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Abstract—Deep learning (DL) models are popular across vari-

ous domains due to their remarkable performance and efficiency.

However, their effectiveness relies heavily on large amounts of

labeled data, which are often time-consuming and labor-intensive

to generate manually. To overcome this challenge, it is essential to

develop strategies that reduce reliance on extensive labeled data

while preserving model performance. In this paper, we propose

FisherMask, a Fisher information-based active learning (AL) ap-

proach that identifies key network parameters by masking them

based on their Fisher information values. FisherMask enhances

batch AL by using Fisher information to select the most critical

parameters, allowing the identification of the most impactful

samples during AL training. Moreover, Fisher information pos-

sesses favorable statistical properties, offering valuable insights

into model behavior and providing a better understanding of

the performance characteristics within the AL pipeline. Our

extensive experiments demonstrate that FisherMask significantly

outperforms state-of-the-art methods on diverse datasets, includ-

ing CIFAR-10 and FashionMNIST, especially under imbalanced

settings. These improvements lead to substantial gains in labeling

efficiency. Hence serving as an effective tool to measure the

sensitivity of model parameters to data samples. Our code is

available at https://github.com/sgchr273/FisherMask.

Index Terms—Data labeling, active learning, information ma-

trix, Fisher information

I. INTRODUCTION

Deep learning (DL) networks are increasingly integrated

into numerous fields due to their remarkable performance

and accuracy. However, their efficacy heavily relies on la-

beled/annotated data. Manual annotation of data is often costly,

prompting a growing demand for techniques capable of achiev-

ing high performance with limited labeled data [1]. Active

learning (AL) emerges as one such strategy, exploiting infor-

mative samples to train models and thereby diminishing the

necessity for additional data, thus mitigating the demand for

more annotated data [2]. Scenarios such as medical imaging,

speech recognition, and anomaly detection tasks can greatly

benefit from AL [3]–[5].

AL approaches, such as those proposed by [6]–[8], have

been developed to gauge the informativeness of data samples

and select them for model training. These methods utilize
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information-theoretic measures like Fisher information, en-

tropy, and Kullback-Leibler divergence to assess the signifi-

cance of samples within a dataset [7]. This work will center

on Fisher information, which measures how much information

an observable random variable reveals about an unknown

parameter in a distribution. Fisher information is an effective

method due to its independence from ground truth values

and its always semi-definite nature. These properties make it

advantageous in various applications, including optimization,

control theory, and machine learning [9].

Different query strategies use this Fisher information mea-

sure in various ways: some focus on selecting uncertain

samples, while others prioritize diversity in sample selec-

tion. Some approaches approximate Fisher information values

through trace operations. For instance, the method introduced

in [6], known as BAIT (Batch Active learning via Information

maTrices), employs a Fisher-based greedy approach. This

method selects samples by minimizing an objective func-

tion that incorporates approximations of Fisher information

matrices and their inverses. Another work presented in [10]

proposes training the network by updating only a subset of

parameters rather than all of them. They reported an approxi-

mation of parameter importance based on the average squared

gradients of the model’s output. This approximation helps

quantify the significance of each parameter. In another work,

the authors of [11] noted that higher layers of deep networks

are better at generating discriminative features compared to

lower layers. Furthermore, [12] showed that deeper layers

capture more complex aspects of the target function. These

insights motivate our proposed approach, which leverages

the discriminative power of upper layers to enhance feature

learning from the dataset. Incorporating these layers into our

process could potentially lead to better and more informative

samples.

Contributions. Motivated by the work of [10], we develop

a method called FisherMask for constructing a sparse net-

work mask. FisherMask aims to leverage Fisher information

to capture crucial details about unlabeled data samples. As

illustrated in Fig. 1, we compute the Fisher information matrix

for the entire network and use it to create this mask, which

is why we refer to it as FisherMask. This mask is formed

Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 23,2025 at 00:47:18 UTC from IEEE Xplore.  Restrictions apply. 



