direction for future study.

Motivated by these observations, we hypothesize that en-
hanced mixing arises from the combination of two different
processes operating at different length and time scales in tandem:
LCA that stretches and folds solute lamellae at a rate ΓLCA ≈
U/

(
270 dp

)
(19–24) as they are transported across multiple

disordered pores (Fig. 2 F, Left), and the additional stretching
and folding of lamellae within individual pores by the chaotic EI
flow field at a rate ΓEI ≈ 0.1�−1

rel (Fig. 2 F, Middle), as occurs
in bulk systems not exhibiting LCA but for which EI can still
enhance mixing (41–43, 45, 46, 61, 68–71). The rate at which
solute becomes appreciably mixed as it traverses the pore space is
then given by the superposition of the two:

�−1
mix ≈ ΓLCA + f ΓEI, [1]

where �−1
mix ≡ U/lmix, f represents the fraction of pores in which

the solute is mixed by EI (SI Appendix, Fig. S2), and ΓEI = 0 in
the purely laminar polymer-free case. The transverse dispersion
coefficient can then be estimated as D∇

⊥
≈ cd2

p /�mix, with the
constant c ≈ 3 given by our measurements in the polymer-free
case. Comparing to the measurements shown in Fig. 1 F–G
provides a direct test of this picture. Remarkably, we find that—
despite its simplicity—Eq. 1 provides an excellent description
of how EI both reduces the length required to mix solutes and
increases the transverse dispersivity in a porous medium, as shown
by the solid red lines in Fig. 1 F–G. This agreement between
the theoretical model and our experimental measurements
confirms the simple conceptual picture of EI-enhanced mixing
schematized in Fig. 2F, thereby providing quantitative guidelines
to predict and control this phenomenon in practice.
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Fig. 2. EI-generated flow fluctuations stretch and fold solute lamellae in individual pores, enhancing mixing. (A) Magnified views of confocal x − y slices taken
at a fixed z position in a single pore located at x ≈ 5dp and y ≈ dp from the center of the medium inlet during polymer solution flow. We use fluorescent
nanoparticles as tracers of the flow, enabling us to map the x − y velocity field u(x, t) via particle image velocimetry. Maps of the root mean square velocity
fluctuations u′rms(x, t), normalized by the mean 〈u〉x,t , show the onset of velocity fluctuations at a critical Weissenberg number Wic ≈ 2.9. (B) The fraction of
imaging time that the pore exhibits unstable velocity fluctuations for (teal points) increases continuously with Wi above Wic ≈ 2.9, determined from a power-law
fit (teal curve). The corresponding fluctuations in normalized solvent concentration c̃′rms(x) for the same pore are shown in (C); these fluctuations also grow
continuously (magenta points in B). The onset of these fluctuations is shifted to a larger Wic,S ≈ 4.2, also determined from a power-law fit (magenta curve
in B). (D) Snapshots at four different times for the Wi = 4.6 case, showing the normalized solute concentration c̃ along with the fluid velocity field shown
by superposed arrows. The EI-generated chaotic flow within the pore stretches and fold the solute blob, increasing its surface area and thereby promoting
mixing at the subpore scale. (E) Maximal finite-time Lyapunov exponent of the chaotic flow field in the pore, ΓEI, abruptly increases at Wic , reflecting the faster
stretching and folding by the fluid after the onset of EI. The data show the 90th-percentile value of the distribution of measured finite-time Lyapunov exponents,
and the error bars on the points indicate the 85th and 95th percentile values. (F ) Schematic of flow and mixing. (Left) In the case of polymer-free solvent,
laminar chaotic advection (LCA) slightly stretches and folds solute lamellae as they transverse multiple disordered pores in the tortuous pore space (blue lines).
(Middle) In the unstable case, EI-generated chaotic flow causes additional stretching and folding of solute lamellae within individual pores (red lines). (Right) The
combination of LCA and EI results in a reduced mixing length and increased transverse dispersion.

