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ABSTRACT
The Flory–Huggins theory describes the phase separation of solutions containing polymers. Although it finds widespread application from
polymer physics to materials science to biology, the concentrations that coexist in separate phases at equilibrium have not been determined
analytically, and numerical techniques are required that restrict the theory’s ease of application. In this work, we derive an implicit analytical
solution to the Flory–Huggins theory of one polymer in a solvent by applying a procedure that we call the implicit substitution method.While
the solutions are implicit and in the form of composite variables, they can be mapped explicitly to a phase diagram in composition space. We
apply the same formalism to multicomponent polymeric systems, where we find analytical solutions for polydisperse mixtures of polymers of
one type. Finally, while complete analytical solutions are not possible for arbitrary mixtures, we propose computationally efficient strategies
to map out coexistence curves for systems with many components of different polymer types.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0215923

I. INTRODUCTION

Since its introduction in the early 1940s first by Huggins1 and
then by Flory,2 the Flory–Huggins theory has become the most
widespread model of phase separation of polymer solutions. Due
to its simplicity in construction, the theory, with a minimal set of
parameters, captures the main trends in the polymer partitioning
between phases. The theory has been applied in numerous contexts,
including in chemical processing,3,4 materials science,5–8 and also in
the burgeoning field of biomolecular condensation.9–11 While many
corrections and modifications have been proposed to capture more
detailed physical phenomena,12–21 the original Flory–Huggins the-
ory is the standard starting point for any analysis of materials that
include polymeric components.

From its physics-based construction, the Flory–Huggins theory
outputs a system of nonlinear constraints specifying thermodynamic
equilibria that define the coexisting phase concentrations. While
the equilibrium conditions can be solved numerically, up to this

point, to our knowledge, no exact analytical solution has been found.
Therefore, any evaluation of the theory or fitting of the theory to data
requires numerical solutions, hampering the ease of use of the the-
ory. In some regimes, analytical approximations can be applied,22–26

but these approximations may involve complicated expressions and
may not be uniformly valid, even for a single polymer–solvent
combination.

The technical challenge of describing coexisting phases is more
apparent for multicomponent mixtures,27–29 even for mixtures of
the same polymer type with different polymer lengths.30 In order
to construct a phase diagram using direct numerical solution, it is
necessary to discretize the compositional space, and solve nonlin-
ear systems of equations at each point. As the number of polymer
types, M, increases, the discretized space increases exponentially,
with a power proportional toM, which corresponds to a large num-
ber of discrete compositions, especially if fine resolution is desired.
In many applications, such as in cellular biology, the number of
polymer types can exceed tens of thousands.31 Such a brute force
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numerical approach may not be feasible to describe the breadth
of coexisting concentrations over the full compositional space for
M > 4, never mind forM > 104.

Here, we analytically derive an exact implicit solution to the
Flory–Huggins theory of a one-polymer–one-solvent system using
an implicit substitution method. The key idea is to solve for each
constraint for the Flory–Huggins χ parameter, and then substitute
the value of χ into each equation so as to eliminate it from the sys-
tem. We explore the solution’s asymptotic behavior, referring back
to the original applications of the theory by Flory.2 The general idea
of our approach for this and other problems described in this paper
is shown in Fig. 1.

Next, we apply the implicit substitution method to multicom-
ponent mixtures where the relative magnitude of the pair interac-
tions is known. There, we discover an exact analytical solution for
polydisperse polymer samples of the same type, and distill the phase
diagram of these mixtures into two independent variables that fully
specify the coexistence curves. Using this strategy, we can analyti-
cally describe the composition (molecular weight distribution and
total polymer volume fraction) of the coexisting phases.

For generalized mixtures, we use the implicit substitution
method to simplify a nonlinear system of M + 1 equations down
to one nonlinear “master” equation with one unknown—the

solvent partitioning between the phases. While this reduction leads
to great simplification of the equilibrium calculation, in the case of
arbitrary mixtures, the master equation must be solved numerically.
If desired, we can discretize the compositional space and construct
a χ surface by solving just this one equation at each point—and
we demonstrate this idea for a two-polymer–one-solvent mixture.
To minimize the number of function evaluations, we propose a
sampling method for the implicit function that obviates the need
to discretize the entire compositional space. Choosing sampling
points only requires finding the poles of the implicit χ function at
a fixed distance from the global critical point, which we demon-
strate, although we leave a full computational implementation of the
compositional sampling for a large number of components to future
work.

The implicit substitution method developed in this work is a
powerful technique to solve or simplify the nonlinear systems of
equations encountered in the thermodynamics of solutions. The
only price to be paid is that the derived solutions are implicit in
composite composition variables, themselves a function that is a
combination of the coexisting phase concentrations. Nevertheless,
these composite composition variables are experimentally acces-
sible, and we hope that the technique will find applications in
thermodynamic analyses in various contexts.

FIG. 1. Schematic of the systems under study, their corresponding variables, and the solution strategy employed in each case for (a) a single polymer–solvent solution, (b) a
polydisperse polymer–solvent solution, and (c) a solution containing multiple polymer types in solvent.
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II. THE FLORY–HUGGINS MODEL: ONE POLYMER
A. Theoretical background

The Flory–Huggins model may be derived using a free energy
density where a polymer composed of N monomers occupies a lat-
tice. The free energy density per lattice site, f , may be expressed in
dimensionless terms, f̃ , as

f̃ =
f v
kBT
=
1
N
ϕ ln (ϕ) + (1 − ϕ) ln (1 − ϕ) + χϕ(1 − ϕ). (1)

Here, v is a lattice site volume, kB is the Boltzmann constant, T is the
absolute temperature, and ϕ is the polymer volume fraction. χ is the
so-called Flory parameter, which captures the interaction between
solvent and the polymer.32

From this free energy, we can define the dimensionless
chemical potential of the polymer, μ = ∂ f̃ /∂ϕ, up to an arbitrary
constant,

μ =
1
N

ln (ϕ) − ln (1 − ϕ) − 2χϕ, (2)

and the dimensionless osmotic pressure of the solution is Π = −f̃
+ ϕf̃ ′, so that

Π = (
1
N
− 1)ϕ − ln (1 − ϕ) − χϕ2. (3)

The model predicts two coexisting phases, a dense phase and a
dilute phase of the polymer, above a critical χ value, χ > χc,

χc =
1
2
(1 +

1
√
N
)

2

(4)

and beginning at a critical polymer volume fraction ϕ = ϕc,

ϕc =
1

1 +
√
N
. (5)

It is found that as N increases, the phase diagram becomes
asymmetric relative to the center line at ϕ = 1/2.

Chemical equilibrium between two phases A and B at volume
fractions ϕA and ϕB is specified by two constraints—equal chemical
potential of the polymer and equal osmotic pressure of the solvent
in the two phases,

μ(ϕA) = μ(ϕB), (6a)

Π(ϕA) = Π(ϕB). (6b)

These coupled equations can be rewritten explicitly as

1
N

ln(
ϕA
ϕB
) − ln(

1 − ϕA
1 − ϕB

) − 2χ(ϕA − ϕB) = 0, (7a)

(
1
N
− 1)(ϕA − ϕB) − ln(

1 − ϕA
1 − ϕB

) − χ(ϕ2A − ϕ
2
B) = 0. (7b)

If χ is known, then we have two equations with two unknowns,
ϕA and ϕB. To our knowledge, these coupled equations are impossi-
ble to deconvolve into two explicit functions describing ϕA and ϕB

with known analytical techniques. However, in order to make ana-
lytical progress, we propose two simultaneous strategies. First, we
search for implicit solutions, where we treat χ as an unknown, so as
to gain an additional degree of freedom in the solution space; we can
also eliminate χ from the system of equations quite easily. Second,
instead of working with the variables ϕA and ϕB, we use two orthog-
onal composite variables that combine ϕA and ϕB, which we call y
and z, which become apparent after eliminating χ. Thus, the prob-
lem is reduced to solving for one unknown variable, z, in terms of
one known variable y. We call this solution method an implicit sub-
stitution method, since we use substitution to eliminate the function
χ. Now that the strategy has been explained, we implement it in detail
in the following.