1303

by selecting k weights with the highest Fisher information

values. To speed up computations, we approximate the updates

to the Fisher information matrices and their inverses using

the Woodbury identity and trace rotation techniques, similar

to those used in BAIT [6]. FisherMask specifically utilizes

the information from the network’s middle layers to identify

influential samples. To sum up, our contributions are:

(1) We propose FisherMask, a novel method for constructing

a sparse network mask based on Fisher information. This

method leverages important weights to capture critical

details about unlabeled data samples by selecting the

k weights with the highest Fisher information values,

specifically for large datasets with limited labels.

(2) To enhance computational efficiency, we approximate up-

dates to the Fisher information matrices and their inverses

using the Woodbury identity and trace rotation techniques.

This approach leverages information from the network’s

middle layers to effectively identify influential samples.

(3) Our performance evaluations on a range of diverse and

publicly available datasets highlight the effectiveness and

model-agnostic nature of FisherMask. Additionally, the

results show that FisherMask achieves performance that

is comparable to or exceeds that of existing methods,

particularly in scenarios with imbalanced datasets.

II. RELATED WORK

AL encompasses a range of techniques aimed at making the

training of machine learning (ML) models more efficient by

strategically selecting which data points to label. These tech-

niques generally fall into two primary categories: uncertainty

sampling and diversity sampling. Below is a detailed overview

of each approach.

Uncertainty-based approaches. They seek to reduce label-

ing efforts by focusing on samples where the model is most un-

certain. Key techniques in this area include entropy sampling,

margin sampling, and mutual information [13]. However, each

of these methods has its limitations. For example, entropy

sampling can overlook the interrelationships between samples,

leading to the selection of redundant data. Similarly, mutual

information, while theoretically informative, often involves

high computational complexity, making it less practical for

high-dimensional datasets [14].

Diversity-based approaches They focus on selecting sam-

ples that effectively represent the overall distribution/diversity

of the entire dataset. Some popular approaches in this category

include k-means sampling [15], k-means++ [16], and k-center

greedy (also known as coreset) [17]. However, each of these

approaches comes with its own limitations. For instance, the

k-center greedy method, while useful for identifying diverse

samples, often faces significant computational challenges and

ends up taking a lot more computational time than any other

AL strategy. The process involves constructing a distance

matrix for each unlabeled sample, which can be resource-

intensive [18].

Some studies combine both model uncertainty and dataset

diversity to select the most informative samples for AL. For

example, [16] introduces a hybrid approach called BADGE

(Batch Active learning by Diverse Gradient Embeddings).

This method evaluates uncertainty by measuring the gradient

length concerning the network’s last-layer parameters while

ensuring diversity through k-means++ clustering. BADGE

effectively leverages data embeddings, which is advantageous

when feature learning is a key benefit of deep neural networks

[19].

III. PRELIMINARIES

A. AL via information matrices

The process selects the next optimal sample to include in

the labeled set by optimizing the objective function such as

the one in [6]. Specifically, this function aims to maximize the

potential information by informativeness of the newly labeled

sample, considering both the current model uncertainty and

the diversity of the data. For reference, the objective function

can be given by:

O(x) = argmax
x

tr
(

V T
x M−1

i FLM−1
i VxA

−1
)

, (1)

where Vx is the matrix of gradients of the model’s predictions

with respect to the parameters, and Mi is the Fisher informa-

tion matrix of the labeled samples, given by:

Mi = λF +
1

|C|

∑

x∈C

F (x; θL), (2)

where C is the set of selected samples, and λ is a regularization

parameter. A is an adjustment to the equation and reflects

not only the general Fisher information but also how the

sample-specific gradients impact the model’s uncertainty or

information density in the parameter space, which can be given

as:

A = F + V T
x M−1

i Vx, (3)

where F is the Fisher information matrix and V T
x M−1

i Vx

represents the contribution of the gradients. FL denotes the

Fisher Information matrix of the last layer of the network,

which can be expressed as:

FL = Ey∼p(x|θL)

[

∇2l(x, y; θL)
]

(4)

Here θL denotes the weights of the last layer of the network

and l(x, y; θL) is the loss function.