EI-EnhancedMixingGreatly Enhances Chemical ReactionKinet-
ics and Yield. Can this enhanced mixing be harnessed to improve
the kinetics and yield of chemical reactions in porous media? To
explore this possibility, we introduce a phenolic reactant, HSf ,
in stream A at a concentration [HSf ]0 (magenta in Fig. 3A),
along with an excess of sodium hydroxide in stream B (black
in Fig. 3A). When these compounds are mixed, the HSf is
irreversibly reduced to its phenolate form Sf− (cyan in Fig. 3A);
importantly, their peak fluorescence emission occurs at distinct
wavelengths (72), enabling us to use the imaging to directly
quantify reaction progress by tracking the fraction of reactant that
has been converted into product, X ≡ [Sf−]/[HSf ]0 (detailed in
Materials and Methods).

In the polymer-free case, laminar chaotic advection only
provides slight mixing between the solvent streams, and the

reaction proceeds only along the midplane of the medium, shown
by theTop row in Fig. 3A and Movie S6. As a result, only≲20% of
the reactant is converted to product, as shown by the blue upward
triangles in Fig. 3B. The required porous medium length to reach
a target conversion of 90%, lrxn, is then ≳100 dp and increases
with increasing Pe (blue upward triangles in Fig. 3C )—reflecting
the typical trade-off between increasing throughput and reducing
medium length in porous flow reactors. In stark contrast, the
enhanced mixing generated by EI enables the reaction to proceed
over a broader region of the pore space (Bottom row in Fig. 3A and
Movie S7), resulting in≳60% conversion along the same medium
length and a ∼5× reduction in lrxn (red downward triangles in
Fig. 3 B–C, respectively). Notably, lrxn decreases with increasing
Pe, indicating that EI-generated mixing helps overcome the trade-
off between increasing throughput and reducing reactor length.
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A B C

Fig. 3. EI-generated flow fluctuations enhance chemical reaction kinetics. (A) Confocal x− y slices taken at a fixed z position at x = 0, 10 dp, and 24 dp, showing
the polymer-free laminar case (Top row) or the unstable case of polymer solution (Bottom row) at U = 1.3 mm/s. Stream A contains the phenolic reactive dye
HSf (magenta), while stream B contains the reactant OH− along with nonreactive fluorescein dye (gray); the reaction between the two irreversibly generates
the product Sf− (cyan). (B) The fraction of reactant that has been converted into product X , averaged temporally and over the transverse direction y , as a
function of distance x along the length of the medium. Reaction progress is minimal in the polymer-free laminar case (blue upward triangles), but approaches
full conversion more rapidly in the unstable case of polymer solution (red downward triangles). Curves show Eq. 2 with �k = 11 ± 1 s and � = 0.14 ± 0.01. (C)
Extrapolating the curves in (B) yields the length of porous medium lrxn required to reach a target conversion of 〈X 〉⊥ = 0.9; in particular, we set 〈X 〉⊥ = 0.9 in
Eq. 2 and numerically invert to solve for lrxn as a function of �mix, and then use Eq. 1 to transform this solution to one for lrxn as a function of Pe instead. Error
bars on the points represent uncertainty in determining these values from the fits. In the typical polymer-free laminar case, increasing throughput (increasing
Pe) requires a longer reactor (blue upward triangles). EI generated by polymers breaks this trade-off between increasing throughput and decreasing reactor
length (red downward triangles). Curves show theoretical predictions obtained using our lamellar mixing model (Materials and Methods).

Our model of enhanced mixing by successive stretching and
folding of solute lamellae both across multiple pores as well as
in individual pores, schematized in Fig. 2F, provides a way to
rationalize these improvements in reaction kinetics. In particular,
considering the successive mixing and reaction of solutes in
differential parcels of fluid (73) yields a prediction for the
macroscopic conversion (detailed in Materials and Methods):

〈X 〉⊥(x) = 1−
Da

Da− 1
exp

(
−x

U�kDa

)
+

1
Da− 1

exp
(
−x
U�k

)
,

[2]
where the angle brackets indicate an average over the transverse
direction y (denoted by the subscript⊥), the Damköhler number
Da ≡ ��mix/�k compares the time scales of reactant mixing
and reaction, where �mix is directly given by Eq. 1, � ≈ 0.14
is a constant scaling factor to account for reaction initiation
before fluid is fully mixed, and �k = 11 ± 1 s, consistent with
independent measurements (25). This prediction is in excellent
agreement with the experimental measurements, as shown by the
red curve in Fig. 3B. It also describes how EI-enhanced mixing
enables both increased throughput and a reduced reactor length,
as shown by the red curve in Fig. 3C. More broadly, this model
indicates that EI could improve reaction kinetics even further—
by as much as∼10×—when �k is smaller (SI Appendix, Fig. S5),
as is the case in many other chemical reactions.