B. Analytical solution
First, we solve Eqs. (7a) and (7b) for χ,

χ =
1
N ln( ϕAϕB ) − ln(

1−ϕA
1−ϕB )

2(ϕA − ϕB)
, (8a)

χ =
( 1
N − 1)(ϕA − ϕB) − ln(

1−ϕA
1−ϕB )

ϕ2A − ϕ2B
. (8b)

We equate these expressions to eliminate χ and multiply through by
a factor 2(ϕ2A − ϕ2B) to arrive at

[
1
N

ln(
ϕA
ϕB
) − ln(

1 − ϕA
1 − ϕB

)](ϕA + ϕB)

= 2(
1
N
− 1)(ϕA − ϕB) − 2 ln(

1 − ϕA
1 − ϕB

). (9)

Organizing the terms, we can write (9) as

(ϕA + ϕB)
N

ln(
ϕA
ϕB
) + (2 − ϕA − ϕB) ln(

1 − ϕA
1 − ϕB

)

= 2(
1
N
− 1)(ϕA − ϕB) (10)

or

(ϕA + ϕB)
N(ϕA − ϕB)

ln(
ϕA
ϕB
) +

2 − ϕA − ϕB
ϕA − ϕB

ln(
1 − ϕA
1 − ϕB

)

= 2(
1
N
− 1). (11)

If we define variables y and z as

y =
ϕA − ϕB
ϕA + ϕB

,

z =
ϕA − ϕB

2 − ϕA − ϕB
,

(12)

Eq. (11) becomes

1
Ny

ln(
1 + y
1 − y

) −
1
z
ln(

1 + z
1 − z

) = 2(
1
N
− 1). (13)
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The variables y and z are relative measures of the partitioning of
polymer and solvent, respectively, between phases, and they are
already commonly used as an order parameter that defines the phase
composition differences33 going back at least to Cahn and Hilliard.34
The variable z is similar to y in that it contains the difference over the
sum of solvent in each phase,

z =
ϕsB − ϕsA
ϕsA + ϕsB

, (14)

where ϕs = 1 − ϕ is the solvent volume fraction by incompressibil-
ity. It should be noted, however, that these mappings to y and z are
not conformal. Nevertheless, since we have one degree of freedom,
we will specify the variable y, and then solve the above-mentioned
equation for z.

In this pursuit, we can first recognize the tanh−1 function,
defined by the identity,

tanh−1(y) =
1
2
ln(

1 + y
1 − y

) (15)

to rewrite Eq. (13) as

tanh−1(y)
Ny

−
tanh−1(z)

z
=

1
N
− 1. (16)

If we define the function h(x) as

h(x) =
tanh−1(x)

x
, (17)

then Eq. (16) becomes

h(z) = 1 + (h(y) − 1)/N. (18)

We call this function, h(), the “FH function” since it features
prominently in our solution method for the Flory–Huggins model.
Using the inverse FH function, h−1(x), which returns the positive
branch, we can solve the equation for z in terms of y,

z = h−1(
1
N
h(y) −

1
N
+ 1). (19)

Therefore, at this point, we have expressed the solution for the
phase diagram exactly in terms of y and z. The function h−1(x)
can be evaluated easily using predefined lookup tables (our strategy),
although other strategies based on convergent series representations
or asymptotic expressions of h−1(x) are possible. We leave these
approaches to future practitioners if they are needed.

From the definition of y and z, we can find ϕA + ϕB,

ϕA + ϕB =
2z
y + z

. (20)

Finally, we can return to Eq. (8b), expressing χ in terms of y,

χ =
( 1
N − 1)(ϕA + ϕB)y − ln (

1−z
1+z )

(ϕA + ϕB)2 y
, (21)

where we substitute in for z and ϕA + ϕB in terms of y from Eqs. (19)
and (20).

Asmapped out in the schematic shown in Fig. 1(a), to construct
the binodal curve, we specify a value of y between 0 and 1. Then, we
find z by applying Eq. (19), then ϕA + ϕB by applying Eq. (20), and
then the corresponding χ value by applying Eq. (21). Note that we
do not need to explore negative values of y since we arbitrarily assert
that the A phase is enriched in the polymer relative to the B phase. If
we wish to cast the results in terms of ϕA and ϕB, we can write

ϕA =
z(1 + y)
z + y

,

ϕB =
z(1 − y)
z + y

.
(22)

If we enumerate multiple values of y between 0 and 1, we can con-
struct the full phase diagram. Our solution is, therefore, an implicit
function, χ(y), which we can map to χ(ϕ).

The exact solutions to the Flory–Huggins theory are shown in
Fig. 2 forN = 10, 50, 100, and 500. In Figs. 2(a) and 2(b), we show the
functions z(y) and χ(y) for each value of N, which we then map to
the function χ(ϕ) shown in Fig. 2(c). We confirm that the exact ana-
lytical solutions match numerical solutions of the coupled nonlinear
equations.

Fitting of experimental data may be achieved directly by gen-
erating the full binodal curve and minimizing residuals from experi-
mental data assuming some temperature dependence of χ. If both the
dilute and concentrated phase concentrations are measured, then
the experimental y can be computed directly and the values of χ(y)
can be fitted explicitly. Using the variable y is also advantageous as
it is independent of the assumed lattice volume size. To aid in the
application of the theory, a supporting script written in Python is
included to calculate the implicit curve χ(ϕ).35

Surprisingly, along with the exact analytical solution, the
approximation first used by Flory2 is able to capture the asymptotic
behavior of the phase distribution, especially for large N. It seems
that this approximation has not received significant attention since
most attention has been paid to analytical approximations in the
region near the critical point and extensions from the critical point.
For these reasons, we briefly explain the approximation method of
Flory, as it shares some similarities to the implicit method we have
applied and may be of practical use.

C. Extending Flory’s approximation
Interestingly, in his 1942 article, Flory solved his theory in a

rather ingenious way2 using asymptotic arguments of the osmotic
pressure difference between solutions. Recognizing that the osmotic
pressure of the dilute phase would go to zero relative to the
condensed phase, Flory solved the osmotic pressure equation for
χ keeping only terms containing the condensed phase volume frac-
tion. Specifically, he recognized that in the limit N ≫ 1, and away
from the critical point, it is natural to expect that ϕB ≪ 1, i.e., the
solution is very dilute in polymer, and ϕA ≈ 1, i.e., the second phase
is rich in polymer. In this limit, it follows that Eq. (7b) simplifies to

(
1
N
− 1)ϕA − ln (1 − ϕA) − χϕ2A = 0. (23)

In other words, there is an implicit relation giving ϕA(χ,N) in the
form
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FIG. 2. Polymer–solvent solution. Phase diagram for a single polymer–solvent solution, comparing different degrees of polymerization (N = 10, 50, 100, 500). Panel (a)
shows the analytical function z(y) that describes the solvent partitioning as a function of the polymer partitioning between phases; panel (b) shows the analytical function
χ(y); and panel (c) maps the coexistence curve to χ(ϕ). The numerical solution overlaps perfectly with the exact analytical solution derived here. For large N, the asymptotic
approximation first used by Flory2 matches most of the curve far from the critical point. The purple circles mark the critical points at each value of N.

