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Abstract—Deep learning (DL) models are popular across vari-
ous domains due to their remarkable performance and efficiency.
However, their effectiveness relies heavily on large amounts of
labeled data, which are often time-consuming and labor-intensive
to generate manually. To overcome this challenge, it is essential to
develop strategies that reduce reliance on extensive labeled data
while preserving model performance. In this paper, we propose
FisherMask, a Fisher information-based active learning (AL) ap-
proach that identifies key network parameters by masking them
based on their Fisher information values. FisherMask enhances
batch AL by using Fisher information to select the most critical
parameters, allowing the identification of the most impactful
samples during AL training. Moreover, Fisher information pos-
sesses favorable statistical properties, offering valuable insights
into model behavior and providing a better understanding of
the performance characteristics within the AL pipeline. Our
extensive experiments demonstrate that FisherMask significantly
outperforms state-of-the-art methods on diverse datasets, includ-
ing CIFAR-10 and FashionMNIST, especially under imbalanced
settings. These improvements lead to substantial gains in labeling
efficiency. Hence serving as an effective tool to measure the
sensitivity of model parameters to data samples. Our code is
available at https://github.com/sgchr273/FisherMask.

Index Terms—Data labeling, active learning, information ma-
trix, Fisher information

I. INTRODUCTION

Deep learning (DL) networks are increasingly integrated
into numerous fields due to their remarkable performance
and accuracy. However, their efficacy heavily relies on la-
beled/annotated data. Manual annotation of data is often costly,
prompting a growing demand for techniques capable of achiev-
ing high performance with limited labeled data [1]. Active
learning (AL) emerges as one such strategy, exploiting infor-
mative samples to train models and thereby diminishing the
necessity for additional data, thus mitigating the demand for
more annotated data [2]. Scenarios such as medical imaging,
speech recognition, and anomaly detection tasks can greatly
benefit from AL [3]-[5].

AL approaches, such as those proposed by [6]-[8], have
been developed to gauge the informativeness of data samples
and select them for model training. These methods utilize
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information-theoretic measures like Fisher information, en-
tropy, and Kullback-Leibler divergence to assess the signifi-
cance of samples within a dataset [7]. This work will center
on Fisher information, which measures how much information
an observable random variable reveals about an unknown
parameter in a distribution. Fisher information is an effective
method due to its independence from ground truth values
and its always semi-definite nature. These properties make it
advantageous in various applications, including optimization,
control theory, and machine learning [9].

Different query strategies use this Fisher information mea-
sure in various ways: some focus on selecting uncertain
samples, while others prioritize diversity in sample selec-
tion. Some approaches approximate Fisher information values
through trace operations. For instance, the method introduced
in [6], known as BAIT (Batch Active learning via Information
maTrices), employs a Fisher-based greedy approach. This
method selects samples by minimizing an objective func-
tion that incorporates approximations of Fisher information
matrices and their inverses. Another work presented in [10]
proposes training the network by updating only a subset of
parameters rather than all of them. They reported an approxi-
mation of parameter importance based on the average squared
gradients of the model’s output. This approximation helps
quantify the significance of each parameter. In another work,
the authors of [11] noted that higher layers of deep networks
are better at generating discriminative features compared to
lower layers. Furthermore, [12] showed that deeper layers
capture more complex aspects of the target function. These
insights motivate our proposed approach, which leverages
the discriminative power of upper layers to enhance feature
learning from the dataset. Incorporating these layers into our
process could potentially lead to better and more informative
samples.

Contributions. Motivated by the work of [10], we develop
a method called FisherMask for constructing a sparse net-
work mask. FisherMask aims to leverage Fisher information
to capture crucial details about unlabeled data samples. As
illustrated in Fig. 1, we compute the Fisher information matrix
for the entire network and use it to create this mask, which
is why we refer to it as FisherMask. This mask is formed
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by selecting k£ weights with the highest Fisher information
values. To speed up computations, we approximate the updates
to the Fisher information matrices and their inverses using
the Woodbury identity and trace rotation techniques, similar
to those used in BAIT [6]. FisherMask specifically utilizes
the information from the network’s middle layers to identify
influential samples. To sum up, our contributions are:

(1) We propose FisherMask, a novel method for constructing
a sparse network mask based on Fisher information. This
method leverages important weights to capture critical
details about unlabeled data samples by selecting the
k weights with the highest Fisher information values,
specifically for large datasets with limited labels.