B. Entropy sampling

In AL, entropy sampling is used to select the most uncertain

data points for labeling. The uncertainty is quantified by the

entropy of the model’s predicted probability distribution. The

data points with the highest entropy are considered the most

informative and thus prioritized for labeling. The entropy H

of a data point is calculated using the formula:

H = −

N
∑

i=1

pi log2(pi), (5)
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Fig. 1: Illustration of important weights sampling. Hollow circles represent the set of unlabeled samples S fed into the neural

network. Colored arrows depict the process of identifying important weights while pruning the remaining ones. Based on the

selected weights, a subset of unlabeled instances C (colored circles) is chosen for labeling. This subset is then sent to an oracle

for labeling, after which the model will be trained on this newly labeled data, shown in the lower-left portion of the figure,

completing one AL round.

where N is the number of classes in the dataset, and pi is the

probability of the data sample belonging to class i. Higher

entropy values indicate greater uncertainty in the model’s

predictions, making such samples more valuable for improving

the model’s performance through AL.

C. Margin Sampling

Margin Sampling is a method used to select data samples

where the model’s prediction is the least confident. This is

achieved by focusing on the margin between the probabilities

of the top two predicted classes.

M(x) = |pmax(x)− psecond(x)| (6)

where M(x) denotes the margin of the model’s prediction for

sample x, which quantify how close the model’s prediction is

to being uncertain, with a smaller margin indicating higher un-

certainty. pmax(x) is the probability score of the top predicted

class for sample x, and psecond(x) is the probability score of

the second most probable class for sample x.

D. k-center greedy

In this algorithm, b points are selected from a set S as center

points to minimize the maximum distance between any data

point xi and its nearest center xj [20]. Mathematically, the

problem can be formulated as:

min
S1:|S1|≤b

max
i

(

min
j

∆(xi, xj)

)

(7)

where S1 is the set of selected center points with at most b

elements, xi represents a data point in the set, xj represents a

center point from the selected set S1, and ∆(xi, xj) denotes

the distance between data point xi and center point xj .

IV. METHODOLOGY

A. Problem Statement

In this work, we aim to optimize the training process of

an ML model f using a dataset S = {x1, x2, ...xT }. The

objectives are twofold:

1) Identify the most important network parameters: We

calculate the Fisher information matrix (FIM) for the

model’s parameters θ. The FIM is defined as:

FIMi =
1
T

∑T

i=1 Ey∼pθ(y|xi)(∇θ log pθ(y|xi))
2, (8)

where FIMi measures the sensitivity of the log-likelihood

with respect to the model parameters θi. By analyzing the

FIM, we identify which parameters have the greatest im-

pact on the model’s performance and learning dynamics.

2) Determine the Most Influential Samples: We evaluate

which samples in S are most influential for the model.
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This involves assessing the contribution of each sample

to the overall learning process, which can be guided by

metrics such as gradient norms, influence functions, or

other techniques that measure the impact of individual

samples on the model’s parameters.

B. Notations

We focus on the standard batch AL scenario involving

the instance space X, the label space Y, and the distribution

DY |X(x) of the label space given an input x. We have

access to a set of unlabeled data S = {x1, x2, . . . , xT }, from

which we can selectively request a batch of N data points

for labeling. In the p-th AL cycle, we select a collection

C = {x
(p)
k }

N
k=1 of N samples and request their labels

y(p) ∼ DY |X(x
(p)
k ) from the oracle. Our primary objective

is to minimize the following loss function as:

LS(θ) = Ex∼S,y∼DY |X(x) [l(x, y; θ
∗)] , (9)

where S is the set of unlabeled data, θ∗ denotes the learned

model parameters, and l(x, y; θ∗) is the loss function associ-

ated with the model’s prediction for input x and true label y.

The goal is to achieve this with the fewest possible data points.

In this context, we treat the unlabeled data S as representative

of the entire distribution and utilize the FIM to perform AL

on the given unlabeled set S.

From (8), it is evident that a particular element in the FIM

represents the average of the squared gradients of the net-

work’s predictions y concerning its parameters θ. Specifically,

if a parameter significantly influences the model’s output, its

corresponding element in the FIM will be large. Therefore,

Fisher information can be effectively used to measure the

importance of the network’s parameters.