χ =
( 1
N − 1)ϕA − ln (1 − ϕA)

ϕ2A
. (24)

Flory used this relationship in order to approximate the χ value that
corresponds to a given dense phase concentration (ϕA) and then
iteratively solved for the dilute phase concentration (ϕB) using the
chemical potential constraint.

Interestingly, the starting approximation in Eq. (24) (with
ϕA ≫ ϕB) can be applied to the chemical potential Eq. (7a) directly
to arrive at an implicit approximation for the dilute volume fraction,
ϕB,

1
N

lnϕB =
1
N

lnϕA − ln (1 − ϕA) − 2χϕA (25)

or

ϕB =
ϕA

(1 − ϕA)N
e−2NχϕA , (26)

where χ for a specified ϕA is given in Eq. (24). This last result
illustrates that typically ϕB is exponentially small.

As shown in Fig. 2(c), this asymptotic formula works incred-
ibly well to describe the coexisting phases, especially for large N,
with the exception of a small region near the critical point. Note that
the approximation is computed for 2ϕc < ϕA < 1, with ϕc defined by
Eq. (5). Other approximations near the critical point are well docu-
mented, and they can also be extended to regions further from the
critical point.25,26

Now that we have solved the single-polymer case, we can turn
our attention to what we can learn about multicomponent mixtures.

III. MULTICOMPONENT MIXTURES
Most polymer solutions contain more than one polymeric

species. Even for solutions containing a polymer of one type, the
polymer sample often contains polymers of differing lengths (molec-
ular weight), and each polymer of a specified length must be treated
as a separate species.30,36

Here, we will introduce the extension of the Flory–Huggins
model to multiple components. Then, the procedure for implement-
ing the implicit substitution method for this system is expounded.
Since the number of variables scales with the number of compo-
nents, inevitably, we must introduce numerous composite variables
along the way, which we define as needed. However, the solu-
tion strategy remains the same—working with variables z and yi,
using substitution of χ to arrive at one nonlinear equation with
one unknown, and then, specifying only the allowed number of
composite variables to arrive at a valid solution.

A. Theoretical background
For a multicomponent system withM polymeric species of vol-

ume fraction ϕi and size N i in a solvent, the free energy density
is27
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f̃ =
M

∑
i=0

ϕi
Ni

ln (ϕi) +
1
2

M

∑
i=0

M

∑
j=0

ϵijϕiϕj , (27)

where ϵij encodes the symmetric interaction of species i with species
j, and index 0 corresponds to the solvent, with N0 = 1. Assum-
ing incompressibility, ∑M

i=0 ϕi = 1, we can substitute for the solvent
volume fraction to arrive at

f̃ =
i=M
∑
i=1

ϕi
Ni

ln (ϕi) + (1 −
M

∑
i=1

ϕi) ln(1 −
M

∑
i=1

ϕi)

− χ
M

∑
i=1

M

∑
j=1

αijϕiϕj , (28)

where the sums are now over all M polymeric components (now
not including the solvent—the standard notation from this point
forward). The incompressibility constraint has been applied to elim-
inate the solvent density, and linear terms in ϕi are not included
since they will not influence thermodynamic equilibrium. The coef-
ficients αij indicate the shape of the symmetric effective interaction
matrix, while the prefactor χ encodes the magnitude of interactions,
such that χαi j = − 1

2(ϵi j − ϵ0i − ϵ0 j + ϵ00). We assume that the matrix
α is known at a particular fixed temperature. The free energy reduces
down to the form in Eq. (1) if there is only one polymeric species
with α11 = 1 and if the linear term in Eq. (1) is disregarded since it
does not affect phase equilibrium calculations.

The chemical potential of each species, μi = ∂ f̃ /∂ϕi, is up to an
additive constant,

μi =
1
Ni

ln (ϕi) − ln
⎛

⎝
1 −∑

j
ϕj
⎞

⎠
− χ∑

j
2αijϕj. (29)

Note that the chemical potential is defined relative to its reference
state at fixed temperature and pressure.37

The osmotic pressure of the solution is computed as Π = −f̃
+∑i ϕi∂ f̃ /∂ϕi, again up to an additive constant,

Π =∑
i
(
1
Ni
− 1)ϕi − ln(1 −∑

i
ϕi) − χ∑

i
∑
j
αijϕiϕj. (30)

We will assume that two phases A and B in equilibrium have
composition ΦA and ΦB, where Φ indicates a vector with the
components consisting of the corresponding chemical volume frac-
tions. These phases satisfy the chemical equilibrium constraints of
μiA = μiB and ΠA = ΠB. Here, we will have M + 1 equations and
2M + 1 unknowns (ΦA, ΦB, and χ). Therefore, we can only set
M variables independently. Additional constraints may apply for the
case of multiphase (>2) coexistence, but we will not consider this
case on the outset. In fact, we will find that the two phase coexistence
predictions can also be used as a way to find multiphase coexistence
regions.

In order to make analytical progress, simplifying the set of non-
linear equilibrium constraints, we next cast the equations into a
set of composite variables. A similar transformation was recently
pursued for a different virial expansion model for multicomponent
mixtures,38 but these composite variables arise naturally from the
Flory–Huggins construction. The following key composite variables
are defined in Sec. III B: yi, the partitioning of component i in

Eq. (31); z, the partitioning of solvent in Eq. (32); βi, the sum of the
coexisting volume fractions of component i in Eqs. (32) and (44);
γi, the differential of interactions of component i between phases in
Eqs. (36) and (43); ηi, the differential of interactions of component
i between phases relative to component 1 defined after Eq. (54); and
finallywi, the relative partitioning of component i relative to compo-
nent 1 in Eq. (42). A reader who wishes to skip to the final working
equations can skip to Eqs. (54) and (56), which together define the
simplified master equation in one variable, z.

B. Casting into composite variables
Following the pattern from the one-component case with the

implicit substitution method (Sec. II), we simplify the arguments of
the ln functions by defining yi as

yi =
ϕiA − ϕiB
ϕiA + ϕiB

, (31)

which are between −1 and 1; these variables represent the par-
titioning of component i between phases. Arbitrarily, we choose
0 ≤ y1 < 1, although all other yi can take on negative or positive
values.

The analogous variable for the solvent partitioning is denoted
as z,

z = ∑i (ϕiA − ϕiB)
2 −∑i (ϕiA + ϕiB)

, (32)

which again corresponds to the difference divided by the sum of vol-
ume fractions of solvent in respective phases, as in Eq. (14). If we
define the set of variables βi,

βi = ϕiA + ϕiB, (33)

as the sum of volume fraction of component i in coexisting phases,
then we can relate z and yi,

∑
i
yiβi = (2 −∑

i
βi)z. (34)

To start solving the system analytically, we first solve each
constraint for χ. TheM chemical potential Eq. (29) gives

χ =
1
Ni
ln( 1+yi1−yi ) − ln (

1−z
1+z )

γi
for every i, (35)

with the expression in the denominator, γi, defined as

γi =∑
j
2αijβjyj. (36)

Therefore, γi is a measure of the differential of interactions of
component i between phases.