Discussion

In many energy, environmental, and industrial processes, solute
mixing and chemical reaction kinetics are limited by slow
diffusion during laminar flow in a porous medium. Here, we
established that EI can be harnessed to overcome this limitation.
This capability simply relies on the addition of dilute, flexible
polymers to the fluid, and is therefore straightforward to imple-
ment in diverse settings and across a wide range of geometries.
It complements other approaches that have been explored in
microfluidics to overcome the diffusive limitations of typically

laminar flows, which instead rely on changing the geometry of the
solid boundaries surrounding the fluid (74–81) or making them
flexible to enable actuation by an external controller (82–85)
or promote the transition to inertial turbulence (86, 87). While
tremendously useful, these approaches require making changes to
the boundaries surrounding the fluid, which is often challenging
or impossible to do. By contrast, our approach enhances mixing
just by changing the properties of the fluid itself. In some porous
media, the solid phase of the medium itself is deformable, which
may help mix solutes in certain conditions (88–92); building
on our work, it would be interesting to investigate whether the
coupling between EI and medium deformability can result in
additional enhancements in mixing.

Our in situ imaging revealed that enhanced mixing arises from
the successive stretching and folding of solute lamellae by the
EI-generated chaotic flow within individual pores, in addition to
their stretching and folding as lamellae traverse multiple tortuous
pores, in a manner reminiscent of inertial turbulence. As a result,
the considerable decrease in the length of medium required to mix
solute, increase in the solute transverse dispersivity, and increase
in chemical reaction yield imparted by EI can all be predicted
using well-established ideas from studies of turbulent flows. We
anticipate that the quantitative principles we thereby developed
will provide a way to predict and control EI-enhanced mixing
and reaction kinetics in applications ranging from large-scale
chemical production to environmental remediation (1–16, 27–
37, 49). One may presume that because EI increases the pressure
drop across the porous medium (52), it requires a greater amount
of energy to maintain the flow and mix the fluid. However, as
we show in SI Appendix, Fig. S7, this energy cost is offset by the
dramatic reduction in the length of the medium required to mix
solute—that is, not only does our approach enhance mixing and
reaction kinetics, but it does so without appreciably increasing
the energetic cost of pumping the fluid.

In addition to providing a capability to enhance mixing and
reaction kinetics in porous media, our work also motivates
further studies of the fascinating interplay between viscoelastic
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fluid dynamics, solute transport and mixing, and chemical
reactions. Indeed, while here we focused on a simple first-
order chemical reaction as a proof of principle, our approach
could be adapted to enhance the progression of other types of
chemical reactions, such as reactions of other orders, reversible
reactions, and solid surface-mediated reactions (93), in porous
media. EI-enhanced mixing could also be used to improve heat
transfer from a porous medium to an interstitial fluid, such as in
heat exchangers and geothermal energy extraction. Finally, while
the polymer molecules we used are chemically inert—and thus
do not participate in the reaction—it would be interesting to
extend our approach to the case where the polymers themselves
are reactants or products, potentially driving a more complex
feedback between the underlying flow and reaction rates.

Materials and Methods

Porous Media Preparation and Characterization. We prepare disordered
3D porous media following our previous work (52, 54, 94–96) by densely packing
spherical borosilicate glass beads with diameters dp = 1,000 to 1,400 μm
(Sigma Aldrich) in quartz capillaries with rectangular cross-sections of area
A = W × H, where the width W = 4 mm and height H = 2 mm (Vitrocom).
Each medium is lightly sintered for ≈3 min at 1,000 °C to prevent bead
rearrangements during flow, and has a length L = 14.7 ± 0.1 mm and
porosity � ∼ 0.4. We affix two inlets and two outlets from bent 14-gauge
needles (McMaster-Carr), whose outer diameters fit snugly into the rectangular
cross-section of the capillary, glued into place with water-tight marine weld
(J-B Weld). The inlet needles are positioned ∼1 mm away from the medium
to minimize inlet and outlet effects. We determine the medium permeability
k = 624 ± 3 μm2 by injecting the polymer-free solvent at several flow rates
Q = 4 to 40 mL/h, measuring the fully developed pressure dropΔP across the
medium using an Omega PX26 differential pressure transducer and fitting to
Darcy’s Law ΔP/L = �Q/ (kA).