To enhance computational efficiency, we approximate up-
dates to the Fisher information matrices and their inverses
using the Woodbury identity and trace rotation techniques.
This approach leverages information from the network’s
middle layers to effectively identify influential samples.
Our performance evaluations on a range of diverse and
publicly available datasets highlight the effectiveness and
model-agnostic nature of FisherMask. Additionally, the
results show that FisherMask achieves performance that
is comparable to or exceeds that of existing methods,
particularly in scenarios with imbalanced datasets.

(@)

3)

II. RELATED WORK

AL encompasses a range of techniques aimed at making the
training of machine learning (ML) models more efficient by
strategically selecting which data points to label. These tech-
niques generally fall into two primary categories: uncertainty
sampling and diversity sampling. Below is a detailed overview
of each approach.

Uncertainty-based approaches. They seek to reduce label-
ing efforts by focusing on samples where the model is most un-
certain. Key techniques in this area include entropy sampling,
margin sampling, and mutual information [13]. However, each
of these methods has its limitations. For example, entropy
sampling can overlook the interrelationships between samples,
leading to the selection of redundant data. Similarly, mutual
information, while theoretically informative, often involves
high computational complexity, making it less practical for
high-dimensional datasets [14].

Diversity-based approaches They focus on selecting sam-
ples that effectively represent the overall distribution/diversity
of the entire dataset. Some popular approaches in this category
include k-means sampling [15], k-means++ [16], and k-center
greedy (also known as coreset) [17]. However, each of these
approaches comes with its own limitations. For instance, the
k-center greedy method, while useful for identifying diverse
samples, often faces significant computational challenges and
ends up taking a lot more computational time than any other
AL strategy. The process involves constructing a distance
matrix for each unlabeled sample, which can be resource-
intensive [18].
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Some studies combine both model uncertainty and dataset
diversity to select the most informative samples for AL. For
example, [16] introduces a hybrid approach called BADGE
(Batch Active learning by Diverse Gradient Embeddings).
This method evaluates uncertainty by measuring the gradient
length concerning the network’s last-layer parameters while
ensuring diversity through k-means++ clustering. BADGE
effectively leverages data embeddings, which is advantageous
when feature learning is a key benefit of deep neural networks
[19].

ITI. PRELIMINARIES
A. AL via information matrices

The process selects the next optimal sample to include in
the labeled set by optimizing the objective function such as
the one in [6]. Specifically, this function aims to maximize the
potential information by informativeness of the newly labeled
sample, considering both the current model uncertainty and
the diversity of the data. For reference, the objective function
can be given by:

O(x) = argmax tr (VITM;IFLMJIVQEA_I) , (D
x

where V, is the matrix of gradients of the model’s predictions
with respect to the parameters, and M, is the Fisher informa-
tion matrix of the labeled samples, given by:

M; = \F + ﬁ > F(x;0"), )

zecC
where C'is the set of selected samples, and A is a regularization
parameter. A is an adjustment to the equation and reflects
not only the general Fisher information but also how the
sample-specific gradients impact the model’s uncertainty or
information density in the parameter space, which can be given
as:

A=F+ VM 'V, 3)

where F' is the Fisher information matrix and VTTMi_lvx
represents the contribution of the gradients. F'* denotes the
Fisher Information matrix of the last layer of the network,
which can be expressed as:

FL = Epr(x‘gL) [V2l(l‘, Y; GL)] (4)

Here A~ denotes the weights of the last layer of the network
and I(x,y; 0F) is the loss function.