From the osmotic pressure in Eq. (30), we get

χ =
∑i (

1
Ni
− 1)βiyi − ln ( 1−z1+z )

γ0
(37)
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with γ0 defined as

γ0 =∑
i
∑
j
αij(ϕiAϕjA − ϕiBϕjB)

=∑
i
∑
j
αijyjβiβj =

1
2∑i

βiγi. (38)

As in Sec. II, we can conveniently cast the equations for χ in
terms of the tanh−1 functions,

χ =
2
Ni
tanh−1(yi) + 2 tanh−1(z)

γi
for every i,

χ =
2 tanh−1(z) +∑i (

1
Ni
− 1)βiyi

γ0
.

(39)

For compact notation, we will define the variable x as

x = tanh−1(z), (40)

so that z = tanh(x) and variables xi as

xi = tanh−1(yi). (41)

Before proceeding, we can simplify the expressions for γi
[Eq. (36)] by defining a variable wi, which is a measure of the
relative partitioning of component i relative to the partitioning of
component 1,

wi =
βiyi
β1y1

=
ϕiA − ϕiB
ϕ1A − ϕ1B

, (42)

with w1 = 1. The definition of γi in terms of the set wi is, therefore,

γi = β1y1∑
j
2αijwj , i ≠ 0

γ0 = β1y1∑
i
∑
j
αijwjβi.

(43)

With the definition of wi, by applying Eq. (34) we can solve for
βi in terms of the set of yi, z, and wi,

βi =
2zwi

yi∑j [wj(1 + z
yj
)]

. (44)

To summarize the mathematical manipulations thus far, we
have recast the equations in terms of composite variables that sim-
plify the arguments of the nonlinear logarithmic functions. Next, we
work in terms of these composite variables, until we can write one
master equation with one unknown by specifying a maximum of
M independent composite variables.

C. Deriving the master equation
The next step, using our implicit substitution method, is

to equate the equations for χ. For this purpose, we first equate
χ from the first component to all the other components, to obtain
M − 1 identities. Then, we equate a convenient linear combination of
χ from all components to the χ specified by the osmotic pressure,

in order to cancel the denominator γ0. Proceeding, the combined
chemical potential equations give

2
Ni
xi + 2x
γi

=

2
N1
x1 + 2x
γ1

, (45)

which is rearranged as

xi = x(
γi
γ1
− 1)Ni +

γi
γ1

x1Ni

N1
. (46)

Next, we apply the osmotic pressure constraint on χ, which we
write as

2x +∑j (
1
Nj
− 1)βjyj

γ0
=

2
Ni
xi + 2x
γi

. (47)

Multiplying this equation by βiγi and then summing over all
components, we obtain

∑i βiγi
γ0
⎛

⎝
2x +∑

j
(
1
Nj
− 1)βjyj

⎞

⎠
=∑

i
βi(

2xi
Ni
+ 2x). (48)

Applying the definition of γ0 so as to eliminate it, we find

⎛

⎝
2x +∑

j
(
1
Nj
− 1)βjyj

⎞

⎠
=∑

i
βi(

xi
Ni
+ x). (49)

Then, collecting terms in x, we get

(2 −∑
i
βi)x −∑

i
βiyi =∑

i
(
βixi
Ni
−
βiyi
Ni
), (50)

which can be written compactly as

(2 −∑
i
βi)(x − z) =∑

i

βi(xi − yi)
Ni

(51)

or as

tanh−1(z)
z

= 1 + ∑i βi(tanh
−1
(yi) − yi)/Ni

∑i βiyi
, (52)

where we have reverted back to yi and z from xi and x. Furthermore,
substituting in for βi from Eq. (44) gives

tanh−1(z)
z

= 1 + ∑iwi(tanh−1(yi)/yi − 1)/Ni

∑iwi
. (53)

We can again write this expression in terms of the FH function, h(),
defined by the following equation:

h(z) = 1 + ∑iwi(h(yi) − 1)/Ni

∑iwi
. (54)

Defining ηi = γi/γ1, which is the differential measure of interac-
tions between phases for component i relative to component 1, the
chemical potential constraints in Eq. (45) give

xi = Ni(ηi − 1)x + ηiNix1/N1 (55)
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or in terms of yi,

yi = tanh (Ni(ηi − 1)tanh−1(z) + ηiNi tanh−1(y1)/N1). (56)

At this stage, we have reached our stated goal—to find one
equation in one unknown by specifying at mostM independent vari-
ables.With careful inspection, onemay see that specifying y1 and the
setwi for i > 1 (which constitutesM variables) is sufficient to achieve
this objective. Stated more mechanically, by substituting Eq. (56)
into Eq. (54), and specifying theM composite variables y1 andwi for
i > 1, we have successfully transformed our system of M + 1 equa-
tions into one master equation, Eq. (54), in one unknown, z, the
solvent partitioning between phases.

However, this equation does not have a clear inversion formula,
since z is contained differently as an argument of multiple nonlin-
ear functions, not just one nonlinear function as in the one polymer
case. Therefore, in the most general case, the master equation must
be solved numerically, but there are still significant advantages of
this approach compared to the original numerical challenge, as we
characterize in the following. However, it should be noted that there
are clear strategies to approximate the master equation solution near
and far from the critical point or when a particular pair interaction
is dominant, as outlined in Appendixes A–D.

Next, instead of choosing wi directly, we choose the set of wiy1
= (ϕiA − ϕiB)/(ϕ1A + ϕ1B) for i > 1 and y1, so that the specified vari-
ables have the same denominator of ϕ1A + ϕ1B, and so that they all
go to zero at the global critical point. From wi, one can determine
the set ηi. Then, the master equation can be solved for z numerically.
With z in hand, all the values of yi and βi can be calculated explic-
itly and then finally χ can be calculated using one of the original
equilibrium constraints.

Even though a numerical solution of the master equation is
still needed in general, a vast simplification has been achieved by
all the algebraic manipulations entailed by the implicit substitu-
tion method—turning the system ofM + 1 nonlinear equations into
one nonlinear master Eq. (54) with one unknown. Again, we must
work with the composite variables y1 and wi, but as shown in
the schematic in Figs. 1(b) and 1(c), the solution can be directly
transformed back toΦ space with the relation,

ϕiA =
1
2
βi(1 + yi), (57a)

ϕiB =
1
2
βi(1 − yi). (57b)

In addition, we must also check that the solutions returned are actu-
ally physical, since admissible solutions to the master equation can
return unphysical negative values of the volume fractions.

D. Special cases
In what follows, we discuss applications of the multicompo-

nent solution method to three special cases. The first case is that
of a single polymer with an arbitrary number of different lengths,
i.e., the case of polydispersity. There, we find an exact analytical
solution, and the master equation solution can be completely cast
in terms of two independent variables without any numerical solu-
tion necessary. In the second case, we apply the solution method to a

two-polymer–one-solvent system, to demonstrate how the method
can be used to find the χ function over the full compositional space.
Finally, in the third case, we suggest strategies to tackle the prob-
lem of large multicomponent systems of polymers using the implicit
solution without discretizing the entire composition space.