Before each experiment, we infiltrate the porous medium with isopropyl
alcohol (IPA) to prevent trapping of air and then displace the IPA by flushing
with water. We then displace the water with the miscible test fluid—either the
polymer solution or the polymer-free solvent. We inject our test fluids through
both inlets equally at a constant total volumetric flow rate Q ranging from 0.5
to 25 mL/h using a Harvard Apparatus PHD 2000 syringe pump, maintaining
a constant Q for each flow rate tested over 2.5 h, corresponding to over 1,000
pore volumes tPV ≡ �AL/Q, before any micrographs are collected to ensure
an equilibrated state. At the conclusion of the experiment, we inject rhodamine-
dyed polymer-free solvent for 6 h to fully saturate the pore space with dye, and
use confocal microscopy to image the pore space; the binarized images isolate
the solid matrix of the porous medium, which we omit from all subsequent
image analyses.

Fluid Preparation and Characterization. All of our test fluids are composed
of a viscous solvent composed of 6 wt.% ultrapure milliPore water, 82.6 wt.%
glycerol (Sigma Aldrich), 10.4 wt.% dimethylsulfoxide (Sigma Aldrich), 1 wt.%
NaCl, and <0.1% additional solutes (specified further below). This formulation
precisely matches the fluid refractive index to that of the glass beads n = 1.479,
thus rendering each porous medium transparent when saturated.

We characterize the fluid rheology using steady shear measurements
in an Anton Paar MCR301 rheometer, equipped with a 1° 5 cm-diameter
conical geometry set at a 50 μm gap over a range of imposed constant
shear rates 
̇ = 0.01 to 10 s−1. The polymer-free solvent is Newtonian,
with a constant dynamic viscosity �s = 230 mPa · s. The polymer solution
has 300 ppm of 18 MDa partially hydrolyzed polyacrylamide (Polysciences)
added. As detailed previously (52), this solution is dilute, with an overlap
concentration c∗ ≈ 0.77/[�] = 600 ± 300 ppm, and the shear stress
� (
̇I) = As
̇�s and first normal stress difference N1 (
̇I) = An
̇�n with
As = 0.3428 ± 0.0002 Pa · s�s , �s = 0.931 ± 0.001, An = 1.16 ±
0.03 Pa · s�n , and�n = 1.25±0.02. Moreover, we describe the solution using

a single polymer relaxation time �rel ≈ lim

̇→0

N1
2(�−�s)
̇2 = 480±30 ms (97).

This value is in good agreement with previously reported relaxation times for
similar polymer and solvent compositions (40, 50, 98–100), although we expect
the true longest relaxation time of the solution to be larger than this value.

Macroscopic Imaging of Solute Mixing. We use Rhodamine Red-X Succin-
imidyl Ester 5-isomer dye (Invitrogen) as a passive solute introduced into stream
A at a dilute concentration cA = 500 ppb; stream B is dye-free and hence
cB = 0. The solute diffusivity is given by D ≈ 1.2 × 10−8 cm2/s, obtained
by extending previous measurements (101) to the case of our more viscous
solvent via the Stokes–Einstein relation. We then image the solute distribution
in the pore space using a Nikon A1R+ laser scanning confocal fluorescence
microscope, continuously acquiring successive x− y optical slices every 2 s at a
fixed depth z ≈ 600 μm at 10 different x positions spanning the entire length
of the medium. A linear calibration curve obtained using the same imaging
settings enables us to then convert fluorescence intensity to dye concentration.

To determine lmix, we measure the time-averaged fraction of fluid pixels
along y for which |c̃| < 0.5 at each position x. This fraction of well-mixed fluid
increases with position as≈ 1− exp (−x/lmix); fitting this relation to our data
then yields the values of lmix presented in Fig. 1F.