Motivating by [21], we pose our objective function as

follows:

x̃ = argmin tr
x∈S

(

(Mi + F (x; θr))
−1Fθr

)

(10)

where θr represents sparsely selected weights in rth AL round.

Fθr is Fisher information of unlabeled samples, which can be

expressed as Fθr = 1
T

∑T

i=1 Ey∼pθ(y|xi)(∇θr log pθ(y|xi))
2

with Mi representing the i-th labeled sample to be in-

cluded in the collection C and is given by Mi = λF +
1
|C|

∑

x∈C F (x; θr).

We employ the Woodbury identity and trace rotation for

inverse updates, a technique analogous to that used in [6], to

approximate the expression in (10). The algebraic expressions

for these updates can be provided as

x̃ = argmin tr
x

(

(Mi + VxV
T
x )−1Fθr

)

(11)

= argmin tr
x

(

(M−1
i −M−1

i VxA
−1V TM−1

i )Fθr

)

= argmin tr
x

(

M−1
i Fθr

)

− tr
(

M−1
i VxA

−1V T
x M−1

i Fθr

)

= argmin tr
x

(

M−1
i Fθr

)

− tr
(

V T
x M−1

i FθrM
−1
i VxA

−1
)

Algorithm 1: FisherMask sample selection Process

Input Model f(x; θ), pool of unlabeled examples S, AL

rounds R, sparsity parameter k

Output Learned model θR
1: Initialize set C of points by selecting No labeled

samples from S and fit the model on C:

θinitial = argminθ ES [l(x, y; θ)]

2: for r = 1, 2, ..., R do

3: Calculate Fθr = 1
|S|

∑

x∈S F (x; θr)

4: Filter Fθr by {θ|Fθr g sort(Fθr )k}

5: Initialize Mo = λF + 1
|C|

∑

x∈C F (x; θr)

6: for n = 1, 2, 3, ..., N do

7: x̃ = argmin tr
x∈S

(

(Mi + F (x; θr))
−1Fθr

)

8: Mi+1 ←Mi + F (x̃; θr), C ← x̃

9: end for

10: Train model on C : θr = argminθ ES [l(x, y; θ)]

11: end for

After applying the linear algebra techniques, an approximate

solution to the optimization problem defined in (10), through

which we select the next best sample, is given by:

argmax
x

tr
(

V T
x M−1

i FθM
−1
i VxA

−1
)

(12)

where Fθ represents the Fisher information of crucial parame-

ters {θ|Fθ g sort(Fθ)k} with k signifies the level of sparsity

for the selection of important weights. We tested multiple

sparsity levels for constructing the FisherMask, including 0.01,

0.005, 0.002, and 0.001. Our experiments demonstrated that a

sparsity level of 0.002 was optimal, yielding the best model

performance. These sparsity levels were chosen relative to

the total parameter count in our model architecture, specif-

ically 11 million parameters in the case of ResNet-18. To

derive the solution to Eqn. (10), we employed the substitution

F (x; θr) = VxV
T
x , which reduces the need to store all updates

of F (x; θ) and improves the computation cost. The invertible

matrix A = F + V T
x M−1

i Vx is of dimension A ∈ R
n×n.

Here, Vx is a matrix of size R
mn×n containing gradients with

each column scaled by the square root of the corresponding

prediction.

In Fig. 2, we illustrate the proportion of parameters deemed

significant across the 61 layers of the ResNet18 model. The

analysis reveals that weights from the initial 10 layers are

consistently identified as significant. However, between layers

15 and 35, fewer parameters are deemed important by the

algorithm. Notably, there are spikes in selection frequency

in the later stages of the model, particularly from layer 35

onwards. The substantial spike at the 61st layer indicates that

a significant fraction of weights from the final layer have been

chosen for constructing the FisherMask.

Our approach differs from BAIT [6] in how we utilize Fisher

information matrices to choose the optimal data points. Unlike

BAIT, which relies solely on Fisher information matrices from
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Fig. 2: Profile of important weights across Resnet-18

the last layer of the network, we consider weights across

intermediate layers of the network, as illustrated in Fig. 2.