1. Polydisperse polymer of one type
If a solution consists of only a solvent and only one polymer of

one type, but that polymer is polydisperse with distinct values of N i,
then we can often assume the interactions are equal for each length
of polymer in the mean field, i.e., αij = 1, which means that ηi = γi/γ1
= 1 for all i. In this case, the value of yi becomes independent of z,

yi = tanh(
Ni

N1
tanh−1(y1)). (58)

If this is the case, then we can again solve the equation for z explic-
itly with the inverse FH function h−1, exactly as we did for the
one-polymer case,

z = h−1(1 + ∑iwi(h(yi) − 1)/Ni

∑iwi
). (59)

For arbitrary molecular weight distributions, the values of
wi and y1 can be chosen independently to construct the full phase
diagram. However, in many cases, the molecular weight distribution
of the polymer being added to the solvent is known. If the average
volume fraction of a particular molecular weight in both phases,
ϕ̄i, can be written in terms of ν, the volume fraction of the phase
A relative to the total volume,30

ϕ̄i = νϕiA + (1 − ν)ϕiB = (ϕiA − ϕiB)(ν +
1
2yi
−
1
2
), (60)

then the ratio between the average polymer density ϕ̄i/ϕ̄1 is

ϕ̄i
ϕ̄1
=
(ν + 1

2yi
− 1

2)

(ν + 1
2y1
− 1

2)
wi. (61)

Solving for wi, we get

wi =
ϕ̄i
ϕ̄1

(ν + 1
2y1
− 1

2)

(ν + 1
2yi
− 1

2)
. (62)

If y1 and ν are specified, then the set wi is also fixed if the
overall molecular weight distribution is known. Therefore, we can
reduce the dimensionality of the phase diagram by only varying
y1 and ν in the ranges 0 < y1 < 1 and 0 < ν < 1, as schematically
shown in Fig. 1(b).

In Fig. 3, we show the phase diagram for two polymer sam-
ples of different overall molecular weight distributions, one that is
uniformly distributed between N = 10 − 100 and one that is expo-
nentially distributed between N = 10 − 100, where for both samples,
the number of species is M = 91. These curves are analytically cal-
culated in Fig. 3(a), which is much better than working with the
92 nonlinear chemical equilibrium equations that we started with.
The curves are plotted as χ vs the overall polymer volume fraction,
ϕ = ∑iϕi, at fixed condensed phase volume fraction, ν. In Figs. 3(b)
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and 3(c), the molecular weight distributions of the samples and the
molecular weight distribution of the coexisting phases are plotted in
the form of a probability density function. When the dense polymer
phase volume fraction is small (ν ≈ 0), the binodal is pushed toward
lower overall polymer density because the first appearing condensed
phases preferentially include polymers of higher molecular weight,
so they dominate the coexistence curve.

As the volume fraction of the condensed phase, ν, increases,
the left branch of the coexistence curve (Fig. 3) shifts to the right
since the condensed phase is forced to more closely match the over-
all molecular weight distribution as the condensed phase volume
fraction increases. Although ν ≈ 1 may be difficult to reach, the
minority dilute phase must enrich polymers of lowmolecular weight
there since they are heavily crowded in the dense phase. Note that
at ν = 0 and ν = 1, the molecular weight distribution of the dilute
and dense phase, respectively, perfectly match the molecular weight
of the overall polymer sample. Finally, comparing the two overall
molecular weight distributions, the sample more enriched in the
longer polymers has a left branch of the coexistence curve shifted to
the left. In all the cases, the critical point appears to be dominated
by the largest molecular weight polymer constituents, although it
varies with the specific details of the molecular weight distribution
and value of ν, as previously found in Ref. 30.

However, it should be noted that the volume fraction of the
condensed phase, ν, may be difficult to estimate experimentally. In
many cases, coexistence curves are mapped out upon the initiation

of phase separation, which would occur at ν = 0. Beyond this limit,
for some practical cases where ν ≠ 0, the coexistence surface χ(ϕ, ν)
could be more effectively (implicitly) mapped to the surface χ(ϕ, ϕ̄),
where ϕ̄ measures the total volume fraction of polymer added to
the solution, ϕ̄ = νϕA + (1 − ν)ϕB. Generating this surface requires
a dense enumeration of possible values of ν, and therefore, we leave
these extensions to future work.

In addition, similar approximations that reduce the compo-
sitional dimensionality can be made when one pair interaction is
assumed to be dominant, as explained in detail in Appendixes C
and D, to arrive at another set of analytical solutions.

2. A two-polymer–one-solvent mixture
While we were able to find an exact analytical solution for an

arbitrarily polydisperse polymer, the two-polymer–one-solventmix-
ture has amaster equation that can only be solved numerically. Here,
the master equation becomes

h(z) = 1 +
(h(y1) − 1)/N1 +w2(h(y2) − 1)/N2

1 +w2
, (63)

with y2 fixed as

y2 = tanh (N2(η2 − 1)tanh−1(z) + η2N2 tanh−1(y1)/N1) (64)

and η2 defined as

FIG. 3. Polydisperse polymer–solvent solution. Comparison of the phase diagram for two polydisperse samples composed of one polymer type. (a) Coexistence curves
plotting χ vs total volume fraction of polymer ϕ = ∑iϕi . Each curve fixes the volume fraction of the condensed phase, ν. The binodal curves are calculated with a polymer
with a uniform molecular weight distribution between N = 10 − 100 such that M = 91, and separately for a polymer with an exponential molecular weight distribution between
N = 10 − 100, ϕ̄i/ϕ̄1 = exp ((Ni − 10)/45). (b) and (c) The molecular weight distributions of the overall solution (thick lines), and the molecular weight distributions in the
dense and dilute phases at χ = 0.8. Note that for ν = 0 and ν = 1, the dilute and dense phases, respectively, perfectly overlap with the overall molecular weight distribution.
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η2 =
α12 + α22w2

α11 + α12w2
. (65)

To construct a phase diagram, we specify y1 and y1w2, then
solve for η2, and then for z solving the master equation numerically.
From there, we can specify y2, χ, and then solve explicitly for the
polymer densities in each phase. To discretize the phase diagram, we
vary 0 < y1 < 1 and −1 < tanh(y1w2) < 1. It should be noted that it is
more regularly behaved to plot the phase diagram in terms of y1 and
the product y1w2, since they share the same denominator in terms
of theirΦ dependence.

In Fig. 4, we present the solution for a two-polymer–one-
solvent system for two different shapes of the interaction matrix:
panels (a)–(c) show a diagonally dominant interaction matrix and
panels (d)–(f) show an off diagonal dominant matrix. So as to not
push the coexisting densities to extreme values near 0 or 1, we choose
N1 = 4 and N2 = 3 as a starting point. Note that the same method
may be applied for larger values of N i, but care must be taken in
order to include values of y1 near 1. The χ surface is calculated
over the full compositional landscape. Interestingly, all differentiable
regions emanate from the central critical point at y1 = 0 and w2y1
= 0, but are separated by singular discontinuous curves in the phase
diagram. Not all of these regions or parts of these regions return

physical, positive densities, as shown in Figs. 4(b) and 4(e). Never-
theless, by transforming specified contours with admissible solutions
toΦ space, we can map out the phase coexistence curves in terms of
ϕ1 and ϕ2, as shown in Figs. 4(c) and 4(f).

There are a few notable features of the full χ surfaces, particu-
larly in Fig. 4(b). First, some contours do not connect to the global
critical point, and these coexistence curves at fixed χ, therefore, lack
a critical point within the physical values of Φ at this fixed χ, for
example, χ = 1.8. Furthermore, there are multiple contours that have
the same value that are separated by nonphysical and nondifferen-
tiable regions of the χ surface, for example, χ = 3.4. These separate
contours indicate phase coexistence beyond two phases. However,
these particular contours are localized in smaller regions inΦ space,
and they are not as illustrative as the ones chosen for Fig. 4(c). Nev-
ertheless, using this method, which has been constructed for the
coexistence of two phases, we can construct phase diagrams in which
more than two phases are present where tie lines cross at fixed χ. We
will investigate these multiphase predictions particularly in a future
work.