B. Entropy sampling

In AL, entropy sampling is used to select the most uncertain
data points for labeling. The uncertainty is quantified by the
entropy of the model’s predicted probability distribution. The
data points with the highest entropy are considered the most
informative and thus prioritized for labeling. The entropy H
of a data point is calculated using the formula:

N
H == p;log,(ps), )
=1
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oracle (e.g., human annotator)

Fig. 1: Illustration of important weights sampling. Hollow circles represent the set of unlabeled samples S fed into the neural
network. Colored arrows depict the process of identifying important weights while pruning the remaining ones. Based on the
selected weights, a subset of unlabeled instances C (colored circles) is chosen for labeling. This subset is then sent to an oracle
for labeling, after which the model will be trained on this newly labeled data, shown in the lower-left portion of the figure,

completing one AL round.

where N is the number of classes in the dataset, and p; is the
probability of the data sample belonging to class ¢. Higher
entropy values indicate greater uncertainty in the model’s
predictions, making such samples more valuable for improving
the model’s performance through AL.

C. Margin Sampling

Margin Sampling is a method used to select data samples
where the model’s prediction is the least confident. This is
achieved by focusing on the margin between the probabilities
of the top two predicted classes.

M(I) = |pmax($) - psecond(x)‘ (6)
where M (x) denotes the margin of the model’s prediction for
sample x, which quantify how close the model’s prediction is
to being uncertain, with a smaller margin indicating higher un-
certainty. pmax () is the probability score of the top predicted
class for sample x, and pseconda(x) is the probability score of
the second most probable class for sample x.

D. k-center greedy

In this algorithm, b points are selected from a set .S as center
points to minimize the maximum distance between any data
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point z; and its nearest center x; [20]. Mathematically, the
problem can be formulated as:

(minAGeisz))

where S! is the set of selected center points with at most b
elements, x; represents a data point in the set, x; represents a
center point from the selected set S', and A(z;,z;) denotes
the distance between data point x; and center point ;.

(7

min max
S|Si|<b i

IV. METHODOLOGY
A. Problem Statement

In this work, we aim to optimize the training process of
an ML model f using a dataset S = {x1,22,...x7}. The
objectives are twofold:

1) Identify the most important network parameters: We

calculate the Fisher information matrix (FIM) for the
model’s parameters 6. The FIM is defined as:

T
FIM; = £ 5 Eyopo(ylzs) (Vo log po(ylz:))?, (8)

where FIM; measures the sensitivity of the log-likelihood
with respect to the model parameters 6;. By analyzing the
FIM, we identify which parameters have the greatest im-
pact on the model’s performance and learning dynamics.
Determine the Most Influential Samples: We evaluate
which samples in .S are most influential for the model.

2)
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This involves assessing the contribution of each sample
to the overall learning process, which can be guided by
metrics such as gradient norms, influence functions, or
other techniques that measure the impact of individual
samples on the model’s parameters.

B. Notations

We focus on the standard batch AL scenario involving
the instance space X, the label space Y, and the distribution
Dy |x(x) of the label space given an input z. We have
access to a set of unlabeled data S = {z1,z2,...,z7}, from
which we can selectively request a batch of N data points
for labehng In the p-th AL cycle, we select a collection
C {xk MY | of N samples and request their labels
y(p) ~ Dy |x(z by )) from the oracle. Our primary objective
is to minimize the following loss function as:

Ls(0) )

where S is the set of unlabeled data, 6* denotes the learned
model parameters, and [(x,y; 0*) is the loss function associ-
ated with the model’s prediction for input & and true label .
The goal is to achieve this with the fewest possible data points.
In this context, we treat the unlabeled data S as representative
of the entire distribution and utilize the FIM to perform AL
on the given unlabeled set S.

From (8), it is evident that a particular element in the FIM
represents the average of the squared gradients of the net-
work’s predictions y concerning its parameters . Specifically,
if a parameter significantly influences the model’s output, its
corresponding element in the FIM will be large. Therefore,
Fisher information can be effectively used to measure the
importance of the network’s parameters.