The pseudocode for our proposed strategy is provided in

Algorithm 1. The Algorithm involves utilizing a classifier

f along with an unlabeled set S. Initially, the model is

trained on randomly selected samples C as indicated in line

1. Subsequently, the AL process begins, where each cycle

includes the calculation of Fisher Information values for both

the chosen samples M and the remaining unlabeled pool F , as

outlined in lines 3 and 4. These computed values M and F are

then used in Equation 10 to determine the optimal samples.

In Fig. 3, we present the overall methodology for selecting a

single data sample. A data point xi from the sample space S is

fed to the model to obtain a probability vector via the softmax

layer. The FIM is calculated from this probability vector, and

the top k parameters with the largest Fisher information values

are selected. Using the objective function (Equation 12), the

next most influential sample is chosen to be added to the

labeled dataset C. The model is then trained on the set of these

queried samples (xi, yi). This process of selecting a batch of

queried points is repeated a fixed number of times, and the

cycle continues until the stopping criteria, such as the label

budget, are met.

V. RESULTS AND DISCUSSION

Datasets. We utilize two datasets in our experiments:

CIFAR-10 [22] and FashionMNIST [23]. CIFAR-10 consists

of RGB images of size 32×32 with 50,000 training and 10,000

test images, while FashionMNIST contains grayscale images

of 24× 24 with 60,000 training and 10,000 test images. Two

experimental settings are used to evaluate the algorithms. In

Setting 1, the first four classes from each dataset are selected

with sample sizes of 250, 5,000, 250, and 250, respectively. In

Setting 2, the first nine classes each have 250 samples, while

the tenth class has 5,000 samples. These settings are designed

Fig. 3: Overview of FisherMask’s framework.

to simulate different class distributions and assess algorithm

performance under varying levels of class imbalance, reflecting

real-world scenarios where such imbalances are common.

Training Model. We employ the ResNet-18 architecture for

our experiments, implemented using the PyTorch framework.

The ResNet-18 model consists of four residual blocks, each

containing two convolutional layers followed by Batch Nor-

malization layers. Specifically, each block includes a sequence

of four layers: Conv2d, BatchNorm2d, ReLU, and Conv2d,

repeated consistently across all layers. After these blocks, a

Fully Connected layer is applied at the end of the network to

perform classification. This structure ensures that the model

benefits from deep residual learning while maintaining a

manageable level of complexity.

We use the Adam optimizer with a learning rate of 0.001.

Additionally, we apply image preprocessing techniques such

as RandomCrop, HorizontalFlip, and Normalization to the raw

images.

Baselines. We consider four baselines to compare with our

proposed approach, FisherMask, as described below:

• Random Sampling [16]. Certain points are chosen in a

naive manner and added to the unlabeled dataset.

• Entropy Sampling [24]. A traditional AL approach that

selects unlabeled instances with the highest entropy.

• BAIT Sampling [6]. Fisher-based active selection

method that selects batches of samples by optimizing a

bound on the MLE (Maximum Likelihood Estimation)

error in terms of the last layer of Fisher information

matrices.

• Margin Sampling [13]. A technique used to select

samples based on the minimal difference between the top

two predictions for each class.

• K-center Greedy [20]. An approach that chooses k
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(a) Low.

(b) High.

Fig. 4: Data regime for imbalanced CIFAR10.

samples by solving a k-center problem on zx where zx is

the embedding of x derived from the penultimate layer.

Experimental Results.

1) Setting #1. In a scenario with limited/low data avail-

ability, as depicted in Fig. 4a, we evaluate various approaches

using a subset of 575 points from a pool of 5750 samples to

address two primary challenges. The first challenge involves

an imbalanced dataset, characterized by uneven distribution of

samples across different classes. The second challenge relates

to the limited sample size, where only 10% of the entire

imbalanced set is utilized. While entropy generally remains

below BAIT for a significant portion of the graph, it shows a

slight increase towards the end of the AL rounds. The Random

Sampling approach consistently performs poorly due to its

naive approach of randomly selecting samples. The k-center

Greedy approach initially performs similarly to other strategies

but steadily improves throughout the graph. Margin Sampling

initially performs worse than Random Sampling but gradually

improves. Notably, FisherMask consistently outperforms base-

lines across a substantial part of the plotted data, highlighting

its superior performance1.