Clearly for M = 2, if the value of the desired χ contour is
known, mapping out the full χ landscapemay bemore computation-
ally expensive than solving the equations in ϕ space for the fixed,
desired value of χ. So, the fully discretized χ surface implemented

FIG. 4. Two-polymer–one-solvent system. Panels (a)–(c) correspond to the phase diagram for a diagonally dominant interaction matrix, while panels (d)–(f) show the same
results for an off-diagonally dominant interaction matrix. (a) The full phase diagram mapping the χ surface (with colormap corresponding to the value of χ) for all compositional
space for fixed αij on the y1, tanh(y1w2) plane. All the regions connect at the critical point at y1 = 0 and y1w2 = 0, but are segmented by the singular curves on the χ
surface that are evident by the thick black regions on the χ surface. The three poles are computed on a small circle near the critical point and marked with white markers.
These poles can be used to demarcate the distinct differentiable regions of the χ surface. Note that the colormap is saturated at the bounds of the color bar, but the contour
lines are linear between χ = −10 and χ = 10 in increments of 0.1, although negative values of χ do not appear in the feasible physical regions. The black regions correspond
to regions where no solution is available or where ∣χ∣ > 10. (b) The regions of the χ surface that are physical, with positive predicted polymer densities. (c) The binodal curve
for fixed values of χ transformed to Φ space, either mapped out by the gradient descent algorithm in Sec. III C or by extracting contours from the physical regions of the χ
surface in part 4(b). The small gaps correspond to the critical points of the binodal curves, which map to the same point in the composite composition coordinates. (d)–(f) The
same information as panels (a)–(c), but for a different interaction matrix.
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here are of limited use for generating single binodal curves at
fixed χ.

At this point, it is natural to ask the following question: how
can one efficiently sample the implicit χ surface to find a desired con-
tour or sets of contours corresponding tomultiple coexisting phases?
Furthermore, how can one choose sampling points so as to dodge the
singular curves in the phase diagram? Finally, can the sampling be
efficiently scaled for large values of M? To explore these questions,
in Sec. III D 3, we formulate such a sampling strategy.

3. Finding contours in a high dimensional phase
diagram

In the case of a high dimensional multicomponent solution, we
have found an implicit solution for χ, requiring only one nonlinear
solve in one variable, z, to construct the surface,

χ = χ(y1, tanh (y1wi)) = χ(v), (66)

where only the M independent variables are listed as arguments in
the vector v.

Without enumerating all the possible inputs for the implicit
function χ, we may not know beforehand where a given contour
lies on the χ surface corresponding to coexisting phases. If we wish
to only find the contours of this surface at fixed χ = χ0 with mini-
mal number of χ evaluations in a high dimensional phase diagram
(M ≫ 1), then we can employ a gradient descent algorithm on the
χ surface to arrive at the desired contour. Defining the inputs of the
χ function as a vector v, with step index k, the algorithm proceeds as

vk+1 = vk − λk∇vF(v). (67)

The function F is

F(v) = (χ(v) − χ0)2, (68)

and its gradient can be computed by a finite difference. The
step size λk can be specified by a given algorithm, such as the
Barzilai–Borwein method.39

Once the desired contour is reached, one can then trace out a
contour by stepping along a direction, u, perpendicular to the gradi-
ent g = ∇vχ. However, it should be noted that there areM − 1, such
coordinate directions that are perpendicular to g. Here, we choose
just one of these coordinate directions,

vk+1 = vk − λku (69)

with

ui = gi, i > 1,

ui = −
1
g1
∑
i>1

g2i , i = 1.
(70)

Here, the step size λk can be scaled by the magnitude of the gra-
dient vector or the location of the current iteration, vk. The direction
of the step away or toward the global critical point can be controlled
by the sign of λk. If ever the step size is too large and the algorithm
steps off of the fixed χ contour, the gradient descent can be used to
return to the contour.

In a high dimensional composition space, the binodal curves
become higher dimensional surfaces. Stepping in one tangential

coordinate direction may not sample the entire binodal surface on
its own. Therefore, one would need to choose a path that efficiently
maps the boundary of the binodal surface and chooses the tangential
directions based on the distance from the critical point, the attributes
of the gradient vector, and the historical location of points already
sampled. Here, we do not derive such a high dimensional search
algorithm.

The gradient descent algorithm works to converge to one con-
tour in the v space, corresponding to phase coexistence points in the
Φ space. If the algorithm is initiated in a region that is separated
from the desired contour by a singular, non-differentiable curve in
the v space, then more than one starting point would be needed to
locate all matching contours in the phase diagram. If this is the case,
then it is natural to ask: what are efficient ways to choose candidate
starting points?

Notably, all the regions connect at the global critical point at
v = 0, but the regions are separated by singularities that extend radi-
ally from the critical point, slicing the phase diagram like a pie,
as shown clearly in Figs. 4(a) and 4(d). Therefore, the analytical
approximations of the equations by expanding near the critical point
and finding poles can give a small number of candidate starting
points in each region located at the center of each pie piece.

To sketch out the strategy to initiate a gradient descent algo-
rithm, we next turn to how to segment the phase diagram efficiently
to generate candidate starting points near the critical point.

a. Segmenting a hypersphere near the critical point. Near the
critical point, the partitioning of each species becomes negligible, i.e.,
∣yi∣, ∣z∣≪ 1, and the master equation is

z2 = ∑iwiy2i /Ni

∑iwi
(71)

with the chemical potential constraint setting,

yi = Ni(ηi − 1)z + ηi
Ni

N1
y1. (72)

Combined, these equations give a quadratic equation for z, which
can be solved exactly, as documented in Appendix B. Nevertheless,
extra degrees of freedom are still specified by the set y1 and wi.

To eliminate these degrees of freedom, we propose the fol-
lowing strategy: we look for candidate starting points on a small
hypersphere ∣v∣ = v0 near the critical point, with v0 ≪ 1/max(N i).
First, we find the poles of the χ function on this hypersphere. Then,
we choose a small number of points in regions demarcated by the
poles of the χ function. By choosing specified points between the
poles, we guarantee that we are testing each candidate region for the
specified χ value.

For finite but small z and yi, the poles of the χ function are
defined by the equation,

γi ∝∑
j
αijwj = 0, (73)

which corresponds to finding the null space of the αmatrix, and then
rescaling so thatw1 = 1. If α is full rank, then the null space is empty.
However, one other denominator in the full expressions can go to
zero, causing singularities in the phase diagram, namely,
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∑
j
[wj(1 +

z
yj
)] = 0. (74)

Near the critical point, these poles must be numerically solved for
the values of wi and y1 that lead to singularities, making use of the
exact solution for z near the critical point.

Note that the poles can actually be interpreted as curves on a
given hypersphere. ForM = 2, they correspond to points on a circle.
ForM = 3, they correspond to arcs on a sphere, and so on. In order
to segment the space in higher dimensions, one would need to find
the intersection of these singular curves on the hypersphere near the
critical point, to find the boundaries of the nonsingular “continents”
on the hypersphere.