To determine D∇
⊥

, we use the micrographs to determine a map of the solute
concentration gradient |∇ c̃|, as shown in SI Appendix, Fig. S1. At each position
x along the length of the medium, we then quantify the transverse width � over
which |∇̃ c̃| > 〈|∇̃ c̃|〉⊥, where the angle brackets indicate an average over the
transverse direction y (denoted by the subscript⊥). This plume width increases

with position as �(x) ≈
√
�2(x = 0) + 2D∇

⊥
x/U; fitting this relation to our

data then yields the values of D∇
⊥

presented in Fig. 1G.
Many unbounded chaotic flows are characterized by an asymptotic stationary

scalar probability density function (PDF) that is associated with the emergence
of a dominant strange eigenmode of the advection–diffusion operator (58, 102,
103). However, we do not expect this behavior to arise in our experiments due
to the particular geometry used: i) Instead of the medium being unbounded or
semi-infinite, as in typical numerical studies of chaotic mixing, our experiments
probe EI-induced mixing of solute in a bounded porous medium that is confined
by the walls of a quartz capillary. ii) Instead of the solute being introduced
as a discrete plume, it is introduced only halfway across the medium, only in
one of the two coflowing streams, and mixes by spreading from the interface
between the two coflowing streams in the direction transverse to the imposed
flow direction. Therefore, we do not expect the scalar PDF to reach the self-
similar stationary PDF that has been measured in other chaotic flows. However,
exploring this possibility in other experimental geometries will be an interesting
direction for future work.

Pore-Scale Imaging of Solute Mixing and Fluid Velocity Fluctuations.
In addition to using Rhodamine Red-X Succinimidyl Ester 5-isomer dye
as a passive solute initially in stream A, we visualize the pore-scale fluid
velocity field by seeding both streams A and B with a dilute (5 ppm)
suspension of dt = 200 nm-diameter carboxylate-functionalized fluorescent
polystyrene FluoSpheres™ (Invitrogen), which have a tracer Péclet number
(Q/A)dt/Dt > 105

� 1 and thus act as passive tracers of the fluid flow;
here, Dt = kBT/3��0dt = 6× 10−3 μm2/s is the tracer particle diffusivity
obtained via the Stokes–Einstein relation. We monitor the flow in individual
pores using a Nikon A1R+ laser scanning confocal fluorescence microscope,
continuously acquiring successive x − y optical slices of both Rhodamine and
tracer particle fluorescence at 15 frames per second at a fixed depth z ≈ 600μm.
The tracer particle images are binarized and processed using particle-image
velocimetry (PIV) (104) to obtain the x − y fluid velocity field u(x, t).

We estimate the characteristic rate of stretching of solute lamellae by directly
computing the forward finite-time Lyapunov exponent Γftle (x, t) from the
measured velocity field for the example pore in Fig. 2; this quantity measures
the exponential rate of separation of virtual tracer particles over the course of one
polymer relaxation time �rel. In particular, we use an open-source code (66, 67)
to numerically compute Lagrangian tracks for “virtual” tracer particles from the
experimentally measured Eulerian velocity field. Each track follows pairs of
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virtual tracer particles, initially seeded a differential distance apart within each
pixel, integrating their trajectories forward in time, over a total duration of the
polymer relaxation time, by interpolating the experimental PIV field. Virtual
tracks are seeded in every imaged pixel. The separation of each virtual particle
pair grows with time, and an exponential fit to this growth yields the forward-time
Lyapunov exponent for that particle pair. The cumulative distribution of Γftle
thereby measured throughout the pore space is shown in SI Appendix, Fig. S3.
We then take the 90th-percentile value as the characteristic maximal finite-time
Lyapunov exponent, ΓEI, which we report in Fig. 2E.