In Fig. 4b, we observe the performance in a high-data

regime, where the entire unlabeled dataset is utilized by the

end of the AL rounds. The process starts with 250 randomly

chosen samples and incrementally adds 250 more until all

5,750 samples from the imbalanced CIFAR-10 dataset are

used. The graph shows that all algorithms begin with an aver-

age accuracy of approximately 45% and improve to about 70%

by the end of the cycles. FisherMask consistently outperforms

margin sampling, k-center greedy, and BAIT. Entropy sam-

pling, however, maintains performance comparable to Fisher-

Mask throughout the AL process. Random sampling shows

initially lower performance but steadily improves, eventually

surpassing its initial accuracy by the end of the cycles.

We also examined both the low and high data regimes on

the FashionMNIST dataset, which exhibited similar trends to

those observed with the CIFAR-10 dataset.

2) Setting #2. In this scenario, samples are selected from a

different set of classes. Specifically, 250 samples are chosen

from each of the first nine classes, while the tenth class

contains 5,000 samples for both datasets. This setup simulates

real-world situations where one class significantly outweighs

the others, leading to potential bias in an ML model towards

the predominant class and resulting in skewed decision-making

due to its overrepresentation.

Fig. 5a displays the average accuracy curves for the imbal-

anced CIFAR-10 dataset under this setting. A batch size of 500

is used until the budget of 6,500 is exhausted. All algorithms

start with an accuracy of approximately 30% and achieve

around 60% mean accuracy by the end of the AL cycles. Fish-

erMask consistently outperforms the other methods throughout

the experiment. BAIT shows a notable improvement around

the midpoint but underperforms in the latter stages. Entropy

and Margin sampling exhibit alternating performance relative

to each other. K-center Greedy initially lags but ultimately

surpasses Random sampling and BAIT by the end of the

cycles. Random sampling remains the least effective strategy

throughout the experiment.

Similarly, in Fig. 5b, we present the results for the Fashion-

MNIST dataset under this imbalanced data setting. As with the

previous scenario, 500 samples are added to the training data

in each AL round until the budget of 6,500 is reached. All tech-

niques start with an average accuracy of approximately 52%

and achieve around 83% accuracy by the end of the cycles. The

increase in accuracy across all strategies can be attributed to

FashionMNIST’s grayscale images, which are generally easier

for models to learn. Consequently, the differences in learning

curves among the strategies are minimal.

1The shaded regions on the learning curves represent the variance, providing

an indication of the uncertainty or spread in the performance measurements.
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(a) CIFAR10.

(b) FashionMNIST.

Fig. 5: Result for Imbalanced datasets.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed FisherMask, a novel technique

that uses a sparse mask of weights to identify the most

impactful samples based on their Fisher Information values.

By selecting the top parameters across the entire network,

FisherMask determines which samples to update and use for

the next batch in an AL round. Experimental results show that

FisherMask performs well under label sparsity and challenging

class imbalances. Both experimental and theoretical analyses

demonstrate that our approach outperforms existing baselines,

particularly in low-data regimes. For future work, we aim to

explore the effectiveness of FisherMask on additional datasets

that closely mimic real-world scenarios.

In our future work, we plan to leverage the Fisher Infor-

mation Matrix (FIM) to enhance sample selection, as FIM

captures critical information about model parameters, leading

to more informed choices. By selecting samples that maximize

the expected information gain about these parameters, FIM

can help identify those samples that provide the most insight

into parameter estimation. This approach aligns with opti-

mal experimental design criteria: for instance, A-optimality

minimizes the average variance of parameter estimates, while

D-optimality maximizes the determinant of the FIM, thereby

improving the precision of estimated parameters. Additionally,

we are considering integrating FIM into the loss function used

during AL, allowing us to reward or penalize the selection of

samples based on their informativeness.
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