Once we have found the poles near the critical point at fixed v0,
we can segment the hypersphere radially between these poles, mak-
ing sure to test at least one point in the gradient descent algorithm in
each “continent” of the segmented hypersphere. This would ensure
that our algorithm can find a desired contour, if it exists, and could
find multiple contours of the same function that are separated by
non-differentiable curves.

b. Applying the gradient descent algorithm. Here, we explicitly
apply the gradient descent algorithm only for M = 2, to find the
contours shown in Figs. 4(c) and 4(f), validating the results by com-
parison to the full χ surface. The poles of the function do segment
the phase diagram for M = 2, as demonstrated by the white points
marked in Figs. 4(a) and 4(d) on a circle at a fixed distance from the
critical point. Choosing a handful of starting values between the sin-
gular points on the circle, we can trace out the fixed values of χ, and
then transform toΦ space, to identify the curves matching shown in
Figs. 4(c) and 4(f).

While we demonstrate the gradient descent algorithm for
M = 2, we leave the exploration of M > 2 to future work. Note that
this gradient descent algorithm is very advantageous for cases where
M > 4, where it may be difficult to discretize the v space over the
whole compositional range a priori.27 In fact, while the number of
function evaluations at each point scales with M (to evaluate the
components of the gradient vectors), and the number of candidate
points may also increase with M, the gradient descent algorithm
is otherwise insensitive to M, which is much more favorable than
discretizing all combinatoric possibilities in the composition space.
Still, the stepping along the binodal surfaces in high dimensions
must resolve enough points so as to map out the coexistance sur-
face to a significant resolution, which may be a computationally
demanding task.

IV. CONCLUSIONS
Using the implicit substitution method, we are able to analyt-

ically define the coexistence curves for a polymer–solvent system
and a polydisperse polymer-solvent system. For generalized mix-
tures of many components, we have simplified a large system of
nonlinear equations into one nonlinear equation in one composite
variable. We have presented methods to approximate the solutions,
not only for the single-polymer solvent system (Sec. II C) but also
in the case of multicomponent solutions far from their critical point

(Appendix A) and close to their critical point (Appendix B). More
analytical solutions are possible in arbitrary mixtures if there is
one dominant interaction, where all other non-interacting species
operate as non-interacting crowders (Appendixes C and D).

As a test of the multicomponent master equation, we have
mapped out the implicit χ surface for two polymeric components
over the full compositional space and demonstrated the demarca-
tion between differentiable regions of the χ surface that defines the
binodal curve. Furthermore, we have suggested strategies to find full
binodal curves at fixed χ without discretizing the full compositional
space, which we believe will be very useful forM > 4, but we leave a
full exploration of these methods to future studies.

Ample opportunities exist to further develop the methods pre-
sented here. Beyond improving the computational performance
of the method for many components, one could seek analyti-
cal perturbative series solutions to the general master equation.
Furthermore, one could implement the method to large multi-
component mixtures and explore the shape of contours of the χ
surface for different interaction matrices. Importantly, the method
could be applied to efficiently locate compositional regions of mul-
tiphase coexistence for large mixtures of components. Moreover,
the approach can be directly extended to more detailed equations
of state beyond Flory–Huggins, although compact analytical solu-
tions of a final master equation are not guaranteed for all equations
of state. In Appendix E, we highlight possible extensions of the
implicit substitution method to other equations of state. Further, the
method could be directly linked to the thermoresponsive behavior
of polymer solutions using a model of the temperature dependence
of χ.40 The analysis applied here may also be useful for multicom-
ponent regular solution models, now finding use even for phase
transformations in battery materials.41

The composite composition variables are experimentally acces-
sible if the composition of the dilute and concentrated phases is
simultaneously measured. Therefore, experimental phase diagrams
may also bemapped to composite composition space for direct com-
parison with the theoretical χ surface for a particular α matrix at
fixed temperature.

The implicit substitution method, while possibly un-intuitive
at first sight, has given us a new lens to explore the phase behavior
of polymeric phase separation. Here, we demonstrated its power in
simplifying systems of coupled nonlinear thermodynamic equations
that are often impossible to solve explicitly.
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APPENDIX A: APPROXIMATIONS FAR FROM THE
CRITICAL POINT FOR MULTICOMPONENT MIXTURES

For multicomponent mixtures, it may be difficult to seek
approximations, since multiple assumptions of limiting values of
densities may need to be made simultaneously. While the limit-
ing solution near the critical point is analytical (by applying the
quadratic formula in Eq. (71) as detailed in Appendix B), one general
approximation does not work in all the regions far from the critical
point.

However, we can explore the limiting behavior when the major
component, which we arbitrarily specify as component 1, has a large
excess in the condensed phase compared to the dilute phase rela-
tive to other components. We also choose a secondary component
that exhibits the opposite partitioning compared to component 1,
but exhibits more partitioning compared to the other species. There-
fore, this boundary corresponds to the edge of the phase diagram in
our chosen coordinates, where y1 → 1, wiy1 → ±∞, or z → 1.

In our first analysis, we start with the solvent as the secondary
dominant component. If this is the case, y1 → 1 − ϵ, where ϵ is van-
ishingly small, with a solvent dominated dilute phase, also meaning
that z → 1. We can effectively solve the system as if no other poly-
mers are present. In the limit of ϵ→ 0, where correspondinglywi for
i > 1 go to zero, we get

h(z) ≈ 1 + (h(y1) − 1)/N1, (A1)

which has solutions in terms of the inverse FH function,

z = h−1(1 + (h(y1) − 1)/N1). (A2)

We can subsequently solve for the set yi describing the partitioning
of other polymers by applying Eq. (56).We canmap this approxima-
tion to all of composition space for a specific value of y1 and wi, and
then check that the master equation is satisfied up to some tolerance
to accept the approximation prediction or to reject it.

In many cases, although, the dilute phase in one polymer is
the dense phase in the other, and vice versa, for a given polymer
pair. In other words, the solvent may not be significantly partitioned
between phases. If that is the case, we can seek approximations by
assuming that one of the polymers is the “solvent” while the other is
the polymer, effectively rescaling the theory in these dominant com-
position coordinates. If we were to do this with component j as the

solvent and component yi the dominant partitioning component, we
would find

yj = −h−1(1 + (h(yi) − 1)Nj/Ni), (A3)

where yj is chosen to have the opposite sign of yi. All the other
composite variables, yk, can be computed by the analog of Eq. (56)
that treats component j as the “solvent” component that satisfies
incompressibility, namely,

yk = tanh(−
Nk

Nj
(
ηk
ηi
− 1)tanh−1(yj) +

ηkNk

ηiNi
tanh−1(yi)), (A4)

where for the solvent y0 = −z.
We can use this procedure to map out the areas near the

boundary of our composition space, where y1 → 1 or wiy1 → ±∞.
Furthermore, by considering each possible pair of polymers or
solvent combination, we can generate a combinatoric set of approx-
imations that span all regions far from the critical point, which may
at least make for useful guesses for the full master equation. Similar
to the one-polymer case, we expect that these approximations will be
most accurate when there are significant differences in the polymer
lengths.

APPENDIX B: APPROXIMATIONS NEAR
THE CRITICAL POINT

Near the critical point, the partitioning of each species becomes
negligible, i.e., ∣yi∣, ∣z∣≪ 1, and the master equation is

z2 = ∑iwiy2i /Ni

∑iwi
, (B1)

with the chemical potential constraint setting,

yi = Ni(ηi − 1)z + ηi
Ni

N1
y1. (B2)

This approximation is valid as long as

z ≪ 1 & z ≪
1

Ni(ηi − 1)
,

y1 ≪ 1 & y1 ≪
N1

Niηi
.