Interestingly, for the example pore in Fig. 2B, the onset of solute concentration
fluctuations occurs at Wi = Wic,S ≈ 4.2, larger than the Wi = Wic ≈ 2.9
that represents the onset of fluid velocity fluctuations; further experimental
corroboration of this point is given in SI Appendix, Fig. S2. We conjecture
that this difference reflects the specific geometry of our experiments, and in
practice, the values of these critical Weissenberg numbers will likely depend on
the particular geometric features of how solute is introduced into the porous
medium. In particular, the scalar dye is passively transported by the fluid, so
if dye enters an unstable pore, we expect to immediately see concentration
fluctuations. This process, however, requires dye to enter the pore in the first
place—which, given the design of our experiment, depends on the location of
the pore itself. At the inlet, dye is only in one of the two coflowing streams
(Stream B, lower half of the porous medium). Therefore, it only enters pores in
the upper half of the medium that are within the “mixing plume” generated by
spreading transverse to the imposed flow direction—and indeed, it only enters
a fraction of the pores therein, given the inherent pore-to-pore fluctuations
in solute transport within this mixing plume as exemplified in SI Appendix,
Fig. S1. As a result, even if a given pore is unstable (Wi > Wic ), solute may not
have entered it yet due to its location in the medium, and thus Wic,S > Wic .
Hence, we expect that this difference between Wic and Wic,S reflects the fact
that the solute stream must first enter a pore for it to become mixed by the
unstable flow therein, and we hypothesize that the exact value of Wic,S will differ
depending on where in the dispersion plume a given pore is. It could also be
that the measurable limit of concentration fluctuations resulting from advection
are nonlocal, because they require pore-to-pore communication and need a
substantial number of pores to have fluctuations: This possibility is supported
by the fact that the measured Wic,S = 4.2 is close to the upper limit shown in
SI Appendix, Fig S2. Probing this possibility further will be a useful direction for
future work.

In Situ Characterization of Chemical Reaction Kinetics. As a model
chemical reaction, we choose the irreversible reduction of the fluorescent dye
5(6)-carboxy-SNARF-1 (Fischer Scientific) from its phenolic form HSf introduced
in stream A at a concentration [HSf]0 = 5 μM to phenolate form Sf− in
the presence of excess base NaOH introduced in stream B at a concentration
[OH−]0 = 100 mM: HSf + OH− → Sf− + H2O. The reactant and product
are fluorescent with distinct emission spectra (72), enabling us to map out
their spatial distributions using confocal microscopy, converting fluorescence
intensity to concentration using a calibration curve obtained using the same
imaging settings (SI Appendix, Fig. S4). To visualize the pore space, stream B is

additionally seeded with 1 μM of fluorescein, which does not participate in any
side reactions.

Theoretical Model for Macroscopic Conversion of Reactant to Product.
For a well-mixed differential parcel of fluid (denoted by the subscript WM),
the reaction proceeds according to first-order reaction kinetics (25, 26, 72):
d[Sf−]

dt = −k[HSf][OH−], where [OH−] ≈ [OH−]0 since it is in great excess.

Thus, the kinetic reaction time scale �k =
(

k[OH−]0
)−1. Stoichiometric mass

conservation gives [HSf] = [HSf]0 − [Sf−], and substituting the fraction of
reactant that has been converted into product in this well-mixed differential
parcel of fluid, XWM ≡ [Sf−]/[HSf]0, yields XWM = 1 − exp (−t/�k).
However, this reaction can only begin to proceed in a parcel once it becomes
sufficiently mixed at some time t′. The fraction of the pore space that is sufficiently
mixed is then given by fmix ≈ 1 − exp (−t/ (��mix)), where 0 < � ≤ 1
is a constant scaling factor to account for reaction initiation before fluid is fully
mixed. Thus, integrating over all well-mixed parcels of fluid gives the macroscale
conversion (73, 105): X (t) =

∫ t
0

dfmix
dt (t) XWM

(
t − t′

)
H
(

t − t′
)

dt′, where
H is the Heaviside function, which ultimately yields Eq. 2. To compare this
prediction with our experimental measurements, we first fit the data shown in
Fig. 3B for the three different experiments with polymer-free solvent at three
different values of Pe, as shown by the blue lines in Fig. 3 B and C. These give
�k = 11± 1 s and � = 0.14± 0.01 as best fits. We then apply Eq. 2, using
these same parameter values and therefore no fitting parameters, in plotting
the theoretical curves for the polymer solution data in Fig. 3 B and C.

Eq. 2 appears to be singular at Da = 1; however, this apparent singularity
is a well-known consequence of the solution to the reaction-transport equation
being implicit in both Da and X. For this apparently singular value of Da, one
must instead revisit the original integral equation for X(t) given in the previous
paragraph; simplifying this equation for Da = 1, integrating, and substituting
t = x/U then yields X(x) = 1 − (1 + x/(U�k)) e−x/(U�k), which is the
alternate version of Eq. 2 suitable for the case of Da = 1. This equation is
shown by the thin black line in SI Appendix, Fig. S6, which smoothly interpolates
between the solutions of Eq. 2 for Da > 1 and Da < 1.

Data, Materials, and Software Availability. All study data are included in
the article and/or supporting information.
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