Motivating by [21], we pose our objective function as
follows:

= ExNS,yNDY‘X(w) [l(‘Lv Y; 0*)] ;

& = argmintr ((M; + F(z;0,)) ' Fp,)
z€S

(10)

where 6, represents sparsely selected weights in 745, AL round.
Fy, is Fisher information of unlabeled samples, which can be
expressed as Fy, = ~ 57 Eyp iyl (Va, log po(y]a:))?
with M; representing the i¢-th labeled sample to be in-
cluded in the collection C' and is given by M; = AF +
%" erC F(‘T; 07")

We employ the Woodbury identity and trace rotation for
inverse updates, a technique analogous to that used in [6], to
approximate the expression in (10). The algebraic expressions
for these updates can be provided as

fzargmmtr( (M; + V. V) Fy,) (11)

7argmmtr( MV, ATWT MY F,,)
—argmlntr(M 1F9) ( fleA_lVITMlegT,)
(

= argmin tr(M;" YFy,) — (VM7 E, M7V, AT
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Algorithm 1: FisherMask sample selection Process

Input Model f(z;6), pool of unlabeled examples S, AL
rounds R, sparsity parameter k
Output Learned model 0y
1: Initialize set C' of points by selecting N, labeled
samples from S and fit the model on C"
Oinitial = arg ming Eg [l(x7 Y; 9)]

22forr=1,2, .. Rdo
3 Caleulate Fy, = 157 3, F(;0r)
4:  Filter Fy, by {0|Fp, > SOTt(Fg )k}
5. Initialize M, = A\F + |C‘ Y owee F(x;0,)
6: forn=1,2,3,..,N do
7: I =arg mintr ((MZ + F(2;0,)) ' Fy,)
zeS
8 My« M+ F(#:0,),C « &
9:  end for
10:  Train model on C : 0, = arg ming Eg[l(x, y; 0)]

11: end for

After applying the linear algebra techniques, an approximate
solution to the optimization problem defined in (10), through
which we select the next best sample, is given by:

argmax tr (V,/ M; ' FoM; 'V, A1) (12)
x

where Fy represents the Fisher information of crucial parame-
ters {0|Fy > sort(Fy)x} with k signifies the level of sparsity
for the selection of important weights. We tested multiple
sparsity levels for constructing the FisherMask, including 0.01,
0.005, 0.002, and 0.001. Our experiments demonstrated that a
sparsity level of 0.002 was optimal, yielding the best model
performance. These sparsity levels were chosen relative to
the total parameter count in our model architecture, specif-
ically 11 million parameters in the case of ResNet-18. To
derive the solution to Eqn. (10), we employed the substitution
F(z;0,) = V. V.I', which reduces the need to store all updates
of F(x;0) and improves the computation cost. The invertible
matrix A = F + V' M; 'V, is of dimension A € R"*",
Here, V. is a matrix of size R™”*™ containing gradients with
each column scaled by the square root of the corresponding
prediction.

In Fig. 2, we illustrate the proportion of parameters deemed
significant across the 61 layers of the ResNetl8 model. The
analysis reveals that weights from the initial 10 layers are
consistently identified as significant. However, between layers
15 and 35, fewer parameters are deemed important by the
algorithm. Notably, there are spikes in selection frequency
in the later stages of the model, particularly from layer 35
onwards. The substantial spike at the 61st layer indicates that
a significant fraction of weights from the final layer have been
chosen for constructing the FisherMask.

Our approach differs from BAIT [6] in how we utilize Fisher
information matrices to choose the optimal data points. Unlike
BAIT, which relies solely on Fisher information matrices from

Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 23,2025 at 00:47:18 UTC from IEEE Xplore. Restrictions apply.