(B3)

Combined, these equations give a quadratic equation for z, which
can be solved exactly. The quadratic equation explicitly is

0 = z2(−1 + ∑iwiNi(ηi − 1)2

∑iwi
)

+ z(∑i 2wiNiηi(ηi − 1)y1/N1

∑iwi
)

+
∑iwiNiη2i y21/N2

1

∑iwi
. (B4)

Picking the set wi and y1, we solve for z, choosing the root that
gives positive βi for all i, if, in fact, either root gives positive βi.
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APPENDIX C: ADDING NON-INTERACTING
“CROWDERS”

To add to our list of analytical solutions, we can consider
the case of non-interacting crowders added to a single strongly
interacting polymer in solvent. Although this ideal non-interacting
assumption may be rare in reality, it may be a reasonable approxi-
mation if one polymer self-interaction is much larger in magnitude
than all other interactions. We assume that the dominant polymer
is i = 1, where α11 = 1. If non-interacting crowders are added with
species index: 2 < i <M, then since their corresponding rows and
columns αij = 0, we have ηi = 0 for these species. Therefore, the
αmatrix only has one entry.

For the non-interacting polymers, we have

yi = − tanh (Ni tanh−1(z)). (C1)

The master equation can be written as

h(z) − 1 =
(h(y1) − 1)/N1

∑iwi
+

∑
M
i=2wi(

Ni tanh−1(z)
tanh (Ni tanh−1(z)) − 1)/Ni

∑iwi
.

(C2)
While z is embedded in multiple nonlinear functions, y1 appears as
only one argument of a nonlinear function. Therefore, instead of
specifying y1 and solving for z, we can specify z and solve for y1,

h(y1) = 1 +N1∑
i
wi(h(z) − 1)

+
M

∑
i=2

wi(1 −
Ni tanh−1(z)

tanh (Ni tanh−1(z))
)
N1

Ni
. (C3)

In this case, y1 can explicitly be expressed in terms of the inverse FH
function.

Similar to the polydisperse problem, we may know the overall
ratios of the crowders being added to the solution relative to the total
solvent being added. We can express this ratio in terms of z and ν
(the volume fraction of the dense phase A),

ϕ̄i = νϕiA + (1 − ν)ϕiB = (ϕiA − ϕiB)(ν +
1
2yi
−
1
2
)

= (ϕiA − ϕiB)(ν −
1

2 tanh (Ni tanh−1(z))
−
1
2
), (C4)

then the ratio between the average polymer density of component
i and the solvent ϕ̄i/(1 −∑ j ϕ̄ j) is

ϕ̄i
1 −∑j ϕ̄j

=
(ν − 1

2 tanh (Ni tanh−1(z)) −
1
2)

(−ν + 1
2z +

1
2)

wi

∑j wj
. (C5)

If the left-hand side of the equation (the ratio the crowder to solvent)
is known for i > 1, and ν and z are specified, then the above-
mentioned equations give M − 1 linear equations for the M − 1
values of wi for i > 1.

Therefore, if ν and z are specified with a known total compo-
sition of the crowders and solvent, then the set y1 and wi are all
specified. To construct a phase diagram with crowders present, we
can simply vary ν and z between 0 and 1 to construct the full χ surface
and then transform toΦ space.

It should be noted that we may also use this “non-interacting”
construction to include finite “compressibility” of our solution,
by including “holes” on the lattice as one of the non-interacting
species, along with the solvent and polymer species. However, this
lattice-based approximation is typically a poor approximation for
the compressibility of hard-sphere liquids42 and, therefore, can likely
only approximate the behavior of real liquids.

APPENDIX D: ONE DOMINANT POLYMER–POLYMER
INTERACTION

Analogous to the case of one dominant self-interacting poly-
mer is the case of one dominant polymer–polymer pair interaction,
meaning an interactionmatrix that is zero everywhere except for two
off-diagonal entries. If we are to reframe the theory such that one of
the polymers is made into the “solvent” species and the other is made
into the “dominant” interacting component, then the approxima-
tion becomes equivalent to Appendix C, where all other species are
only non-interacting crowders that are non-participating observers
to the main interacting components. In these reframed variables, the
interaction matrix would have only one non-zero entry, α11.

Note that for the case where the “solvent” species has length
N0 > 1, we can rewrite the master equation as

h(z) = 1 + ∑iwi(h(yi) − 1)N0/Ni

∑iwi
(D1)

and the chemical potential constraints give yi

yi = tanh (Ni(ηi − 1)tanh−1(z)/N0 + ηiNi tanh−1(y1)/N1). (D2)

Next, we could pursue the same approximations as in the previous
sections, where ηi = 0 for i > 1 and then frame the phase diagram in
terms of ν and z. We leave an exploration of these approximations
to future work.

It should be noted that there is a subtle difference between
the “dominant-interaction-approximation” in this section as com-
pared to the “far from critical” approximation in Appendix A.
The dominant-interaction approximation is valid only when the
set ηi ≪ 1 for i ≠ 1, regardless of the geometric distance from the
critical point. However, for sufficiently strong partitioning of a
weakly interacting component k, ∣wk∣≫ 1, the condition on ηk will
eventually break. So, in other words, the “dominant-interaction
approximation” breaks very far from criticality for weakly interact-
ing components. The “far from critical” approximation, on the other
hand, is even valid when the interaction matrix has many non-zero
entries, although its validity is only maintained far from the critical
point.

To summarize all the approximations explored, building from
Flory’s original approach for a polymer–solvent system, we have
derived an analytical approximation far from the critical point. Next,
we have derived an approximation valid in a small region near the
critical point. To bridge these approximations, we have explored
regions of the phase diagram where a particular polymer–polymer
or polymer–solvent interaction is dominant. While more intricate
approximations may be sought for triplets of species, we suspect
that for most regions in the phase diagram, the phase composition is
dominated by the two main interacting accumulated/depleted com-
ponents between the phases, and if not, we are either close to the
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global critical point or very far from the global critical point—where
other approximations are more readily accessible.

APPENDIX E: EXTENSIONS TO OTHER EQUATIONS
OF STATE

Here, we can explore how this formulation could be extended
to other equations of state based on a lattice, focusing only on the
polymer–solvent system. In other theories, one could replace the
−χϕ2 term in the free energy density by

− χf̃ int(ϕ), (E1)

which is equivalent to assuming a ϕ-dependent χ parameter.
In this case, from the chemical potential, we arrive at

χ =
2
N tanh

−1
(y) + 2 tanh−1(z)

f̃ ′int(ϕA) − f̃ ′int(ϕB)
, (E2)

and from the pressure, we have

χ =
( 1
N − 1)(ϕA + ϕB)y + 2 tanh

−1
(z)

f̃ int(ϕB) − f̃ int(ϕA) + ϕA f̃ ′int(ϕA) − ϕB f̃ ′int(ϕB)
. (E3)

Substituting in

ϕA =
z(1 + y)
z + y

,

ϕB =
z(1 − y)
z + y

,
(E4)

and equating the values of χ, we generally have a nonlinear equa-
tion for one unknown (z) in terms of one specified variable
(y)—reducing our system of two equations down to one equa-
tion. While not guaranteed, one may be able to decouple the
z and y dependence, defining a function similar to the FH function
h() for a given functional interaction form. While this procedure
is marginally better than solving the full system of two equations
for the polymer–solvent system, it may be especially helpful for the
multicomponent case.We leave these generalizations to future work.
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