0407 — Average

0.35 - Std Dev

0.30 1
0.25 1
0.20 1
0.15 1

0.10 1
0.05 {

Avg and Std of the parameters

AN

20 30 40 50 60
Layer number

0.00 1

Fig. 2: Profile of important weights across Resnet-18

the last layer of the network, we consider weights across
intermediate layers of the network, as illustrated in Fig. 2.
The pseudocode for our proposed strategy is provided in
Algorithm 1. The Algorithm involves utilizing a classifier
f along with an unlabeled set S. Initially, the model is
trained on randomly selected samples C' as indicated in line
1. Subsequently, the AL process begins, where each cycle
includes the calculation of Fisher Information values for both
the chosen samples M and the remaining unlabeled pool F', as
outlined in lines 3 and 4. These computed values M and F' are
then used in Equation 10 to determine the optimal samples.

In Fig. 3, we present the overall methodology for selecting a
single data sample. A data point x; from the sample space .S is
fed to the model to obtain a probability vector via the softmax
layer. The FIM is calculated from this probability vector, and
the top k parameters with the largest Fisher information values
are selected. Using the objective function (Equation 12), the
next most influential sample is chosen to be added to the
labeled dataset C'. The model is then trained on the set of these
queried samples (x;,y;). This process of selecting a batch of
queried points is repeated a fixed number of times, and the
cycle continues until the stopping criteria, such as the label
budget, are met.

V. RESULTS AND DISCUSSION

Datasets. We utilize two datasets in our experiments:
CIFAR-10 [22] and FashionMNIST [23]. CIFAR-10 consists
of RGB images of size 32 x 32 with 50,000 training and 10,000
test images, while FashionMNIST contains grayscale images
of 24 x 24 with 60,000 training and 10,000 test images. Two
experimental settings are used to evaluate the algorithms. In
Setting 1, the first four classes from each dataset are selected
with sample sizes of 250, 5,000, 250, and 250, respectively. In
Setting 2, the first nine classes each have 250 samples, while
the tenth class has 5,000 samples. These settings are designed
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Fig. 3: Overview of FisherMask’s framework.

to simulate different class distributions and assess algorithm
performance under varying levels of class imbalance, reflecting
real-world scenarios where such imbalances are common.

Training Model. We employ the ResNet-18 architecture for
our experiments, implemented using the PyTorch framework.
The ResNet-18 model consists of four residual blocks, each
containing two convolutional layers followed by Batch Nor-
malization layers. Specifically, each block includes a sequence
of four layers: Conv2d, BatchNorm2d, ReLLU, and Conv2d,
repeated consistently across all layers. After these blocks, a
Fully Connected layer is applied at the end of the network to
perform classification. This structure ensures that the model
benefits from deep residual learning while maintaining a
manageable level of complexity.

We use the Adam optimizer with a learning rate of 0.001.
Additionally, we apply image preprocessing techniques such
as RandomCrop, HorizontalFlip, and Normalization to the raw
images.

Baselines. We consider four baselines to compare with our
proposed approach, FisherMask, as described below:

« Random Sampling [16]. Certain points are chosen in a
naive manner and added to the unlabeled dataset.

« Entropy Sampling [24]. A traditional AL approach that
selects unlabeled instances with the highest entropy.

o« BAIT Sampling [6]. Fisher-based active selection
method that selects batches of samples by optimizing a
bound on the MLE (Maximum Likelihood Estimation)
error in terms of the last layer of Fisher information
matrices.

o« Margin Sampling [13]. A technique used to select
samples based on the minimal difference between the top
two predictions for each class.

o K-center Greedy [20]. An approach that chooses k
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samples by solving a k-center problem on z, where z, is
the embedding of x derived from the penultimate layer.

Experimental Results.

1) Setting #1. In a scenario with limited/low data avail-
ability, as depicted in Fig. 4a, we evaluate various approaches
using a subset of 575 points from a pool of 5750 samples to
address two primary challenges. The first challenge involves
an imbalanced dataset, characterized by uneven distribution of
samples across different classes. The second challenge relates
to the limited sample size, where only 10% of the entire
imbalanced set is utilized. While entropy generally remains
below BAIT for a significant portion of the graph, it shows a
slight increase towards the end of the AL rounds. The Random
Sampling approach consistently performs poorly due to its
naive approach of randomly selecting samples. The k-center
Greedy approach initially performs similarly to other strategies
but steadily improves throughout the graph. Margin Sampling
initially performs worse than Random Sampling but gradually
improves. Notably, FisherMask consistently outperforms base-
lines across a substantial part of the plotted data, highlighting
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its superior performance’.

In Fig. 4b, we observe the performance in a high-data
regime, where the entire unlabeled dataset is utilized by the
end of the AL rounds. The process starts with 250 randomly
chosen samples and incrementally adds 250 more until all
5,750 samples from the imbalanced CIFAR-10 dataset are
used. The graph shows that all algorithms begin with an aver-
age accuracy of approximately 45% and improve to about 70%
by the end of the cycles. FisherMask consistently outperforms
margin sampling, k-center greedy, and BAIT. Entropy sam-
pling, however, maintains performance comparable to Fisher-
Mask throughout the AL process. Random sampling shows
initially lower performance but steadily improves, eventually
surpassing its initial accuracy by the end of the cycles.

We also examined both the low and high data regimes on
the FashionMNIST dataset, which exhibited similar trends to
those observed with the CIFAR-10 dataset.

2) Setting #2. In this scenario, samples are selected from a
different set of classes. Specifically, 250 samples are chosen
from each of the first nine classes, while the tenth class
contains 5,000 samples for both datasets. This setup simulates
real-world situations where one class significantly outweighs
the others, leading to potential bias in an ML model towards
the predominant class and resulting in skewed decision-making
due to its overrepresentation.

Fig. 5a displays the average accuracy curves for the imbal-
anced CIFAR-10 dataset under this setting. A batch size of 500
is used until the budget of 6,500 is exhausted. All algorithms
start with an accuracy of approximately 30% and achieve
around 60% mean accuracy by the end of the AL cycles. Fish-
erMask consistently outperforms the other methods throughout
the experiment. BAIT shows a notable improvement around
the midpoint but underperforms in the latter stages. Entropy
and Margin sampling exhibit alternating performance relative
to each other. K-center Greedy initially lags but ultimately
surpasses Random sampling and BAIT by the end of the
cycles. Random sampling remains the least effective strategy
throughout the experiment.

Similarly, in Fig. 5b, we present the results for the Fashion-
MNIST dataset under this imbalanced data setting. As with the
previous scenario, 500 samples are added to the training data
in each AL round until the budget of 6,500 is reached. All tech-
niques start with an average accuracy of approximately 52%
and achieve around 83% accuracy by the end of the cycles. The
increase in accuracy across all strategies can be attributed to
FashionMNIST’s grayscale images, which are generally easier
for models to learn. Consequently, the differences in learning
curves among the strategies are minimal.

I The shaded regions on the learning curves represent the variance, providing
an indication of the uncertainty or spread in the performance measurements.
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Fig. 5: Result for Imbalanced datasets.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed FisherMask, a novel technique
that uses a sparse mask of weights to identify the most
impactful samples based on their Fisher Information values.
By selecting the top parameters across the entire network,
FisherMask determines which samples to update and use for
the next batch in an AL round. Experimental results show that
FisherMask performs well under label sparsity and challenging
class imbalances. Both experimental and theoretical analyses
demonstrate that our approach outperforms existing baselines,
particularly in low-data regimes. For future work, we aim to
explore the effectiveness of FisherMask on additional datasets
that closely mimic real-world scenarios.

In our future work, we plan to leverage the Fisher Infor-
mation Matrix (FIM) to enhance sample selection, as FIM
captures critical information about model parameters, leading
to more informed choices. By selecting samples that maximize
the expected information gain about these parameters, FIM
can help identify those samples that provide the most insight
into parameter estimation. This approach aligns with opti-
mal experimental design criteria: for instance, A-optimality
minimizes the average variance of parameter estimates, while
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D-optimality maximizes the determinant of the FIM, thereby
improving the precision of estimated parameters. Additionally,
we are considering integrating FIM into the loss function used
during AL, allowing us to reward or penalize the selection of
samples based on their informativeness.
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